

FCC CFR47 PART 15 SUBPART C CERTIFICATION TEST REPORT FOR

BLUETOOTH HEADSET

MODEL NUMBER: P590; 590; 590S

FCC ID: AL8P590

REPORT NUMBER: 05U3529-1B

ISSUE DATE: SEPTEMBER 06, 2005

Prepared for PLANTRONICS, INC. 345 ENCINAL STREET SANTA CRUZ, CA 95060, USA

Prepared by COMPLIANCE ENGINEERING SERVICES, INC. d.b.a. COMPLIANCE CERTIFICATION SERVICES 561F MONTEREY ROAD, MORGAN HILL, CA 95037, USA TEL: (408) 463-0885 FAX: (408) 463-0888

*Details of specific model(s) tested and model differences shall be identified in body of report

Revision History

Rev.	Issue Date	Revisions	Revised By
A	8/9/05	Initial Issue	Thu
В	9/6/05	Added two models: 590 and 590S	Thu
		Added Sections 5.2 and 5.3	Thu
		Added an I/O Cable table and setup diagram under Section 5.8	Thu
		Added test result and plots under Section 7.3	Thu
		Added LC setup photos under Section 8	Thu

Page 2 of 64

TABLE OF CONTENTS

1.	AT'	TESTATION OF TEST RESULTS	4
2.	TES	ST METHODOLOGY	5
3.	FA	CILITIES AND ACCREDITATION	5
4.	CA	LIBRATION AND UNCERTAINTY	5
4.	1.	MEASURING INSTRUMENT CALIBRATION	
4.	.2.	MEASUREMENT UNCERTAINTY	5
5.	EQ	UIPMENT UNDER TEST	6
5.	1.	DESCRIPTION OF EUT	6
5.	.2.	MODEL(S) TESTED	6
5.	.3.	MANUFACTURER'S DESCRIPTION OF MODEL DIFFERENCE	6
5.	.4.	MAXIMUM OUTPUT POWER	6
5.	.5.	DESCRIPTION OF AVAILABLE ANTENNAS	6
5.	.6.	SOFTWARE AND FIRMWARE	6
5.	.7.	WORST-CASE CONFIGURATION AND MODE	7
5.	.8.	DESCRIPTION OF TEST SETUP	
6.	TES	ST AND MEASUREMENT EQUIPMENT	11
7.	LIN	/ITS AND RESULTS	12
7.	1.	ANTENNA PORT CHANNEL TESTS	
	7.1.		
	7.1. 7.1.		
	7.1.		
	7.1.		
7.	.2.	RADIATED EMISSIONS	
	7.2.	1. TRANSMITTER RADIATED SPURIOUS EMISSIONS	
	7.2.		
	7.2.		
7.	.3.	POWERLINE CONDUCTED EMISSIONS	
8.	SET	ГИР РНОТОЅ	53

Page 3 of 64

1. ATTESTATION OF TEST RESULTS

STANDARD	TEST RESULTS
	APPLICABLE STANDARDS
DATE TESTED:	July 20 to August 26, 2005
SERIAL NUMBER:	50 (Emission) & 136 (Conduction)
MODEL:	P590; 590; 590S
EUT DESCRIPTION:	BLUETOOTH HEADSET
COMPANY NAME:	PLANTRONICS, INC. 345 ENCINAL STREET SANTA CRUZ, CA. 95060 USA

FCC PART 15 SUBPART C

Compliance Certification Services, Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

Approved & Released For CCS By:

THU CHAN EMC SUPERVISOR COMPLIANCE CERTIFICATION SERVICES Tested By:

NO NON-COMPLIANCE NOTED

VIEN TRAN EMC ENGINEER COMPLIANCE CERTIFICATION SERVICES

Page 4 of 64

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2003, FCC CFR 47 Part 2 and FCC CFR 47 Part 15.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 561F Monterey Road, Morgan Hill, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.4, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Radiated Emission, 30 to 200 MHz	+/- 3.3 dB
Radiated Emission, 200 to 1000 MHz	+4.5 / -2.9 dB
Radiated Emission, 1000 to 2000 MHz	+4.5 / -2.9 dB
Power Line Conducted Emission	+/- 2.9 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a Bluetooth Headset which operated in 2402 – 2480 MHz band.

The radio module is manufactured by Plamex SA De CV.

5.2. MODEL(S) TESTED

EUT Model: P590

5.3. MANUFACTURER'S DESCRIPTION OF MODEL DIFFERENCE

Model 590 is identical to the tested model P590 except for the model number for marketing purposes; 590S is identical to P590 except for being sold "bundled" with Analog Dongle, model: 35BAA or 590A.

5.4. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

```
2400 to 2483.5 MHz Authorized Band
```

Frequency Range	Output Power	Output Power
(MHz)	(dBm)	(mW)
2402 - 2480	2.66	1.85

5.5. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes an F antenna (manufactured by Plantronics), with a maximum gain of -2 dBi.

5.6. SOFTWARE AND FIRMWARE

The firmware installed in the EUT during testing was RFC Stack 1.2 (b01472), rev. 2.0 a.

The EUT driver software installed in the host support equipment during testing was CSRBC01, rev.1.20.

The test utility software used during testing was Bluetest and PStool, rev. 1.20.0.0.

Page 6 of 64

5.7. WORST-CASE CONFIGURATION AND MODE

The worst-case channel is determined as the channel with the highest output power. The highest measured output power was at 2441 MHz.

Page 7 of 64

5.8. DESCRIPTION OF TEST SETUP

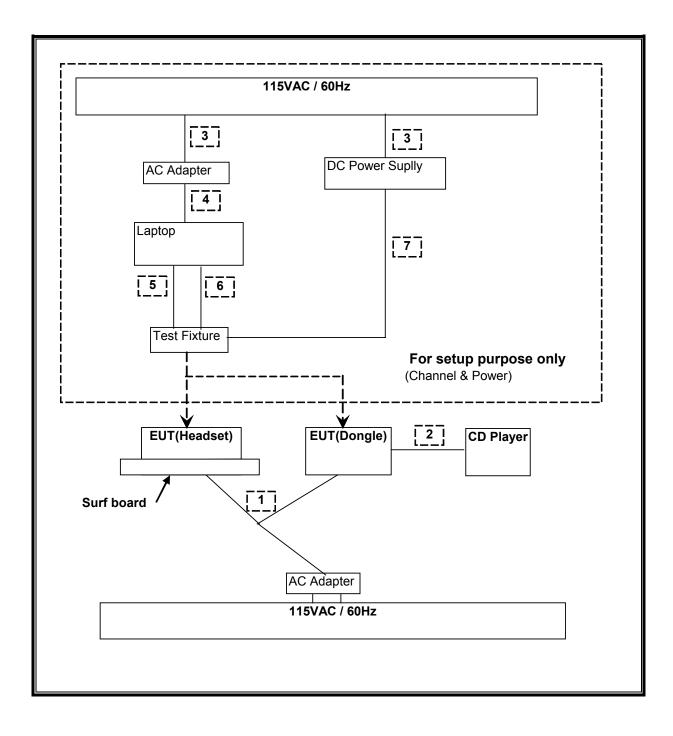
SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST							
Description	Manufacturer	Model	Serial Number	FCC ID			
Laptop	Dell	PP01L	6P326A01	DoC			
AC Adapter	Dell	AA20031	9364U	N/A			
Test Fixture	Plantronics	N/A	N/A	N/A			
DC Power Supply (5V)	Speedy-Tech	66879-01	N/A	N/A			
DC Power Supply (3.8V)	HP	E3610A	N/A	N/A			
CD Player	Craig	CD2863	N/A	N/A			
Pulsar Desktop Charging Stand	Plantronics	PDCS	119	N/A			

I/O CABLES

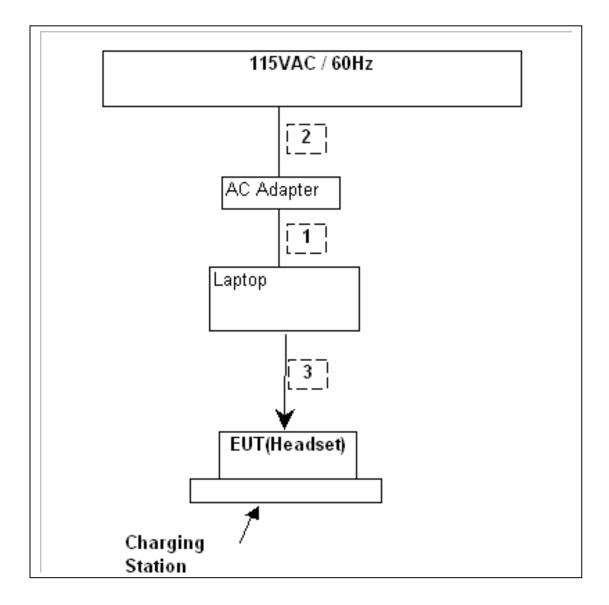
	I/O CABLE LIST							
Cable	Port	# of	Connector	Cable	Cable	Remarks		
No.		Identical	Туре	Туре	Length			
		Ports						
1	DC	1	DC Plug	Unshielded	2m	No		
2	Audio	1	Line Out	Unshielded	.2m	No		
3	AC	2	US115	Unshielded	1.5m	No		
4	DC	1	DC	Unshielded	1.5m	No		
5	Parallel	1	DB25	Shielded	1.5m	No		
6	Serial	1	DB9	Shielded	1.5m	No		
7	BNC	1	BNC	Shielded	1.5m	No		

I/O CABLES - With USB Charging Cable for Line Conducted Emissions testing


TEST SETUP

	I/O CABLE LIST							
Cable	Port	# of	Connector	Cable	Cable	Remarks		
No.		Identical	Туре	Туре	Length			
		Ports						
1	DC	1	DC Plug	Unshielded	2m	No		
2	AC	1	US115	Unshielded	1.5m	No		
3	USB	1	USB	Shielded	2m	Charging		

The EUT is installed in a test fixture in order to setup channel and power. Test software from laptop exercised the radio card.


Page 8 of 64

SETUP DIAGRAM FOR TESTS

Page 9 of 64

SETUP DIAGRAM FOR TESTS – With USB Charging Cable for Line Conducted Emissions testing

Page 10 of 64

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST									
Description	Description Manufacturer Model Serial Number Cal Due								
Spectrum Analyzer	Agilent	E4446A	MY43360112	1/13/2006					
Peak Power Meter	Agilent	E4416A	GB41291160	2/9/06					
Peak / Average Power Sensor	Agilent	E9327A	US40440755	2/10/06					
Preamplifier, 1 ~ 26.5 GHz	HP	8449B	3008A00369	8/17/06					
Antenna, Horn 1 ~ 18 GHz	EMCO	3117	29301	9/12/05					
EMI Receiver, 9 kHz ~ 2.9 GHz	HP	8542E	3942A00286	11/21/05					
RF Filter Section	HP	85420E	3705A00256	11/21/05					
30MHz 2Ghz	Sunol Sciences	JB1 Antenna	A121003	12/22/05					
LISN, 10 kHz ~ 30 MHz	FCC	LISN-50/250-25-2	2023	8/30/05					
LISN, 10 kHz ~ 30 MHz	Solar	8012-50-R-24-BNC	8379443	10/21/05					
Site A Line Stabilizer / Conditioner	Tripplite	LC-1800a	A0051681	CNR					
EMI Test Receiver	R & S	ESHS 20	827129/006	10/22/05					

Page 11 of 64

7. LIMITS AND RESULTS

7.1. ANTENNA PORT CHANNEL TESTS

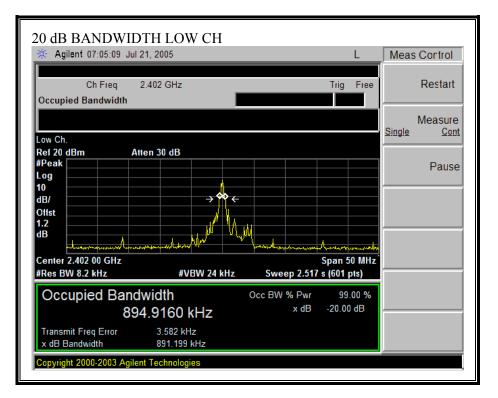
7.1.1. 20 dB BANDWIDTH

<u>LIMIT</u>

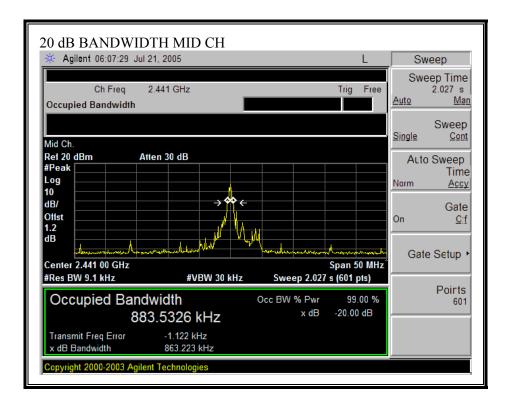
None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 1% to 3% of the 20 dB bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled.


RESULTS

No non-compliance noted:


Channel	Frequency	20 dB Bandwidth
	(MHz)	(kHz)
Low	2402	891.199
Middle	2441	862.233
High	2480	880.480

Page 12 of 64

20 dB BANDWIDTH

Page 13 of 64

Page 14 of 64

		R T	J 3W	еер
49.011-		Trin Free	Swe	ep Time
.40 GHZ		Tig Flee	<u>Auto</u>	1.669 S <u>Mar</u>
				Sweep
			Single	<u>Cont</u>
en 30 dB			Auto	Sweep
				Time
			Norm	<u>Accy</u>
→ �� ←				Oata
			On	Gate Of
				211
machine Marth Vhy	h	American	Gate	e Setup 🕨
		Span 50 MHz	Out	Courap
#VBW 30 kHz	Sweep 1.689	s (601 pts)		
width	Occ BW % Pwr	99.00 %		Points 601
				001
-850.673 Hz 880.480 kHz				
	→ ← #VBW 30 kHz #VBW 30 kHz width 8.8977 kHz -850.673 Hz	en 30 dB an 40 an	en 30 dB 	All GHz Trig Free Auto Single Auto Norm On Gate #VBW 30 kHz Sweep 1.689 s (601 pts) Victh Occ BW % Pwr 99.00 % x dB -20.00 dB -850.673 Hz

Page 15 of 64

7.1.2. PEAK OUTPUT POWER

PEAK POWER LIMIT

§15.247 (b) The maximum peak output power of the intentional radiator shall not exceed the following:

§15.247 (b) (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 hopping channels: 1 watt.

\$15.247 (b) (4) Except as shown in paragraphs (b)(3) (i), (ii) and (iii) of this section, if transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The maximum antenna gain is -2 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

The transmitter output power is connected to peak power.

RESULTS

No non-compliance noted:

Channel	Frequency	Peak Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	2.29	30	-27.71
Middle	2441	2.66	30	-27.34
High	2480	2.14	30	-27.86

Page 16 of 64

7.1.3. AVERAGE POWER

AVERAGE POWER LIMIT

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

No non-compliance noted:

The cable assembly insertion loss of 1.2 dB cable was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2402	-2.66
Middle	2441	-2.36
High	2480	-2.87

Page 17 of 64

7.1.4. PEAK POWER SPECTRAL DENSITY

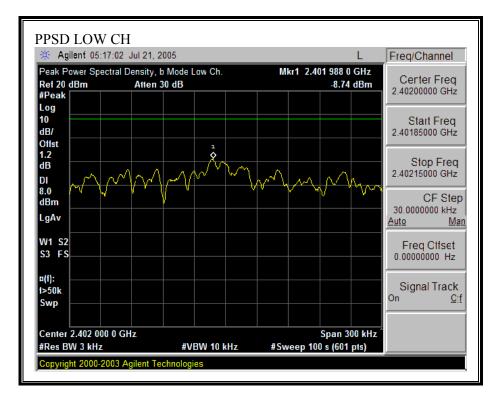
<u>LIMIT</u>

§15.247 (d) For direct sequence systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

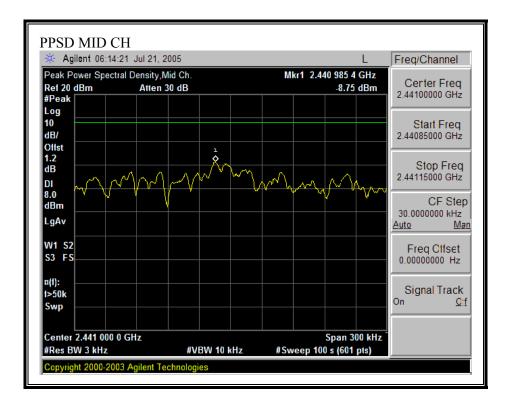
\$15.247 (f) The digital modulation operation of the hybrid system, with the frequency hopping turned off, shall comply with the power density requirements of paragraph (d) of this section.

TEST PROCEDURE

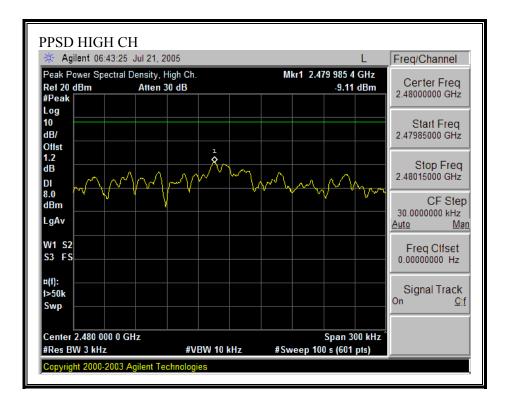
The transmitter output is connected to a spectrum analyzer, the maximum level in a 3 kHz bandwidth is measured with the spectrum analyzer using RBW = 3 kHz and VBW > 3 kHz, sweep time = span / 3 kHz, and video averaging is turned off. The PPSD is the highest level found across the emission in any 3 kHz band.


RESULTS

No non-compliance noted:


Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	-8.74	8	-16.74
Middle	2441	-8.75	8	-16.75
High	2480	-9.11	8	-17.11

Page 18 of 64


PEAK POWER SPECTRAL DENSITY

Page 19 of 64

Page 20 of 64

Page 21 of 64

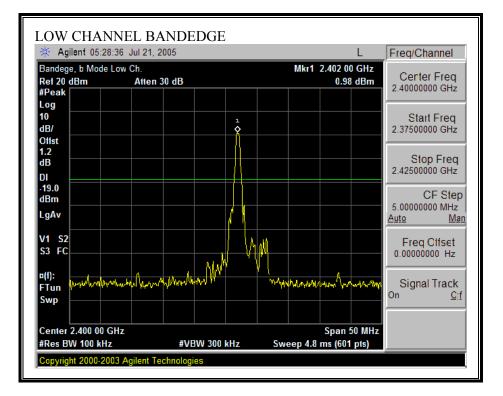
7.1.5. CONDUCTED SPURIOUS EMISSIONS

LIMITS

§15.247 (c) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in§15.205(a), must also comply with the radiated emission limits specified in §15.205(a).

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

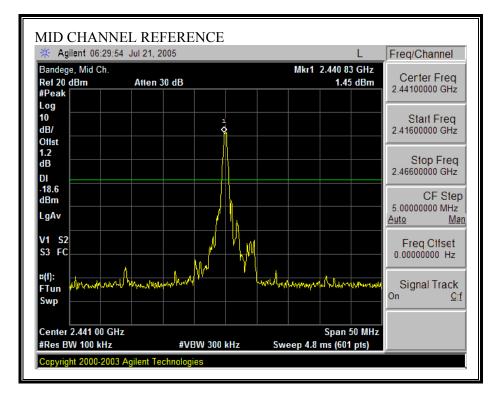

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

RESULTS

No non-compliance noted:

Page 22 of 64

SPURIOUS EMISSIONS, LOW CHANNEL

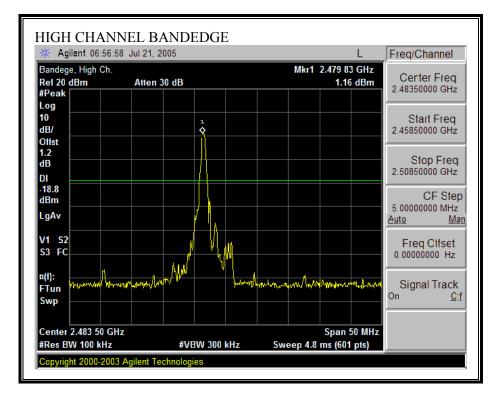


Page 23 of 64

🔆 Agilen	t 05:31:58	Jul 21, 20	05					L	M	arker
Spurious, b Ref 20 dBr #Peak		Ch. Atten 30) dB			Mk	ar3 25.8 -53.50		Selec 1 2	t Marker <u>3</u> 4
Log 10 dB/ Offst										Normal
1.2 dB										Deita
dBm LgAv		2 } 1 ₁₁₁ 11	ta para para para da p	the states	hanthal musicade	la Arguerti il	art, Alson M	2 (),,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	_	Deita Pair cking R∈t) ∆
Start 30 MI #Res BW 1			#VBW 30	0 kHz	Swee	St p 2.482	op 26.0 s (1001		span (Span Pair <u>Center</u>
Maiker	Trace	Туре		X Axis			Amplitu		opun	
1 2 3	(1) (1) (1)	Fieq Fieq Fieq		1.61 GHz 4.81 GHz 25.84 GHz			-53.05 dB -53.55 dB -53.50 dB	m		Clf
										More 1 ct 2

Page 24 of 64

SPURIOUS EMISSIONS, MID CHANNEL

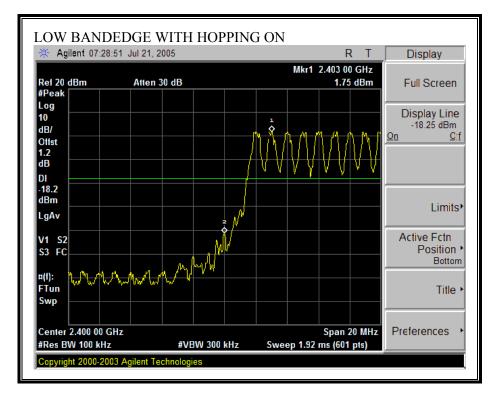


Page 25 of 64

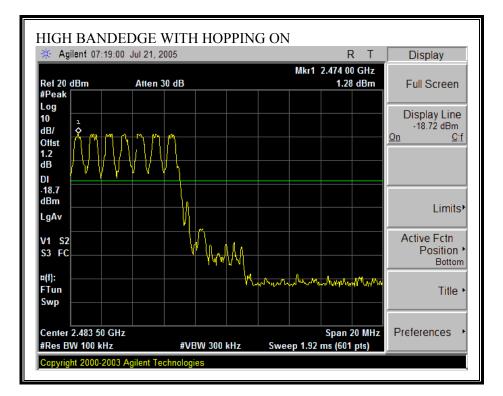
🔆 Agilen	f 06:32:32	Jul 21, 200)5				Т	Marker
Spurious, N Ref 20 dBn #Peak Log		Atten 30	dB		MI	kr3 26.0 -52.53		Select Marker 1 2 <u>3 4</u>
10 dB/ Offst								Normal
1.2 dB DI	2	1						Deta
-18.6 dBm LgAv	**************************************	A share the second seco	uderfranktion, op utspanne sta				unidown (fred	De ta Pair (Tracking R∈t) R∈f _∆
Start 30 MI #Res BW 1			#VBW 300	kHz S	S weep 2.482	top 26.0 s (1001		Span Pair
Maiker	Trace	Туре		Axis		Amplitu		Span <u>Center</u>
1	(1)	Freq		.89 GHz		-47.21 dB		
2 3	(1) (1)	Fieq Fieq		.04 GHz .00 GHz		-54.93 dB -52.53 dB		Clf
								More 1 ct 2

Page 26 of 64

SPURIOUS EMISSIONS, HIGH CHANNEL



Page 27 of 64


🔆 Agilen	t 06:58:24	Jul 21, 200	5		RT	Marker
Spurious, H Ref 20 dBn #Peak		Atten 30	dB	Mk	r4 25.95 GHz -52.35 dBm	Select Marker 1 2 3 <u>4</u>
Log 10 dB/ Offst						Marker Trace Auto 1 2 3
1.2 dB	2	1 \$				Readout Frequency
-18.8 ♦ dBm LgAv		, Langer, Jahrunger, M.	م المرود و المرود و المرود و المرود و الم	*****	Constitution of Constitution	Marker Table <u>On C</u> :f
Start 30 MI	Hz			St	op 26.00 GHz	
#Res BW 1	00 kHz		#VBW 300 kHz	Sweep 2.482 s	s (1001 pts)	Marker All Off
Marker	Trace	Туре	X Axis		Amplitude	
1	(1) (1)	Fieq Fieq	4.96 GHz 1.67 GHz		44.27 dBm 49.75 dBm	
3	(1)	Fieq	840 MHz		53.77 dBm	
4	(1)	Fieq	25.95 GHz		52.35 dBm	
						More 2 ct 2

Page 28 of 64

SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

Page 29 of 64

Page 30 of 64

7.2. RADIATED EMISSIONS

7.2.1. TRANSMITTER RADIATED SPURIOUS EMISSIONS

LIMITS

\$15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	$(^{2})$
13.36 - 13.41			

 1 Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. 2 Above 38.6

§15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

§15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

§15.209 (b) In the emission table above, the tighter limit applies at the band edges.

Page 32 of 64

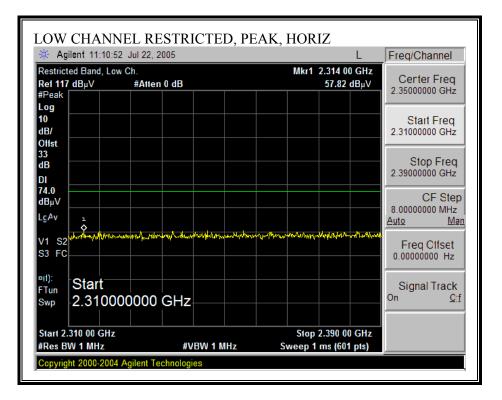
TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

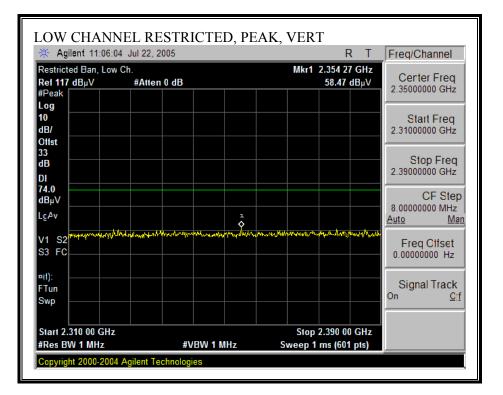

The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each 5 GHz band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

Page 33 of 64

7.2.2. TRANSMITTER RADIATED EMISSIONS ABOVE 1 GHZ

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

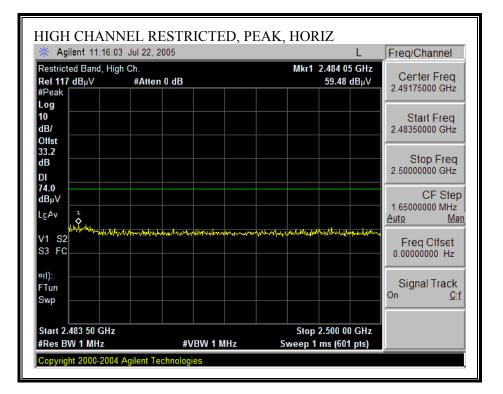


Page 34 of 64

🔆 Agilent 11:11:	56 Jul 22, 2005		L	Freq/Channel
Restricted Band, Lo Ref 117 dB _µ V			Mkr1 2.386 00 GHz 45.97 dBµ∨	Contor From
#Peak Log				2.33000000 0112
10 dB/				Start Freq 2.31000000 GHz
Olist 33 dB DI				Stop Freq 2.39000000 GHz
54.0 dBμV				CF Step 8.0000000 MHz
LgAv				Auto Man
V1 S2 S3 FC				Freq Clfset 0.00000000 Hz
¤(1): FTun				Signal Track
Swp				
Start 2.310 00 GH;			Stop 2.390 00 GHz	
#Res BW 1 MHz	#VBW 10	Hz Sweet	o 6.238 s (601 pts)	

Page 35 of 64

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)



Page 36 of 64

🔆 Agilent 11:0	7:04 Jul 22, 2005				L	Freq/Channel
	Low Ch. #Atten 0 dB		М	kr1 2.385 46.0	87 GHz 9 dBµV	Certer Freq 2.3500000 GHz
#Peak Log						2.3300000 GHZ
10 dB/						Start Freq 2.31000000 GHz
Offst 33 dB						Stop Freq 2.3900000 GHz
DI 54.0 dBµV						CF Step
LgAv						8.00000000 MHz <u>Auto Man</u>
V1 S2 S3 FC					1 \$	Freq Clfset 0.00000000 Hz
¤(1): FTun Swp						Signal Track ^{On <u>Cif</u>}
Start 2.310 00 Gi #Res BW 1 MHz		N 10 Hz		itop 2.390 5.238 s (60		

Page 37 of 64

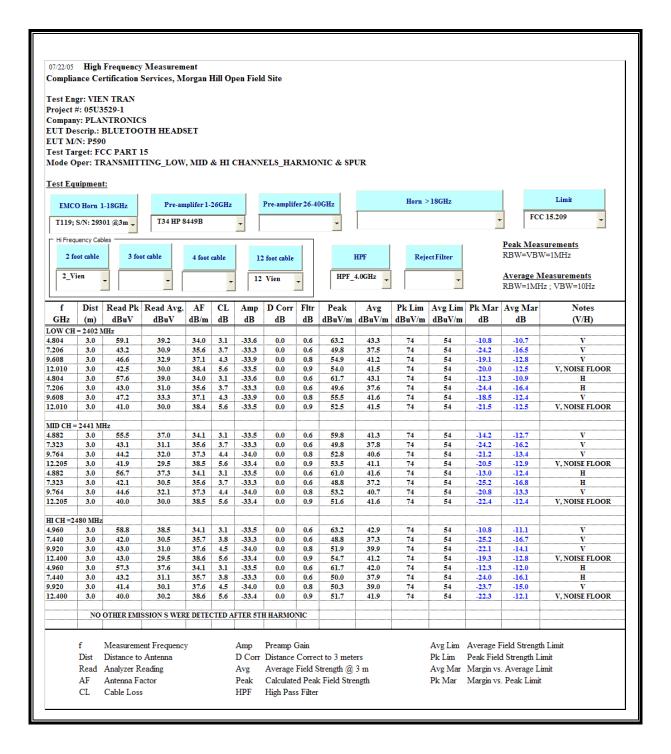
RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

Page 38 of 64

🔆 Agilent 11:16:	37 Jul 22, 2005	L	Freq/Channel
Restricted Band, Hi Ref 117 dB _µ V		Mkr1 2.483 97 GHz 46.65 dBμ∨	Certer Freq 2.49175000 GHz
#Peak Log 10			Start Freq
dB/ Offst 33.2			2.48350000 GHz
dB DI 54.0			Stop Freq 2.5000000 GHz
dBμV LçAv			CF Step 1.6500000 MHz Auto Man
V1 S2 S3 FC			Freq Clfset 0.00000000 Hz
¤(1): FTun Swp			Signal Track ^{On <u>Cif</u>}
Start 2.483 50 GHz #Res BW 1 MHz		Stop 2.500 00 GHz Sweep 1.287 s (601 pts)	

Page 39 of 64

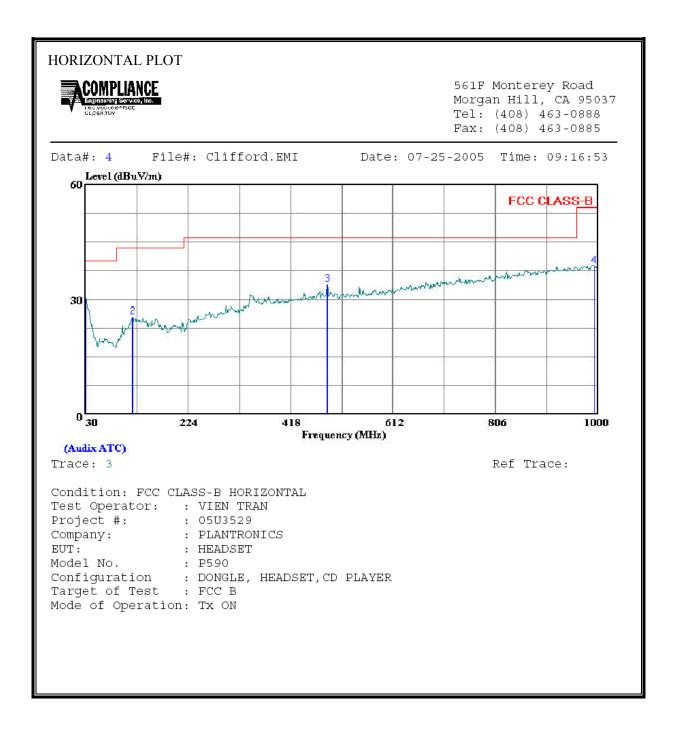
RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)



Page 40 of 64

🔆 Agilent 11:22	:07 Jul 22, 2005	L	Freq/Channel
	igh Ch. #Atten 0 dB	Mkr1 2.484 02 GHz 47.02 dBμ∨	Certer Freq 2.49175000 GHz
#Peak Log			2.49175000 GH2
10 dB/			Start Freq 2.48350000 GHz
Offst 33.2 dB			Stop Freq
DI 54.0 dBµV			CF Step 1.6500000 MHz
LgAv			Auto Man
V1 S2 S3 FC			Freq Clfset 0.00000000 Hz
¤(1): FTun			Signal Track
Swp			
Start 2.483 50 GH	Z	Stop 2.500 00 GHz	

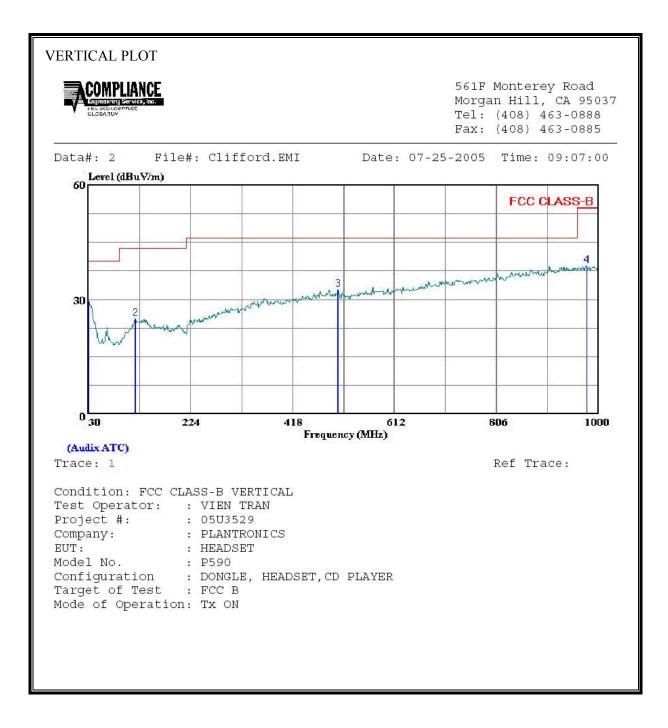
Page 41 of 64


HARMONICS AND SPURIOUS EMISSIONS

Page 42 of 64

7.2.3. WORST-CASE RADIATED EMISSIONS BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)



Page 43 of 64

HORI	ZONTAL DATA						
	Freq	Read Level	Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBuV	dB	$\overline{\mathrm{dBuV}}/\mathrm{m}$	$\overline{\mathrm{dBuV}/\mathfrak{m}}$	dB	
1	30.000	9.92	20.45	30.37	40.00	-9.63	Peak
2	119.240	10.22	15.05	25.27	43.50	-18.23	Peak
3	487.840	13.81	20.00	33.81	46.00	-12.19	Peak
4	993.210	11.77	26.93	38.70	54.00	-15.30	Peak

Page 44 of 64

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

Page 45 of 64

VERT	VERTICAL DATA									
	Freq	Read Level	Factor	Level	Limit Line	Over Limit	Remark			
	MHz	dBuV	dB	$\overline{\mathrm{dBuV}}/\mathrm{m}$	$\overline{\mathrm{dBuV}/\mathrm{m}}$	dB				
1 2 3 4		8.98 9.80 12.34 12.11	15.05 20.26	32.60	40.00 43.50 46.00 54.00	-18.65 -13.40	Peak Peak			

Page 46 of 64

7.3. POWERLINE CONDUCTED EMISSIONS

LIMIT

\$15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

The lower limit applies at the boundary between the frequency ranges.

Frequency of Emission (MHz)	Conducted I	.imit (dBuV)
	Quasi-peak	Average
0.15-0.5	66 to 56 *	56 to 46 *
0.5-5	56	46
5-30	60	50

Decreases with the logarithm of the frequency.

TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

The resolution bandwidth is set to 9 kHz for both peak detection and quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

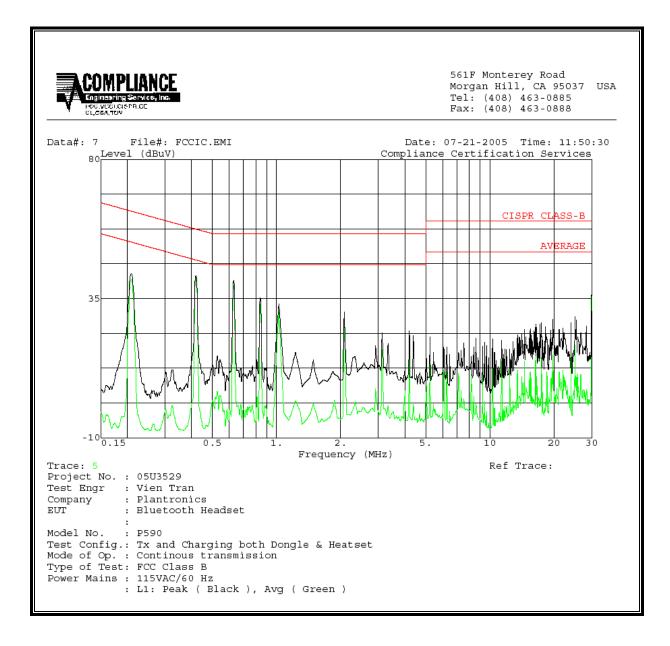
Line conducted data is recorded for both NEUTRAL and HOT lines.

RESULTS

No non-compliance noted:

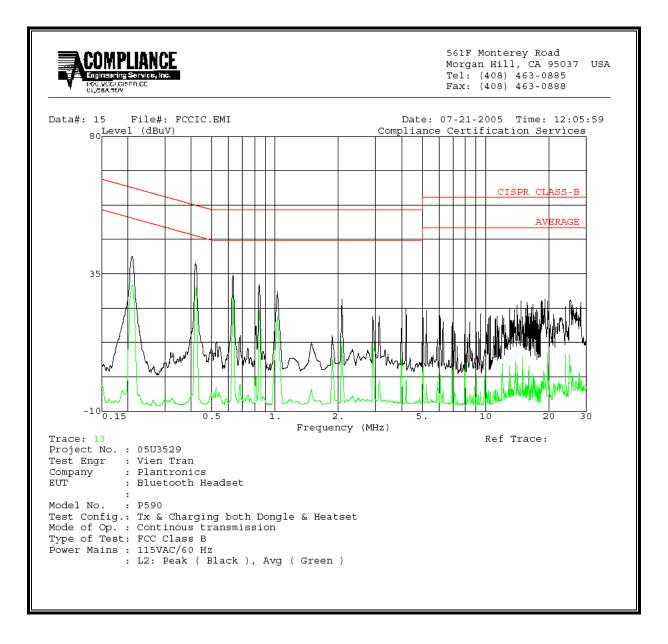
Page 47 of 64

6 WORST EMISSIONS - without USB Charging Cable

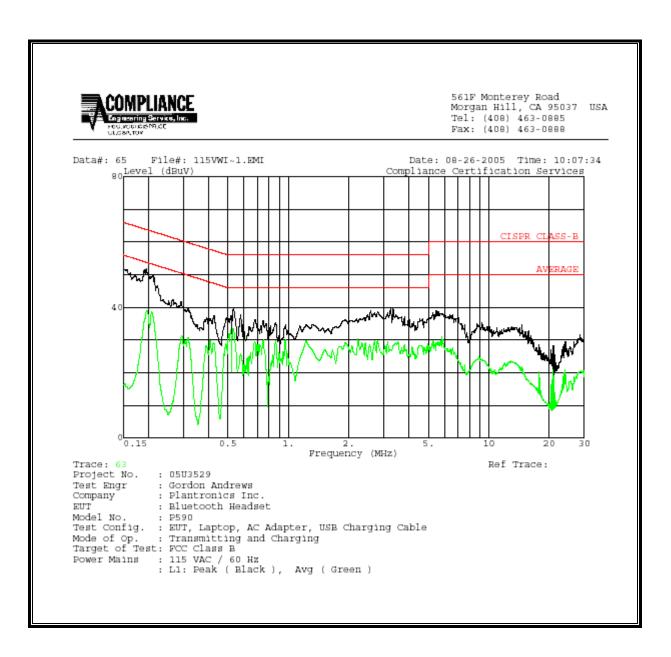

Freq.	Reading		Reading Closs Limit		Margin		Remark		
(MHz)	PK (dBuV)	QP (dBuV)	AV (dBuV)	(dB)	QP	AV	QP (dB)	AV (dB)	L1/L2
0.21	43.12			0.00	63.24	53.24	-20.12	-10.12	L1
0.42	42.50			0.00	57.47	47.47	-14.97	-4.97	L1
25.05	29.12			0.00	60.00	50.00	-30.88	-20.88	L1
0.21	40.76			0.00	63.24	53.24	-22.48	-12.48	L2
0.42	38.42			0.00	57.47	47.47	-19.05	-9.05	L2
19.12	26.80			0.00	60.00	50.00	-33.20	-23.20	L2
6 Worst I	Data								

6 WORST EMISSIONS - with USB Charging Cable (Part No.: 70218)

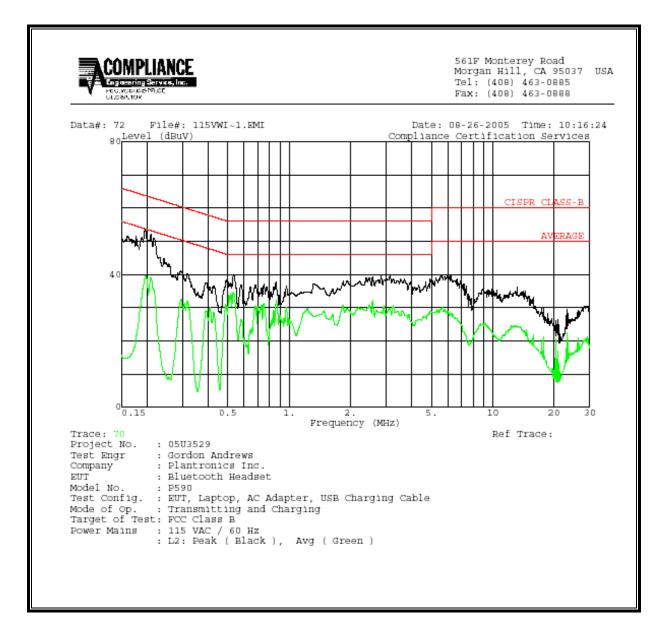
	CONDUCTED EMISSIONS DATA (115VAC 60Hz)									
Freq.	Reading			Closs	Limit	FCC_B	Marg	;in	Remark	
(MHz)	PK (dBuV)	QP (dBuV)	AV (dBuV)	(dB)	QP	AV	QP (dB)	AV(dB)	L1/L2	
0.16	51.84		15.16	0.00	65.62	55.62	-13.78	-40.46	L1	
0.19	50.89		50.89	0.00	63.86	53.86	-12.97	-2.97	L1	
0.21	49.15		37.57	0.00	63.32	53.32	-14.17	-15.75	L1	
0.16	51.38		14.71	0.00	65.73	55.73	-14.35	-41.02	L2	
0.19	50.00		38.70	0.00	63.91	53.91	-13.91	-15.21	L2	
0.21	48.76		36.50	0.00	63.05	53.05	-14.29	-16.55	L2	
6 Worst I	Data									


Page 48 of 64

LINE 1 RESULTS – without USB Charging Cable

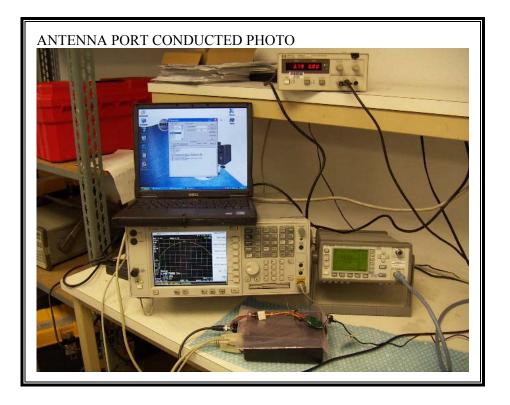

Page 49 of 64

LINE 2 RESULTS- without USB Charging Cable


Page 50 of 64

LINE 1 RESULTS – with USB Charging Cable (Part No.: 70218)

Page 51 of 64

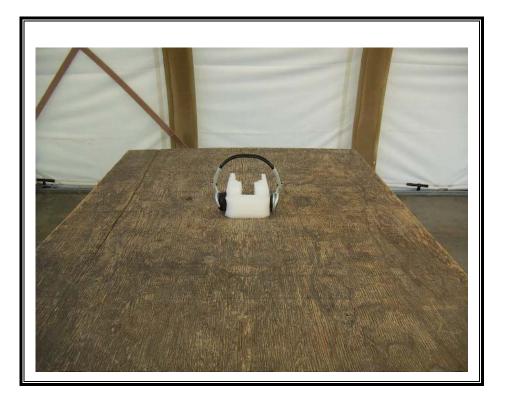

LINE 2 RESULTS- with USB Charging Cable (Part No.: 70218)

Page 52 of 64

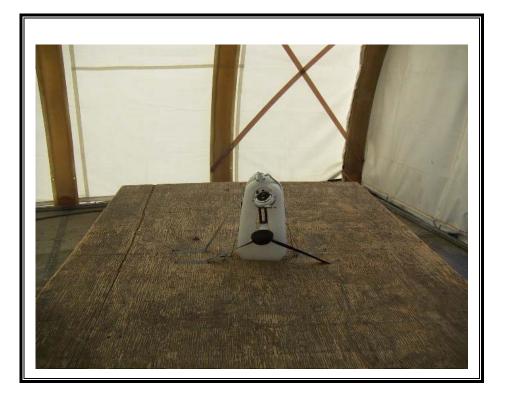
8. SETUP PHOTOS

ANTENNA PORT CONDUCTED RF MEASUREMENT SETUP

Page 53 of 64


RADIATED RF MEASUREMENT SETUP – ABOVE 1 GHz

HEADSET - EUT AT X POSITION


Page 54 of 64

HEADSET - EUT AT Y POSITION

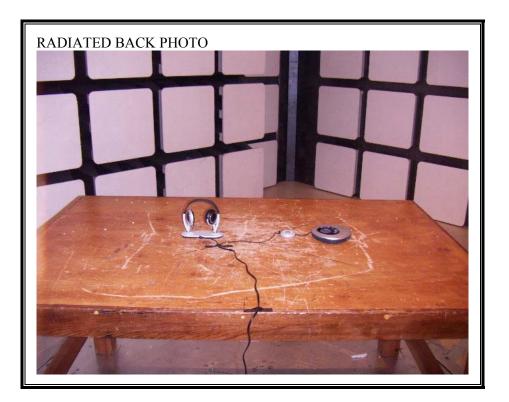
Page 55 of 64

HEADSET - EUT AT Z POSITION

Page 56 of 64

HEADSET WORST CASE: EUT AT Z POSITION

Page 57 of 64



Page 58 of 64

RADIATED RF MEASUREMENT SETUP – BELOW 1 GHz

Page 59 of 64

Page 60 of 64

POWERLINE CONDUCTED EMISSIONS MEASUREMENT SETUP – without USB Charging Cable

Page 61 of 64

Page 62 of 64

POWERLINE CONDUCTED EMISSIONS MEASUREMENT SETUP – with USB Charging Cable

Page 63 of 64

END OF REPORT

Page 64 of 64