

TEST REPORT

Report Number. : NBK14653036A.V1

Applicant : HP Inc. 1501 Page Mill Road Palo Alto, CA 94304, US

- Model : CBVS1
- FCC ID : AL8-CBVS1
 - IC : 457A-CBVS1
- EUT Description : Wireless Charge Stand
- Test Standard(s) : FCC 47 CFR PART 15 SUBPART C ISED RSS-210

Date Of Issue: 2023-09-11

Prepared by: UL LLC 333 Pfingsten Road Northbrook, IL 60062, US

Revision History

Rev.	Issue Date	Revisions	Revised By
V1	2023-09-11	Original	bm

Page 2 of 59

TABLE OF CONTENTS

	IESTATION OF TEST RESULTS	5
2. TE	ST METHODOLOGY	6
3. FA	CILITIES AND ACCREDITATION	6
4. DE	CISION RULES AND MEASUREMENT UNCERTAINTY	7
4.1.	METROLOGICAL TRACEABILITY	7
4.2.	DECISION RULES	7
4.3.	MEASUREMENT UNCERTAINTY	7
4.4.	SAMPLE CALCULATION	7
5. EQ	UIPMENT UNDER TEST	8
5.1.	DESCRIPTION OF EUT	8
5.2.	MAXIMUM RADIATED FIELD STRENGHT	8
5.3.	SOFTWARE AND FIRMWARE	8
5.4.	WORST-CASE CONFIGURATION AND MODE	8
5.5 <i>.</i>	DESCRIPTION OF TEST SETUP	9
6. TE	ST AND MEASUREMENT EQUIPMENT1	1
7. OC	CUPIED BANDWIDTH	2
7. OC 7.1.	CUPIED BANDWIDTH	2 3
7. OC 7.1. 7.2.	CUPIED BANDWIDTH	2 3 4
 7. OC 7.1. 7.2. 8. RA 	CUPIED BANDWIDTH 12 Bandwidth with load 12 Bandwidth without load 12 DIATED EMISSION TEST RESULTS 12	2 3 4 5
 7. OC 7.1. 7.2. 8. RA 8.1. 	CUPIED BANDWIDTH 1 Bandwidth with load 1 Bandwidth without load 1 DIATED EMISSION TEST RESULTS 1 LIMITS AND PROCEDURE 1	2 3 4 5 5
 7. OC 7.1. 7.2. 8. RA 8.1. 8.2. 	CUPIED BANDWIDTH 1 Bandwidth with load 1 Bandwidth without load 1 DIATED EMISSION TEST RESULTS 1 LIMITS AND PROCEDURE 1 FUNDAMENTAL AND SPURIOUS EMISSIONS (0.009 - 30 MHz), EUT WITH AC/DC	2 3 4 5 5
 7. OC 7.1. 7.2. 8. RA 8.1. 8.2. ADAF 8.2 	CUPIED BANDWIDTH 11 Bandwidth with load 11 Bandwidth without load 11 DIATED EMISSION TEST RESULTS 11 LIMITS AND PROCEDURE 11 FUNDAMENTAL AND SPURIOUS EMISSIONS (0.009 - 30 MHz), EUT WITH AC/DC 11 PTER 1 1 Fundamental Closeup with load	2 3 4 5 7 7
 7. OC 7.1. 7.2. 8. RA 8.1. 8.2. ADAF 8.2 8.2 8.2 8.2 8.2 	CUPIED BANDWIDTH 12 Bandwidth with load 14 Bandwidth without load 14 DIATED EMISSION TEST RESULTS 14 LIMITS AND PROCEDURE 14 FUNDAMENTAL AND SPURIOUS EMISSIONS (0.009 - 30 MHz), EUT WITH AC/DC 14 PTER 1 1. Fundamental Closeup with load 1 2. 9kHz – 150kHz with load 1	2 3 4 5 7 7 9
 7. OC 7.1. 7.2. 8. RA 8.1. 8.2. ADAF 8.2 	CUPIED BANDWIDTH 1 Bandwidth with load 1 Bandwidth without load 1 DIATED EMISSION TEST RESULTS 1 LIMITS AND PROCEDURE 1 FUNDAMENTAL AND SPURIOUS EMISSIONS (0.009 - 30 MHz), EUT WITH AC/DC PTER 1 1. Fundamental Closeup with load 1 2. 9kHz – 150kHz with load 1 3. 150kHz – 30MHz with load 2	2 3 4 5 77913
 7. OC 7.1. 7.2. 8. RA 8.1. 8.2. ADAF 8.2 	CUPIED BANDWIDTH 1 Bandwidth with load 1 Bandwidth without load 1 DIATED EMISSION TEST RESULTS 1 LIMITS AND PROCEDURE 1 FUNDAMENTAL AND SPURIOUS EMISSIONS (0.009 - 30 MHz), EUT WITH AC/DC 1 PTER 1 1. Fundamental Closeup with load 1 2. 9kHz – 150kHz with load 1 3. 150kHz – 30MHz with load 2 4. Fundamental closeup without load 2 5. 9kHz – 150kHz without load 2	2 3 4 5 779135
 7. OC 7.1. 7.2. 8. RA 8.1. 8.2. ADAF 8.2 	CUPIED BANDWIDTH 1 Bandwidth with load 1 Bandwidth without load 1 Bandwidth without load 1 DIATED EMISSION TEST RESULTS 1 LIMITS AND PROCEDURE 1 FUNDAMENTAL AND SPURIOUS EMISSIONS (0.009 - 30 MHz), EUT WITH AC/DC 1 PTER 1 1. Fundamental Closeup with load 1 2. 9kHz – 150kHz with load 1 3. 150kHz – 30MHz with load 2 4. Fundamental closeup without load 2 5. 9kHz – 150kHz without load 2 6. 150kHz – 30MHz without load 2	2 3 4 5 5 7791357
 7. OC 7.1. 7.2. 8. RA 8.1. 8.2. ADAF 8.2 8.3 	CUPIED BANDWIDTH 1 Bandwidth with load 1 Bandwidth without load 1 Bandwidth without load 1 DIATED EMISSION TEST RESULTS 1 LIMITS AND PROCEDURE 1 FUNDAMENTAL AND SPURIOUS EMISSIONS (0.009 - 30 MHz), EUT WITH AC/DC 1 PTER 1 1. Fundamental Closeup with load 1 2. 9kHz – 150kHz with load 1 3. 150kHz – 30MHz with load 2 4. Fundamental closeup without load 2 5. 9kHz – 150kHz without load 2 6. 150kHz – 30MHz without load 2 7X SPURIOUS EMISSION 30 TO 1000 MHz 2 7X SPURIOUS EMISSION 30 TO 1000 MHz 2	2 3 4 5 5 7791357 90
 7. OC 7.1. 7.2. 8. RA 8.1. 8.2. ADAF 8.2 8.3 8.3 8.3 8.3 	CUPIED BANDWIDTH 1 Bandwidth with load 1 Bandwidth without load 1 Bandwidth without load 1 DIATED EMISSION TEST RESULTS 1 LIMITS AND PROCEDURE 1 FUNDAMENTAL AND SPURIOUS EMISSIONS (0.009 - 30 MHz), EUT WITH AC/DC 1 PTER 1 1. Fundamental Closeup with load 1 2. 9kHz - 150kHz with load 1 3. 150kHz - 30MHz with load 2 4. Fundamental closeup without load 2 5. 9kHz - 150kHz without load 2 6. 150kHz - 30MHz without load 2 7. SPURIOUS EMISSION 30 TO 1000 MHz 2 1. 30MHz-1GHz with load 2 2. 30MHz-1GHz without load 3	2 3 4 5 5 7791357 991
 7. OC 7.1. 7.2. 8. RA 8.1. 8.2. ADAF 8.2 8.3 8.3 8.3 8.3 8.3 	CUPIED BANDWIDTH 11 Bandwidth with load 1 Bandwidth without load 1 Bandwidth without load 1 DIATED EMISSION TEST RESULTS 14 LIMITS AND PROCEDURE 1 FUNDAMENTAL AND SPURIOUS EMISSIONS (0.009 - 30 MHz), EUT WITH AC/DC 1 PTER 1 1. Fundamental Closeup with load 1 2. 9kHz - 150kHz with load 2 3. 150kHz - 30MHz with load 2 4. Fundamental closeup without load 2 5. 9kHz - 150kHz without load 2 6. 150kHz - 30MHz without load 2 7X SPURIOUS EMISSION 30 TO 1000 MHz 2 1. 30MHz-1GHz with load 2 2. 30MHz-1GHz without load 3	2 3 4 5 5 7791357 991 7
 7. OC 7.1. 7.2. 8. RA 8.1. 8.2. ADAF 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.3 8.3 8.3 9. FRI 	CUPIED BANDWIDTH 1 Bandwidth with load 1 Bandwidth without load 1 Bandwidth without load 1 DIATED EMISSION TEST RESULTS 1 LIMITS AND PROCEDURE 1 FUNDAMENTAL AND SPURIOUS EMISSIONS (0.009 - 30 MHz), EUT WITH AC/DC PTER 1 1. Fundamental Closeup with load 1 2. 9kHz – 150kHz with load 1 3. 150kHz – 30MHz with load 2 4. Fundamental closeup without load 2 5. 9kHz – 150kHz without load 2 6. 150kHz – 30MHz without load 2 7X SPURIOUS EMISSION 30 TO 1000 MHz 2 1. 30MHz-1GHz with load 2 2. 30MHz-1GHz without load 3 3 30MHz-1GHz without load 3	2 3 4 5 5 7791357 991 3
 7. OC 7.1. 7.2. 8. RA 8.1. 8.2. ADAF 8.2. 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.3 8.3 8.3 8.3 9. FRI 9.1 	CUPIED BANDWIDTH 1 Bandwidth with load 1 Bandwidth without load 1 Bandwidth without load 1 DIATED EMISSION TEST RESULTS 1 LIMITS AND PROCEDURE 1 FUNDAMENTAL AND SPURIOUS EMISSIONS (0.009 - 30 MHz), EUT WITH AC/DC 1 PTER 1 1. Fundamental Closeup with load 1 2. 9kHz - 150kHz with load 2 3. 150kHz - 30MHz with load 2 4. Fundamental closeup with load 2 5. 9kHz - 150kHz with load 2 6. 150kHz - 30MHz without load 2 7. SPURIOUS EMISSION 30 TO 1000 MHz 2 1. 30MHz-1GHz with load 3 2. 30MHz-1GHz without load 3 3. 50LHz without load 3 3. 30MHz-1GHz without load 3 3. 50LHz without load 3	2 3 4 5 5 7791357 991 3 4

Page 3 of 59

10. AC	MAINS LINE CONDUCTED EMISSIONS	45
10.1.	Conducted Emissions Data	46
10.1.1	. 150kHz – 30MHz with Load 150kHz – 30MHz non-radiating termination	46 48
10.1.2	. 150kHz – 30MHz without load	
11. SET	UP PHOTOS	52
11.1.	Line Conducted Emissions	52
11.1.1	. With Load	52
11.1.2	. Without Load	53
11.1.3	. Antenna replaced with non-radiating load	54
11.2.	Radiated Emissions 9kHz – 30MHz	55
11.2.1	. Loop in Hx Position	55
11.2.2	. Loop in Hy Position	56
11.2.3	. Loop in Hz Position	57
11.3.	Radiated Emissions 30MHz – 1GHz	58
11.3.1	. EUT with Load	58
11.3.2	. EUT without load	59

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	HP Inc. 1501 Page Mill Road Palo Alto, CA 94304, US			
EUT DESCRIPTION:	Wireless Charge Stand			
MODEL: CBVS1				
SERIAL NUMBER:	62			
SAMPLE RECEIPT DATE:	2023-05-09			
DATE TESTED:	2023-05-09 to 2023-08-29			
	APPLICABLE STANDARDS			
STA	ANDARD	TEST RESULTS		
FCC PART	15 SUBPART C	Complies		
ISED RSS-210) Issue 10, Annex B	Complies		
ISED RSS-0	GEN Issue 5 + A1	Complies		

UL LLC tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. All samples tested were in good operating condition throughout the entire test program. Measurement Uncertainties are published for informational purposes only and were not taken into account unless noted otherwise.

This document may not be altered or revised in any way unless done so by UL LLC and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL LLC will constitute fraud and shall nullify the document.

Approved & Released For UL LLC. By:

Nirted /2

Mike Antola Staff Engineer Consumer Technology Division UL LLC

Prepared By:

AMhuh

Bart Mucha Test Engineer Consumer Technology Division UL LLC

Page 5 of 59

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2013, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 5 + A1, and RSS-210 Issue 10.

3. FACILITIES AND ACCREDITATION

UL LLC is accredited by A2LA, for all testing performed within the scope of this report. Testing was performed at the locations noted below.

	Address	ISED Company Number	FCC Registration
\boxtimes	Building: 333 Pfingsten Road Northbrook, IL 60062	2180A	US1291

Page 6 of 59

4. DECISION RULES AND MEASUREMENT UNCERTAINTY

4.1. METROLOGICAL TRACEABILITY

All test and measuring equipment utilized to perform the tests documented in this report are calibrated on a regular basis, with a maximum time between calibrations of one year or the manufacturers' recommendation, whichever is less, and where applicable is traceable to recognized national standards.

4.2. DECISION RULES

The Decision Rule is based on Simple Acceptance in accordance with ISO Guide 98-4:2012 Clause 8.2. (Measurement uncertainty is not taken into account when stating conformity with a specified requirement.)

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	U _{Lab}
Worst Case Conducted Disturbance, 0.15 to 30 MHz	3.40 dB
Worst Case Radiated Disturbance Loop, 9KHz to 30 MHz	2.52 dB
Worst Case Radiated Disturbance, 30 to 1000 MHz	4.66 dB
Worst Case Frequency Error with Spectrum Analyzer	141.16 Hz
Worst Case Occupied Bandwidth	0.09dB / 2.00%

Uncertainty figures are valid to a confidence level of 95%.

4.4. SAMPLE CALCULATION

RADIATED EMISSIONS

Where relevant, the following sample calculation is provided: Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB - 26.9 dB = 28.9 dBuV/m

MAINS CONDUCTED EMISSIONS

Where relevant, the following sample calculation is provided: Final Voltage (dBuV) = Measured Voltage (dBuV) + Cable Loss (dB) + Limiter Factor (dB) + LISN Insertion Loss. 36.5 dBuV + 0 dB + 10.1 dB + 0 dB = 46.6 dBuV

Page 7 of 59

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT (Equipment Under Test) is an Wireless Charging Base used for charging wireless headset.

5.2. MAXIMUM RADIATED FIELD STRENGHT

The transmitter has a maximum peak field strength of:

With Load: 14.13dBuV/m @ 30m, receive antenna Hz (parallel to ground)

Without Load: 13.35dBuV/m @ 30m, receive antenna Hz (parallel to ground)

5.3. SOFTWARE AND FIRMWARE

FW version of the charge stand: V213.91.0.3089

5.4. WORST-CASE CONFIGURATION AND MODE

The EUT can be used only in single orientation table top position and it was tested as such.

The wireless charging base was tested with load (proper headphones) and without load – headphones removed.

Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30 m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788

Page 8 of 59

5.5. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Support Equipment List									
Description	Description Manufacurer / Brand Model Notes								
Wireless Headset	Poly	Voyager Surround 85 UC	SIM Equipment						
Power Supply	Power Supply Baseus 65W Supply Representative supply								

I/O CABLES

I/O Cable List						
Cable	Port	# of	Connector	Cable	Cable	Notes
No		identical	Туре	Туре	Length	
		ports			(m)	
1	Input Power	1	USB-C	-	1.5	Cable is permanently
						attached to charging base
						with USB-C connector on
						the other side.

TEST SETUP

The EUT is an stand alone device. It was setup on 80cm support and was tested with and without load.

SETUP DIAGRAM without load

Page 9 of 59

SETUP DIAGRAM with load

Page 10 of 59

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

UL SOFTWARE						
*Radiated Software	UL	UL EMC	Ver 9.5, 12 APR 2023			
*AC Line Conducted Software	UL	UL EMC	Ver 9.5, 12 APR 2023			
		1 2 4 12				

Note: * indicates automation software version used in the compliance certification testing

Description	Manufacturer	Model	Identifier	Cal. Date	Cal. Due
EMI Receiver	Rohde & Schwarz	ESCI	54598	2022-12-08	2023-12-31
Active Loop Antenna	EMCO	6502/1	19723	2022-12-12	2023-12-31
Hybrid Antenna	SunAR RF Motion	JB1-UN	202902	2023-02-03	2024-02-29
Passive Loop Antenna	EMCO	EM-6872	232146	2022-09-29	2023-09-30

Description	Manufacturer	Model	Identifier	Cal. Date	Cal. Due
EMI Test Receiver	Rohde & Schwarz	ESR	86711	2022-12-18	2023-12-31
Transient Limiter	Electro-Metrics	EM7600-2	19866	N/A	N/A
High-Pass Filter	Solar Electronics	2803-150	53775	N/A	N/A
Attenuator	HP	8494B	226534	N/A	N/A
LISN - L1	Solar Electronics	8602-50-TS-50-N	19808	2022-12-06	2023-12-31
LISN - L2	Solar Electronics	8602-50-TS-50-N	19806	2022-12-06	2023-12-31

Description	Manufacturer	Model	Identifier	Cal. Date	Cal. Due
Barometric Pressure/ Humidity/ Temperature Datalogger	Extech Instruments	SD700	80227	2023-01-25	2024-01-31
Barometric Pressure/ Humidity/ Temperature Datalogger	Extech Instruments	SD700	80491	2022-12-15	2023-12-31

Description	Manufacturer	Model	Identifier	Cal. Date	Cal. Due
Environmental Chamber	Espec	BTX-475	87492	2023-02-24	2024-02-29
Signal Analyzer	Aglient	N9030A PXA	77811	2022-12-07	2023-12-31

Page 11 of 59

7. OCCUPIED BANDWIDTH

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 10kHz. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

Tested By: BM06740 on 20230629

RESULTS

99% and 20dB BW

Type A (Reader Mode)

Mode	Frequency (MHz)	99% Bandwidth (KHz)	20dB Bandwidth (KHz)
w/ load	13.56	818.65kHz	435kHz
w/o load	13.56	95.419kHz	44kHz

Page 12 of 59

7.1. Bandwidth with load

Page 13 of 59

7.2. Bandwidth without load

aaa K	eysight Sp	pectrum	n Analyz	er - Oc	cupied	BW													
IXI Cuu		R	F	50 Ω	DC				Cente	SEN or Fr	NSE:I	NT 13 5600	00 MHz	ALIGN AU	то	01:54:43 P	M Jun 29, 2023	Trac	e/Detector
Sw	еер і		17.	U III:	S NFE				Trig:	Free	Ru	n	Avg Hold	d:>10/10					
		ļ				#IF	Gain:L	ow	#Atte	n: 1	0 dE	}				Radio Dev	vice: BTS		
<u>15 (</u>	dB/div		Ref	16.0	0 dE	ßm				-									
1.00																			
1.00										1	۱.								Clear Write
-14.0	/									N	h								
-29.0										ηľ		1200							
-44.0				an an C.B.	an f		ALALA	ገለ በ			Ī		ከ የ በ የ በ የ በ የ በ የ በ የ በ የ የ በ የ የ የ የ	የእቤልግነት ሰም	է հ ոտո				
-59.0		μ	MrYY		4 -	_"¶[₽			4									Average
-74.0			ľ					-₩	1			· V	Y IV				1. 11.1		
-89.0	рЦ				14	Ч								-	(I	I Y		<u> </u>	
-104																			MaxHold
-110																			Μάχ Ποιά
-115																		<u> </u>	
Ce	nter 1	3.56	6 MH	z												Spai	n 1.5 MHz		
#R	es BW	/ 10	kHz						\$	≠V Ε	SW	30 kH	lz			#Swe	ep 17 ms		Min Hold
	_										-				27	d D			
(Jccu	pie	d B	and	WIC	ith					10	otal P	ower	-4	.37	aBm			
						95.4	419) kl	Ηz										Detector
	-		_	_							•				~~				Peak►
	rans	mit	Fred	l Eri	ror		-1.3	345	KHZ		%	of OF	SW Pow	/er	99	.00 %		Auto	Man
)	dBE	Band	dwid	lth			44	.00	(Hz		x	dB		-2	20.0	00 dB			
MSG														ST	ATUS				

Page 14 of 59

8. RADIATED EMISSION TEST RESULTS

8.1. LIMITS AND PROCEDURE

<u>LIMIT</u>

§15.225 IC RSS-210, Annex B.6 IC RSS-GEN, Section 8.9 (Transmitter)

(a) The field strength of any emissions within the band 13.553–13.567 MHz shall not exceed 15,848 microvolts/ meter at 30 meters.

(b) Within the bands 13.410–13.553 MHz and 13.567–13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters.

(c) Within the bands 13.110–13.410 MHz and 13.710–14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.

(d) The field strength of any emissions appearing outside of the 13.110– 14.010 MHz and shall not exceed the general radiated emission limits in § 15.209 as follows: §15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Limits for radiated disturbance of an intentional radiator												
Frequency range (MHz) Limits (µV/m) Measurement Distance (m)												
0.009 - 0.490	2400 / F (kHz)	300										
0.490 – 1.705	24000 / F (kHz)	30										
1.705 – 30.0	30	30										
30 - 88	100**	3										
88 - 216	150**	3										
216 - 960	200**	3										
Above 960	500	3										

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g. §§ 15.231 and 15.241.

§15.209 (b) In the emission table above, the tighter limit applies at the band edges.

Formula for converting the filed strength from uV/m to dBuV/m is: Limit (dBuV/m) = 20 log limit (uV/m)

Note: The limits in CFR 47, Part 15, Subpart C, paragraph 15.209(a), are identical to those in RSS-Gen section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as report in the table) using free space impedance of 377 Ohms. For example, the measurement at frequency X kHz resulted in a level of Y dBuV/m, which is equivalent to Y-51.5 = Z dBuA/m, which has the same margin, W dB to the corresponding RSS-Gen Table 6 limit as it has to 15.209(a) limit.

Page 15 of 59

In addition:

§15.209 (d) The emission limits shown the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emissions limits in these three bands are based on measurements employing an average detector.

§15.209 (d) The provisions in §§ 15.225, measuring emissions at distances other than the distances specified in the above table, determining the frequency range over which radiated emissions are to be measured, and limiting peak emissions apply to all devices operated under this part.

TEST PROCEDURE

ANSI C63.10, 2013

The EUT is an intentional radiator that incorporates a digital device, the highest fundamental frequency generated or used in the device is 13.56 MHz; therefore, the frequency range was investigated from 0.009MHz to the 10th harmonic of the highest fundamental frequency, or 1000 MHz, whichever is greater.

RESULTS

Page 16 of 59

8.2. FUNDAMENTAL AND SPURIOUS EMISSIONS (0.009 - 30 MHz), EUT WITH AC/DC ADAPTER

8.2.1. Fundamental Closeup with load

Page 17 of 59

FORM NO: CCSUP4701I

Wireless H	leadset Char	ger								
Charger w	ith load									
120V/60Hz	1									
RED: Hx,	YN: Hz									
Trace MAr	kers									
				Loop E-				Limit 15.225		
	Test	Meter		Field	Path	Distance		490kHz-		
Marker Frequency		Reading		Factor	Factor	Correction	Lev el	30MHz 30m	Margin	Azimuth
Marker Frequency No. (MHz)		(dBuV)	Detector	dB/m	dB	Factor dB	dBuV/m	dBuV/m	(dB)	[Degs]
Hx	No. (MHz) Hx									
1	13.5605	16.41	Pk	34.1	0.4	-40	10.91	84	-73.09	0-360
Hy										
2	13.5605	15.06	Pk	34.1	0.4	-40	9.56	84	-74.44	0-360
Hz										
3	13.5605	19.63	Pk	34.1	0.4	-40	14.13	84	-69.87	0-360
Pk - Peak	detector									

8.2.2. 9kHz – 150kHz with load

Page 19 of 59

FORM NO: CCSUP4701I

Wireless F	leadset Char	ger								
Charger w	ith load									
120V/60Hz	Z									
RED: Hx,	GRN: Hy, C	YN: Hz								
Trace MA	rkers									
				Loop E-				Limit 15.209		
	Test	Meter		Field	Path	Distance		9-490kHz		
Marker	Frequency	Reading		Factor	Factor	Correction	Lev el	300m	Margin	Azimuth
No.	(MHz)	(dBuV)	Detector	dB/m	dB	Factor dB	dBuV/m	dBuV/m	(dB)	[Degs]
Hx										
1	0.01201	40.53	Pk	24	0	-80	-15.47	46	-61.47	0-360
2	0.1238	36.69	Pk	12.4	0	-80	-30.91	25.75	-56.66	0-360
Hy										
3	0.01201	43.73	Pk	24	0	-80	-12.27	46	-58.27	0-360
4	0.12373	35.19	Pk	12.4	0	-80	-32.41	25.75	-58.16	0-360
Hz										
5	0.011975	43.73	Pk	24	0	-80	-12.27	46.03	-58.3	0-360
6	0.1238	29.73	Pk	12.4	0	-80	-37.87	25.75	-63.62	0-360
Pk - Peak detector										

8.2.3. 150kHz – 30MHz with load

Page 21 of 59 UL LLC 333 Pfingsten Road, Northbrook, IL 60062; USA This report shall not be reproduced except in full, without the written approval of UL LLC

Wireless Headset Charger												
Charger with load												
120V/60Hz	2											
RED: Hx, GRN: Hy, CYN: Hz		YN: Hz										
Trace MAr	kers											
Marker	Test	Meter		Loop E- Field Factor	Path Factor	Distance	l evel	Limit 15.225 490kHz- 30MHz 30m	Margin	Limit 15.209 490kHz- 30MHz	Margin	Azimuth
No.	(MHz)	(dBuV)	Detector	dB/m	dB	Factor dB	dBuV/m	dBuV/m	(dB)	dBuV/m	(dB)	[Degs]
Hx												
1	0.67355	0	Pk	49.8	0.1	-40	9.9	31.03	-21.13	31.03	-21.13	0-360
2	0.72233	1.41	Pk	49.2	0.1	-40	10.71	30.43	-19.72	30.43	-19.72	0-360
3	1.32625	0.92	Pk	45.1	0.1	-40	6.12	25.14	-19.02	25.14	-19.02	0-360
4	13.56063	16.36	Pk	34.1	0.4	-40	10.86	84	-73.14	29.54	-18.68	0-360
5	27.12175	-1.45	Pk	33.4	0.6	-40	-7.45	29.54	-36.99	29.54	-36.99	0-360
Ну												
6	13.56063	14.69	Pk	34.1	0.4	-40	9.19	84	-74.81	29.54	-20.35	0-360
7	27.12175	13.97	Pk	33.4	0.6	-40	7.97	29.54	-21.57	29.54	-21.57	0-360
Hz												
8	13.56063	19.17	Pk	34.1	0.4	-40	13.67	84	-70.33	29.54	-15.87	0-360
9	27.12175	-1.35	Pk	33.4	0.6	-40	-7.35	29.54	-36.89	29.54	-36.89	0-360
Pk - Peak	detector											

8.2.4. Fundamental closeup without load

Wireless H	leadset Char	ger								
Charger A	lone									
120V/60Hz	Z									
RED: Hx,	GRN: Hy, C	YN: Hz								
Trace MA	rkers									
	Test	Meter		Loop E- Field	Path	Distance		Limit 15.225 490kHz-		
Marker	Frequency	Reading		Factor	Factor	Correction	Lev el	30MHz 30m	Margin	Azimuth
No.	(MHz)	(dBuV)	Detector	dB/m	dB	Factor dB	dBuV/m	dBuV/m	(dB)	[Degs]
Hx										
1	13.56	15.37	Pk	34.1	0.4	-40	9.87	84	-74.13	0-360
Hy										
2	13.5605	10.43	Pk	34.1	0.4	-40	4.93	84	-79.07	0-360
Hz										
3	13.56	18.85	Pk	34.1	0.4	-40	13.35	84	-70.65	0-360
Pk - Peak	detector									

8.2.5. 9kHz – 150kHz without load

Page 25 of 59

FORM NO: CCSUP4701I

Wireless H	leadset Charç	ger								
Charger A	lone									
120V/60Hz	2									
RED: Hx,	GRN: Hy, C	YN: Hz								
Trace MA	rkers									
				Loop E-				Limit 15.209		
	Test	Meter		Field	Path	Distance		9-490kHz		
Marker	Frequency	Reading		Factor	Factor	Correction	Level	300m	Margin	Azimuth
No.	MarkerFrequencyReadinNo.(MHz)(dBuV)			dB/m	dB	Factor dB	dBuV/m	dBuV/m	(dB)	[Degs]
Hx										
1	0.01201	42.68	Pk	24	0	-80	-13.32	46	-59.32	0-360
Ну										
2	0.012045	43.9	Pk	24	0	-80	-12.1	45.98	-58.08	0-360
Hz	Hz									
3	0.01201	44.6	Pk	24	0	-80	-11.4	46	-57.4	0-360
Pk - Peak	detector									

8.2.6. 150kHz – 30MHz without load

Page 27 of 59

Wireless Headset Charger		ger										
Charger Alone												
120V/60Hz	2											
RED: Hx, GRN: Hy, CYN:		YN: Hz										
Trace MAr	kers											
Marker No.	Test Frequency (MHz)	Meter Reading (dBuV)	Detector	Loop E- Field Factor dB/m	Path Factor dB	Distance Correction Factor dB	Level dBuV/m	Limit 15.225 490kHz- 30MHz 30m dBuV/m	Margin (dB)	Limit 15.209 490kHz- 30MHz dBuV/m	Margin (dB)	Azimuth [Deqs]
Hx		()							()		()	1 0 1
1	0.67121	-0.62	Pk	49.8	0.1	-40	9.28	31.06	-21.78	31.06	-21.78	0-360
2	0.72105	0.98	Pk	49.2	0.1	-40	10.28	30.44	-20.16	30.44	-20.16	0-360
3	1.32625	1.35	Pk	45.1	0.1	-40	6.55	25.14	-18.59	25.14	-18.59	0-360
4	13.56063	16	Pk	34.1	0.4	-40	10.5	84	-73.5	29.54	-19.04	0-360
5	27.12538	-8.17	Pk	33.4	0.6	-40	-14.17	29.54	-43.71	29.54	-43.71	0-360
Ну												
6	13.56063	-8.41	Pk	34.1	0.4	-40	-13.91	84	-97.91	29.54	-43.45	0-360
7	27.12175	1.5	Pk	33.4	0.6	-40	-4.5	29.54	-34.04	29.54	-34.04	0-360
Hz												
8	13.56063	17.96	Pk	34.1	0.4	-40	12.46	84	-71.54	29.54	-17.08	0-360
9	27.12538	-9.55	Pk	33.4	0.6	-40	-15.55	29.54	-45.09	29.54	-45.09	0-360
Pk - Peak	detector											

8.3. TX SPURIOUS EMISSION 30 TO 1000 MHz

8.3.1. 30MHz-1GHz with load

* not saved *

Page 29 of 59

Wireless	Headset											
Charger	With Load											
120V/60	Hz											
Red=Ho	rz Blue=Vert											
Trace M	IArkers											
	Test	Meter		Antenna	Path	Distance Factor		Limit 47 CFR 15.209				
Marker	Frequency	Reading		Factor	Factor	10m to 3m	Lev el	@3m	Margin	Azimuth	Height	
No.	(MHz)	(dBuV)	Detector	dB/m	dB	dB	dBuV/m	dBuV/m	(dB)	[Degs]	[cm]	Polarity
1	40.67	52.29	Pk	19.5	-42.6	10.5	39.69	40	-0.31	0-360	97	V
2	94.7475	54.33	Pk	14.6	-42.1	10.5	37.33	43.52	-6.19	0-360	197	V
3	149.0675	49.96	Pk	18.6	-41.6	10.5	37.46	43.52	-6.06	0-360	97	V
4	162.6475	49.12	Pk	17.9	-41.4	10.5	36.12	43.52	-7.4	0-360	97	V
5	203.3875	48.2	Pk	18	-41.3	10.5	35.4	43.52	-8.12	0-360	97	V
6	623.8825	46.79	Pk	25.2	-39.9	10.5	42.59	46.02	-3.43	0-360	297	V
7	651.0425	43.3	Pk	25.8	-39.7	10.5	39.9	46.02	-6.12	0-360	197	V
8	40.67	44.34	Pk	19.5	-42.6	10.5	31.74	40	-8.26	0-360	399	Н
9	149.0675	44.42	Pk	18.6	-41.6	10.5	31.92	43.52	-11.6	0-360	399	Н
10	623.8825	43.98	Pk	25.2	-39.9	10.5	39.78	46.02	-6.24	0-360	99	Н
Radiated	d Emission D	ata										
						Distance		Limit 47 CFR				
	Test	Meter		Antenna	Path	Factor		15.209				
	Frequency	Reading		Factor	Factor	10m to 3m	Level	@3m	Margin	Azimuth	Height	
	(MHz)	(dBuV)	Detector	dB/m	dB	dB	dBuV/m	dBuV/m	(dB)	[Degs]	[cm]	Polarity
	40.68	50.43	Qp	19.5	-42.6	10.5	37.83	40	-2.17	292	100	V
	623.76	47.25	Qp	25.2	-39.9	10.5	43.05	46.02	-2.97	7	256	V
Pk - Pea	ak detector											
Qp - Qu	asi-Peak dete	ector										

RE 30-1000 MHz 10m with 3m Limits and Correction Single Antgenna FCC 15.209 ESCI.TST

Page 31 of 59

Wireless	Headset											
Charger	Alone											
120V/60	Hz											
Red=Ho	rz Blue=Vert											
Trace N	IArkers											
								Limit 47				
						Distance		CFR				
	Test	Meter		Antenna	Path	Factor		15.209				
Marker	Frequency	Reading		Factor	Factor	10m to 3m	Lev el	@3m	Margin	Azimuth	Height	
No.	(MHz)	(dBuV)	Detector	dB/m	dB	dB	dBuV/m	dBuV/m	(dB)	[Degs]	[cm]	Polarity
1	162.6475	55.91	Pk	17.9	-41.4	10.5	42.91	43.52	-0.61	0-360	99	V
2	30.7275	37.53	Pk	26.9	-42.7	10.5	32.23	40	-7.77	0-360	400	V
3	352.525	43.64	Pk	20.4	-41.5	10.5	33.04	46.02	-12.98	0-360	99	V
4	379.685	43.08	Pk	21.1	-41.5	10.5	33.18	46.02	-12.84	0-360	99	V
8	62.01	45.97	Pk	13.5	-42.5	10.5	27.47	40	-12.53	0-360	299	V
9	279.0475	41.43	Pk	19.4	-41.5	10.5	29.83	46.02	-16.19	0-360	99	V
5	162.6475	43.27	Pk	17.9	-41.4	10.5	30.27	43.52	-13.25	0-360	400	Н
6	30.485	37.26	Pk	27.1	-42.6	10.5	32.26	40	-7.74	0-360	400	Н
7	379.685	41.03	Pk	21.1	-41.5	10.5	31.13	46.02	-14.89	0-360	297	Н
Radiated	d Emission D	ata										
								Limit 47				
						Distance		CFR				
	Test	Meter		Antenna	Path	Factor		15.209				
	Frequency	Reading		Factor	Factor	10m to 3m	Lev el	@3m	Margin	Azimuth	Height	
	(MHz)	(dBuV)	Detector	dB/m	dB	dB	dBuV/m	dBuV/m	(dB)	[Degs]	[cm]	Polarity
	162.72	53.6	Qp	17.9	-41.4	10.5	40.6	43.52	-2.92	67.96	100	V
Pk - Pea	ak detector											
Qp - Qu	asi-Peak dete	ector										

9. FREQUENCY STABILITY

<u>LIMIT</u>

15.225 (e) The frequency tolerance of the carrier signal shall be maintained within ±0.01% of the operating frequency, over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

IC RSS-210, Annex B.6 Carrier frequency stability shall be maintained to $\pm 0.01\%$ (± 100 ppm).

TEST PROCEDURE

ANSI C63.10-2013 Clause 6.8

<u>RESULTS</u> No non-compliance noted.

Page 33 of 59

9.1. Frequency Stability Results

	Reference Frequency: EUT Channel 13.56 MHz @ 20°C													
	Limit: ± 100 ppm = 1.356 kHz													
Power	Envir.	Frequency Deviation Measureed with Time Flanse												
Supply	Temp	Frequency Deviation measureed with Time Elapse												
		Startup	Startup Delta @ 2 mins Delta @ 5 mins Delta @ 10 mins Delta Limit											
(Vac)	(ºC)	(MHz)	(ppm)	(MHz)	(ppm)	(MHz)	(ppm)	(MHz)	(ppm)	(ppm)				
120.00	50	13.5599940	6.268	13.5599840	7.006	13.5599810	7.227	13.5599810	7.227	± 100				
120.00	40	13.5600190	4.425	13.5600040	5.531	13.5599970	6.047	13.5599930	6.342	± 100				
120.00	30	13.5600520	1.991	13.5600350	3.245	13.5600260	3.909	13.5600220	4.204	± 100				
120.00	20	13.5600790	0.000	13.5600660	0.959	13.5600580	1.549	13.5600530	1.917	± 100				
120.00	10	13.5601010	-1.622	13.5600910	-0.885	13.5600860	-0.516	13.5600830	-0.295	± 100				
120.00	0	13.5601080	-2.139	13.5601080	-2.139	13.5601040	-1.844	13.5601020	-1.696	± 100				
120.00	-10	13.5600890	-0.737	13.5601020	-1.696	13.5601060	-1.991	13.5601070	-2.065	± 100				
120.00	-20	13.5600400	2.876	13.5600710	0.590	13.5600820	-0.221	13.5600880	-0.664	± 100				
102.00	20	13.5600800	-0.074	13.5600660	0.959	13.5600580	1.549	13.5600540	1.844	± 100				
138	20	13.5600790	0.000	13.5600660	0.959	13.5600570	1.622	13.5600540	1.844	± 100				

9.1.1. Tabular Data

Frequency Stability Vnom Tnom

Page 35 of 59

Frequency Stability Vnom T -20°C

Page 36 of 59

Frequency Stability Vnom T -10°C

Page 37 of 59

Frequency Stability Vnom T 0°C

Page 38 of 59

Frequency Stability Vnom T 10°C

Page 39 of 59

Frequency Stability Vnom T 30°C

Page 40 of 59

Frequency Stability Vnom T 40°C

Page 41 of 59

Frequency Stability Vnom T 50°C

Page 42 of 59

Frequency Stability Vlow Tnom

Page 43 of 59

Frequency Stability Vhigh Tnom

Page 44 of 59

10. AC MAINS LINE CONDUCTED EMISSIONS

<u>LIMITS</u>

§15.207 IC RSS-GEN, Section 8.8

(a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the band edges.

Frequency range	Limits (dBµV)					
(MHz)	Quasi-peak	Average				
0.15 to 0.50	66 to 56	56 to 46				
0.50 to 5	56	46				
5 to 30	60	50				
Notes:						

1. The lower limit shall apply at the transition frequencies

2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

TEST PROCEDURE

ANSI C63.10:2013 FCC KDB174176

RESULTS

No non-compliance noted:

Page 45 of 59

10.1. Conducted Emissions Data

10.1.1. 150kHz – 30MHz with Load

FCC Transmitter_Part 15_207.TST

Page 46 of 59

Wireless Headset											
Charger With Load											
120V/60Hz											
Red=QP Green=AV											
Trace MAr	kers										
Test Marker Frequency		Meter Reading (dBuV)	Detector	LISN Factor dB	Path & TL Factor dB	Cable Extension Factor dB	Lev el dBuV	Limit 47 CFR Part 15.207 QP dBuV	Margin (dB)	Limit 47 CFR Part 15.207 Av dBuV	Margin (dB)
Line		()							(-)		(*)
1	13.56	50.29	Qp	0.1	11.1	0.2	61.69	60	1.69	-	-
2	13.56	50.38	Са	0.1	11.1	0.2	61.78	-	-	50	11.78
3	27.12075	36.4	Qp	0	11.8	0.4	48.6	60	-11.4	-	-
4	27.12075	36.6	Са	0	11.8	0.4	48.8	-	-	50	-1.2
Neutral											
5	13.56	50.56	Qp	0.1	11.1	0.5	62.26	60	2.26	-	-
6	13.56	50.71	Ca	0.1	11.1	0.5	62.41	-	-	50	12.41
7	27.12075	36.93	Qp	0	11.8	1	49.73	60	-10.27	-	-
8 27.12075		36.4	Са	0	11.8	1	49.2	-	-	50	-0.8
Qp - Quasi-Peak detector											
Ca - CISPF	R Average dete	ction									

Page 47 of 59

10.1.1. 150kHz – 30MHz non-radiating termination

FCC Transmitter_Part 15_207.TST

Page 48 of 59

Wireless Headset											
Charger Load Replacement											
120V/60Hz											
Red=QP Green=AV											
Trace MAr	kers										
								Limit 47		Limit 47	
	Test	Meter		LISN		Cable		CFR Part		CFR Part	
Marker	Frequency	Reading		Factor	Path & TL	Extension	Lev el	15.207 QP	Margin	15.207 Av	Margin
No.	(MHz)	(dBuV)	Detector	dB	Factor dB	Factor dB	dBuV	dBuV	(dB)	dBuV	(dB)
Line											
3	13.56	36.96	Qp	0.1	11.1	0.2	48.36	60	-11.64	-	-
4	13.56	19.44	Са	0.1	11.1	0.2	30.84	-	-	50	-19.16
Neutral											
1	13.56	36.92	Qp	0.1	11.1	0.5	48.62	60	-11.38	-	-
2	13.56	19.44	Ca	0.1	11.1	0.5	31.14	-	-	50	-18.86
Qp - Quasi-Peak detector											
Ca - CISPR Average detection											

FCC Transmitter_Part 15_207.TST

Page 50 of 59

Wireless Headset											
Charger Ale	one										
120V/60Hz											
Red=QP G	reen=AV										
Trace MArl	Trace MArkers										
								Limit 47		Limit 47	
	Test	Meter		LISN		Cable		CFR Part		CFR Part	
Marker	Frequency	Reading		Factor	Path & TL	Extension	Lev el	15.207 QP	Margin	15.207 Av	Margin
No.	(MHz)	(dBuV)	Detector	dB	Factor dB	Factor dB	dBuV	dBuV	(dB)	dBuV	(dB)
Line											
1	0.77325	20.02	Qp	0	10.6	0	30.62	56	-25.38	-	-
2	0.77325	15.18	Са	0	10.6	0	25.78	-	-	46	-20.22
3	13.56	32.57	Qp	0.1	11.1	0.2	43.97	60	-16.03	-	-
4	13.56	13.8	Са	0.1	11.1	0.2	25.2	-	-	50	-24.8
5	27.12075	29.8	Qp	0	11.8	0.4	42	60	-18	-	-
6	27.12075	13.95	Ca	0	11.8	0.4	26.15	-	-	50	-23.85
Neutral											
7	0.77325	15.33	Qp	0	10.5	0	25.83	56	-30.17	-	-
8	0.77325	10.15	Са	0	10.5	0	20.65	-	-	46	-25.35
9	13.56	32.36	Qp	0.1	11.1	0.5	44.06	60	-15.94	-	-
10	13.56	13.81	Са	0.1	11.1	0.5	25.51	-	-	50	-24.49
11	27.12075	29.69	Qp	0	11.8	1	42.49	60	-17.51	-	-
12	27.12075	13.94	Са	0	11.8	1	26.74	-	-	50	-23.26
Qp - Quasi-Peak detector											
Ca - CISPR Average detection											

Page 51 of 59