

Page: 1 of 48

SAR TEST REPORT

The following samples were submitted and identified on behalf of the client as:

Equipment Under TestBluetooth Headset

Marketing Name Bluetooth headset, BackBeat 100; Bluetooth headset,

BackBeat 105

Brand Name Plantronics Model No. S1XX16

Company Name Plantronics, Inc.

Company Address 345 Encinal Street, Santa Cruz, CA 95060, USA

Standards IEEE /ANSI C95.1-1992, IEEE 1528-2013,

KDB447498D01v06, KDB865664D01v01r04,

KDB865664D02v01r02

FCC ID AL8-S1XX16

Date of Receipt Jun. 02, 2016

Date of Test(s) Jun. 06, 2016

Date of Issue Jul. 19, 2016

In the configuration tested, the EUT complied with the standards specified above.

Remarks:

This report details the results of the testing carried out on one sample, the results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS Taiwan Electronic & Communication Laboratory or testing done by SGS Taiwan Electronic & Communication Laboratory in connection with distribution or use of the product described in this report must be approved by SGS Taiwan Electronic & Communication Laboratory in writing.

Signed on behalf of SGS					
Sr. Engineer	Supervisor				
Mason Wu Mason Wu	John Yeh				
Date: Jul. 19, 2016	Date: Jul. 19, 2016				

Page: 2 of 48

Revision History

Report Number	Revision	Description	Issue Date	
ES/2016/60002	Rev.00	Initial creation of document	Jul. 06, 2016	
ES/2016/60002	Rev.01	1 st modification	Jul. 19, 2016	

Page: 3 of 48

Contents

1. General Information	4
1.1 Testing Laboratory	
1.2 Details of Applicant	4
1.3 Description of EUT	5
1.4 Test Environment	7
1.5 Operation Description	7
1.6 The SAR Measurement System	9
1.7 System Components	11
1.8 SAR System Verification	13
1.9 Tissue Simulant Fluid for the Frequency Band	14
1.10 Evaluation Procedures	15
1.11 Probe Calibration Procedures	16
1.12 Test Standards and Limits	19
2. Summary of Results	21
3. Instruments List	22
4. Measurements	23
5. SAR System Performance Verification	24
6. DAE & Probe Calibration Certificate	
7. Uncertainty Budget	
8. Phantom Description	
9. System Validation from Original Equipment Supplier	
or official fandation nome original Equipment oupplies	······································

Page: 4 of 48

1. General Information

1.1 Testing Laboratory

SGS Taiwan Ltd. Electronics & Communication Laboratory						
No.134, Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei						
City, Taiwan	City, Taiwan					
Tel	+886-2-2299-3279					
Fax	+886-2-2298-0488					
Internet	nternet http://www.tw.sgs.com/					

1.2 Details of Applicant

Company Name	Plantronics, Inc.
Company Address	345 Encinal Street, Santa Cruz, CA 95060, USA

Page: 5 of 48

1.3 Description of EUT

Equipment Under Test	Bluetooth Headset					
Marketing Name	Bluetooth headset, BackBeat 100; Bluetooth headset, BackBeat 105					
Brand Name	Plantronics					
Model No.	S1XX16					
FCC ID	AL8-S1XX16					
Mode of Operation	⊠Bluetooth					
Duty Cycle	Bluetooth		1			
TX Frequency Range (MHz)	Bluetooth	2402	_	2480		
Channel Number (ARFCN)	Bluetooth 0 — 78					

Max. SAR (1 g) (Unit: W/Kg)						
Mode Measured Reported Channel Position						
Bluetooth (Body)	0.157	0.167	78	Right side_1		

Page: 6 of 48

Bluetooth conducted power table:

	Practice in Contraction portroi table.					
Frequency	Data	Max. power(dBm)	Avg.			
(MHz)	Rate		dBm	mW		
2402	1	8.50	6.91	4.909		
2441	1	8.50	7.95	6.237		
2480	1	8.50	8.24	6.668		
2402	2	8.50	3.16	2.070		
2441	2	8.50	5.26	3.357		
2480	2	8.50	5.55	3.589		
2402	3	8.50	3.18	2.080		
2441	3	8.50	5.28	3.373		
2480	3	8.50	5.73	3.741		

Page: 7 of 48

1.4 Test Environment

Ambient Temperature: 22±2° C Tissue Simulating Liquid: 22±2° C

1.5 Operation Description

Use chipset specific software to control the EUT, and makes it transmit in maximum power. Measurements are performed respectively on the lowest, middle and highest channels of the operating band(s). The EUT is set to maximum power level during all tests, and at the beginning of each test the battery is fully charged. While testing Bluetooth, SAR shall be measured at the middle channel if middle channel has the highest average power.

Duty cycle calculation for actual usage scenario

240 bits payload (no payload header is present)68 bits shortened access code (since no payload header follows)4 bits ramping margin

which, at 1.0uS/bit GFSK, is then 312uS with the transmitter on sent every 1250uS, or a duty cycle of 25%.

Therefore, the calculated Maximum SAR value, based on the 25% duty cycle becomes 0.004167W/Kg.

Test configuration has been confirmed by KDB inquiry (tracking number: 248469).

Neck exposure: right sides 1/2/3/4/5/6/7 with test distance 0mm.

Page: 8 of 48

Front view of EUT

Note:

- 1. According to KDB447498 D01, testing of other required channels is not required when the reported 1-g SAR for the highest output channel is \leq 0.8 W/kg, when the transmission band is \leq 100 MHz.
- 2. According to KDB865664 D01, SAR measurement variability must be assessed for each frequency band. When the original highest measured SAR is ≥ 0.8 W/kg, repeated that measurement once. Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~10% from the 1-g SAR limit)

Page: 9 of 48

1.6 The SAR Measurement System

A block diagram of the SAR measurement System is given in Fig. a. This SAR Measurement System uses a Computer-controlled 3-D stepper motor system (SPEAG DASY 5 professional system). The model EX3DV4 field probe is used to determine the internal electric fields. The SAR can be obtained from the equation SAR= σ ($|Ei|^2$)/ ρ where σ and ρ are the conductivity and mass density of the tissue-simulant.

The DASY 5 system for performing compliance tests consists of the following items:

- 1. A standard high precision 6-axis robot (Staubli RX family) with controller, teach pendant and software. An arm extension is for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage intissue simulating liquid. The probe is equipped with an optical surface detector system.
- 3. A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

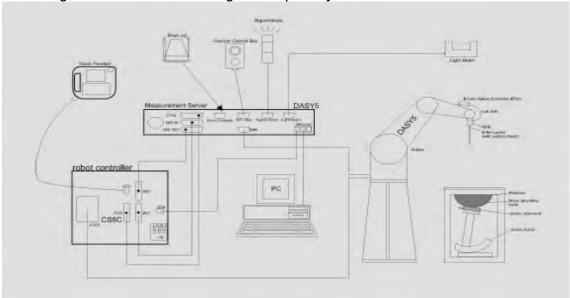


Fig. a The block diagram of SAR system

Page: 10 of 48

- 4. The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.
- 5. The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- 6. A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- 7. A computer operating Windows 7.
- 8. DASY 5 software.
- 9. Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- 10. The SAM twin phantom enabling testing left-hand and right-hand usage.
- 11. The device holder for handheld mobile phones.
- 12. Tissue simulating liquid mixed according to the given recipes.
- 13. Validation dipole kits allowing to validate the proper functioning of the system.

Page: 11 of 48

1.7 System Components

EX3DV4 E-Field Probe

Construction	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)				
Calibration	Basic Broad Band Calibration in air Conversion Factors (CF) for HSL 2450 MHz Additional CF for other liquids and frequencies upon request				
Frequency	10 MHz to > 6 GHz				
Directivity	± 0.3 dB in HSL (rotation around probe as ± 0.5 dB in tissue material (rotation normal	,			
Dynamic	$10 \mu \text{W/g to} > 100 \text{mW/g}$,			
Range	Linearity: ± 0.2 dB (noise: typically < 1 μV	V/g)			
Dimensions	Tip diameter: 2.5 mm				
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30%.				

Page: 12 of 48

SAM PHANTOM V4.0C

SAM PHANTO	JW V4.UC				
Construction	The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. Cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points with the robot.				
Shell Thickness	2 ± 0.2 mm				
Filling Volume	Approx. 25 liters	The same of the sa			
Dimensions	Height: 850 mm; Length: 1000 mm; Width: 500 mm				

DEVICE HOLDER

Construction The device holder (Supporter) for Notebook is made by POM (polyoxymethylene resin), which is non-metal and non-conductive. The height can be adjusted to fit varies kind of notebooks.	Device Holder						

Page: 13 of 48

1.8 SAR System Verification

The microwave circuit arrangement for system verification is sketched in Fig. b. The daily system accuracy verification occurs within the flat section of the SAM phantom. A SAR measurement was performed to see if the measured SAR was within \pm 10% from the target SAR values. These tests were done at 2450 MHz. The tests were conducted on the same days as the measurement of the DUT. The obtained results from the system accuracy verification are displayed in the table 1 (SAR values are normalized to 1W forward power delivered to the dipole). During the tests, the ambient temperature of the laboratory was 21.7°C, the relative humidity was 62% and the liquid depth above the ear reference points was \pm 15 cm \pm 5 mm (frequency \pm 3 GHz) or \pm 10 cm \pm 5 mm (frequency \pm 3 GHz) in all the cases. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values.

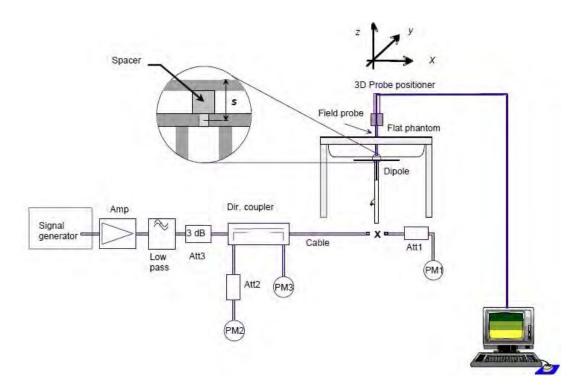


Fig. b The block diagram of system verification

Page: 14 of 48

Validation Kit	S/N	Frequ (Mł	•	1W Target SAR-1g (mW/g)	Measured SAR-1g (mW/g)	Measured SAR-1g normalized to 1W (mW/g)	Deviation (%)	Measured Date
D2450V2	727	2450	Body	49.6	13.2	52.8	6.45%	Jun. 06. 2016

Table 1. Results of system validation

1.9 Tissue Simulant Fluid for the Frequency Band

The dielectric properties for this body-simulant fluid were measured by using the Agilent Model 85070E Dielectric Probe (rates frequency band 200 MHz to 20 GHz) in conjunction with Network Analyzer (30 KHz-6000 MHz).

All dielectric parameters of tissue simulates were measured within 24 hours of SAR measurements. The depth of the tissue simulant in the flat section of the phantom was \geq 15 cm \pm 5 mm (Frequency \leq 3G) or \geq 10 cm \pm 5 mm (Frequency >3G) during all tests. (Fig. 2)

Tissue Type	Measured Frequency (MHz)	Target Dielectric Constant, £r	Target Conductivity, σ (S/m)	Measured Dielectric Constant, Er	Measured Conductivity, σ (S/m)	% dev εr	% dev σ	Measurement Date
	2402	52.764	1.904	51.566	1.94	2.27%	-1.89%	
Body	2441	52.712	1.941	51.467	1.99	2.36%	-2.52%	Jun. 06, 2016
Body	2450	52.700	1.950	51.448	2.001	2.38%	-2.62%	Juli. 00, 2010
	2480	52.662	1.993	51.362	2.038	2.47%	-2.26%	

Table 2. Dielectric Parameters of Tissue Simulant Fluid

The composition of the tissue simulating liquid:

Гиолиолом					edient			Total
Frequency (MHz)	Mode	DGMBE	Water	Salt	Preventol D-7	Cellulos e	Sugar	Total amount
2450	Body	301.7ml	698.3ml	_	_	ı	_	1.0L(Kg)

Table 3. Recipes for Tissue Simulating Liquid

Page: 15 of 48

1.10 Evaluation Procedures

The entire evaluation of the spatial peak values is performed within the Post-processing engine (SEMCAD). The system always gives the maximum values for the 1 g and 10 g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- 1. The extraction of the measured data (grid and values) from the Zoom Scan.
- 2. The calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- 3. The generation of a high-resolution mesh within the measured volume
- 4. The interpolation of all measured values from the measurement grid to the high-resolution grid
- 5. The extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- 6. The calculation of the averaged SAR within masses of 1g and 10g.

The probe is calibrated at the center of the dipole sensors that is located 1 to 2.7mm away from the probe tip. During measurements, the probe stops shortly above the phantom surface, depending on the probe and the surface detecting system. Both distances are included as parameters in the probe configuration file. The software always knows exactly how far away the measured point is from the surface. As the probe cannot directly measure at the surface, the values between the deepest measured point and the surface must be extrapolated. The angle between the probe axis and the surface normal line is less than 30 degree.

In the Area Scan, the gradient of the interpolation function is evaluated to find all the extreme of the SAR distribution. The uncertainty on the locations of the extreme is less than 1/20 of the grid size. Only local maximum within –2 dB of the global maximum are searched and passed for the Cube Scan measurement. In the Cube Scan, the interpolation function is used to extrapolate the Peak SAR from the lowest measurement points to the inner phantom surface (the extrapolation distance). The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5mm.

The maximum search is automatically performed after each area scan measurement. It is based on splines in two or three dimensions. The procedure can find the maximum for most SAR distributions even with relatively large grid spacing. After the area scanning measurement, the probe is automatically moved to a position at the interpolated maximum. The following scan can directly use this position for reference, e.g., for a finer resolution grid or the cube evaluations. The 1g and 10g peak evaluations are only available for the predefined cube 7x7x7 scans. The routines are verified and optimized for the grid dimensions used in these cube measurements.

The measured volume of 30x30x30mm contains about 30g of tissue.

Page: 16 of 48

The first procedure is an extrapolation (incl. Boundary correction) to get the points between the lowest measured plane and the surface. The next step uses 3D interpolation to get all points within the measured volume. In the last step, a 1g cube is placed numerically into the volume and its averaged SAR is calculated. This cube is the moved around until the highest averaged SAR is found. If the highest SAR is found at the edge of the measured volume, the system will issue a warning: higher SAR values might be found outside of the measured volume. In that case the cube measurement can be repeated, using the new interpolated maximum as the center.

1.11 Probe Calibration Procedures

For the calibration of E-field probes in lossy liquids, an electric field with an accurately known field strength must be produced within the measured liquid. For standardization purposes it would be desirable if all measurements which are necessary to assess the correct field strength would be traceable to standardized measurement procedures. In the following two different calibration techniques are summarized:

1.11.1 Transfer Calibration with Temperature Probes

In lossy liquids the specific absorption rate (SAR) is related both to the electric field (E) and the temperature gradient ($\delta T / \delta t$) in the liquid.

$$SAR = \frac{\sigma}{\rho} |E|^2 = c \frac{\delta T}{\delta t}$$

whereby $\boldsymbol{\sigma}$ is the conductivity, $\boldsymbol{\rho}$ the density and \boldsymbol{c} the heat capacity of the liquid.

Hence, the electric field in lossy liquid can be measured indirectly by measuring the temperature gradient in the liquid. Non-disturbing temperature probes (optical probes or thermistor probes with resistive lines) with high spatial resolution (<1-2 mm) and fast reaction time (<1 s) are available and can be easily calibrated with high precision [1]. The setup and the exciting source have no influence on the calibration; only the relative positioning uncertainties of the standard temperature probe and the E-field probe to be calibrated must be considered. However, several problems limit the available accuracy of probe calibrations with temperature probes:

Page: 17 of 48

• The temperature gradient is not directly measurable but must be evaluated from temperature measurements at different time steps. Special precaution is necessary to avoid measurement errors caused by temperature gradients due to energy equalizing effects or convection currents in the liquid. Such effects cannot be completely avoided, as the measured field itself destroys the thermal equilibrium in the liquid. With a careful setup these errors can be kept small.

- The measured volume around the temperature probe is not well defined. It is difficult to calculate the energy transfer from a surrounding gradient temperature field into the probe. These effects must be considered, since temperature probes are calibrated in liquid with homogeneous temperatures. There is no traceable standard for temperature rise measurements.
- The calibration depends on the assessment of the specific density, the heat capacity and the conductivity of the medium. While the specific density and heat capacity can be measured accurately with standardized procedures (~ 2% for c; much better for ρ), there is no standard for the measurement of the conductivity. Depending on the method and liquid, the error can well exceed ±5%.
- Temperature rise measurements are not very sensitive and therefore are often performed at a higher power level than the E-field measurements.
 The nonlinearities in the system (e.g., power measurements, different components, etc.) must be considered.

Considering these problems, the possible accuracy of the calibration of E-field probes with temperature gradient measurements in a carefully designed setup is about $\pm 10\%$ (RSS) [2]. Recently, a setup which is a combination of the waveguide techniques and the thermal measurements was presented in [3]. The estimated uncertainty of the setup is $\pm 5\%$ (RSS) when the same liquid is used for the calibration and for actual measurements and ± 7 -9% (RSS) when not, which is in good agreement with the estimates given in [2].

1.11.2 Calibration with Analytical Fields

In this method a technical setup is used in which the field can be calculated analytically from measurements of other physical magnitudes (e.g., input power). This corresponds to the standard field method for probe calibration in air; however, there is no standard defined for fields in lossy liquids. When using calculated fields in lossy liquids for probe calibration, several points must be considered in the assessment of the uncertainty:

- The setup must enable accurate determination of the incident power.
- The accuracy of the calculated field strength will depend on the assessment of the dielectric parameters of the liquid.

Page: 18 of 48

 Due to the small wavelength in liquids with high permittivity, even small setups might be above the resonant cutoff frequencies. The field distribution in the setup must be carefully checked for conformity with the theoretical field distribution.

References

- 1. N. Kuster, Q. Balzano, and J.C. Lin, Eds., *Mobile Communications Safety*, Chapman & Hall, London, 1997.
- K. Meier, M. Burkhardt, T. Schmid, and N. Kuster, \Broadband calibration of E-field probes in lossy media", *IEEE Transactions on Microwave Theory and Techniques*, vol. 44, no. 10, pp. 1954{1962, Oct. 1996.
- 3. K. Jokela, P. Hyysalo, and L. Puranen, \Calibration of specific absorption rate (SAR) probes in waveguide at 900 MHz", *IEEE Transactions on Instrumentation and Measurements*, vol. 47, no. 2, pp. 432{438, Apr. 1998.

Page: 19 of 48

1.12 Test Standards and Limits

According to FCC 47CFR §2.1093(d) The limits to be used for evaluation are based generally on criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate ("SAR") in Section 4.2 of "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz," ANSI/IEEE C95.1, By the Institute of Electrical and Electronics Engineers, Inc., New York, New York 10017. These criteria for SAR evaluation are similar to those recommended by the National Council on Radiation Protection and Measurements (NCRP) in "Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields," NCRP Report No. 86, Section 17.4.5. Copyright NCRP, 1986, Bethesda, Maryland 20814. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards. The criteria to be used are specified in paragraphs (d)(1) and (d)(2) of this section and shall apply for portable devices transmitting in the frequency range from 100 kHz to 6 GHz. Portable devices that transmit at frequencies above 6 GHz are to be evaluated in terms of the MPE limits specified in § 1.1310 of this chapter. Measurements and calculations to demonstrate compliance with MPE field strength or power density limits for devices operating above 6 GHz should be made at a minimum distance of 5 cm from the radiating source.

- (1) Limits for Occupational/Controlled exposure: 0.4 W/kg as averaged over the whole-body and spatial peak SAR not exceeding 8 W/kg as averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube). Exceptions are the hands, wrists, feet and ankles where the spatial peak SAR shall not exceed 20 W/kg, as averaged over an 10 grams of tissue (defined as a tissue volume in the shape of a cube).
- (2) Occupational/Controlled limits apply when persons are exposed as a consequence of their employment provided these persons are fully aware of and exercise control over their exposure. Awareness of exposure can be accomplished by use of warning labels or by specific training or education through appropriate means, such as an RF safety program in a work environment.
- (3) Limits for General Population/Uncontrolled exposure: 0.08 W/kg as averaged over the whole-body and spatial peak SAR not exceeding 1.6 W/kg as averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube). Exceptions are the hands, wrists, feet and ankles where the spatial peak SAR shall not exceed 4 W/kg, as averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube). General Population/Uncontrolled limits apply when the general public may be exposed, or when persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or do not

Page: 20 of 48

exercise control over their exposure. Warning labels placed on consumer devices such as cellular telephones will not be sufficient reason to allow these devices to be evaluated subject to limits for occupational/controlled exposure in paragraph (d)(1) of this section. (Table 4.)

Human Exposure	Uncontrolled Environment General Population	Controlled Environment Occupational
Spatial Peak SAR (Brain)	1.60 m W/g	8.00 m W/g
Spatial Average SAR (Whole Body)	0.08 m W/g	0.40 m W/g
Spatial Peak SAR (Hands/Feet/Ankle/Wrist)	4.00 m W/g	20.00 m W/g

Table 4. RF exposure limits

Notes:

- 1. Uncontrolled environments are defined as locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.
- 2. Controlled environments are defined as locations where there is potential exposure of individuals who have knowledge of their potential exposure and can exercise control over their exposure.

Page: 21 of 48

2. Summary of Results

Bluetooth

Mode	Position	Distance (mm)	СН	Freq. (MHz)	Max. Rated Avg. Power + Max.	Measured Avg. Power (dBm)	Scaling	Averaged SAR over 1g (W/kg)		Plot page
					Tolerance (dBm)	(dDIII)		Measured	Reported	
	Right side_1	0	0	2402	8.50	6.91	144.21%	0.094	0.136	-
	Right side_1	0	39	2441	8.20	7.95	105.93%	0.144	0.153	-
	Right side_1	0	78	2480	8.50	8.24	106.17%	0.157	0.167	23
	Right side_2	0	78	2480	8.50	8.24	106.17%	0.074	0.079	-
D 1	Right side_3	0	78	2480	8.50	8.24	106.17%	0.074	0.079	-
Bluetooth (Body)	Right side_4	0	78	2480	8.50	8.24	106.17%	0.002	0.002	-
(200)	Right side_5	0	78	2480	8.50	8.24	106.17%	0.070	0.074	-
	Right side_6	0	78	2480	8.50	8.24	106.17%	0.061	0.065	-
	Right side_7	0	78	2480	8.50	8.24	106.17%	0.003	0.003	-
	Right side_8	0	78	2480	8.50	8.24	106.17%	0.001	0.001	-
	Right side_9	0	78	2480	8.50	8.24	106.17%	0.084	0.089	-

Note:

Scaling = $\frac{\text{reported SAR}}{\text{measured SAR}} = \frac{P2(\text{mW})}{P1(\text{mW})} = 10^{\left(\frac{P_B - P_L}{\text{sw}}\right)(\text{dBm})}$

Reported SAR = measured SAR * (scaling)

Where P2 is maximum specified power, P1 is measured conducted power

Mode	Position	Distance (mm)	СН	Freq. (MHz)	Max. Rated Avg. Power + Max. Tolerance	Measured Avg. Power (dBm)	Scaling	_	alculated 1g /kg)	Plot page
					(dBm)	(dDIII)		Measured	Reported	
	Right side_1	0	0	2402	8.50	6.91	144.21%	0.02350	0.03389	-
	Right side_1	0	39	2441	8.20	7.95	105.93%	0.03600	0.03813	-
	Right side_1	0	78	2480	8.50	8.24	106.17%	0.03925	0.04167	-
	Right side_2	0	78	2480	8.50	8.24	106.17%	0.01850	0.01964	-
B	Right side_3	0	78	2480	8.50	8.24	106.17%	0.01850	0.01964	-
Bluetooth (Body)	Right side_4	0	78	2480	8.50	8.24	106.17%	0.00050	0.00053	-
(200)	Right side_5	0	78	2480	8.50	8.24	106.17%	0.01750	0.01858	-
	Right side_6	0	78	2480	8.50	8.24	106.17%	0.01525	0.01619	-
	Right side_7	0	78	2480	8.50	8.24	106.17%	0.00075	0.00080	-
	Right side_8	0	78	2480	8.50	8.24	106.17%	0.00025	0.00027	-
	Right side_9	0	78	2480	8.50	8.24	106.17%	0.02100	0.02230	-

Page: 22 of 48

3. Instruments List

Manufacturer	Device	Type	Serial number	Date of last calibration	Date of next calibration
Schmid & Partner Engineering AG	Dosimetric E-Field Probe	EX3DV4	3938	Oct.01,2015	Sep.30,2016
Schmid & Partner Engineering AG	System Validation Dipole	D2450V2	727	Apr.19,2016	Apr.18,2017
Schmid & Partner Engineering AG	Data acquisition Electronics	DAE4	1260	Sep.24,2015	Sep.23,2016
Schmid & Partner Engineering AG	Software	DASY 52 V52.8.8	N/A	Calibration not required	Calibration not required
Schmid & Partner Engineering AG	Phantom	SAM	N/A	Calibration not required	Calibration not required
Agilent	Network Analyzer	E5071C	MY46107530	Jan.07,2016	Jan.06,2017
Agilent	Dielectric Probe Kit	85070E	MY44300677	Calibration not required	Calibration not required
Agilent	Dual-directional coupler	772D	MY46151242	Jul.15,2015	Jul.14,2016
Agilent	RF Signal Generator	N5181A	MY50144143	Jul.16,2015	Jul.15,2016
Agilent	Power Meter	E4417A	MY52240003	Jul.15,2015	Jul.14,2016
Agilent	Power Sensor	E9301H	MY52200004	Jul.15,2015	Jul.14,2016
TECPEL	Digital thermometer	DTM-303A	TP130073	Feb.26,2016	Feb.25,2017

Page: 23 of 48

4. Measurements

Date: 2016/6/6

Bluetooth Right side 1 CH 78 0mm

Communication System: Bluetooth; Frequency: 2480 MHz

Medium parameters used: f = 2480 MHz; $\sigma = 2.038 \text{ S/m}$; $\varepsilon_r = 51.362$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

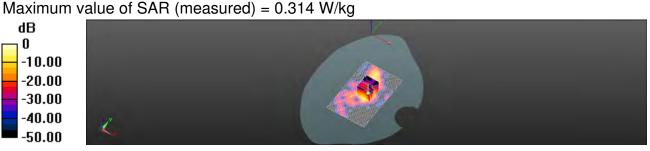
DASY5 Configuration:

- Probe: EX3DV4 SN3938; ConvF(7.17, 7.17, 7.17); Calibrated: 2015/10/1;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1260; Calibrated: 2015/9/24
- Phantom: Head
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Head/Area Scan (71x111x1): Interpolated grid: dx=12 mm, dy=12 mm

Maximum value of SAR (interpolated) = 0.306 W/kg

Configuration/Head/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

Reference Value = 6.502 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 0.477 W/kg

SAR(1 g) = 0.157 W/kg; SAR(10 g) = 0.048 W/kg

dΒ 0 -10.00 -20.00 -30.00 -40.00 -50.00

0 dB = 0.314 W/kg = -5.03 dBW/kg

Page: 24 of 48

5. SAR System Performance Verification

Date: 2016/6/6

Dipole 2450 MHz SN:727

Communication System: CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2.001 \text{ S/m}$; $\varepsilon_r = 51.448$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3938; ConvF(7.17, 7.17, 7.17); Calibrated: 2015/10/1;

• Sensor-Surface: 2mm (Mechanical Surface Detection)

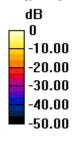
Electronics: DAE4 Sn1260; Calibrated: 2015/9/24

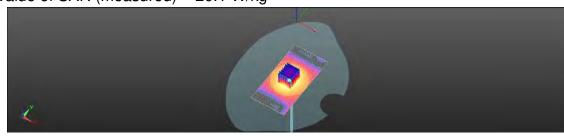
Phantom: Head

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Pin=250mW/Area Scan (51x101x1): Interpolated grid: dx=15 mm, dy=15 mm

Maximum value of SAR (interpolated) = 20.0 W/kg


Configuration/Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 101.5 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 26.9 W/kg

SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.17 W/kg Maximum value of SAR (measured) = 20.1 W/kg

0 dB = 20.0 W/kg = 13.00 dBW/kg

Page: 25 of 48

6. DAE & Probe Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeoghnusersase 43, 8004 Zurich, Switzerland

Accredited by the Swise Accreditation Service (SAS)

The Swise Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client SGS - TW (Auden)

Certificate No: DAE4-1260 Sep15

Accreditation No.: SCS 0108

CALIBRATION CERTIFICATE DAE4 - SD 000 D04 BM - SN: 1260 Cathration procedurers) QA CAL-06, v29 Calibration procedure for the data acquisition electronics (DAE) Calibration date September 24, 2015 This calibration conflicted documents the transability to national standards, which release the physical units of measurements (SI) The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate All calibrations have been constructed in the closed laboratory facility, environment temperature (82 ± 3)°C and humidity < 70%. Cambration Equipment used (M&TE critical for calibration) Primary Standards Cal Date (Certificate No.) Scheduled Calibration Keimley Multimeter Type 2001 09-Sep-15 (No:17153) Sep-16 Secondary Standards Check Date (in house) Scheduled Check Auto DAE Calibration Unit SE UWS 053 AA 1001 06-Jan-15 (in house check) in house check: Jan-16 Calibrator Box V2.1 SE UMS 006 AA 1002 06-Jan-15 (in house credit) In him seicheck: Jan-16. Name Function Casibrated by Eric Hainfald Technician Approved try Fin Bamhot Deputy Technical Manager This calibration certificate shall not be reproduced except in full without writing approval of the laboratory.

Certificate No: DAE4-1260_Sep15

Page 1 of 5

Page: 26 of 48

Calibration Laboratory of Schmid & Partner Engineering AG Zeoghauastrasse 45, 8004 Zurich, Switzenland

Schweisenscher Keilbnergienst Service aulase d'étalonnage C Servizio svizzano di tarafura. Swiss Calibration Service

Accomplish by the Swes Accomplished Service (SAS) The Swiss-Azcreditation Service is one of the signaturies to the EA Municipal Agreement for the racognition of calibration certificates Accreentation No.: SCS 0108

Glossary

DAF data acquisition electronics

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle. mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement,
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with Inputs shorted: Values on the Internal AD converter corresponding to zero input voltage
 - Input Offset Measurement, Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a tiattery. alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Ceremone No. DAE4-1280 Sep15

Page 2 of 5

Page: 27 of 48

DC Voltage Measurement
AD - Converter Resolution nominal
High Range: 1LSB = High Range: $1LSB = 6.1 \mu V$, full range = -100...+300 mVLow Range: 1LSB = 61 nV, full range = -1......+3 mVDASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	x	Υ	z
High Range	406.043 ± 0.02% (k=2)	405.010 ± 0.02% (k=2)	405.577 ± 0.02% (k=2)
Low Range	3.95755 ± 1.50% (k=2)	4.01958 ± 1.50% (k=2)	4.00483 ± 1.50% (k=2)

Connector Angle

٠		
I	Connector Angle to be used in DASY system	84.5°±1°

Page: 28 of 48

Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

High Range	Reading (µV)	Difference (μV)	Error (%)
Channel X + Input	199996.71	-0.71	-0.00
Channel X + Input	20003.42	1.97	0.01
Channel X - Input	-19997.29	3.64	-0.02
Channel Y + Input	199997.03	-0.74	-0.00
Channel Y + Input	20002.19	0.75	0.00
Channel Y - Input	-20000.85	-0.08	0.00
Channel Z + Input	199995.02	-2.52	-0.00
Channel Z + Input	20000.79	-0.63	-0.00
Channel Z - Input	-20001.97	-1.09	0.01

Low Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	2001.31	0.02	0.00
Channel X + Input	201.74	0.05	0.03
Channel X - Input	-197.79	0.49	-0.25
Channel Y + Input	2001.47	0.11	0.01
Channel Y + Input	201.57	-0.09	-0.04
Channel Y - Input	-198.16	0.02	-0.01
Channel Z + Input	2001.06	-0.19	-0.01
Channel Z + Input	200.35	-1.16	-0.58
Channel Z - Input	-199.72	-1.47	0.74

Common mode sensitivity
 DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	1.97	-0.02
	- 200	0.99	-1.30
Channel Y	200	13.29	13.11
	- 200	-13.69	-13.98
Channel Z	200	-0.48	-0.25
	- 200	-1.06	-1.87

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (μV)
Channel X	200		5.95	-2.35
Channel Y	200	9.12	-	6.99
Channel Z	200	9.45	7.26	-

Certificate No: DAE4-1260_Sep15

Page: 29 of 48

4. AD-Converter Values with inputs shorted

	High Range (LSB)	Low Range (LSB)		
Channel X	15911	14818		
Channel Y	15818	16372		
Channel Z	16044	16864		

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10MΩ

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)	
Channel X	-0.60	-1.69	0.60	0.44	
Channel Y	-0.89	-3.18	0.27	0.50	
Channel Z	-1.05	-1.97	0.26	0.49	

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)			
Supply (+ Vcc)	+7.9			
Supply (- Vcc)	-7.8			

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA) Stand		Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Certificate No: DAE4-1260_Sep15

Page: 30 of 48

Calibration Laboratory of Schmid & Partner Engineering AG Zeoghausstrasse 43, 8884 Zurich Switzerland

S Schwalzenischer Kellbriordienst C Service subsee d'étalomage Servicie svizzero di taratura Swiss Celibration Service

Accreditation No.: SCS 0108

Accrepted by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the alignatures to the EA
Multisateral Agreement for the recognition of calibration certificates

Client

SGS-TW (Auden)

Certificate No: EX3-3938_Oct15

CALIBRATION CERTIFICATE

Otiac

EX3DV4 - SN:3938

California procedure(s)

QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6

Calibration procedure for dosimetric E-field probes

Coloration date:

October 1, 2015

This cultivation configure documents the traceoutly in reduced standards, which recize the physical units of executions to (5). The majoraments and the uncertainties with confidence probability are given on the lickwing pages and are part of the certificate.

All cultivations have been conducted in the closed laboratory hacility, with common temperature G2 x 30°C and numbers < 70%.

Calbisson Equipment used (M&TE critical for calibration)

Primary Standards	10:	Car Date (Cartificate No.)	Scheduled Calibration
Power meter Edition	Q841203874	CI-Apr-15 (No. 217-02128)	Mac 98
Power sensor E4412A	MY4149B087	Ot-Api-15 (No. 217-02125)	Mar 10
Reference 3 dB Attenuator	SN: 65054 (3b)	OLApr 15 (No. 217-02129)	Mar-16
Reference 20 dB Attenuator	SN: 55277 (204)	Ot-Apv-15 (No. 217-02132)	Mar-16
Reference 30 dB Attenuator	SN: 55129 (30b)	01-Apr-16 (No. 217-02133)	Mar-18
Dates ence Prote EBXOV2	SN: 3013	30-Dec-14 (No. ES3-3013, Dec14)	Oec-15
DAE#	SN: 660	14 Jun-15 (No. DAE4-680_Jann5)	Jen-16
Secondary Standards	ID.	Check Date (in horse)	Schedyled Check
RF generator HP 8648C.	LIS3642U01700	4-Aug-59 (in house cirech Acr-13)	In house check: Apr-16
Network Amilyzer HP 8753E	USS7390585	15-Oct-01 (in house check Oct-14)	In house sheck: Oct-15

Coliterated by Suga Policina I september Technician Signature

Appropriat by Suga Policina Technical Manager

Certificate No: EX3-0938_Oct15

Page 1 of 11

Page: 31 of 48

Calibration Laboratory of Schmid & Partner Engineering AG

Schweimmumer Kalineteritienst S Service autom d'étai C uvizio svizzero di taratura S Sales Californion Service

Accreditation No.: SCS 010B

According by the Swice Accreptance Service (IAS)

The Swiss Accreditation Service is one of the eigenstress to the EA Mulliaeral Parament for the recognition of colibration nextification

Glossary:

TSI Displie simulating liquid NORME, y. sensitivity in free space ConvF DCP amsilivity in TSL / NORMoLy,z diode compression point.

crest factor (1/duty_byde) of the RF signal A, B, C. D modulation dependent linearization parameters

Polarizalini y is mitalion amound probe axis

Polarization 6 's regular around an axis that is in the plane normal to probe axis (a) measurement corner),

i.e., if = 0 vs normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the rook coordinate system.

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement
- Techniques", June 2013
 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 02209-2 "Procedure to actermine the Specific Absorption Rate (SAR) for wheless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 (KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz.")

Methods Applied and Interpretation of Parameters:

- NORMs, y, z. Assessed for E-field polarization (i = 0) If < 900 MHz in TEM-cell: I > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values. I.e., the uncertainties of NORMx,y,z does not affect the E³-field uncertainty Inside TSL (see below ConvF)
- NORM(f)x, y, z = NORM(x, y, z * frequency_response (see Frequency Response Chart). This Inserzation is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, v.z. DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor made
- PAR. PAR is the Peak to Average Ratio that a not calibrated bull determined based on the signal
- Ax.y.z. Bx.y.z. Cx.y.z. Dx.y.z: VRx.y.z: A, B, C. D are numerical investigation parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency run media. $VR \ge$ the maximum calibration range expressed in RMS-voltage across the diode
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for t < 800 MHz) and inside waveguide using analytical field distributions ussed on power measurements for t > 800 MHz. The same setups are used for assessment of the parameters usplied for boundary compensation (alphia depth) of which typical uncertainty values are given. These neriminers will used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to MORMx.y.z. "ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version # 4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phontom exposed by a patch antenna
- Sensor Offset. The sensor offset corresponds to the offset of virtual measurement center from the probe to (on probe axis). No talerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMX (no uncertainty required)

Cortificate No: EX3-3938_Oct10.

Page 2 of 11

Page: 32 of 48

October 1, 2015

EX3DV4 - SN:3938

Probe EX3DV4

SN:3938

Manufactured: Calibrated: May 2, 2013 October 1, 2015

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: EX3-3938_Oct15

Page 3 of 11

Page: 33 of 48

EX3DV4-SN:3938

October 1, 2015

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3938

Basic Calibration Parameters

Danie Cambration i arai	1100010			
	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	0.52	0.57	0.34	± 10.1 %
DCP (mV) ⁸	100.8	99.7	104.1	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc ^t (k=2)
0	CW	×	0.0	0.0	1.0	0.00	141.3	22.7 %
		Y	0.0	0.0	1.0		147.2	
		Z	0.0	0.0	1.0		128.1	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

Numerical linearization parameter; uncertainty not required.

Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Page: 34 of 48

EX3DV4- SN:3938

October 1, 2015

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3938

Calibration Parameter Determined in Head Tissue Simulating Media

Calibration Parameter Determined in Head Tissue Simulating Media								
f (MHz) ^c	Relative Permittivity ^r	Conductivity (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^q	Depth ⁶ (mm)	Unc (k=2)
750	41.9	0.89	9.69	9.69	9.69	0.19	1.67	± 12.0 %
835	41.5	0.90	9.35	9.35	9.35	0.26	1.23	± 12.0 %
900	41.5	0.97	9.15	9.15	9.15	0.18	1.86	± 12.0 %
1450	40.5	1.20	7.86	7.86	7.86	0.13	2.63	± 12.0 %
1750	40.1	1.37	8.17	8.17	8.17	0.36	0.80	± 12.0 %
1900	40.0	1.40	7.89	7.89	7.89	0.32	0.80	± 12.0 %
2000	40.0	1.40	7.89	7.89	7.89	0.36	0.75	± 12.0 %
2300	39.5	1.67	7.46	7.46	7.46	0.34	88.0	± 12.0 %
2450	39.2	1.80	7.11	7.11	7.11	0.32	0.94	± 12.0 %
2600	39.0	1.98	6.79	6.79	6.79	0.24	1.23	± 12.0 %
5250	35.9	4.71	4.90	4.90	4.90	0.40	1.80	± 13.1 %
5300	35.9	4.76	4.81	4.81	4.81	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.28	4.28	4.28	0.50	1.80	± 13.1 %
5750	35.4	5.22	4.41	4.41	4.41	0.50	1.80	± 13.1 %

⁶ Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The smoothsinty is the RIS3 of the CornYF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for CornYF assessments of 30, 64, 120, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be estimated to ± 110 MHz.
At frequencies below 3 GHz, the validity of tissue parameters (e and o) can be relaxed to ± 10% H liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (e and o) is restricted to ± 5%. The uncertainty is the RIS3 of the CornYF uncertainty for indicated target tissue parameters.
ApplieDopth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-8 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: EX3-3938 Oct15

Page 5 of 11

Page: 35 of 48

EX3DV4- SN:3938 October 1, 2015

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3938

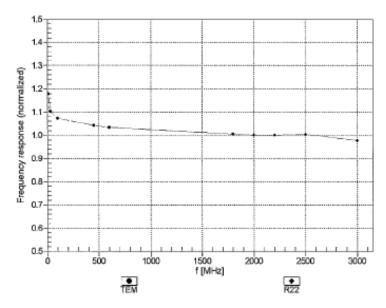
Calibration Parameter Determined in Body Tissue Simulating Media

inbration Parameter Determined in Body Tissue Sindading Media									
f (MHz) ^C	Relative Permittivity ^r	Conductivity (\$/m)"	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)	
750	55.5	0.96	9.50	9.50	9.50	0.31	1.13	± 12.0 %	
835	55.2	0.97	9.30	9.30	9.30	0.28	1.26	± 12.0 %	
900	55.0	1.05	9.22	9.22	9.22	0.34	1.05	± 12.0 %	
1450	54.0	1.30	7.96	7.96	7.96	0.16	2.05	± 12.0 %	
1750	53.4	1.49	7.73	7.73	7.73	0.42	0.80	± 12.0 %	
1900	53.3	1.52	7.41	7.41	7.41	0.32	0.90	± 12.0 %	
2000	53.3	1.52	7.55	7.55	7.56	0.26	1.05	± 12.0 %	
2300	52.9	1.81	7.27	7.27	7.27	0.36	0.84	± 12.0 %	
2450	52.7	1.95	7.17	7.17	7.17	0.37	0.85	± 12.0 %	
2600	52.5	2.16	6.90	6.90	6.90	0.33	0.90	± 12.0 %	
5250	48.9	5.36	4.19	4.19	4.19	0.50	1.90	± 13.1 %	
5300	48.9	5.42	4.09	4,09	4.09	0.50	1.90	± 13.1 %	
5600	48.5	5.77	3.66	3.66	3.66	0.55	1.90	±13.1 %	
5750	48.3	5.94	3.87	3,87	3.87	0.55	1.90	± 13.1 %	

⁶ Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Fage 2), else it is restricted to ± 60 MHz. The uncertainty is the RSS of the ConvF uncertainty at odiferation frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 6 GHz frequency validity can be extended to ± 110 MHz.

⁷ At frequencies below 3 GHz, the validity of tissue parameters (a and a) can be relaxed to ± 10% if Equid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (a and a) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target issue parameters.

⁸ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip dismeter from the boundary.

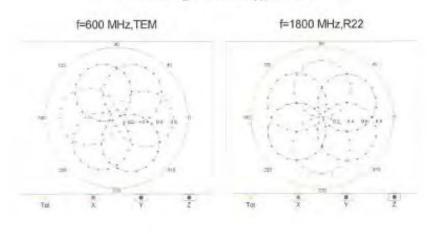

Certificate No: EX3-3938_Oct15

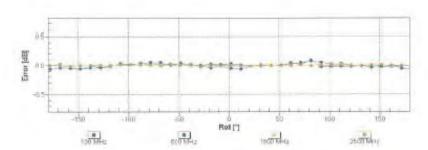
Page: 36 of 48

EX3DV4- SN:3938 October 1, 2015

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Certificate No: EX3-3938_Oct15 Page 7 of 11



Page: 37 of 48

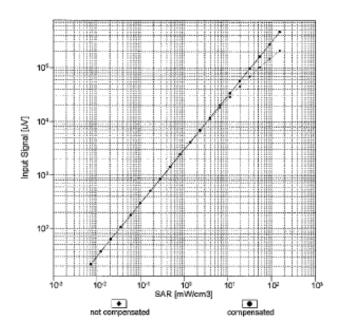
EX3DV4- SN:3938 Didober 1, 2015

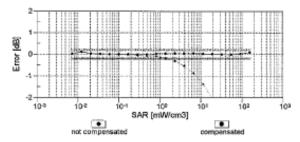
Receiving Pattern (6), 9 = 0°

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No. EX3-3938, Oct15

Page 8 of 11




Page: 38 of 48

EX3DV4- SN:3938

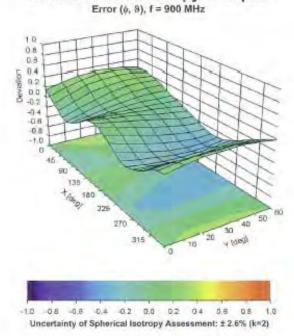
October 1, 2015

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: EX3-3938_Oct15

Page 9 of 11


Page: 39 of 48

EX3DV4-SN 3938 October 1, 2015

Conversion Factor Assessment

Deviation from Isotropy in Liquid

Certificate No: EX3-3936_Oct15

Page 10 of 11

Page: 40 of 48

EX3DV4- SN:3938 October 1, 2015

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3938

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (*)	-28.1
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Certificate No: EX3-3938_Oct15 Page 11 of 11

Page: 41 of 48

7. Uncertainty Budget

Measurement Uncertainty evaluation template for DUT SAR test (0.3-3G)

A	С	D	е		f	g	h=c * f / e	i=c * g / e	k
Source of Uncertainty	Tolerance/ Uncertainty	Probabilit y	Div	Div Value	ci (1g)	ci (10g)	Standard uncertainty	Standard uncertainty	vi, or Vef
Measurement system									
Probe calibration	6.00%	N	1	1	1	1	6.00%	6.00%	∞
Isotropy , Axial	3.50%	R	√3	1.732	1	1	2.02%	2.02%	∞
Isotropy, Hemispherical	9.60%	R	√3	1.732	1	1	5.54%	5.54%	∞
Modulation Response	2.40%	R	√3	1.732	1	1	1.40%	1.40%	∞
Boundary Effect	1.00%	R	√3	1.732	1	1	0.58%	0.58%	∞
Linearity	4.70%	R	√3	1.732	1	1	2.71%	2.71%	∞
Detection Limits	1.00%	R	√3	1.732	1	1	0.58%	0.58%	∞
Readout Electronics	0.30%	N	1	1	1	1	0.30%	0.30%	∞
Response time	0.80%	R	√3	1.732	1	1	0.46%	0.46%	∞
Integration Time	2.60%	R	√3	1.732	1	1	1.50%	1.50%	∞
Measurement drift (class A evaluation)	1.75%	R	√3	1.732	1	1	1.01%	1.01%	∞
RF ambient condition - noise	3.00%	R	√3	1.732	1	1	1.73%	1.73%	∞
RF ambient conditions - reflections	3.00%	R	√3	1.732	1	1	1.73%	1.73%	∞
Probe positioner Mechanical restrictions	0.40%	R	√3	1.732	1	1	0.23%	0.23%	∞
Probe Positioning with respect to phantom	2.90%	R	√3	1.732	1	1	1.67%	1.67%	∞
Post-processing	1.00%	R	√3	1.732	1	1	0.58%	0.58%	∞
Max SAR Eval	1.00%	R	√3	1.732	1	1	0.58%	0.58%	∞
Test Sample related									
Test sample positioning	2.90%	N	1	1	1	1	2.90%	2.90%	M-1
Device Holder Uncertainty	3.60%	N	1	1	1	1	3.60%	3.60%	M-1
Drift of output power	5.00%	R	√3	1.732	1	1	2.89%	2.89%	∞
Phantom and Setup									
Phantom Uncertainty	4.00%	R	√3	1.732	1	1	2.31%	2.31%	∞
Liquid permittivity (mea.)	2.47%	N	1	1	0.64	0.43	1.58%	1.06%	М
Liquid Conductivity (mea.)	2.62%	N	1	1	0.6	0.49	1.57%	1.28%	М
Combined standard uncertainty		RSS					11.63%	11.53%	
Expant uncertainty (95% confidence							23.27%	23.06%	

Page: 42 of 48

8. Phantom Description

Schmid & Panner Engineering AG Zeughausstasse 42, 8004 Zunch, Switzerland Phone +41 1 245 9709, Fax +41 1 245 9779 http://www.speag.com

Certificate of Conformity / First Article Inspection

ttens	SAM Twin Phantom V4.0
Турв No	QD 000 P40 C
Series No	TP-1150 and higher
Manufacturer	SPEAG Zeuphausstrasse 43 CH-8004 Zörich Switzerland

Tests
The series production process used allows the amission to test of first articles.
Complete tests were made on the pre-series Type No. QD 000 P40 AA, Serial No. TP-1001 and on the series first article Type No. QD 000 P40 BA, Serial No. TP-1006. Certain parameters have been referred using further series items (called samples) or are tested at each item.

Test	Requirement	Details	Units tested
Dintensions	Compliant with the geometry according to the CAD model.	IT'IS CAD File (*)	First article, Samples
Material thickness of shell	Compliant with the requirements according to the standards	2mm +/- 0,2mm in flat and specific areas of head section	First article, Samples, TP-1314 ff.
Material thickness at ERP	Compliant with the requirements according to the standards	6mm +/- 0.2mm at ERP	First article, All items
Material parameters	Dielectric parameters for required frequencies	300 MHz – 6 GHz: Relative permittivity < 5, Loss tangent < 0.05	Material samples
Material resistivity	The material has been lested to be compatible with the liquids defined in the standards if handled and cleaned according to the instructions. Observe technical Note for material competibility.	DEGMBE based simulating liquids	Pre-series, First article, Material samples
Sagging	Compliant with the requirements according to the standards. Sagging of the flat section when filled with tissue simulating liquid.	< 1% typical < 0.8% if filled with 155mm of HSL900 and without DUT below	Prototypes, Sample testing

- Standards [1] CENELEC EN 50361 [2] IEEE Std 1528-2003 [3] IEC 62209 Part I

- FCC OET Bulletin 85, Supplement C, Edition 01-01
 The IT'IS CAD file is derived from [2] and is also within the tolerance requirements of the shapes of the other documents.

Signature / Stamp

Conformity
Based on the sample tasts above, we certify that this item is in compliance with the uncertainty requirements of SAR measurements specified in standards [1] to [4].

07.07.2005

School & Parcial Engineering AQ 2mg/heusphase 43, 8034 Zorish, Switzerts Phone s41, 3 per 9 group as-16 by 24s 9773 byth Sprang, com, http://www.sprang.com

Drur No. 881 - QQ 000 P40 C-F

Page: 43 of 48

9. System Validation from Original Equipment Supplier

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweitzerlacher Kallonerdienst
C Service suisse d'étalonnage
Servizio svizzero di tanatura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signaturies to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client SGS-TW (Auden)

Contilieste No: D2450V2-727_Apr16

ALIBRATION	ERTIFICATE		
Object	D2450V2 - SN:72	27	
Calibratice procedure(a)	QA CAL-05.v9 Calibration proce	dure for dipole validation kits abo	we 700 MHz
Calibration date:	April 19, 2016		
This calibration continuate docum	ents the traceability to nat	onal standards, which realise the physical un	its of measurements (SI)
The measurements and the unco	etainties with confidence p	robability are given on the following pages an	d are part of the certificate.
All calibrations have been condu	clad in the closed siborato	ry lacility; sovironment temperature (22 ± 3)*	2 and humidity = 70%
Calibration Equipment used (M&)	E critical for calibration)		
Primary Standards	10 4	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	06-Apr-16 (No. 217-02288/02288)	Apr-17
Power sensor NRP-Z91	SN: 103244	06-Apr-16 (No. 217-02288)	Apr-17
ower sensor NRP-Z91	SN: 103245	06-Apr-16 (No. 217-02289)	Apr-17
Reference 20 dB Attenuator	SN: 5058 (20k)	05-Apr-16 (No. 217-02292)	Apr-17
ype-N mismatch combination	SN: 5047.2 / 06327	95-Apr-16 (No. 217-92295)	Apr-17
	SN: 7349	31-Dec-15 (No. EX3-7349_Dec15)	Dec-16
Reference Probe EX3DV4	SN: 601	30-Dec-15 (No. DAE4-601_Dec15)	Dec-16
Reference Probe EX3DV4 DAE4 Secondary Standards	SN: 601	30-Dec-15 (No. DAE4-601_Dec15) Cteck Date (in house)	Dec-16 Scheduled Check
Rejerence Probe EXSOV4 DAE4 Secondary Standards	17.		Scheduled Check
Rylarynce Probe EX3DV4 DAE4 Secondary Standardt Power meter EPM-442A	10.4	Check Date (in house)	Schadued Check In house check: Oct-16
Relations Probe EX30V4 DAE4 Secondary Standards Proser meter EPM-442A Power sensor HP 8481A	ID 4 SN 0837480704	Cteck Date (in house) 07-Oct-15 (No. 217-02222)	Schattund Check In house check: Oct-16 In house check: Oct-16
Reteronce Probe EX30V4 AAE4 Becondary Standards Power meter EPM-442A Power sensor HF 8481A	ID 4 SN 0B37480704 SN US37292709	Check Bate (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222)	Schaduled Chack In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In nouse check: Oct-16
Reteronce Probe EX30V4 DAE4 Secondary Standards Power moter EPM-442A Power sensor HP 8481A Prower sensor HP 8481A DE generator RES SMT-06	ID 4 SN 0837480704 SN 0837292793 SN MY41082317	Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-16 (No. 217-02220)	Schaduled Chack In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In nouse check: Oct-16
Roteronce Probe EX30V4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Prower sensor HP 8481A OF generator FRS SMT-06	ID 4 SN 0837480704 SN US37292703 SN MY41082317 SN: 100872	Check Daje (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-16 (No. 217-02220) 15-Jun-15 (in ribuse check Jun-15)	
Reterence Probe EX3DV4 DAE4	ID 4 SN 0837480704 SN US37292700 SN MY41982317 SN: 100872 SN: US37390585	Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-16 (No. 217-02223) 07-Oct-16 (No. 217-02223) 15-Jun-15 (in htuse check Jun-15) 18-Oct-01 (in house check Dct-15)	Scheduled Check In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16
Fiylarance Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Fif generator R&S SMT-96 Network Analyzer HP 8753E	ID 4 SN 0B37480704 SN US37292793 SN MY410B2317 SN: 100872 SN: US37390585 Nemel	Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-16 (No. 217-02223) 15-Jun-15 (in htuse check Jun-15) 18-Oct-01 (in house check Oct-15) Function	Scheduled Check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16
Figure Probe EX3DV4 DAE4 Sacondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RIF generator R&S SMT-06 Network Analyzer HP 8763E Cellerated by:	ID 4 SN 0837480704 SN US37292793 SN 190972 SN 190972 SN 1937390585 Nemel Michael Weber	Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-16 (No. 217-02223) 15-Jun-15 (in house check Jun-15) 18-Oct-11 (in house check Oct-15) Function Laboratory Fechnician	Scheduled Check In house check; Oct-16 In house check; Oct-16 In house check; Oct-16 In house check; Oct-16 In house check; Oct-16

Certificate No: D2450V2-727_Apr16

Page 1 of 8

Page: 44 of 48

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerlscher Kullbrümenen
Service salese d'étatonnage
Servizio evizzero di taratura
S Swiss Calibration Service

Mitalian No.: SCS 0108

According by the Swiss Accordington Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilinieral Agramment for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM x,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005.
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010.
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Anterina Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate Not D2450V2-727_April 6

Page 2 of 8

Page: 45 of 48

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	WEG C.D.
DAST Version	LMSTS	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.0 ± 6 %	1.83 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	12.8 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	51.0 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.93 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.7 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.7 ± 6 %	1.98 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ² (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.5 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	49.6 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.86 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.3 W/kg ± 16.5 % (k=2)

Certificate No: D2450V2-727_Apr16

Page: 46 of 48

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	55.3 Ω + 2.0 jΩ
Return Loss	- 25.4 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	52.1 Ω + 4.8 jΩ
Return Loss	- 25.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.148 ns	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve metching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	January 09, 2003

Certificate No: D2450V2-727_Apr16

Page 4 of 8

Page: 47 of 48

DASY5 Validation Report for Head TSL

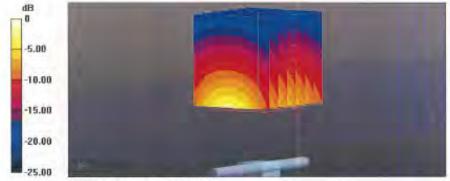
Date: 19.04.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 727

Communication System: UID 0 - CW; Frequency; 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.83$ S/m; $\epsilon_r = 40$; $\rho = 1000$ kg/m³

Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

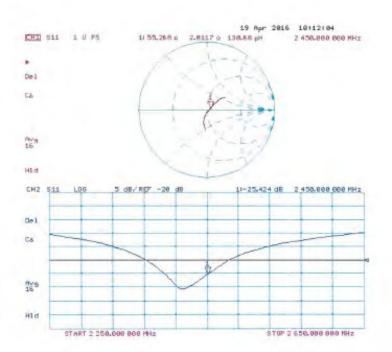
- Probe: EX3DV4 SN7349; ConvF(7.76, 7.76, 7.76); Calibrated: 31.12.2015;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12,2015
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm. Reference Value = 112.1 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 25.7 W/kg SAR(1 g) = 12.8 W/kg; SAR(10 g) = 5.93 W/kg

Maximum value of SAR (measured) = 20.8 W/kg

0 dB = 20.8 W/kg = 13.18 dBW/kg


Certificate No; D2456V2-727_Apr16

Page 5 of 8

Page: 48 of 48

Impedance Measurement Plot for Head TSL

Certificate No: D2450V2-727_Apr16

Page 6 of 8

- End of 1st part of report -