

HVIN:	CA22CD
PMN:	CA22CD-SC, CA22CD-DC
FVIN:	1
HMN:	1
FCC ID:	AL8-CA22CD
IC:	457A-CA22CD
S/N serial number:	Radiated: /
	Conducted: /
HW hardware status:	VB1
SW software status:	V0007
Frequency [MHz]:	1920 -1930
Type of Modulation:	GFSK, π/2-DBSK
Number of channels:	5 RF Channels, 5x12 = 60 TDMA Duplex Channels
Antenna:	Two integrated monopole antennas
Power Supply:	AC/DC power supply, 9.0 V DC
Temperature Range:	-20°C to 50°C

Test Report authorised:

Test performed:

2020-11-09

Lenjoint, Marco Lab Manager RC 2020-11-09

Wolf, Joachim Head of Department EPNS

1 Table of contents

1	Table	of contents	2
2	2 General information		
	2.1	Notes and disclaimer	4
	2.2	Application details	
3	Test s	standard/s:	
4		Environment	
5		nary of Measurement Results	
6	Test S	Set-up	
	6.1	Frequency Measurements	
	6.2	Timing Measurements	
	6.3	Conducted Emission Test	
	6.4	Radiated Emission Test	
	6.5	Power Line Conducted Emissions Test	
	6.6	Monitoring Tests	
	6.7	Radiated Output Power Test	11
7	Detail	ed Test Results	12
	7.1	Power Line Conducted Emissions	
	7.2	Digital Modulation Techniques	
	7.3	Labeling Requirements	
	7.4	Antenna Requirements	
	7.5	Channel Frequencies	
	7.6	Automatic Discontinuation of Transmission	
	7.7	Peak Power Output	
	7.8	Emission Bandwidth B	
	7.9	Power Spectral Density	
	7.9	In-Band Unwanted Emissions, Conducted	
	7.10	Out-of-Band Emissions, Conducted	
	7.12	Carrier Frequency Stability	
	7.12	Frame Repetition Stability	
	7.13	Frame Repetition Stability	
		Monitoring Threshold, Least Interfered Channel	
	7.15		
	7.16	Threshold Monitoring Bandwidth	
	7.17	Reaction Time and Monitoring Interval	
	7.18	Time and Spectrum Window Access Procedure	
	7.19	Acknowledgments and Transmission duration	
	7.20	Dual Access Criteria Check	
	7.21	Alternative monitoring interval	
	7.22	Spurious Emissions (Radiated)	
	7.23	Receiver Spurious Emissions	
8	Test e	equipment and ancillaries used for tests	66
9	Obser	rvations	67
Anr	nex A:	Photographs of the Test Set-up	67
Anr	nex B:	External Photographs of the EUT	67
		Internal Photographs of the EUT	
		Document History	
		-	
		Further Information	
Anr	nex F: S	Safety exposure levels	70

T	Fest report no.: 1-0932/20-01-05	СТС	advanced member of RWTÜV group

Annex G: Accreditation Certificate

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalisations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwriting signature. For verification of the electronical signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order:	2020-08-13
Date of receipt of test item:	2020-10-26
Start of test:	2020-10-27
End of test:	2020-11-06
Person(s) present during the test:	

3 Test standard/s:

Test Standard	Version	Test Standard Description
FCC Part 15, subpart D	2016-06	Isochronous UPCS Device 1920 – 1930 MHz
Industry Canada RSS-213, Issue 3	2015-03	2 GHz Licence-exempt Personal Communication Service Devices (LE-PCS)
ANSI C63.17	2013-08	American National Standard for Methods of Measurement of the Electromagnetic and Operational Compatibility of Unlicensed Personal Communication Services (UPCS) Devices
ANSI C63.4	2014-06	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

4 **Test Environment**

Temperature:

+ 22 °C during room temperature tests + 50 °C during high temperature test - 20 °C during low temperature test Relative humidity content: 38 % Air pressure: not relevant for this kind of testing

Summary of Measurement Results 5

\square	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained

CFR 47 Part 15 UPCS

Name of test	FCC CFR 47	IC RSS-213	Verdict
	Paragraph	Paragraph	
Digital Modulation Techniques	15.319(b)	6.1	Complies
Labeling requirements	15.19(a)(3)	RSS-GEN 5.2	Complies
Antenna requirements	15.317, 15.203	4.1(e)	Complies
Power Line Conducted Emission	15.107(a),	5.4	Complies
	15.207(a)	RSS_GEN 7.2 RSS_GEN 8.8	
Emission Bandwidth	15.323(a)	6.4	Complies
In-band Emission	15.323(d)	6.7.2	Complies
Out-of-band Emissions	15.323(d)	6.7.1	Complies
Peak Transmit Power	15.319(c)(e),	6.5	Complies
	15.31(e)		-
Power Spectral Density	15.319(d)	4.3.2.1	Complies
Automatic discontinuation of transmission	15.319(f)	4.3.4(a)	Complies
Carrier frequency stability	15.323(f)	6.2	Complies
Frame repetition stability	15.323(e)	4.3.4(c)	Complies
Frame period and jitter	15.323(e)	4.3.4(c)	Complies
Monitoring threshold, Least interfered	15.323(c)(2);(5);	4.3.4(b)	Complies
channel	(9)		-
Monitoring of intended transmit window and	15.323(c)(1)	4.3.4	Complies
maximum reaction time	45.000(.)(7)	4.0.4	N1/A
Threshold monitoring bandwidth	15.323(c)(7)	4.3.4	N/A
Reaction time and monitoring interval	15.323(c)(1);(5); (7)	4.3.4	Complies
Access criteria test interval	15.323(c)(4);(6)	4.3.4	Complies
Access criteria functional test	15.323(c)(4);(6)	4.3.4	Complies
Acknowledgments	15.323(c)(4)	4.3.4	Complies
Transmission duration	15.323(c)(3)	4.3.4	N/A ¹
Dual access criteria	15.323(c)(10)	4.3.4	N/A ¹
Alternative monitoring interval	15.323(c)(10);(11)	4.3.4	N/A ²
Spurious Emissions (Antenna Conducted)	15.323(d)	6.7.1	Complies ³
Spurious Emissions (Radiated)	15.319(g),	4.3.3	Complies ⁴
· · · ·	15.109(a),	RSS-GEN 7.2.3	
	15,209(a)		
Receiver Spurious Emissions	N/A	6.8	Complies

¹Only applicable for EUT that can initiate a communication link ²The client declares that the tested equipment does not implement this provision ³The tested equipment has integrated antennas only ⁴Only requirement FCC 15.109 for unintentional radiators was tested radiated

6 Test Set-up

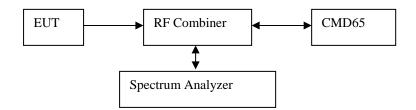
6.1 Frequency Measurements

Test Set-up 1:

This setup is used for measuring Carrier Frequency Stability at nominal and extreme temperatures.

For long term Frequency Stability, the EUT was in loopback-mode and was controlled with the CMD65, the modulation pattern was set to 01010101....

6.2 Timing Measurements


Test Set-up 2:

This setup is used for measuring Frame Repetition Stability, Frame Period and Jitter.

6.3 Conducted Emission Test

Test Set-up 3:

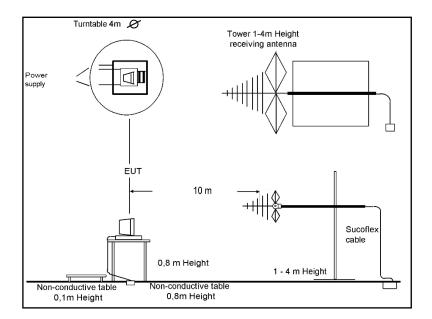
This setup is used for all conducted emission tests.

The EUT was in loopback-mode and was controlled with the CMD65, the modulation pattern was set to Pseudo-Random bit sequence to simulate normal speech.

6.4 Radiated Emission Test

30 MHz – 1GHz:

Test Set-up 4:


- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a no conducting table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

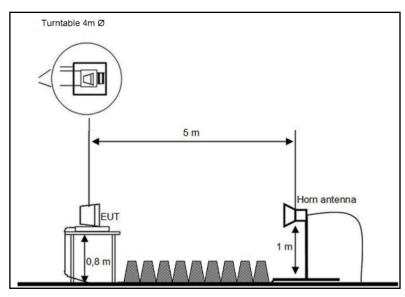
- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software
 maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

1GHz – 10 GHz:

Test Set-up 5:

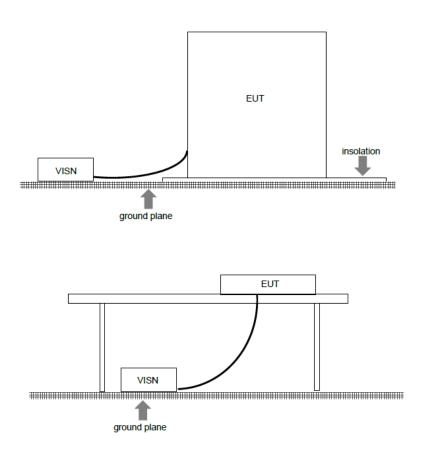

- The Equipment was setup to simulate a typical usage like described in the user manual / or described by manufacturer.
- If the EUT is a tabletop system, a no conducting table with 0,8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables were positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- The measurement distance is: (see ANSI C 63.4) < 18 GHz = 3 m
 - 18-26 GHz = 1,5 m
 - 26-40 GHz = 0,75 m
- The EUT was set into operation.

Premeasurement

- The turntable rotates continuous from 0° to 360°
- The antenna is polarized vertical and horizontal.
- In accordance to the antenna beam and the size of the EUT the antenna height changes in 30 cm steps, start at 1 meter. If it is not possible to tilt the emissions will be checked with a manually tilted antenna from top side.
- The analyzer scans quickly to find the maximum emissions of the EUT

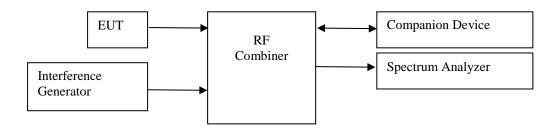
Final measurement

- The final measurement will be performed with minimum the six highest peaks (depends on emissions and number of measured points below 1 GHz)
- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45°) and antenna movement between 1 and 4 meter.
- The final measurement will be done with AV (Average / see ANSI C 63.4) detector
- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit, and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.



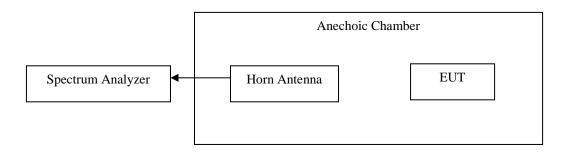
6.5 Power Line Conducted Emissions Test

Test Set-up 6:


According to EMC basic standard ANSI C 63.4

6.6 Monitoring Tests

Test Set-up 6:



This test setup is used for all Monitoring and Time and Spectrum Access Procedure tests. The path loss from the signal generator to the EUT is measured with a power meter before the testing is started.

A clock signal is used to synchronize the Interference Generator to the start of the DECT frame, this signal always comes from the base station. If the EUT is a DECT Portable Part (i.e. a handset) the clock signal will come from the Companion Device.

6.7 Radiated Output Power Test

Test Set-up 7:

This setup is used for measuring the radiated output power in a fully anechoic chamber with a measurement distance of 1m.

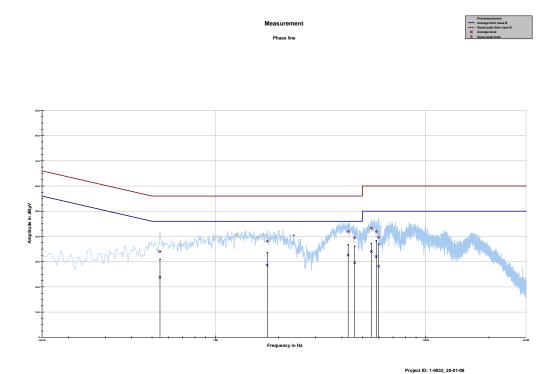
7 Detailed Test Results

7.1 Power Line Conducted Emissions

Measurement Procedure:

ANSI C63.4-2014 using 50µH/50 ohms LISN.

Test Result:

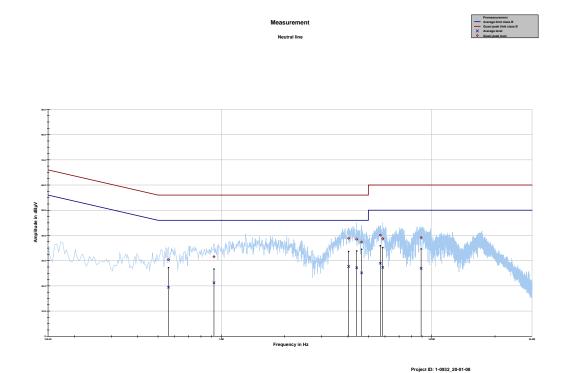

Measurement Data: See attached plots and tables

Pass

Requirement: FCC 15.107 (a), FCC 15.207 (a)

Phase Line

Phase line


Project ID: 1-0932_20-01-08

Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
MHz	dBµV	dB	dBμV	dBμV	dB	dBµV
0.545512	34.00	22.00	56.000	23.77	22.23	46.000
1.765631	38.10	17.90	56.000	28.64	17.36	46.000
4.280494	41.98	14.02	56.000	32.62	13.38	46.000
4.593919	39.46	16.54	56.000	29.59	16.41	46.000
5.515537	43.29	16.71	60.000	34.05	15.95	50.000
5.821500	41.96	18.04	60.000	32.00	18.00	50.000
5.967019	39.69	20.31	60.000	28.20	21.80	50.000

Project ID - 1-0932_20-01-08 EUT - Dect Base CA22CD Serial Number - RFPI 03 66 0E 9A 00 Operating mode - radio TX /charging mode

Neutral Line

Neutral line tbl

Project ID: 1-0932_20-01-08

Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin Average	Limit AV
MHz	dBµV	dB	dBμV	dBµV	dB	dBµV
0.560438	30.37	25.63	56.000	19.45	26.55	46.000
0.922369	31.55	24.45	56.000	21.24	24.76	46.000
4.026769	38.88	17.12	56.000	27.68	18.32	46.000
4.399894	38.49	17.51	56.000	27.17	18.83	46.000
4.642425	37.37	18.63	56.000	25.16	20.84	46.000
5.698369	40.15	19.85	60.000	28.98	21.02	50.000
5.855081	38.68	21.32	60.000	27.32	22.68	50.000
8.907244	39.12	20.88	60.000	26.92	23.08	50.000

Project ID - 1-0932_20-01-08 EUT - Dect Base CA22CD Serial Number - RFPI 03 66 0E 9A 00 Operating mode - radio TX / charging mode

7.2 Digital Modulation Techniques

The tested equipment is based on DECT technology, the only difference is that the channel allocation is modified to operate in the 1920-1930 MHz band.

The EUT use Multi Carrier / Time Division Multiple Access / Time division duplex and Digital GFSK modulation.

For further details see the operational description provided by the applicant.

Requirement: FCC 15.319(b)

All transmissions must use only digital modulation techniques.

7.3 Labeling Requirements

See separate documents showing the label design and the placement of the label on the EUT.

Requirement: FCC 15.19

The FCC identifier shall be displayed on the label, and the device(s) shall bear the following statement in a conspicuous location on the device or in the user manual if the device is to small:

This device complies with Part 15 of the FCC rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

The label itself shall be of a permanent type, not a paper label, and shall last the lifetime of the equipment.

	Test report no.: 1-0932/20-01-05	СТС	advanced member of RWTÜV group
7.4 Ar	ntenna Requirements		
Does the	EUT have detachable antenna(s)?	□Yes	🖂 No

If detachable, is the antenna connector(s) non-standard?

The tested equipment has only integral antennas. The conducted tests were performed on a sample with a temporary antenna connector.

Yes

🗌 No

Requirements: FCC 15.203, 14.204. 15.317

7.5 Channel Frequencies

UPCS CHANNEL	FREQUENCY (MHz)
Upper Band Edge	1930.000
0 (Highest)	1928.448
1	1926.720
2	1924.992
3	1923.264
4 (Lowest)	1921.536
Lower Band Edge	1920.000

Requirement: FCC 15.301

Within 1920-1930 MHz band for isochronous devices.

7.6 Automatic Discontinuation of Transmission

Does the EUT transmit contro	⊠Yes	🗌 No	
Type of EUT:	Initiating device	🛛 Respond	ling device

The following tests simulate the reaction of the EUT in case of either absence of information to transmit or operational failure after a connection with the companion device is established.

Number	Test	EUT Reaction	Verdict
1	Power removed from EUT	A	Pass
2	EUT switched Off	N/A	N/A
3	Hook-On by companion device	N/A	N/A
4	Hook-On by EUT	N/A	N/A
5	Power removed from companion device	В	Pass
6	Companion device switched Off	В	Pass

A – Connection breakdown, Cease of all transmissions

B – Connection breakdown, EUT transmits control and signaling information

C – Connection breakdown, companion device transmits control and signaling information

N/A – Not applicable (the EUT does not have an on/off switch and can not perform Hook-On)

Requirement: FCC 15.319(f)

The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. This provision is not intended to preclude transmission of control and signaling information or use or repetitive code used by certain digital modulation technologies to complete frame or burst intervals.

7.7 Peak Power Output

Measurement Procedure:

ANSI C63.17, clause 6.1.2.

Test Results: Pass

Measurement Data:

Maximum Conducted Output Power

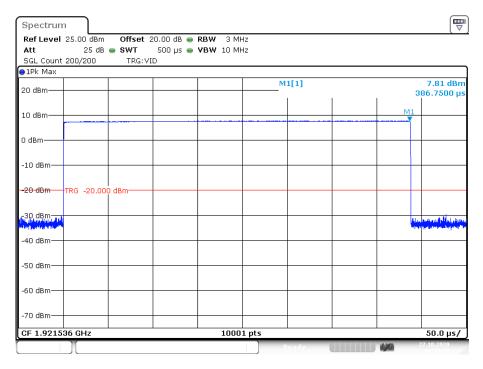
Channel No.	Frequency (MHz)	Maximum Conducted Output Power (dBm) GMSK	Maximum Radiated Output Power (dBm) GMSK	Maximum Antenna Gain (dBi)
4	1921.536	7.8	6.8	-1.0
2	1924.992	7.7	6.8	-0.9
0	1928.448	7.3	6.4	-0.9

Channel No.	Frequency (MHz)	Maximum Conducted Output Power (dBm) DBSK
4	1921.536	7.5
2	1924.992	7.4
0	1928.448	7.1

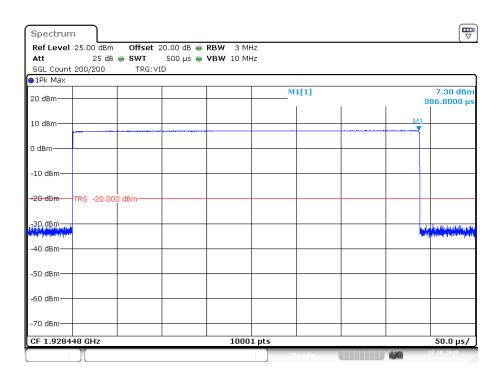
For this test it was also checked that the input voltage variation of 85 and 115% of nominal value did not have any effect on the measured output power, neither radiated nor conducted.

Limit:

Conducted: 100 µW X SQRT(B)where B is the measured Emission Bandwidth in HzFCC 15.319(c)(e):21.1 dBm (130 mW)RSS-213, Issue 2:21.1 dBm (130 mW)The antenna gain is below 3 dBi.


Requirements: FCC 15.319(c)(e). RSS-213, Issue 2

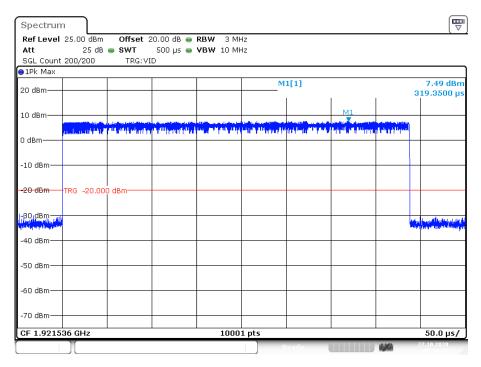
Peak transmit power shall not exceed 100 microwatts multiplied by the square root of the emission bandwidth in Hertz.


The peak transmit power shall be reduced by the amount in decibels that the maximum directional gain of the antenna exceeds 3 dBi.

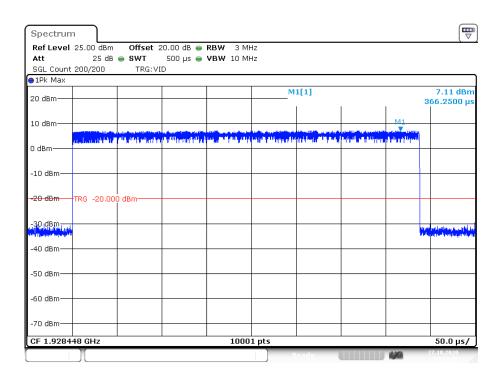
Conducted Peak Output Power, GMSK

Lower Channel

Upper Channel



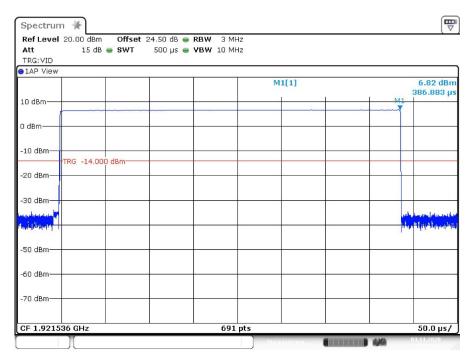
Spectrum		
Ref Level 25.00 dBm Offset 20.00 dB RB		
Att 25 dB SWT 500 μs VB SGL Count 200/200 TRG:VID	W 10 MHz	
1Pk Max		
	M1[1]	7.68 dBm
20 dBm		386.7500 µs
10 dBm		M1
0 dBm		
-10 dBm		
-20 dBm TRG -20.000 dBm		
I30 dBm		
n an		and straight of the second
-40 dBm		
-50 dBm		
-60 dBm		
-70 dBm		
CF 1.924992 GHz	10001 pts	50.0 μs/


Middle Channel

Conducted Peak Output Power, DBSK

Lower Channel

Upper Channel



Spectrun	г									
	25.00 dBm		0.00 dB 👄							
Att SGL Count		SWT TRG: VI		VBW 10 MH	łz					
OGE COUNT 1Pk Max	200/200	163.01								
20 dBm					М	1[1]				39 dBm 8000 µs
10 dBm							M1.			
0 dBm	a, Daart V ^a W						Talatin Talifura.			
-10 dBm—										
20 dBm	TRG -20.00	0 dBm								
-20 dBm										
-40 dBm										
-50 dBm										
-60 dBm										
-70 dBm—										
CF 1.9249	92 GHz	·		1000	1 pts				50).0 µs/
					I R	teady		4/4	27.10	.2020

Middle Channel

Radiated Peak Output Power

Lower Channel

Spectrum Ref Level 20.00 dBm Offset 24	60 dB 👄 RBW 3 MHz			
	0 μs 👄 VBW 10 MHz			
TRG: VID				
1AP View				
		M1[1]		6.42 dBn 386.883 μ
10 dBm			M1	
D dBm				
-10 dBm				
TRG -14.000 dBm				
-20 dBm				
-30 dBm				
na na stala da se da Na se da s				
				. 1.
-50 dBm				
-60 dBm				
-70 dBm				
CF 1.928448 GHz	691 pts	· · ·	·	50.0 µs/

Upper Channel

Spectrum	*								
Ref Level 2			24.50 dB 👄						
Att	15 dB (SWT	500 µs 👄	VBW 10 MH	Ηz				
TRG: VID									
●1AP View									
					M	11[1]			6.81 dBm 386.883 µs
10 dBm							-	M1	
0 dBm									
-10 dBm									
t	RG -14.000	dBm							
-20 dBm						_			
-30 dBm									
a sector all a sector									a daga ang ang ang ang ang ang ang ang ang
headed and a grant								Mar	ekplinetik.
-50 dBm									
-60 dBm									
-70 dBm									
CF 1.92499	2 GHz			691	pts				50.0 µs/
CF 1.92499	2 GHz			691	pts Me	asuring		49	50.0 μ

Middle Channel

7.8 Emission Bandwidth B

Measurement Procedure:

ANSI C63.17, clause 6.1.3.

Test Results: Pass

Measurement Data:

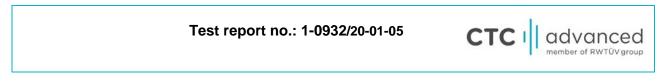
Channel No. GMSK	Frequency (MHz)	26 dB Bandwidth B (kHz)
4	1921.536	1403
0	1928.448	1404

Channel No. DBSK	Frequency (MHz)	26 dB Bandwidth B (kHz)
4	1921.536	1689
0	1928.448	1689

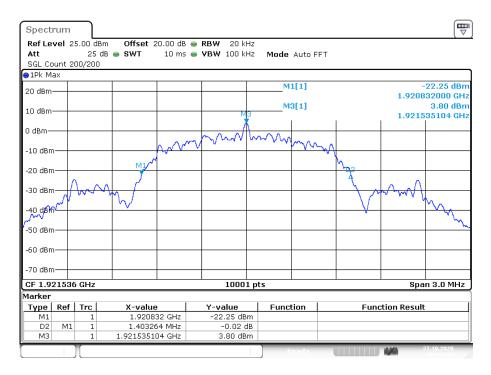
Channel No.	Frequency	99% Bandwidth B
GMSK	(MHz)	(kHz)
2	1924.992	1228

Channel No.	Frequency	99% Bandwidth B
DBSK	(MHz)	(kHz)
2	1924.992	1452

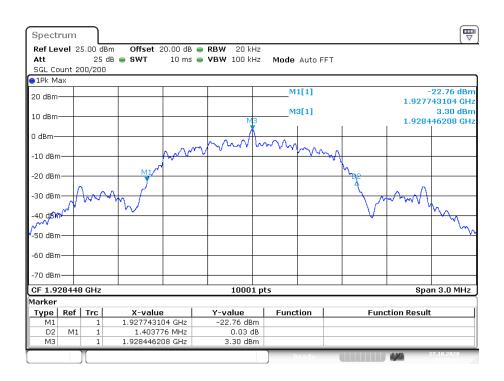
Channel No.	Frequency (MHz)	6 dB Bandwidth B (kHz)
4	1921.536	N/A
0	1928.448	N/A
Channel No.	Frequency (MHz)	12 dB Bandwidth B (kHz)
4	1921.536	N/A
0	1928.448	N/A


Requirement: FCC 15.323(a)

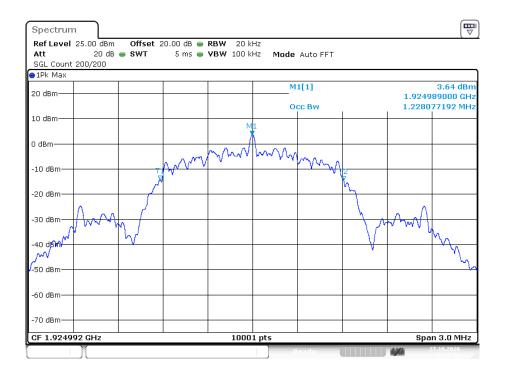
The 26 dB Bandwidth B shall be larger than 50 kHz and less than 2.5 MHz.


Requirement: RSS-213 Issue 2, clause 6.4

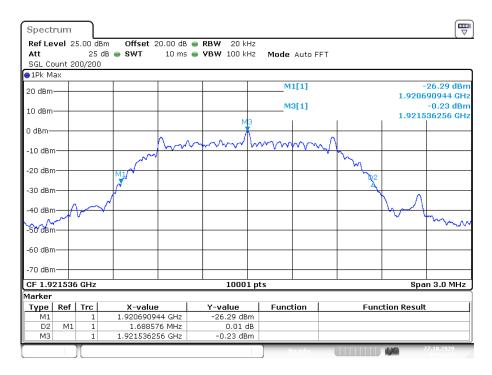
The 20 dB Bandwidth B shall be larger than 50 kHz and less than 2.5 MHz.

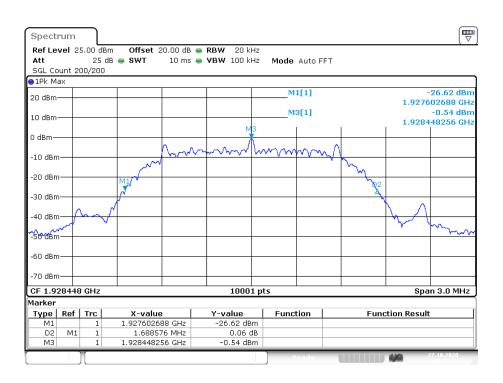

No requirement for 6 dB and 12 dB Bandwidth. These values are only used for testing Monitoring Bandwidth if the Simple Compliance test fails (ANSI C63.17, clause 7.4).

Modulation: GMSK



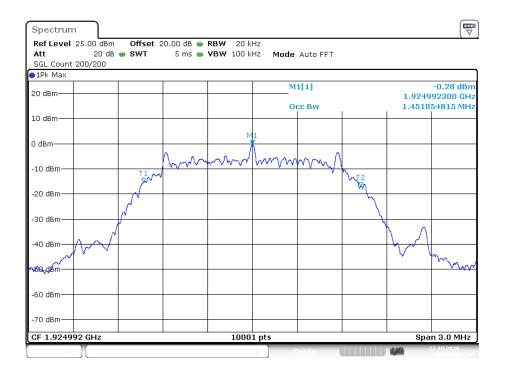
Emission Bandwidth B, Lower Channel


Emission Bandwidth B, Upper Channel



99% Bandwidth B, Middle Channel

Modulation: DBSK



Emission Bandwidth B, Lower Channel

Emission Bandwidth B, Upper Channel

99% Bandwidth B, Middle Channel

7.9 Power Spectral Density

Measurement Procedure:

ANSI C63.17, clause 6.1.5.

Test Results: Pass

Measurement Data:

Channel No. GMSK	Frequency (MHz)	Power Spectral Density (dBm/3kHz)
4	1921.535104	-10.61
0	1928.446208	-11.59

Channel No. DBSK	Frequency (MHz)	Power Spectral Density (dBm/3kHz)			
4	1921.536256	-14.05			
0	1928.448256	-14.55			

Averaged over 100 sweeps.

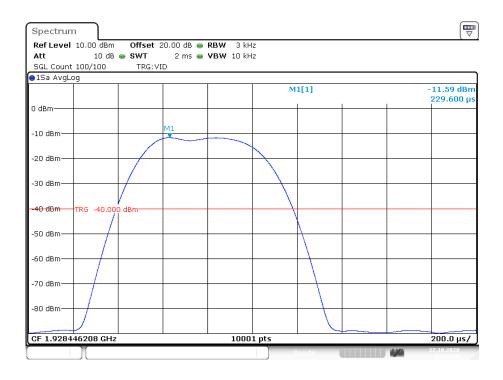
Requirement: FCC 15.319(d)

The Power Spectral Density shall be less than 3 mW/3kHz (4.77 dBm) when averaged over at least 100 sweeps.

Power Spectral Density, GMSK

Lower Channel:

Frequency of the maximum level was recorded under chapter 5.9.


Spectrun	n							
	10.00 dBm		20.00 dB 😑					
Att		- 0mi		VBW 10 kH	Z			
SGL Count		TRG: VI	D					
⊖1Sa AvgLo	og							
					M	1[1]		-10.61 dBm 460.800 µs
0 dBm							 	
				M1				
-10 dBm—				1911				
					K			
-20 dBm—								
-30 dBm—		/						
		/						
-40 dBm	TRG -40.000) dBm						
-50 dBm						\uparrow	+	
-60 dBm							+	
-70 dBm—							+	
-80 dBm							+	
CF 1.9215	35104 GHz			1000	1 pts			200.0 µs/
	Υ				R	eady	4,40	27.10.2020

Pulse power [dBm]	-10.61
Pulse power [mW]	0.087

Upper Channel:

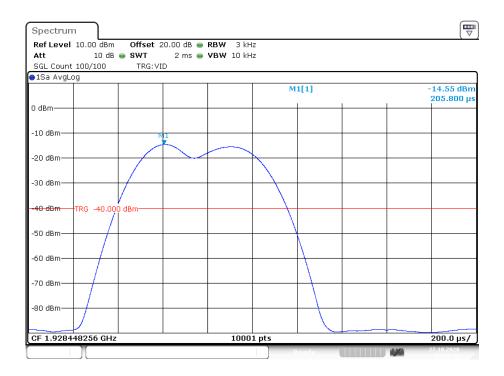
Frequency of the maximum level was recorded under chapter 5.9.

Pulse power [dBm]	-11.59
Pulse power [mW]	0.069

Power Spectral Density, DBSK

Lower Channel:

Frequency of the maximum level was recorded under chapter 5.9.


Spectrun	n							
Ref Level	10.00 dBm	Offset 2	20.00 dB 👄	RBW 3 kH	z			
Att				VBW 10 kH	z			
SGL Count		TRG: VI	D					
<mark>⊜</mark> 1Sa AvgLo	og							
					м	1[1]		-14.05 dBm 213.600 μs
0 dBm							1	
-10 dBm—		1	11					
-20 dBm—		-						
-30 dBm—		/					<u> </u>	
-40 dBm	-TRG -40.000							
		abiii						
-50 dBm—								
-60 dBm—						\uparrow	1	
-70 dBm—						\rightarrow		
-80 dBm								
				10			 <u> </u>	
CF 1.9215	36256 GHz			1000	1 pts			200.0 µs/
[Л				R	eady	4,70	27.10.2020

Pulse power [dBm]	-14.05
Pulse power [mW]	0.039

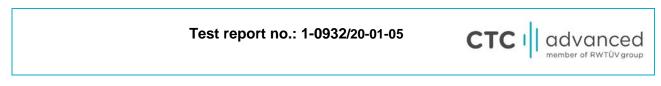
Upper Channel:

Frequency of the maximum level was recorded under chapter 5.9.

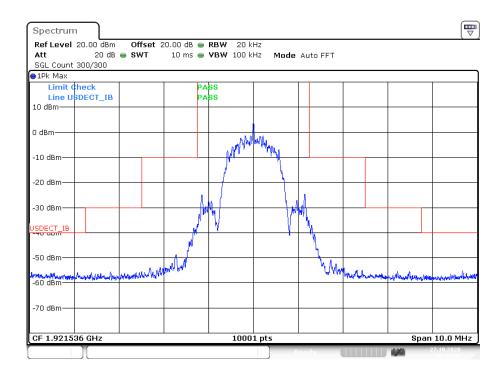
Pulse power [dBm]	-14.55
Pulse power [mW]	0.035

7.10 In-Band Unwanted Emissions, Conducted

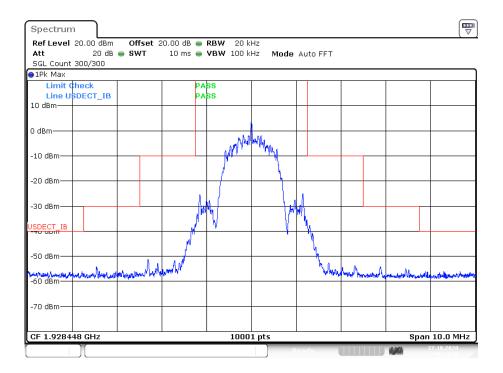
Measurement Procedure:


ANSI C63.17, clause 6.1.6.1.

Test Results: Pass

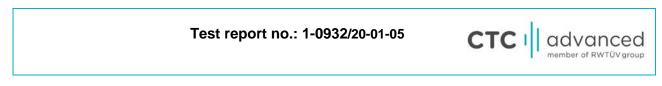

Measurement Data: See plots.

Requirement: FCC 15.323(d)

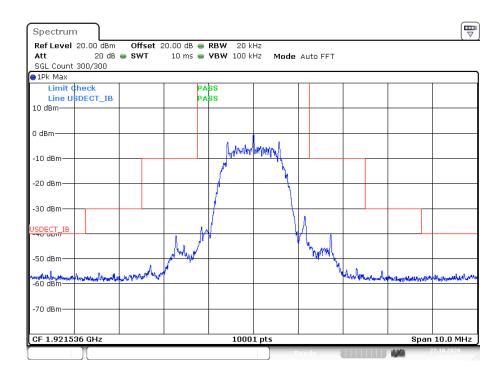

B < f2 ≤2B: 2B < f2 ≤3B: 3B < f2 ≤UPCS Band Edge: less than or equal to 30 dB below max. permitted peak power level less than or equal to 50 dB below max. permitted peak power level less than or equal to 60 dB below max. permitted peak power level

In-Band Unwanted Emissions, Conducted, GMSK

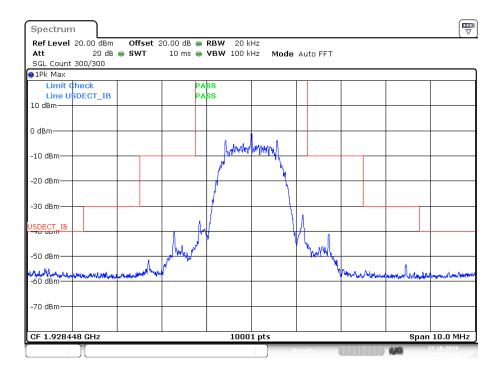
Lower Channel

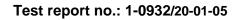

Upper Channel

Test report no.: 1-0932/20-01-05



Ref Level 20.00 dBm	Offset 20.		RBW 20 ki	47				[\Box
			VBW 100 ki		Auto FFT			
SGL Count 300/300	_	_						
1Pk Max								
Limit Check		PA	SS					
Line USDECT_IB		PA	SS					
10 dBm								
) dBm								
			. NW	WW.				
-10 dBm			WY'	'nwi				
			?	n i				
an dan				۲.				
-20 dBm								
		11		. L.	1			
-30 dBm		. In	4					+
		j j	W I	()	1			
ISDECT_IB		M	¥.		<u> </u>			
		M I						
-50 dBm					<u> </u>			
-50 UBIN- -60 dBm	a la ha	M			Jam			
when when have been the first the second	and the second of the second s				ALC: N	here have not and	woodwodrawnen	Marin Munthe
						ana waxaad		
-70 dBm								<u> </u>
CF 1.924992 GHz	[]		1000	Ints			Snan	10.0 MHz


Middle Channel


In-Band Unwanted Emissions, Conducted, DBSK

Lower Channel

Upper Channel

Ref Level 20.00 dBm Offset 20.00 dB RBW 20 kHz Att 20 dB SWT 10 ms YBW Mode Auto FFT SGL Count 300/300 Imit check PASS Imit check Imit check <t< th=""><th>Spectrum</th><th>n</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	Spectrum	n								
SGL Count 300/300 Imit Check PASS Imit Check Line USDECT_IB PASS Imit Check 0 dBm Imit Check Imit Check -10 dBm Imit Check Imit Check -20 dBm Imit Check <td></td>										
IPk Max PABS PABS Image: Constraint of the character of the characte			👄 SWT	10 ms 😑	VBW 100 k	Hz Mode	Auto FFT			
Limit Check Line USDECT_IB PASS 10 dBm 0 0 dBm 0 -10 dBm 0 -20 dBm 0 -30 dBm 0 -30 dBm 0 -70 dBm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 </td <td></td> <td>300/300</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		300/300								
Line USDECT_IB PASS 10 dBm 0 0 dBm 0 -10 dBm 0 -20 dBm 0 -30 dBm 0 -30 dBm 0 -30 dBm 0 -70 dBm 0										
10 dBm -10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -70	Limit 0	theck								
0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -50 d		SDECT_IB		PA	SS					
-10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -50 dBm -70 dBm -7 (7)	10 dBm									
-10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -50 dBm -70										
-10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -50 dBm -70	0 dBm									
-20 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -70	o abiii									
-20 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -70					What	MYMMYM .				
-30 dBm JSDECT_IB -50 dBm -50 dBm -70 dBm -70 dBm CF 1.924992 GHz 10001 pts Span 10.0 MHz	-10 dBm					- 13				
-30 dBm JSDECT_IB -50 dBm -50 dBm -70 dBm -70 dBm CF 1.924992 GHz 10001 pts Span 10.0 MHz					1	<u>۱</u>				
JSDECT_IB	-20 dBm					-				
USDECT_IB					L L	1				
JSDECT_IB					1	1				
-50 dBm -60 dBm -70 dBm CF 1.924992 GHz 10001 pts Span 10.0 MHz	-30 dBm				1	1				
-50 dBm -60 dBm -70 dBm CF 1.924992 GHz 10001 pts Span 10.0 MHz					/	{	LA			
-50 dBm	JSDECT_IB			1 A/						
-50 dBm				^א لہ (()	7					
Martine Martine <t< td=""><td>EQ dDm</td><td></td><td></td><td>a Mart</td><td></td><td></td><td>"hund had</td><td></td><td></td><td></td></t<>	EQ dDm			a Mart			"hund had			
-70 dBm I				X 4						
-70 dBm70 dBm	-	Automatica and an in-	Mary Mary Marker					month were be	and a second	
-70 dBm70 dBm	-60 dBm	a fundation for the second	A Monthly And					11.4. 1999 101 104-0	- The second states of the	and the second states of the s
CF 1.924992 GHz 10001 pts Span 10.0 MHz										
CF 1.924992 GHz 10001 pts Span 10.0 MHz	-70 dBm									
	-/0 ubiii									
	CF 1.9249	92 GHz	1		1000	1 pts	1	1	Span	10.0 MHz
					2200)	_		<u> </u>	27.10.2020

Middle Channel

The BS spurious in-band transmission level is below the indicated limit.

7.11 Out-of-Band Emissions, Conducted

Measurement Procedure:

ANSI C63.17, clause 6.1.6.2.

Test Results: Pass

Measurement Data: See plots.

Requirement: FCC 15.323(d)

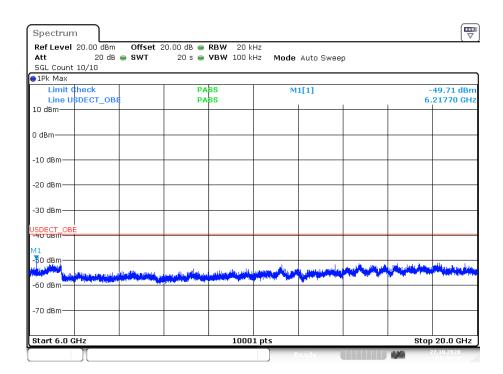
f ≤ 1.25 MHz outside UPCS band:	≤ -9.5 dBm
1.25 MHz \leq f \leq 2.5 MHz outside UPCS band:	≤ -29.5 dBm
$f \ge 2.5 \text{ MHz}$ outside UPCS band:	≤ -39.5 dBm

Out-of-Band Unwanted Emissions, Conducted, GMSK

Upper and Lower Channel:

Spectrum					
Ref Level 20.00 dBm Att 20 dB ● SGL Count 20/20	Offset 20.00 dB ● F SWT 2 s ● Y		1ode Auto Sweep		
●1Pk Max					
Limit Check Line USDECT_OBE	PA PA		M1[1]	-	55.90 dBn 190 kH
10 dBm					
0 dBm				 	
-10 dBm					
-20 dBm				 	
-30 dBm					
USDECT_OBE					
-50 dBm					
	والقرير المرجع وتراطع والمرجع الباري والم		المحدقة الخلية ومرجعها المستقينة ومحاولته		الأربارية فأماً إورواني الاستخدار المأمر
-70 dBm					
Start 100.0 kHz		10001 pts			p 1.9 GHz

Ref Level 20.00 dBm Offset 20.00 dB RBW 20 kHz Att 20 dB SWT 150 ms VBW 100 kHz Mode Auto Swee SGL Count 200/200 SWT 150 ms VBW 100 kHz Mode Auto Swee Image: Pape Max Paps M1[1] 10 dBm Paps M1[1] 10 dBm -0 0 dBm -0 -0 -0 -0 -20 dBm -30 dBm -30 dBm -0 -0 -0 -0	-50.68 dBm 1.91999300 GHz
IPk Max Limit Check Line USDECT_OBE PASS M1[1] O dBm O dBm -10 dBm -20 dBm	
Limit Check Line USDECT_OBE 10 dBm 0 dBm -10 dBm -20 dBm	
Line USDECT_OBE PASS	
10 dBm	1.91999300 GH2
0 dBm	
-10 dBm	
-10 dBm	
-20 dBm	
-20 dBm	
-30 dBm	
-30 dBm-	
JSDECT_OBE	
-50 dBm	
والمحارب والمحافظة والمحارب والمحاور والمحارب والمحارب والمحارب والمحاور والمحاور والمحاور والمحاور والمحاج والم	والألالية ويعاوره والمتعادية وتعاريه والمتعجل والمتعاط المتعاور والما
a hy classify along a least to black provide the provide the frequence of the back of the providence	an angelang bermentakan mentelan di kelantakan kan bertakan di kelantakan di kelantakan di kelantakan di kelant
-70 dBm	
-/0 ubiii	
Start 1.9 GHz 10001 pts	01 1 00 011-
Ready	Stop 1.92 GHz


Out-of-Band Unwanted Emissions, Conducted, GMSK

Att 20 dB 👄 SWT 13	00 dB 👄 RBW 20 k 50 ms 👄 VBW 100 k		p	
SGL Count 200/200)1Pk Max				
Limit Check Line USDECT_OBE	PASS PASS	M1[1]	1.93	-50.54 dB 017700 GF
10 dBm				
D dBm				
SDECT_OBE				
-20 dBm				
-30 dBm				
-40 dBm				
1 50 dBm				
	na ang kang ang ang ang ang ang ang ang ang ang	tala kan dista kila ana disa ka jutak i Mana kan jutak ing kana jutak ing kana sa kan jutak ing kana sa kan jutak ing kana sa kana sa kana sa kana sa k		
-70 dBm				

Spectrum					
	n Offset 2 B 👄 SWT	20.00 dB • RBW 20 10 s • VBW 100			
SGL Count 10/10	5 - 3WI	10 5 🖶 🕈 🖬 🚧 100	KHZ MUUB AULU SWEE	ιμ	
●1Pk Max					
Limit Check		PASS	M1[1]		-52.13 dBn
Line USDECT_O	BE	PASS		5.4	56340 GH
10 dBm					
0 dBm					
-10 dBm					
-20 dBm					
-30 dBm					
ISPECT ORE					
-50 dBm				M1	
and the second	الم بسوم الماس	والطالعة الاتباطانية والمتحديظ فرورها والمرا			i da kana na sana da ta bi Mana na sana na sana da ta biyang
And an other particular and particular parti	A DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER		and an other standard to a sufficient of	The second se	
-70 dBm					
Start 1.95 GHz		100)1 pts	Sto) p 6.0 GHz
		200	To adu		27.10.2020

Out-of-Band Unwanted Emissions, Conducted, GMSK

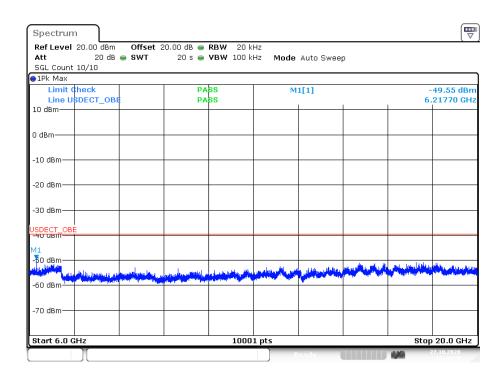
The BS spurious out-of-band transmission level is below the indicated limit.

Out-of-Band Unwanted Emissions, Conducted, DBSK

Upper and Lower Channel:

Ref Level 20.00 dBm Offset 20.00 dB RBW 20 kHz Att 20 dB SWT 2 s VBW 100 kHz Mode Auto Sweep SGL Count 20/20 VBW 100 kHz Mode Auto Sweep Imit Check PASS M1[1] -56.43 Io DBECT_OBE PASS 38 Io dBm 38 38
Imit Check PASS M1[1] -56.43 Line USDECT_OBE PASS 38 10 dBm 0 dBm 0 0
Line USDECT_OBE PASS 38 10 dBm 0 dBm 0
-10 dBm
-20 dBm
-30 dBm
USDECT_OBE
-50 dBm
-70 dBm
Start 100.0 kHz 10001 pts Stop 1.9

Spectrum				
	: 20.00 dB 👄 RBW 20			
Att 20 dB SGL Count 200/200	150 ms 👄 VBW 100	kHz Mode Auto Swee	p	
● 1Pk Max				
Limit Check	PASS	M1[1]		-40.46 dBm
Line USDECT_OBE	PASS		1.9	1980700 GHz
10 dBm				
0 dBm				
10 40				
-10 dBm				
-20 dBm				
-20 uBill				
-30 dBm				
-30 0811				
JSDECT_OBE				LW.
-50 dBm				
				- I - I - I
والاستقالات وتقاله وتعيلوه والمرافع والمرافع	ne liktore to diversi ere titatatiidas	en het het het het fin der de mit het mit de ferheten.	والفاجة واستطعا والاستخاب فاحدق	
emodeshanapalayah pancadhal personan personan sakendaria	and a second of the line of the second s	ويريان ورراهميا لياليه للفريكين كمين منطق يعطون وتخرجت الريان	al sectors and he can the advantage of the	atalaan ahalaa ta'uu
-70 dBm				_
Start 1.9 GHz	100	01 pts	St	op 1.92 GHz
		Ready		27.10.2020


Out-of-Band Unwanted Emissions, Conducted, DBSK

Att 20 dB SWT 1 SGL Count 200/200	50 ms 👄 VBW 100	Hz Mode Auto Swee	əp	
1Pk Max				
Limit Check	PASS	M1[1]		-41.20 dB
Line USDECT_OBE	PASS		1.9	3017100 G
) dBm				
SDECT OBE				
20 dBm				
30 dBm				
1				
1 40 dBm				
50 dBm				
المراجع والمعادية والمحمد والمحمد المحمد ومحمد والمحمد المحمد والمحمد	ويرور والملول مردوع المردور وروافل وسا	والمراجع المروالي والمروا المراجع المراجع المراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع	Constant and and the second strength in the	والقرو وموالأرف وتغر
and the second se	and a second second state of the property of the second second second second second second second second second	a particular de la comparte de la co	an a shi an shi a a shi a shi a shi da shi a shi da shi a	- Alexandre andre
70 dBm				

Spectrum			
Ref Level 20.00 dBm Offset	20.00 dB 😑 RBW 20 k	:Hz	1
Att 20 dB 👄 SWT	10 s 👄 VBW 100 k	Hz Mode Auto Swee	р
SGL Count 10/10			
●1Pk Max			
Limit Check Line USDECT_OBE	PASS PASS	M1[1]	-51.87 dBm 5.895320 GHz
10 dBm	PADS		3.893320 GH2
10 0.011			
0 dBm			
0 uBill			
-10 dBm			
-20 dBm			
-30 dBm			
USDECT_OBE			
-40 UBIT			
-50 dBm			M1
	a completive and a strategic territe	فتعقير بمرعم والمطبقين فرعروه فتعراقه	فالتع ومقافد وتجريمي أدبر والطلط فالخلاف والرواط والمتعاوي والمعا
المالية المالية المركز المركز المركز المركز المحادثة المتعادية المركز المركز المركز المركز المركز المركز المركز المستقدم المركز ومدارية المركز الم	n (handi parta da par A comencia (ha parta da parta d	Alling a querte entre la factoria a querte a querte querte querte querte querte querte querte querte querte que	and the second se
-70 dBm			
Start 1.95 GHz	1000	1 pts	Stop 6.0 GHz
	1000	1 pc3	27.10.2020
		Ready	10-00-41

Out-of-Band Unwanted Emissions, Conducted, DBSK

The BS spurious out-of-band transmission level is below the indicated limit.

7.12 Carrier Frequency Stability

Measurement Procedure:

ANSI C63.17, clause 6.2.1.

Requirement: FCC 15.323(f)

Test Results: Pass

Measurement Data:

The Frequency Stability is measured with the CMD65. The CMD65 was logged by a computer programmed to get the new readings as fast as possible (about 3 readings per second) over the noted time period or number of readings. The peak-to-peak difference was recorded and the mean value and deviation in ppm was calculated.

The Carrier Frequency Stability over power Supply Voltage and over Temperature is measured also with the CMD65.

Carrier Frequency Stability over Time at Nominal Temperature

Average Mean Carrier	Max. Diff.	Min. Diff.	Max Dev.	Limit
Frequency (MHz)	(kHz)	(kHz)	(ppm)	(ppm)
1924.989105	-0.96	-3.16	1.006	±10

Deviation ppm = $((Max.Diff. - Mean.Diff.) / Mean Carrier Freq.) \times 10^{6}$ Deviation (ppm) is calculated from 3000 readings with the CMD65.

Carrier Frequency Stability over Power Supply at Nominal Temperature

Voltage	Measured Carrier Frequency (MHz)	Difference (kHz)	Deviation (ppm)	Limit (ppm)
115 V AC	1924.986	Ref.	Ref.	
100 V AC	1924.986	0.0	0.0	±10
130 V AC	1924.986	0.0	0.0	

Deviation ppm = ((Mean – Measured frequency) / Mean) x 10⁶

Carrier Frequency Stability over Temperature

Temperature	Measured Carrier Frequency (MHz)	Difference (kHz)	Deviation (ppm)	Limit (ppm)
T = +20°C	1924.986	Ref.	Ref.	
T = -20°C	1924.982	-4.0	-2.0	±10
T = +50°C	1924.987	+1.0	+0.5	

Deviation ppm = ((Mean – Measured frequency) / Mean) $\times 10^{6}$

7.13 Frame Repetition Stability

Measurement Procedure:

ANSI C63.17, clause 6.2.2.

Test Results: Pass

Measurement Data:

The Frame Repetition Stability is measured with the CMD65. The Frame Repetition Stability is 3 times the standard deviation.

Carrier Frequency	Mean	Standard Deviation	Frame Repetition
(MHz)	(Hz)	(ppm)	Stability (ppm)
1924.992	100.0000012613	0.012	0.036

Limit:

Frame Repetition Stability	±10 ppm (TDMA)
----------------------------	----------------

Ref. FCC 15.323(e). ANSI C63.17, clause 6.2.2.

7.14 Frame Period and Jitter

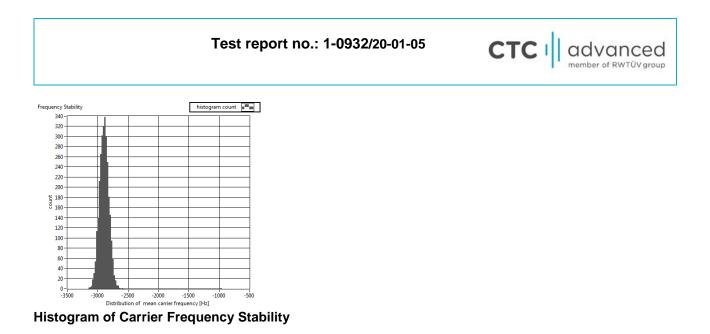
Measurement Procedure:

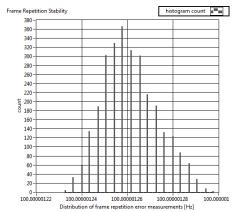
ANSI C63.17, clause 6.2.3.

Test Results: Pass

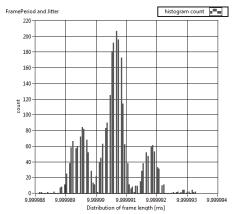
Measurement Data:

The Frame Repetition Stability is measured with the CMD65


Carrier Frequency	Frame Period	Max Jitter	3xStandard Deviation of
(MHz)	(ms)	(µs)	Jitter (μs)
1924.992	10.000	-0.007	0.002


Max Jitter = (1/(Frame Period + Pk-Pk)/2) - (1/Frame Period), when Pk-Pk and Frame Period are in Hz. 3xSt.Dev.Jitter $3x(1/(Frame Period + St.Dev)) - (1/St.Dev)) \times 10^{6}$

Limit:


Frame Period	20 or 10 ms	
Max Jitter	25 µs	
3 times St.Dev. of Jitter	12.5 µs	

Ref. FCC 15.323(e). ANSI C63.17, clause 6.2.3.

Histogram of Frame Repetition Stability

Histogram of Frame Period and Jitter

7.15 Monitoring Threshold, Least Interfered Channel

Measurement Procedure:

ANSI C63.17, clause 7.3.2

Monitoring Threshold limits:

Lower Threshold:

 $T_L = 15 \log B - 184 + 30 - P_{EUT}$ (dBm)

B is measured Emission Bandwidth in Hz P_{EUT} is measured Transmitter Power in dBm

Calculated value:

Least Interfered Channel (LIC) Procedure Test, FCC 15.323(c)(2) and (c)(5)

ANSI C63.17 clause 7.3.2 ref.	Observation	Verdict
b) $f_1 T_L + 13 \text{ dB}, f_2 T_L + 6 \text{ dB}$	Transmission always on f_2	Pass
c) $f_1 T_L + 6 dB$, $f_2 T_L + 13 dB$	Transmission always on f ₁	Pass
d) $f_1 T_L + 7 dB$, $f_2 T_L$	Transmission always on f ₂	Pass
e) f_1 T _L , f_2 at T _L + 7 dB	Transmission always on f_1	Pass

Measurement Procedure:

ANSI C63.17, clause 7.3.3

Selected Channel Confirmation, FCC 15.323(c)(1) and (5)

ANSI C63.17 clause 7.3.3	Observation	Verdict
b) Shall not transmit on f ₁	EUT transmits on f_2	N/A
d) Shall not transmit on f ₂	EUT transmits on f_1	N/A

Comment: This test is only applicable for EUTs that can be an initiating device.

7.16 Threshold Monitoring Bandwidth

This test is only required if a dedicated monitoring receiver is used. If the test is not carried out the manufacturer shall declare and provide evidence that the monitoring is made through the radio receiver used for communication.

Measurement Procedure:

Simple Compliance Test, ANSI C63.17, clause 7.4.1

More Detailed Test, ANSI C63.17, clause 7.4.2

The test is passed if **either** the Simple Compliance Test or the More Detailed Test is passed.

During this test the spectrum analyzer is observed visually to see if the EUT transmits or not.

Test Results:

Test performed	Observation	Verdict
Simple Compliance Test, at ±30% of B	N/A	N/A
More Detailed Test, at -6 dB points	N/A	N/A
More Detailed Test, at -12 dB points	N/A	N/A

The More Detailed Test must be pass at both the -6dB and -12 dB points if the Simple Compliance Test fails.

Comment: The tested EUT uses the same receiver for monitoring and communication, this test is therefore not required.

Limits: FCC 15.323(c)(7):

The monitoring system bandwidth must be equal to or greater than the emission bandwidth of the intended transmission.

7.17 Reaction Time and Monitoring Interval

Measurement Procedure:

ANSI C63.17, clause 7.5

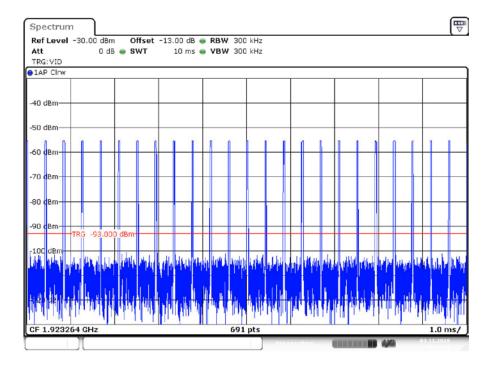
Test Results:

By administrative commands and out-of-operating region interference, the EUT is restricted to operate on carrier frequencies f_1 and f_2 .

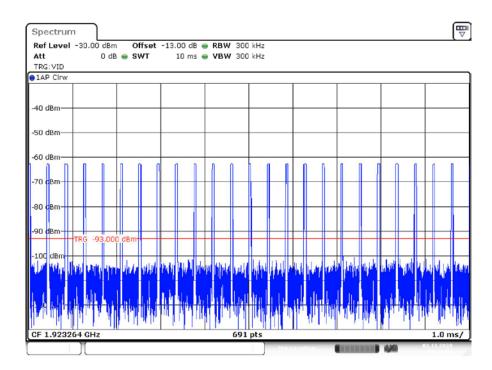
Time-synchronized pulsed interference was then applied on f_1 at pulsed levels TL + UM to check that the EUT does not transmit. The level was raised 6 dB for part d) with 35 µs pulses. Additionally a CW signal was applied on f_2 with a level of TL.

The pulses are synchronized with the EUT timeslots and applied cantered within all timeslots.

Pulse Width, ref. to ANSI C63.17 clause 7.5	Observation	Verdict
c) > largest of 50 µs and 50*SQRT(1.25/B)	Transmission on f ₂	Pass
d) > largest of 35 μs and 35*SQRT(1.25/B) and with interference level raised 6 dB	Transmission on f ₂	Pass


Comment: Since B is larger than 1.25 MHz, the test was performed with pulse lengths of 50 µs and 35 µs.

Limits: FCC 15.323(c)(1), (5) and (7)


The maximum reaction time must be less than 50xSQRT (1.25/emission bandwidth in MHz) microseconds for signals at the applicable threshold level but shall not be required to be less than 50 microseconds.

If a signal is detected that is 6 dB or more above the applicable threshold level, the maximum reaction time shall be 35xSQRT (1.25/emission bandwidth in MHz) microseconds but shall not be required to be less than 35 microseconds.

35 µs Pulses

50 µs Pulses

Test report no.: 1-0932/20-01-05

7.18 Time and Spectrum Window Access Procedure

This requirement is only for EUTs which transmit unacknowledged control and signaling information

Measurement Procedure:

Timing for EUTs using control and signaling channel type transmissions: ANSI C63.17, clause 8.1

Test results:

Access Criteria, ref. to ANSI C63.17 clause 8.1.1	Observation	Verdict
b) Check that the EUT transmits on the interference free time slot	EUT transmits on the Interference free time slot	Pass
b) The EUT must terminate or pause in its repetitive transmission of the control and signaling channel on the open channel to repeat the access criteria not less frequently than every 30 s	Transmission stops every 1.3 s	Pass

If FCC 15.323(c)(6) option Random Waiting Interval is NOT implemented

Access Criteria, ref. to ANSI C63.17 clause 8.1.2	Observation	Verdict
b) Check that the EUT changes to interference free time slot when interference is introduced on the time slot in use	EUT changes to Interference free time slot, and stays there	Pass

If FCC 15.323(c)(6) option Random Waiting Interval is implemented

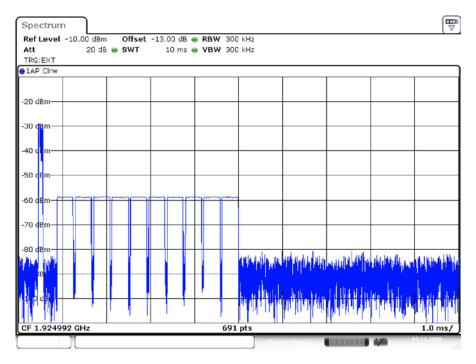
Access Criteria, ref. to ANSI C63.17 clause 8.1.3	Observation	Verdict
b-d) Check that the EUT uses random waiting interval before continuing transmission on an interfered time slot	N/A	N/A

Comment: The tested EUT does not support the Random Waiting Interval option.

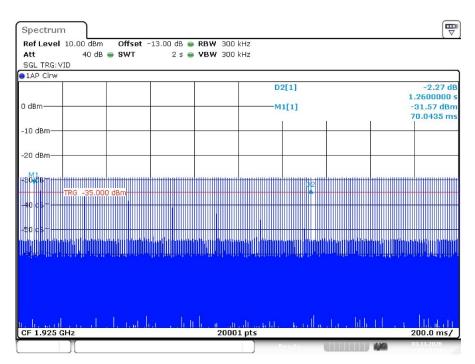
Limits:

FCC 15.323(c)(4):

Once access to specific combined time and spectrum windows is obtained an acknowledgement from a system participant must be received by the initiating transmitter within one second or transmission must cease. Periodic acknowledgments must be received at least every 30 seconds or transmission must cease. Channels used exclusively for control and signaling information may transmit continuously for 30 seconds without receiving an acknowledgement, at which the time access criteria must be repeated.

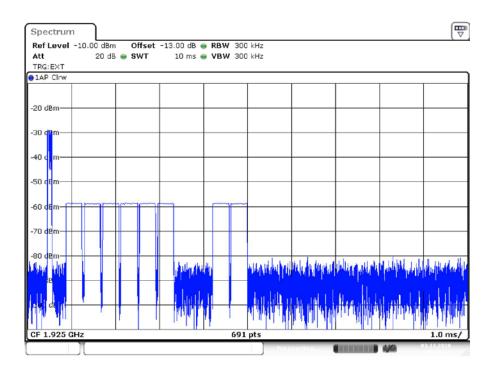

FCC 15.323(c)(6):

If the selected combined time and spectrum windows are unavailable, the device may either monitor and select different windows or seek to use the same windows after waiting an amount of time, randomly chosen from a uniform random distribution between 10 and 150 milliseconds, commencing when the channel becomes available.

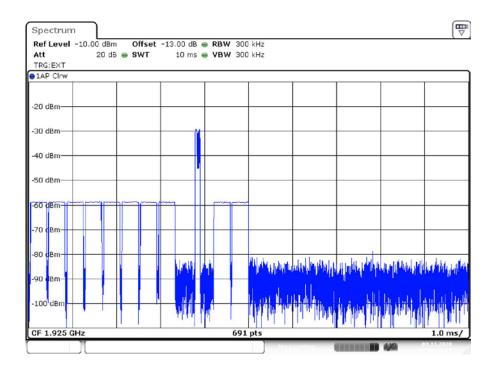

Test report no.: 1-0932/20-01-05

Access Criteria Check

8.1.1b) EUT Transmits on Unblocked Slot



8.1.1b) EUT Terminates Repetitive Transmission


Capture of transmission of base EUT control and signaling transmissions. The base EUT pauses in its transmission of the control and signaling channel to repeat the access criteria every 1.3 s seconds, meeting the requirement that it do so at least as often as every 30 seconds.

Test report no.: 1-0932/20-01-05

Access Criteria Check

8.1.2) EUT Changes to an Interference Free Timeslot, Before

8.1.2) EUT Changes to an Interference Free Timeslot, After

7.19 Acknowledgments and Transmission duration

Measurement Procedure:

Acknowledgments: ANSI C63.17, clause 8.2.1

Transmission Duration: ANSI C63.17, clause 8.2.2

During the test **Initial transmission without acknowledgments** the signal from the EUT to the companion device is blocked by circulators in addition to the tunable attenuator.

The test **Transmission time after loss of acknowledgments** is performed by cutting-off the signal from the companion device by a RF switch the time until the EUT stops transmitting.

The **Transmission Duration** test is performed by monitoring the slot in use and measuring the time until the EUT changes to a different slot.

Test Results:

Acknowledgments

Test ref. to ANSI C63.17 clause 8.2.1	Observation	Verdict
a) Initial transmission without acknowledgments	Only for initiating device	N/A
c) Transmission time after loss of acknowledgments	5 s	Pass

Transmission Duration

Test ref. to ANSI C63.17 clause 8.2.2	Observation	Verdict
b) Transmission duration on same time and frequency window	Only for initiating device that controls which time slot is used	N/A

Comment: /

Limits: FCC 15.323(c)(3) and (4)

Occupation of the same combined time and spectrum windows by a device or group of cooperating devices continuously over a period of time longer than 8 hours is not permitted without repeating the access criteria. Once access to specific combined time and spectrum windows is obtained an acknowledgment from a system participant must be received by the initiating transmitter within one second or transmission must cease. Periodic acknowledgments must be received at least every 30 seconds or transmission must cease. Channels used exclusively for control and signaling information may transmit continuously for 30 seconds without receiving an acknowledgment, at which the time access criteria must be repeated.

7.20 Dual Access Criteria Check

Measurement Procedure:

EUTs that do not implement the Upper Threshold: ANSI C62.17, clause 8.3.1 EUTs that implement the Upper Threshold: ANSI C62.17, clause 8.3.2 This test is required for equipment that uses the access criteria in FCC 15.323(c)(10).

Test Results:

EUTs that do NOT implement the LIC algorithm:

Test ref. to ANSI C63.17 clause 8.3.1	Observation	Verdict
 b) EUT is restricted to a single carrier f₁ for TDMA systems. The test is pass if the EUT can set up a communication link. 	N/A	N/A
 c) d) No transmission on interference-free receive time/spectrum window. All transmit slots blocked 	N/A	N/A
e) f) No transmission on interference-free transmit time/spectrum window. All transmit slots blocked	N/A	N/A

EUTs that implement the LIC algorithm:

Test ref. to ANSI C63.17 clause 8.3.2	Observation	Verdict
 b) EUT is restricted to a single carrier f₁ for TDMA systems. The test is pass if the EUT can set up a communication link. 	N/A	N/A
c) d) Transmission on interference-free receive time/spectrum window.	N/A	N/A
e) f) Transmission on interference-free transmit time/spectrum window.	N/A	N/A

Comment: This test is only applicable for EUTs that can be an initiating device of a duplex connection.

Limits: FCC 15.323(c)(10)

An initiating device may attempt to establish a duplex connection by monitoring both, its intended transmit and receive time and spectrum windows. If both the intended transmit and receive time and spectrum windows meet the access criteria, then the initiating device can initiate a transmission in the intended transmit time and spectrum window. if the power detected by the responding device can be decoded as a duplex connection signal from the initiating device, then the responding device may immediately begin transmitting on the receive time and spectrum window monitored by the initiating device.

7.21 Alternative monitoring interval

Test procedure described in ANSI C63.17, clause 8.4.

This test is required if the EUT implements the provision of FCC 15.323(c)(11).

Test Result:

Not tested. The tested EUT does not implement this provision. See manufacturer's declaration.

7.22 Spurious Emissions (Radiated)

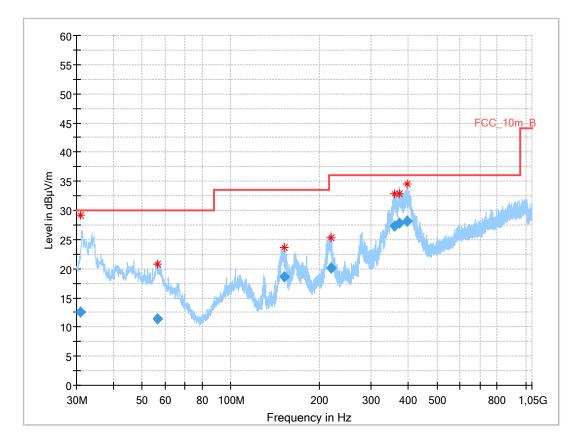
Measurement Procedure:

FCC 15.209, FCC 15.109

Test Result: Pass

Measurement Data: See plots

Requirement: FCC 15.109(b)

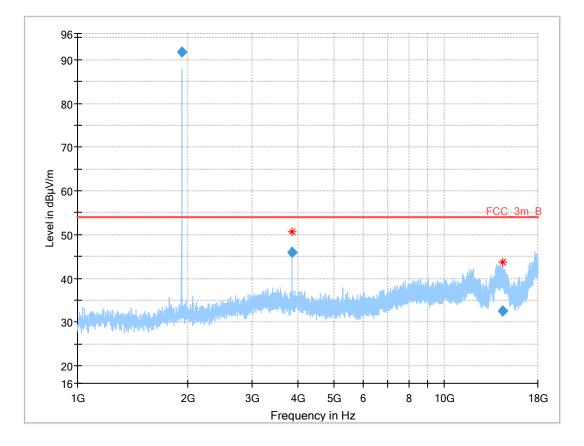

30 –	88 MHz:	90 µV/m
88 –	216 MHz:	150 µV/m
216 –	960 MHz:	210 µV/m
960 -	1000 MHz:	300 µV/m

Test report no.: 1-0932/20-01-05

Common Information

EUT:	Dect Base CA22CD
Serial number:	RFPI 03 66 0E 9A 00
Test description:	FCC part 15 B class B @ 10m
Operating condition:	charging mode
Operator name:	KHN
Comment:	Unscreened Ethernet cable

Final Result


Frequency (MHz)	QuasiPe ak (dBµV/m	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimut h (deg)	Corr. (dB/m)
30.961	12.50	30.0	17.5	1000	120.0	111.0	V	105	12
56.481	11.48	30.0	18.5	1000	120.0	260.0	V	66	15
151.520	18.68	33.5	14.8	1000	120.0	117.0	V	68	9
218.756	20.10	36.0	15.9	1000	120.0	133.0	V	83	12
358.817	27.30	36.0	8.7	1000	120.0	107.0	V	43	16
371.878	27.84	36.0	8.2	1000	120.0	100.0	V	72	16
395.921	28.24	36.0	7.8	1000	120.0	215.0	Н	225	17

Common Information

EUT:	
Serial number:	
Test description:	
Operating condition:	
Operator name:	
Comment:	

Dect Base CA22CD RFPI 03 66 0E 9A 00 FCC part 15 B class B charging mode KHN Unscreened Ethernet cable

Final Result

Frequency (MHz)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Pol	Azim uth (deg	Corr. (dB/m)	Comm ent
1923.048	91.77	54.0	-37.8	1000	1000.0	Н	64	-4	
3845.934	46.01	54.0	8.0	1000	1000.0	Н	134	1	
14397.719	32.52	54.0	21.5	1000	1000.0	Н	347	10	

Note: The carrier at 1923.048 MHz is the intended carrier from EUT.

The radiated spurious emission of the unintentional radiator is below the indicated limit.

7.23 Receiver Spurious Emissions

Measurement Procedure:

Industry Canada RSS-213 paragraph 6.8 and RSS-GEN paragraphs 4.8 and 6.

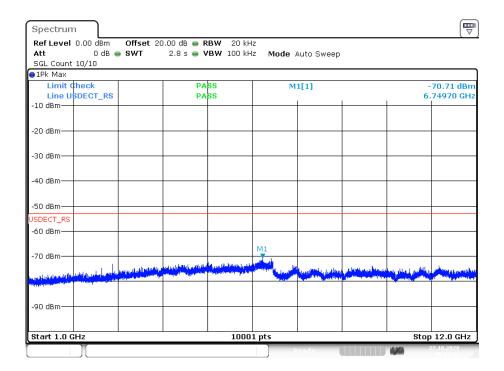
Test results:

Frequency MHz	Carrier No.	Measured Value Conducted dBm	Conducted Limit dBm	Margin dB
30 - 1000	all	-74.5	-57	17.5
> 1000	all	-70.7	-53	17.7

Requirements: RSS-GEN Issue 2, clause 6

The measurement can be performed either radiated or conducted.

When measured conducted: No spurious signals appearing at the antenna terminals shall exceed 2 nW per any 4 kHz spurious frequency in the band 30-1000 MHz, or 5 nW above 1 GHz.


When measured radiated: See table 1 in RSS-GEN Issue2, clause 6.

Test report no.: 1-0932/20-01-05

Spectrum Ref Level		041 00	.00 dB 👄 R	BW 20 kH					
Att			.00 aB 🖶 R 250 ms 🖶 V		-	Auto Sweep			
SGL Count					- mode /	nato oncop			
1Pk Max									
Limit C			PA		M	1[1]		-	-74.48 dBm
	DECT_RS		PA	88		I.		I	150.0 kHz
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm									
-50 dBm									
SDECT_RS									
-60 dBm									
-70 dBm									
and Bud Bud Bud Bud Bud Bud Bud Bud Bud Bu	a constant and a second state	dent betre the suf		un die fan die state die state	ار موسا الريحة ال	مىدارىي المىسىيى مى	Antoine and the later	ոււլեսիստնե	
Hanna (1996) And	المراطية والمراجع		and the second second second	ment (main have died	saligesterntelikkele	Pathinsteine -	And parts in a strain.	an a	and the state of the second state of the
-90 dBm									
Start 100.0) kHz			1000	1 pts			Sto	p 1.0 GHz

Receiver Spurious Emissions, Conducted, 100 kHz – 1 GHz

Receiver Spurious Emissions, Conducted, 1 GHz – 12 GHz

Test report	no.:	1-0932/20-01-05
--------------------	------	-----------------

	.00 dB 👄 RBW 20 k			
Att OdB 👄 SWT	2 s 👄 VBW 100 k	Hz Mode Auto Sweep	0	
SGL Count 10/10 IPk Max				
Limit Check	PASS	M1[1]		-70.77 dBm
Line USDECT_RS	PASS	MILI		17.899810 GHz
-10 dBm			+ +	17.0555010 0112
-20 dBm				
-20 4011				
20 dB				
-30 dBm				
-40 dBm				
ISDECT_RS				
-60 dBm				
			M1	
-70 dBm		للهاية المارين المراجع والمعطور والمتل	- 	
And a state of the second state	أأقر ومحمده أمتعا بتلك ألفانهم فالمتعاد والقرير هيا		ماريدا فتراف العرز إما أقرعت الا	the second state of the second
80 dBm	A second s	under inter		and receive the
90 dBm				

Receiver Spurious Emissions, Conducted, 12 GHz – 20 GHz

8 Test equipment and ancillaries used for tests

To simplify the identification of the test equipment and/or ancillaries which were used, the reporting of the relevant test cases only refer to the test item number as specified in the table below.

No.	Equipment	Manufacturer	Туре	Serial No.		Kind of Calib.	Last Calib.	Next Calib.
	Conducted							
L-1	Spectrum Analyzer	R&S	FSV30	100763	300003950	k	12/2019	12/2020
L-2	Signal Generator	R&S	SMBV100A	257858	300004529	vlkl!	12/2017	12/2020
L-3	Signaling Unit	R&S	CMD 65	825486	300003611	vlkl!	03/2019	03/2021
L-4	Power Meter	R&S	NRP	100212	300003780	vlkl!	12/2018	12/2020
L-5	Power Sensor	R&S	NRP-Z22	100031	400000188	vlkl!	12/2019	12/2021

No.	Equipment	Manufacturer	Туре	Serial No.	Inv. No.		Last Calib.	Next Calib.
	Power Line Conducted Emission							
G-1	EMI Receiver	R&S	ESCI 3	100083	3000003312	k	12/2019	12/2020
G-2	VISN	R&S	ESH 3-Z5	893045/004	300000584	vlkl!	12/2018	12/2020

No.	Equipment	Manufacturer	Туре	Serial	Inv. No.	Kind of	Last	Next
				No.		Calib.	Calib.	Calib.
	Radiated Emission							
F-1	EMI Receiver	R&S	ESR3	102587	300005771	k	12/2019	12/2020
F-2	Spectrum Analyzer	R&S	FSU26	200809	300003874	k	12/2019	12/2020
F-3	Trilog Antenna	Schwarzbeck	VULB9163	371	300003854	vlkl!	11/2017	11/2020
F-4	Horn antenna	Schwarzbeck	BBHA9120B	188	300003896	vlkl!	04/2020	04/2022

Agenda: Kind of Calibration

- k calibration / calibrated
- ne not required (k, ev, izw, zw not required)
- ev periodic self verification
- Ve long-term stability recognized
- vlkI! Attention: extended calibration interval
- NK! Attention: not calibrated

- EK limited calibration
- zw cyclical maintenance (external cyclical maintenance)
- izw internal cyclical maintenance
- g blocked for accredited testing
- *) next calibration ordered / currently in progress

9 Observations

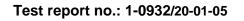
No observations exceeding those reported with the single test cases have been made.

Annex A: Photographs of the Test Set-up

See additional PDF document Annex A-C.

Annex B: External Photographs of the EUT

See additional PDF document Annex A-C.


Annex C: Internal Photographs of the EUT

See additional PDF document Annex A-C.

Annex D: Document History

Version	Applied Changes	Date of Release

Annex E: Further Information

<u>Glossary</u>

DUT	-	Device under Test
EMC	-	Electromagnetic Compatibility
EUT	-	Equipment under Test
FCC	-	Federal Communication Commission
FCC ID	-	Company Identifier at FCC
HW	-	Hardware
IC	-	Industry Canada
Inv. No.	-	Inventory number
N/A	-	not applicable
S/N	-	Serial Number
SW	-	Software

Annex F: Safety exposure levels

Prediction of MPE limit at a given distance:

Equation from page 18 of OET Bulletin 65, Edition 97-01

 $S = PG / 4\pi R^2$

- where: S = Power density
 - P = Power input to the antenna
 - G = Antenna gain
 - R = Distance to the center of radiation of the antenna

The table below is excerpted from Table 1B of 47 CFR 1.1310 titled "Limits for Maximum Permissible Exposure (MPE), Limits for General Population/Uncontrolled Exposure"

Frequency Range (MHz)	Power Density (mW/cm ²)	Averaging Time (minutes)
300 -1500	f/1500	30
1500 - 100000	1.0	30

where f = Frequency (MHz)

Prediction:

- P Max power input to the antenna:
- P Max power input to the antenna:
- R Distance:
- G Maximum antenna gain:
- G Maximum antenna gain:
- S MPE limit for uncontrolled exposure:

0.0024 mW/cm² 0.024 W/m²

7.81 dBm

6.04 mW

2.0 numeric

1 mW/cm²

20 cm 3.00 dBi

This prediction demonstrates the following:

The power density levels at a distance of 20 cm are below the maximum levels allowed by FCC regulations

Annex G: Accreditation Certificate

first page	last page
<image/> <image/> <image/> <text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text>	Office Berlin Spittelmark 10 10117 Berlin Office Frankfurt am Main Europa-Allee 52 60327 Frankfurt am Main Office Braunschweig Bundesallee 100 38116 Braunschweig The publication of extracts of the accorditation certificate is subject to the prior written approval by Destsche Alkoreditenungsstelle GribH (DAXS). Exempted is the unchanged form of expanse disaminations of the cover sheat by the conformity assassment body methoder doerled. No The publication of extracts of the accorditation also extends to fields beyond the scope of accreditation altested by DAXS.
The accreditation certificate shall only apply in connection with the notice of accreditation of 09.06.2020 with the accreditation number D-PL-12076-01. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 05 pages. Registration number of the certificate: D-PL-12076-01-05 Frankfurt am Main, 09.06.2020 The certificate shall be accredited to the statist of the accredited to the state of the st	The accreditation was granted pursuant to the Act on the Accreditation Body (AkkStelled) of 31.049 (Federal and Wa Gaztet ip. 2525) and the Regulation ICE (No 765/2006 of the European Preliament and of the Council of 9 July 2008 setting out the requirements for accreditation and market surveillance realing to the marketing of products (Official Journal of the European Inton 128 of 9 July 2008, p. 30). DAkk5 is a signatory to the Multilateral Agreements for Multual Recognition of the European co-operation for Accreditation (EA). International Accreditation formun (AF) and International Laboratory Accreditation Cooperation (ILAC). The signatories to these agreements recognise each other's accreditations. The up-to-date state of membership can be retrieved from the following websites: EA: www.iacorg ILAC: www.iacorg ILAC: www.iaf.nu

Test report no.: 1-0932/20-01-05

first page	last page
Extrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 1 akkStelleG in Connection akkStelleG in C	Deutsche Akkreditierungsstelle GmbH Office Berlin Spittelmarkt 10 10117 Berlin 60327 Frankfurt am Main Bundesaller 100 38116 Braunschweig
The accreditation (TC) and Electromagnetic Compatibility (EMC) for Canadian Standards The accreditation certificate shall only apply in connection with the notice of accreditation of 09.06.2020 with the accreditation number D-PL-12076-01.1t comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 07 pages. Registration number of the certificate: D-PL-12076-01-04 Frankfurt am Main, 08.06.2020 The certificate shall only apply in the active active status at the time of the date of basics The corriformer totals to fue over the status at the time of the date of status. The current status of the scope of accreditation can be found in the databased advecting data of advecting advecting databased advecting advecting advecting databased advecting advecting advecting advecting advecting databased advecting ad	The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkrediterungsstelle GmbH (DAkks). Exempted is the unchanged form of separate disseminations of the cours have bet by the conformity assessment body mentioned overlead. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DAkks. The accreditation was granted pursuant to the Act on the Accreditation Body (AkkStelleG) of 31 July 2009 [Federal Law Gastet p]. 2623] and the Regulation (EQ) No 755/2008 of the European Parliament and of the Council of July 2008 granted pursuant to the Act on the Accreditation and arket surveillance relating to the magnetize out the arequirements for accreditation and arket surveillance relating to the magnetize of products (Official Journal of the European Union L 218 of July 2008, p. 30). DAkks is a signatory to the Multilateral Accreditation forum (A/R) and International Laboratory Accreditation for Accreditation (EL), International Accreditation forum (A/R) and International Laboratory Accreditation. Cooperation (ILG). The signatories to these agreements free optices each other's accreditations. The up-to-date state of membership can be retrieved from the following websites: List, www.lac.org List; www.lac.o

Note:

The current certificate including annex can be received on request.