SAR Test Report

Product Name: Bluetooth USB Dongle

Model No. : BT600

FCC ID : AL8-BT600

IC : 457A-BT600

Applicant: Plantronics, Inc.

Address: 345 Encinal Street, Santa Cruz, CA95060 USA

Date of Receipt: Dec. 17, 2014

Date of Test : Dec. 17, 2014

Issued Date : Jan. 07, 2015

Report No. : 14C0468R-HP-US-P03V01

Report Version: V1.0

The test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation.

Test Report Certification

Issued Date: Jan. 07, 2015

Report No.: 14C0468R-HP-US-P03V01

QuieTek

Product Name : Bluetooth USB Dongle

Applicant : Plantronics, Inc.

Address : 345 Encinal Street, Santa Cruz, CA95060 USA

Manufacturer : Plantronics, Inc.

Address : 345 Encinal Street, Santa Cruz, CA95060 USA

Model No. : BT600

FCC ID : AL8-BT600

IC : 457A-BT600

EUT Voltage : DC 5V

Brand Name : Plantronics

Applicable Standard : IEEE Std. 1528-2013, 47CFR § 2.1093

FCC KDB Publication 447498 D01v05r02 FCC KDB Publication 865664 D01v01r03 FCC KDB Publication 447498 D02v02 FCC KDB Publication 248227 D01v01r02

RSS - 102 Issue 4: 2010 IEC 62209-2: 2010

Test Result : Max. SAR Measurement (1g)

0.086 W/kg(77.1 % d/c); 0.028 W/kg(25% d/c)

Performed Location : Suzhou EMC Laboratory

No.99 Hongye Rd., Suzhou Industrial Park Loufeng Hi-Tech

Development Zone., Suzhou, China

TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

FCC Registration Number: 800392; IC Lab Code: 4075B

Documented By

71:00

Tested By :

Treum Cas

Approved By :

Laboratory Information

We, **QuieTek Corporation**, are an independent EMC and safety consultancy that was established the whole facility in our laboratories. The test facility has been accredited/accepted(audited or listed) by the following related bodies in compliance with ISO 17025, EN 45001 and specified testing scope:

Taiwan R.O.C. : BSMI, NCC, TAF

Germany : TUV Rheinland

Norway : Nemko, DNV

USA : FCC
Japan : VCCI
China : CNAS

The related certificate for our laboratories about the test site and management system can be downloaded from QuieTek Corporation's Web Site : http://www.quietek.com/tw/ctg/cts/accreditations.htm
The address and introduction of QuieTek Corporation's laboratories can be founded in our Web site : http://www.quietek.com/

If you have any comments, Please don't hesitate to contact us. Our contact information is as below:

HsinChu Testing Laboratory:

No.75-2, 3rd Lin, Wangye Keng, Yonghxing Tsuen, Qionglin Shiang, Hsinchu County 307, Taiwan, R.O.C. TEL:+886-3-592-8859 E-Mail: service@guietek.com

LinKou Testing Laboratory:

No.5-22, Ruishukeng, Linkou Dist., New Taipei City 24451, Taiwan, R.O.C.

Suzhou Testing Laboratory:

TABLE OF CONTENTS

Description	Page
1. General Information	6
1.1. EUT Description	7
1.2. Test Environment	10
1.3. Simultaneous Transmission Configurations	11
1.4. SAR Test Exclusions Applied	11
1.5. Power Reduction for SAR	11
1.6. Guidance Documents	11
2. SAR Measurement System	12
2.1. DASY5 System Description	12
2.1.1. Applications	13
2.1.2. Area Scans	13
2.1.3. Zoom Scan (Cube Scan Averaging)	13
2.1.4. Uncertainty of Inter-/Extrapolation and Averaging	13
2.2. DASY5 E-Field Probe	14
2.2.1. Isotropic E-Field Probe Specification	
2.3. Boundary Detection Unit and Probe Mounting Device	15
2.4. DATA Acquisition Electronics (DAE) and Measurement Server	·15
2.5. Robot	
2.6. Light Beam Unit	16
2.7. Device Holder	
2.8. SAM Twin Phantom	17
3. Tissue Simulating Liquid	18
3.1. The composition of the tissue simulating liquid	18
3.2. Tissue Calibration Result	18
3.2.1 Tissue Calibration Result for FCC	18
3.2.2 Tissue Calibration Result for IC	19
3.3. Tissue Dielectric Parameters for Head and Body Phantoms	20
4. SAR Measurement Procedure	21
4.1. SAR System Validation	21
4.1.1. Validation Dipoles	
4 1 2 Validation Result	21

4.	2.	SAR Measurement Procedure	22
5.	SAF	R Exposure Limits	23
6.	Tes	t Equipment List	24
7.	Mea	surement Uncertainty	25
8.	Cor	nducted Power Measurement	27
9.	Tes	t Results	28
9.	1.	Test Results	28
9.	2.	SAR Test Notes	30
Арр	end	ix A. SAR System Validation Data	31
Арр	end	ix B. SAR measurement Data	31
Арр	end	ix C. Test Setup Photographs & EUT Photographs	40
Арр	end	ix D. Probe Calibration Data	48
Арр	end	ix E. Dipole Calibration Data	59
Арр	end	ix F. DAE Calibration Data	67

History of This Test Report

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
14C0468R-HP-US-P03V01	V1.0	Initial Issued Report	Jan. 07, 2015

1. General Information

1.1. EUT Description

Product Name	Bluetooth USB Dongle
Brand Name	Plantronics
Model No.	BT600
Working Voltage	DC 5V
Bluetooth Specification	3.0HS + Version 4.0
Frequency Range	2402 - 2480 MHz
Channal Number	V3.0+HS: 79
Channel Number	V4.0: 40
Channel Separation	V3.0+HS: 1MHz
	V4.0: 2MHz
Type of Modulation	V3.0+HS: GFSK, Pi/4 DQPSK, 8DPSK
Type of Modulation	V4.0: GFSK
Data Rate	V3.0+HS: 1Mbps(GFSK), 2Mbps(Pi/4 DQPSK), 3Mbps (8DPSK)
Dala Rale	V4.0: 1Mbps(GFSK)
Antenna Type	Reference to Antenna List
Peak Antenna Gain	Reference to Antenna List

Bluetooth Antenna List

Antenna	Manufacturer	Model No.	Peak Gain
Monopole Antenna	Goertek	MILA antenna	-4.12dBi for 2.4GHz

Bluetooth	Bluetooth Working Frequency of Each Channel: (For V4.0)								
Channel	Frequency	Channel	Frequency	Frequency Channel Frequency Cha		Channel	Frequency		
00	2402 MHz	01	2404 MHz	02	2406 MHz	03	2408 MHz		
04	2410 MHz	05	2412 MHz	06	2414 MHz	07	2416 MHz		
08	2418 MHz	09	2420 MHz	10	2422 MHz	11	2424 MHz		
12	2426 MHz	13	2428 MHz	14	2430 MHz	15	2432 MHz		
16	2434 MHz	17	2436 MHz	18	2438 MHz	19	2440 MHz		
20	2442 MHz	21	2444 MHz	22	2446 MHz	23	2448 MHz		
24	2450 MHz	25	2452 MHz	26	2454 MHz	27	2456 MHz		
28	2458 MHz	29	2460 MHz	30	2462 MHz	31	2464 MHz		
32	2466 MHz	33	2468 MHz	34	2470 MHz	35	2472 MHz		
36	2474 MHz	37	2476 MHz	38	2478 MHz	39	2480 MHz		

Bluetooth Working Frequency of Each Channel: (For V3.0+HS)							
Channel	Frequency	Channel	Frequency	Channel	Channel Frequency Cl		Frequency
00	2402 MHz	01	2403 MHz	02	2404 MHz	03	2405 MHz
04	2406 MHz	05	2407 MHz	06	2408 MHz	07	2409 MHz
08	2410 MHz	09	2411 MHz	10	2412 MHz	11	2413 MHz
12	2414 MHz	13	2415 MHz	14	2416 MHz	15	2417 MHz
16	2418 MHz	17	2419 MHz	18	2420 MHz	19	2421 MHz
20	2422 MHz	21	2423 MHz	22	2424 MHz	23	2425 MHz
24	2426 MHz	25	2427 MHz	26	2428 MHz	27	2429 MHz
28	2430 MHz	29	2431 MHz	30	2432 MHz	31	2433 MHz
32	2434 MHz	33	2435 MHz	34	2436 MHz	35	2437 MHz
36	2438 MHz	37	2439 MHz	38	2440 MHz	39	2441 MHz
40	2442 MHz	41	2443 MHz	42	2444 MHz	43	2445 MHz
44	2446 MHz	45	2447 MHz	46	2448 MHz	47	2449 MHz
48	2450 MHz	49	2451 MHz	50	2452 MHz	51	2453 MHz
52	2454 MHz	53	2455 MHz	54	2456 MHz	55	2457 MHz
56	2458 MHz	57	2459 MHz	58	2460 MHz	59	2461 MHz
60	2462 MHz	61	2463 MHz	62	2464 MHz	63	2465 MHz
64	2466 MHz	65	2467 MHz	66	2468 MHz	67	2469 MHz
68	2470 MHz	69	2471 MHz	70	2472 MHz	71	2473 MHz
72	2474 MHz	73	2475 MHz	74	2476 MHz	75	2477 MHz
76	2478 MHz	77	2479 MHz	78	2480 MHz	N/A	N/A

1.2. Test Environment

Ambient conditions in the laboratory:

Items	Required	Actual
Temperature (°C)	18-25	21.5± 2
Humidity (%RH)	30-70	52

1.3. Simultaneous Transmission Configurations

There is no simultaneous transmission because there is only a Bluetooth antenna.

1.4. SAR Test Exclusions Applied

Wi-Fi

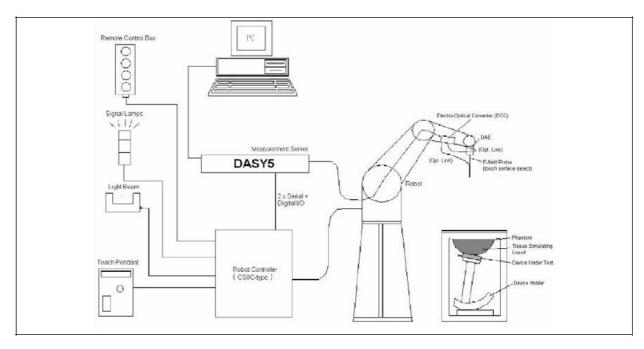
Per FCC KDB 447498 D01v05r02, the SAR exclusion threshold for distances< 50mm is defined by the following equation:

$$\frac{Max\ Power\ of\ Channel\ (mW)}{Test\ Separation\ Dist\ (mm)}*\sqrt{Frequency(GHz)} \leq 3.0$$

Based on the maximum conducted power of Bluetooth and the antenna to use separation distance, 2.4G SAR was not required on head; But the manufacturer required to test, so we still did the SAR test. $[(7.08 \text{ mW/5})^* \sqrt{2.480}]=2.23<3.0 \text{ for Head}$

1.5. Power Reduction for SAR

There is no power reduction used for any band/mode implemented in this device for SAR purposes.


1.6. Guidance Documents

- 1) FCC KDB Publication 447498 D01v05r02(General SAR Guidance)
- 2) FCC KDB Publication 865664 D01v01r03(SAR measurement 100 MHz to 6 GHz)
- 3) FCC KDB Publication 248227 D01v01r02(SAR Considerations for 802.11 Devices)
- 4) FCC KDB Publication 447498 D02v02 (SAR Measurement Procedures for USB Dongle Transmitters)
 - 5) IEEE Std. 1528-2013, 47CFR § 2.1093
 - 6) RSS-102 Issue 4
 - 7) IEC 62209-2: 2010

2. SAR Measurement System

2.1. DASY5 System Description

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

2.1.1. Applications

Predefined procedures and evaluations for automated compliance testing with all worldwide standards, e.g., IEEE 1528, OET 65, IEC 62209-1, IEC 62209-2, EN 50360, EN 50383 and others.

2.1.2. Area Scans

Area scans are defined prior to the measurement process being executed with a user defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for FCC applications utilize a 10mm² step integral, with 1mm interpolation used to locate the peak SAR area used for zoom scan assessments.

When an Area Scan has measured all reachable points, it computes the field maxima found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE 1528-2003 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan).

2.1.3. Zoom Scan (Cube Scan Averaging)

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. A density of 1000 kg/m³ is used to represent the head and body tissue density and not the phantom liquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1 g cube is 10mm, with the side length of the 10 g cube 21,5mm.

The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications utilize a physical step of 7x7x7 (5mmx5mmx5mm) providing a volume of 30mm in the X & Y axis, and 30mm in the Z axis.

2.1.4. Uncertainty of Inter-/Extrapolation and Averaging

In order to evaluate the uncertainty of the interpolation, extrapolation and averaged SAR calculation algorithms of the Postprocessor, DASY5 allows the generation of measurement grids which are artificially predefined by analytically based test functions. Therefore, the grids of area scans and zoom scans can be filled with uncertainty test data, according to the SAR benchmark functions of IEEE 1528. The three analytical functions shown in equations as below are used to describe the possible range of the expected SAR distributions for the tested handsets. The field gradients are covered by the spatially flat distribution f1, the spatially steep distribution f3 and f2 accounts for H-field cancellation on the phantom/tissue surface.

$$f_1(x, y, z) = Ae^{-\frac{z}{2a}}\cos^2\left(\frac{\pi}{2}\frac{\sqrt{x'^2 + y'^2}}{5a}\right)$$

$$f_2(x, y, z) = Ae^{-\frac{z}{a}}\frac{a^2}{a^2 + x'^2}\left(3 - e^{-\frac{2z}{a}}\right)\cos^2\left(\frac{\pi}{2}\frac{y'}{3a}\right)$$

$$f_3(x, y, z) = A\frac{a^2}{\frac{a^2}{4} + x'^2 + y'^2}\left(e^{-\frac{2z}{a}} + \frac{a^2}{2(a+2z)^2}\right)$$

2.2. DASY5 E-Field Probe

The SAR measurement is conducted with the dosimetric probe manufactured by SPEAG. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency.

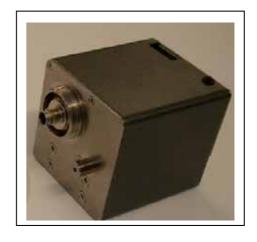
SPEAG conducts the probe calibration in compliance with international and national standards (e.g. IEEE 1528, EN 62209-1, IEC 62209, etc.) under ISO 17025. The calibration data are in Appendix D.

2.2.1. Isotropic E-Field Probe Specification

Model	EX3DV4	
Construction	Symmetrical design with triangular core Built-in s charges PEEK enclosure material (resistant to c DGBE)	
Frequency	10 MHz to 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)	
Directivity	± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)	/
Dynamic Range	10 μW/g to 100 mW/g Linearity: ± 0.2 dB (noise: typically < 1 μW/g)	
Dimensions	Overall length: 330 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm	
Application	High precision dosimetric measurements in an (e.g., very strong gradient fields). Only pr compliance testing for frequencies up to 6 GHz v 30%.	obe which enables

2.3. Boundary Detection Unit and Probe Mounting Device

The DASY probes use a precise connector and an additional holder for the probe, consisting of a plastic tube and a flexible silicon ring to center the probe. The connector at the DAE is flexibly mounted and held in the default position with magnets and springs. Two switching systems in the connector mount detect frontal and lateral probe collisions and trigger the necessary software response.



2.4. DATA Acquisition Electronics (DAE) and Measurement Server

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit.

Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE4 is 200M Ohm; the inputs are symmetrical and floating. Common mode rejection is above 80dB.

The DASY5 measurement server is based on a PC/104 CPU board with a 400MHz intel ULV Celeron, 128MB chipdisk and 128MB RAM. The necessary circuits for communication with the DAE electronics box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY5 I/O board, which is directly connected to the PC/104 bus of the CPU board.

2.5. Robot

The DASY5 system uses the high precision robots TX90 XL type out of the newer series from Stäubli SA (France). For the 6-axis controller DASY5 system, the CS8C robot controller version from Stäubli is used.

The XL robot series have many features that are important for our application:

- ➤ High precision (repeatability 0.02 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)
- ➢ 6-axis controller

2.6. Light Beam Unit

The light beam switch allows automatic "tooling" of the probe. During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, such that the robot coordinates are valid for the probe tip.

The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position.

2.7. Device Holder

The DASY5 device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (EPR).

Thus the device needs no repositioning when changing the angles.

The DASY5 device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity $\epsilon r = 3$ and loss tangent $\delta = 0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

2.8. SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

- Left head
- > Right head
- > Flat phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

3. Tissue Simulating Liquid

3.1. The composition of the tissue simulating liquid

INGREDIENT	2450MHz
(% Weight)	Body
Water	73.2
Salt	0.04
Sugar	0.00
HEC	0.00
Preventol	0.00
DGBE	26.7
Triton X-100	0.00

3.2. Tissue Calibration Result

3.2.1 Tissue Calibration Result for FCC

The dielectric parameters of the liquids were verified prior to the SAR evaluation using DASY5 Dielectric Probe Kit and Agilent Vector Network Analyzer E5071C

Body Tissue Simulant Measurement								
Frequency	Description	arameters	Tissue Temp.					
[MHz]	Description	ε _r	σ [s/m]	[°C]				
	Reference result	52.7	1.95	N/A				
2450MHz	± 5% window	50.07 to 55.34	1.85 to 2.05	IN/A				
	12-17-2014	52.12	1.97	21.0				
				•				

3.2.2 Tissue Calibration Result for IC

The dielectric parameters of the liquids were verified prior to the SAR evaluation using DASY5 Dielectric Probe Kit and Agilent Vector Network Analyzer E5071C

	Body Tissue Simulant Measurement (Test Date: 12-17-2014)								
Frequency			Dielectric Parameters						
[MHz]	Channel	Permittivity ε _r	Conductivity σ	Permittivity Target ε _r	Conductivity Target σ	Delta (ε _r)	Delta (σ) %	Tissue Temp. [°C]	
2402	Low	39.28	1.79	39.27	1.77	0.03	1.13	21.0	
2440	Mid	39.12	1.83	39.21	1.79	-0.23	2.23	21.0	
2441	Mid	39.11	1.83	39.20	1.79	-0.23	2.23	21.0	
2480	High	38.97	1.88	39.16	1.82	-0.49	3.30	21.0	

Note:

- 1. The delta (ϵ_r) and (σ) are within ±5%, delta SAR value was not calculated in this report.
- 2. As per IEC 62209-2 Annex F, the SAR correction factor is given by:

$$\Delta$$
SAR = $c_{\epsilon} \Delta \varepsilon_{\Gamma}$ + $c_{\sigma} \Delta \sigma$

For the 1g average SAR C_{ϵ} and C_{σ} are given by:

 $C_{\epsilon} = -7.854x10^{4}-4f^{3} + 9.402x10^{3}-2f^{2} - 2.742x10^{2} - 0.2026$

 $C\sigma = 9.804x10^{-3}f^{3} - 8.661x10^{-2}f^{2} + 2.981x10^{-2}f + 0.7829$

Where f is the frequency in GHz.

Body Tissue Simulant Measurement (Test Date: 12-17-2014)

Frequency			Tissue Temp.					
[MHz] Chani	Channel	Delta (ε _r) %	Delta (σ) %	Сε	Сσ	∆SAR %	[°C]	
2402	Low	0.03	1.13	-0.23	0.49	0.55	21.0	
2440	Mid	-0.23	2.23	-0.22	0.48	1.13	21.0	
2441	Mid	-0.23	2.23	-0.22	0.48	1.13	21.0	
2480	High	-0.49	3.30	-0.22	0.47	1.67	21.0	

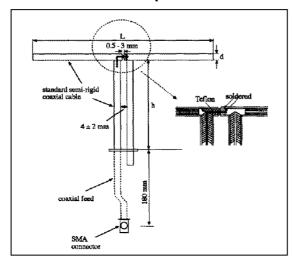
Note: The Δ SAR refers to the percent change in SAR relative to the percent change in dielectric properties versus the target values. A negative Δ SAR would translate to a lower measured SAR value than what would be measured if using dielectric properties equal to the target values. A positive Δ SAR would translate to a higher measured SAR value than what would be measured if using dielectric properties equal to the target values. SAR correction shall not be made when the Δ SAR has a positive sign to provide a conservative SAR value. The SAR is only corrected when Δ SAR has a negative sign.

The ΔSAR is positive, so correct SAR isn't needed.

3.3. Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.

Target Frequency	He	ad	Во	ody
(MHz)	ε _r	σ (S/m)	ε _r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00


(ϵ_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

4. SAR Measurement Procedure

4.1. SAR System Validation

4.1.1. Validation Dipoles

The dipoles used is based on the IEEE-1528 standard, and is complied with mechanical and electrical specifications in line with the requirements of both IEEE and FCC Supplement C. the table below provides details for the mechanical and electrical specifications for the dipoles.

Frequency	L (mm)	h (mm)	d (mm)
2450MHz	53.5	30.4	3.6

4.1.2. Validation Result

System Perfo	System Performance Check at 2450MHz for Body								
Validation Dipole: D2450V2, SN: 839									
Frequency [MHz]	Description	SAR [w/kg] 1g	SAR [w/kg] 10g	Tissue Temp. [°C]					
2450 MHz	Reference result ± 10% window	49.9 44.91 to 54.89	23.1 20.79 to 25.41	N/A					
	12-17-2014	49.20	22.40	21.0					

Note: All SAR values are normalized to 1W forward power.

4.2. SAR Measurement Procedure

The DASY5 calculates SAR using the following equation,

$$SAR = \frac{\sigma |\mathbf{E}|^2}{\rho}$$

σ: represents the simulated tissue conductivity

p: represents the tissue density

The EUT is set to transmit at the required power in line with product specification, at each frequency relating to the LOW, MID, and HIGH channel settings.

Pre-scans are made on the device to establish the location for the transmitting antenna, using a large area scan in either air or tissue simulation fluid.

The EUT is placed against the Universal Phantom where the maximum area scan dimensions are larger than the physical size of the resonating antenna. When the scan size is not large enough to cover the peak SAR distribution, it is modified by either extending the area scan size in both the X and Y directions, or the device is shifted within the predefined area.

The area scan is then run to establish the peak SAR location (interpolated resolution set at 1mm²) which is then used to orient the center of the zoom scan. The zoom scan is then executed and the 1g and 10g averages are derived from the zoom scan volume (interpolated resolution set at 1mm³).

5. SAR Exposure Limits

SAR assessments have been made in line with the requirements of IEEE-1528, FCC Supplement C, and comply with ANSI/IEEE C95.1-1992 "Uncontrolled Environments" limits. These limits apply to a location which is deemed as "Uncontrolled Environment" which can be described as a situation where the general public may be exposed to an RF source with no prior knowledge or control over their exposure.

Limits for General Population/Uncontrolled Exposure (W/kg)

Type Exposure	Uncontrolled
	Environment Limit
Spatial Peak SAR (1g cube tissue for brain or body)	1.60 W/kg
Spatial Average SAR (whole body)	0.08 W/kg
Spatial Peak SAR (10g for hands, feet, ankles and wrist)	4.00 W/kg

6. Test Equipment List

Instrument	Manufacturer	Model No.	Serial No.	Cali. Due Date
Stäubli Robot TX60L	Stäubli	TX60L	F10/5C90A1/A/01	N/A
Controller	Stäubli	SP1	S-0034	N/A
Dipole Validation Kits	Speag	D2450V2	839	2016.02.23
SAM Twin Phantom	Speag	SAM	TP-1561/1562	N/A
Device Holder	Speag	SD 000 H01 HA	N/A	N/A
Data	Speag	DAE4	1220	2015.01.21
Acquisition Electronic				
E-Field Probe	Speag	EX3DV4	3710	2015.03.03
SAR Software	Speag	DASY5	V5.2 Build 162	N/A
Power Amplifier	Mini-Circuit	ZVA-183-S+	N657400950	N/A
Directional Coupler	Agilent	778D	20160	N/A
Universal Radio	R&S	CMU 200	117088	2015.03.28
Communication Tester				
Vector Network	Agilent	E5071C	MY48367267	2015.03.28
Signal Generator	Agilent	E4438C	MY49070163	2015.03.28
Power Meter	Anritsu	ML2495A	0905006	2015.11.01
Wide Bandwidth Sensor	Anritsu	MA2411B	0846014	2015.11.01

7. Measurement Uncertainty

		DASY	5 Unc	ertain	tv			
Measurement uncertainty						/ 10 gram.		
Error Description	Uncert.	Prob.	Div.	(Ci)	(Ci)	Std.	Std.	(Vi)
	value	Dist.		1g	10g	Unc.	Unc.	Veff
						(1g)	(10g)	
Measurement System		•		•	•	1	1	
Probe Calibration	±6.0%	N	1	1	1	±6.0%	±6.0%	∞
Axial Isotropy	±4.7%	R	√3	0.7	0.7	±1.9%	±1.9%	∞
Hemispherical Isotropy	±9.6%	R	√3	0.7	0.7	±3.9%	±3.9%	∞
Boundary Effects	±1.0%	R	√3	1	1	±0.6%	±0.6%	∞
Linearity	±4.7%	R	√3	1	1	±2.7%	±2.7%	∞
System Detection Limits	±1.0%	R	√3	1	1	±0.6%	±0.6%	∞
Readout Electronics	±0.3%	N	1	1	1	±0.3%	±0.3%	∞
Response Time	±0.8%	R	√3	1	1	±0.5%	±0.5%	8
Integration Time	±2.6%	R	√3	1	1	±1.5%	±1.5%	∞
RF Ambient Noise	±3.0%	R	√3	1	1	±1.7%	±1.7%	∞
RF Ambient Reflections	±3.0%	R	√3	1	1	±1.7%	±1.7%	∞
Probe Positioner	±0.4%	R	√3	1	1	±0.2%	±0.2%	∞
Probe Positioning	±2.9%	R	√3	1	1	±1.7%	±1.7%	∞
Max. SAR Eval.	±1.0%	R	√3	1	1	±0.6%	±0.6%	∞
Test Sample Related								
Device Positioning	±2.9%	N	1	1	1	±2.9%	±2.9%	145
Device Holder	±3.6%	N	1	1	1	±3.6%	±3.6%	5
Power Drift	±5.0%	R	√3	1	1	±2.9%	±2.9%	8
Phantom and Setup								
Phantom Uncertainty	±4.0%	R	√3	1	1	±2.3%	±2.3%	∞
Liquid Conductivity	±5.0%	R	19	0.64	0.43	±1.8%	±1.2%	8
(target)	13.070	IX	√3	0.04	0.43	11.070	11.2 /0	
Liquid Conductivity	±2.5%	N	1	0.64	0.43	±1.6%	±1.1%	∞
(meas.)	12.570	IN	'	0.04	0.43	11.070	11.170	
Liquid Permittivity	±5.0%	R	√3	0.6	0.49	±1.7%	±1.4%	∞
(target)	_5.576	ļ	,,,	10.0	0.10	/0	/ 0	
Liquid Permittivity	±2.5%	N	1	0.6	0.49	±1.5%	±1.2%	∞
(meas.)			•					
Combined Std. Uncertain	-					±11.0%	±10.8%	387
Expanded STD Uncerta	inty					±22.0%	±21.5%	

Page: 25 of 71

		DASY	5 Unc	ertain	ty			
Measurement uncertainty						gram.		
Error Description	Uncert.	Prob.	Div.	(Ci)	(Ci)	Std.	Std.	(Vi)
	value	Dist.		1g	10g	Unc.	Unc.	Veff
						(1g)	(10g)	
Measurement System								
Probe Calibration	±6.55%	N	1	1	1	±6.55%	±6.55%	∞
Axial Isotropy	±4.7%	R	√3	0.7	0.7	±1.9%	±1.9%	8
Hemispherical Isotropy	±9.6%	R	√3	0.7	0.7	±3.9%	±3.9%	8
Boundary Effects	±2.0%	R	√3	1	1	±1.2%	±1.2%	∞
Linearity	±4.7%	R	√3	1	1	±2.7%	±2.7%	∞
System Detection Limits	±1.0%	R	√3	1	1	±0.6%	±0.6%	∞
Readout Electronics	±0.3%	N	1	1	1	±0.3%	±0.3%	8
Response Time	±0.8%	R	√3	1	1	±0.5%	±0.5%	∞
Integration Time	±2.6%	R	√3	1	1	±1.5%	±1.5%	∞
RF Ambient Noise	±3.0%	R	√3	1	1	±1.7%	±1.7%	∞
RF Ambient Reflections	±3.0%	R	√3	1	1	±1.7%	±1.7%	∞
Probe Positioner	±0.8%	R	√3	1	1	±0.5%	±0.5%	∞
Probe Positioning	±9.9%	R	√3	1	1	±5.7%	±5.7%	∞
Max. SAR Eval.	±4.0%	R	√3	1	1	±2.3%	±2.3%	∞
Test Sample Related								
Device Positioning	±2.9%	N	1	1	1	±2.9%	±2.9%	145
Device Holder	±3.6%	N	1	1	1	±3.6%	±3.6%	5
Power Drift	±5.0%	R	√3	1	1	±2.9%	±2.9%	∞
Phantom and Setup								
Phantom Uncertainty	±4.0%	R	√3	1	1	±2.3%	±2.3%	∞
Liquid Conductivity	. F. O0/	Б	(O	0.64	0.42	14.00/	14.00/	8
(target)	±5.0%	R	√3	0.64	0.43	±1.8%	±1.2%	∞
Liquid Conductivity	12.50/	N	1	0.64	0.43	±1.6%	14 40/	8
(meas.)	±2.5%	IN	1	0.04	0.43	±1.0%	±1.1%	ω
Liquid Permittivity	±5.0%	R	√3	0.6	0.49	±1.7%	±1.4%	8
(target)	±0.070	'	VJ	0.0	0.70	±1.7 /0	±1. 7 /0	
Liquid Permittivity	±2.5%	N	1	0.6	0.49	±1.5%	±1.2%	∞
(meas.)			<u> </u>	0.0	0.40	21.070	±1.2/0	
Combined Std. Uncertain	inty					±12.8%	±12.6%	330
Expanded STD Uncertain	inty					±25.6%	±25.2%	

8. Conducted Power Measurement

BT output power

Took Mode	Chanal Na	Frequency	Average Power	Max. Power	Scaling
Test Mode	Channel No.	(MHz)	(dBm)	(dBm)	Factor
	00	2402	6.96	7.5	1.132
DH5	02	2403	7.81	8.5	1.172
(Duty Cycle = 76.8%)	39	2441	7.76	8.5	1.186
	78	2480	8.39	8.5	1.026
	00	2402	4.97	5.5	1.130
2DH5	02	2403	6.34	7.0	1.164
(Duty Cycle = 77.0%)	39	2441	6.21	7.0	1.199
	78	2480	6.87	7.0	1.030
	00	2402	5.05	5.5	1.109
3DH5	02	2403	6.43	7.0	1.140
(Duty Cycle = 77.1%)	39	2441	6.29	7.0	1.178
	78	2480	6.97	7.0	1.007
	00	2402	5.15	5.5	1.084
BLE	01	2404	6.29	7.0	1.178
(Duty Cycle = 60.9%)	19	2440	6.09	7.0	1.233
	39	2480	6.75	7.0	1.059

Note1: The channel which power is the highest was selected to test.

^{2:} If output power reduction is necessary for the highest/ lowest channels to meet restricted band requirements the highest output channels closest to each of these channels must be tested instead according to KDB248227 D01v01r02.

9. Test Results

9.1. Test Results

SAR MEAS	UREMEN	IT							
Ambient Tem	perature (°C) : 21.5 :	± 2		Relat	ive Humic	dity (%): 5	52	
Liquid Tempe	erature (°C	s): 21.0 ± 2	2		Deptl	h of Liquid	d (cm):>1	5	
Product: Blue	tooth USE	3 Dongle							
Test Mode: Blu	etooth DH	5 (Duty Cyc	le = 76.8%) 	1		1	r	ſ
Test Position	Antenna	Frequ	ency	Conducted	Power	SAR 1g	0 1'	Scaled SAR 1g	1 1
Body (5mm gap)	Position	Channel	MHz	Power (dBm)	Drift (<±0.2)	(W/kg)	Scaling Factor	(W/kg)	Limit (W/kg)
Horizontal Up	Fixed	01	2403	7.81	-	1	1.172	-	1.6
Horizontal Up	Fixed	39	2441	7.76	-1	1	1.186		1.6
Horizontal Up	Fixed	78	2480	8.39	0.10	0.012	1.026	0.012	1.6
Horizontal Down	Fixed	78	2480	8.39	0.08	0.041	1.026	0.042	1.6
Vertical Front	Fixed	78	2480	8.39	-0.03	0.048	1.026	0.049	1.6
Vertical Back	Fixed	78	2480	8.39	-0.07	0.067	1.026	0.069	1.6
Tip	Fixed	78	2480	8.39	0.02	0.0001	1.026	0.00011	1.6
Test Mode: Blu	etooth 2DH	H5 (Duty Cy	cle = 77.0°	%)					
Vertical Back	Fixed	78	2480	6.87	-0.07	0.082	1.030	0.084	1.6
Test Mode: Blu	etooth 3DF	H5 (Duty Cy	cle = 77.1°	%)					
Vertical Back	Fixed	78	2480	6.97	-0.09	0.085	1.007	0.086	1.6
Test Mode: Blu	etooth BLE	E (Duty Cycl	e = 60.9%)					
Vertical Back	Fixed	39	2480	6.75	-0.10	0.070	1.059	0.074	1.6
Note: when the	e 1-g SAR	is ≤ 0.8 W/k	g, testing f	for other chann	nels is opti	onal, refer	to KDB 44	17498 D01	v05r02.

SAR		CLID	
SAR	$IVI \vdash A$	ついち	

Ambient Temperature (°C): 21.5 ± 2 Relative Humidity (%): 52

Liquid Temperature (°C): 21.0 ± 2 Depth of Liquid (cm):>15

Product: Bluetooth USB Dongle

Test Mode: Bluetooth DH5 (Duty Cycle = 76.8%)

		F			SAR 1g	SAR 1g (W/kg)		
Test Position	Antenna	Frequ	iency	Conducted	Scaled SAR 1g	Scaled	Limit	
Body (5mm gap)	Position	Channel	MHz	Power (dBm) (W/kg) (76.8% d/c)		(25% d/c)	(W/kg)	
Horizontal Up	Fixed	01	2403	7.81			1.6	
Horizontal Up	Fixed	39	2441	7.76			1.6	
Horizontal Up	Fixed	78	2480	8.39	0.012	0.004	1.6	
Horizontal Down	Fixed	78	2480	8.39	0.042	0.014	1.6	
Vertical Front	Fixed	78	2480	8.39	0.049	0.160	1.6	
Vertical Back	Fixed	78	2480	8.39	0.069	0.022	1.6	
Tip	Fixed	78	2480	8.39	0.000112	3.65e-005	1.6	
Test Mode: Blu	etooth 2DH	l5 (Duty Cy	cle = 77.0%	(a)				
Vertical Back	Fixed	78	2480	6.87	0.084	0.027	1.6	
Test Mode: Blu	etooth 3DH	l5 (Duty Cy	cle = 77.1%	b)				
Vertical Back	Fixed	78	2480	6.97	0.086	0.028	1.6	
Test Mode: Blu	etooth BLE	(Duty Cycl	e = 60.9%)					
Vertical Back	Fixed	39	2480	6.75	0.074	0.030	1.6	

Note 1: when the 1-g SAR is \leq 0.8 W/kg, testing for other channels is optional, refer to KDB 447498 D01

Note: when the 1-g SAR is ≤ 0.8 W/kg, testing for other channels is optional, refer to KDB 447498 D01 v05r02.

v05r02.

Note 2: The justification for SAR scaling to 25% factor shown in the above data table is based on the following rationale provided by Plantronics: The "most transmitter on percentage" steady-state transmit-side RF mode that a headset that we ship these days would be modulating in GFSK (the least efficient) SCO, and for steady-state operation (ignoring transient states) HV1, that being a 64kbit/sec net transmit data-stream. The duty cycle would be: 240 bits payload (no payload header is present) 68 bits shortened access code (since no payload header follows) 4 bits ramping margin which, at 1.0uS/bit GFSK, is then 312uS with the transmitter on sent every 1250uS, or a duty cycle of 25%.

9.2. SAR Test Notes

9.2.1. Test position and configuration

- 1. Batteries are fully charged at the beginning of the SAR measurements.
- 2. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 3. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- 4. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v05r02.
- 5. SAR was performed with the device configured in the positions according to KDB 447498 D02 SAR Procedures for Dongle Xmtr v02, body SAR was performed with the device to phantom separation distance of 5mm. All USB orientations (A: Horizontal-Up, B: Horizontal-Down, C: Vertical-Front, D: Vertical-Back, and E: Tip) were evaluated with 15cm USB cable for extension. Please check the SAR test photos.

Appendix A. SAR System Validation Data

Date/Time: 12-17-2014

Test Laboratory: QuieTek Lab System Check Body 2450MHz

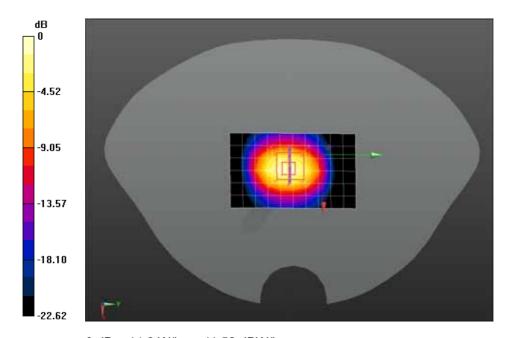
DUT: Dipole 2450 MHz D2450V2; Type: D2450V2

Communication System: UID 0, CW; Communication System Band: D2450(2450MHz); Duty Cycle: 1:1;

Frequency: 2450 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.97$ S/m; $\epsilon r = 52.12$; $\rho = 1000$ kg/m3;

Phantom section: Flat Section; Input Power=250mW

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0


DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(6.88, 6.88, 6.88); Calibrated: 04/03/2014;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 22/01/2014
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Configuration/System Check Body 2450MHz/Area Scan (7x11x1): Measurement grid: dx=10mm, dy=10mm, Maximum value of SAR (measured) = 13.3 W/kg

Configuration/System Check Body 2450MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 82.154 V/m; Power Drift = 0.04 dB
Peak SAR (extrapolated) = 26.0 W/kg

SAR(1 g) = 12.3 W/kg; SAR(10 g) = 5.6 W/kg Maximum value of SAR (measured) = 14.2 W/kg

0 dB = 14.2 W/kg = 11.52 dBW/kg

Appendix B. SAR measurement Data

Date/Time: 12-17-2014

Test Laboratory: QuieTek Lab

Bluetooth 2480MHz Horizontal-Up-DH5

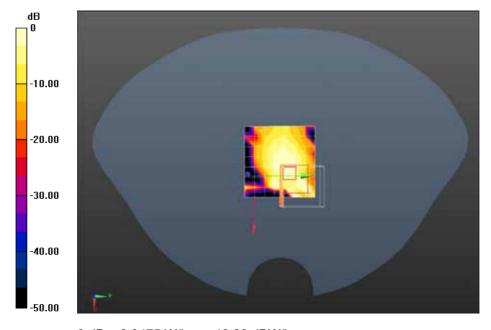
DUT: Bluetooth USB Dongle; Type: BT600

Communication System: UID 0, Bluetooth (0); Communication System Band: ISM Band; Duty Cycle: 1:1.0; Frequency: 2480 MHz; Medium parameters used: f = 2480 MHz; $\sigma = 2.02$ S/m; $\epsilon = 52.01$; $\rho = 1000$ kg/m3;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:


- Probe: EX3DV4 SN3710; ConvF(6.88, 6.88, 6.88); Calibrated: 04/03/2014;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 22/01/2014
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Configuration/Bluetooth 2480MHz Horizontal-Up /Area Scan (8x8x1): Measurement grid: dx=8mm, dy=8mm, Maximum value of SAR (measured) = 0.183 W/kg

Configuration/Bluetooth 2480MHz Horizontal-Up /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 2.602 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 0.101 W/kg

SAR(1 g) = 0.012 W/kg; SAR(10 g) = 0.00169 W/kg Maximum value of SAR (measured) = 0.0475 W/kg

0 dB = 0.0475 W/kg = -13.23 dBW/kg

Test Laboratory: QuieTek Lab

Bluetooth 2480MHz Horizontal-Down-DH5

DUT: Bluetooth USB Dongle; Type: BT600

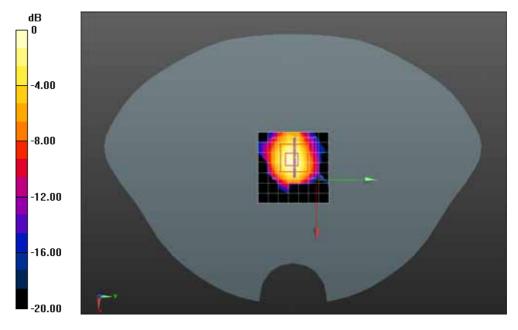
Communication System: UID 0, Bluetooth (0); Communication System Band: ISM Band; Duty Cycle: 1:1.0; Frequency: 2480 MHz; Medium parameters used: f = 2480 MHz; $\sigma = 2.02$ S/m; $\epsilon = 52.01$; $\rho = 1000$ kg/m3;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(6.88, 6.88, 6.88); Calibrated: 04/03/2014;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 22/01/2014
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)


Configuration/Bluetooth 2480MHz Horizontal-Down /Area Scan (8x8x1): Measurement grid: dx=8mm, dy=8mm

Maximum value of SAR (measured) = 0.0381 W/kg

Configuration/Bluetooth 2480MHz Horizontal-Down /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 4.090 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 0.147 W/kg

SAR(1 g) = 0.041 W/kg; SAR(10 g) = 0.013 W/kg Maximum value of SAR (measured) = 0.0399 W/kg

0 dB = 0.0399 W/kg = -13.99 dBW/kg

Test Laboratory: QuieTek Lab

Bluetooth 2480MHz Vertical-Front-DH5

DUT: Bluetooth USB Dongle; Type: BT600

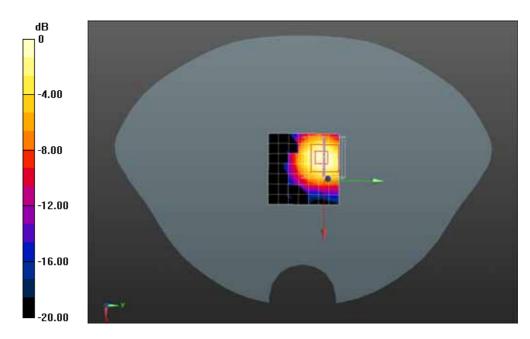
Communication System: UID 0, Bluetooth (0); Communication System Band: ISM Band; Duty Cycle: 1:1.0; Frequency: 2480 MHz; Medium parameters used: f = 2480 MHz; $\sigma = 2.02$ S/m; $\epsilon = 52.01$; $\rho = 1000$ kg/m3;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(6.88, 6.88, 6.88); Calibrated: 04/03/2014;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 22/01/2014
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)


Configuration/Bluetooth 2480MHz Vertical-Front /Area Scan (8x8x1): Measurement grid: dx=8mm, dy=8mm

Maximum value of SAR (measured) = 0.0615 W/kg

Configuration/Bluetooth 2480MHz Vertical-Front /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 5.194 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.0740 W/kg

SAR(1 g) = 0.048 W/kg; SAR(10 g) = 0.018 W/kg Maximum value of SAR (measured) = 0.0566 W/kg

0 dB = 0.0566 W/kg = -12.47 dBW/kg

Test Laboratory: QuieTek Lab

Bluetooth 2480MHz Vertical-Back-DH5

DUT: Bluetooth USB Dongle; Type: BT600

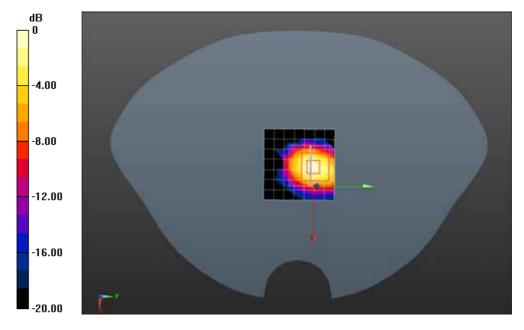
Communication System: UID 0, Bluetooth (0); Communication System Band: ISM Band; Duty Cycle: 1:1.0; Frequency: 2480 MHz; Medium parameters used: f = 2480 MHz; $\sigma = 2.02$ S/m; $\epsilon = 52.01$; $\rho = 1000$ kg/m3;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(6.88, 6.88, 6.88); Calibrated: 04/03/2014;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 22/01/2014
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)


Configuration/Bluetooth 2480MHz Vertical-Back /Area Scan (8x8x1): Measurement grid: dx=8mm, dy=8mm

Maximum value of SAR (measured) = 0.0766 W/kg

Configuration/Bluetooth 2480MHz Vertical-Back /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 4.674 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 0.170 W/kg

SAR(1 g) = 0.067 W/kg; SAR(10 g) = 0.024 W/kg Maximum value of SAR (measured) = 0.0749 W/kg

0 dB = 0.0749 W/kg = -11.26 dBW/kg

Test Laboratory: QuieTek Lab

Bluetooth 2480MHz Vertical-Back-2DH5

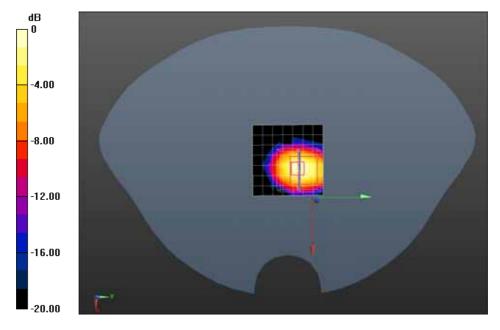
DUT: Bluetooth USB Dongle; Type: BT600

Communication System: UID 0, Bluetooth (0); Communication System Band: ISM Band; Duty Cycle: 1:1.0; Frequency: 2480 MHz; Medium parameters used: f = 2480 MHz; $\sigma = 2.02$ S/m; $\epsilon = 52.01$; $\rho = 1000$ kg/m3;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:


- Probe: EX3DV4 SN3710; ConvF(6.88, 6.88, 6.88); Calibrated: 04/03/2014;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 22/01/2014
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Configuration/Bluetooth 2480MHz Vertical-Back/Area Scan (8x8x1): Measurement grid: dx=8mm, dy=8mm

Maximum value of SAR (measured) = 0.0789 W/kg

Configuration/Bluetooth 2480MHz Vertical-Back/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 4.358 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 0.136 W/kg

SAR(1 g) = 0.082 W/kg; SAR(10 g) = 0.026 W/kg Maximum value of SAR (measured) = 0.0827 W/kg

0 dB = 0.0827 W/kg = -10.82 dBW/kg

Date/Time: 12-17-2014

Test Laboratory: QuieTek Lab

Bluetooth 2480MHz Vertical-Back-3DH5

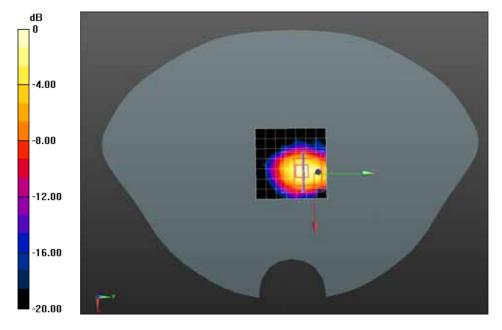
DUT: Bluetooth USB Dongle; Type: BT600

Communication System: UID 0, Bluetooth (0); Communication System Band: ISM Band; Duty Cycle: 1:1.0; Frequency: 2480 MHz; Medium parameters used: f = 2480 MHz; $\sigma = 2.02$ S/m; $\epsilon = 52.01$; $\rho = 1000$ kg/m3;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

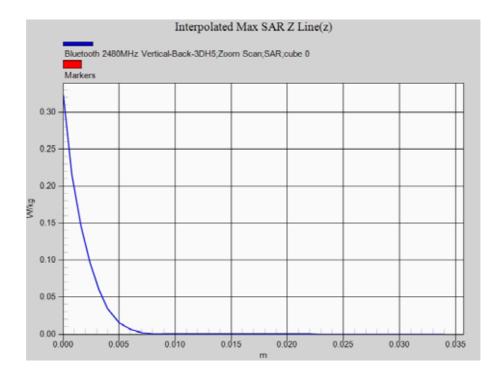
DASY5 Configuration:


- Probe: EX3DV4 SN3710; ConvF(6.88, 6.88, 6.88); Calibrated: 04/03/2014;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 22/01/2014
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Configuration/Bluetooth 2480MHz Vertical-Back/Area Scan (8x8x1): Measurement grid: dx=8mm, dy=8mm

Maximum value of SAR (measured) = 0.0799 W/kg

Configuration/Bluetooth 2480MHz Vertical-Back/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 4.451 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 0.323 W/kg


SAR(1 g) = 0.085 W/kg; SAR(10 g) = 0.027 W/kg Maximum value of SAR (measured) = 0.0842 W/kg

0 dB = 0.0842 W/kg = -10.75 dBW/kg

Z-Axis Plot

Date/Time: 12-17-2014

Test Laboratory: QuieTek Lab

Bluetooth 2480MHz Vertical-Back-BLE

DUT: Bluetooth USB Dongle; Type: BT600

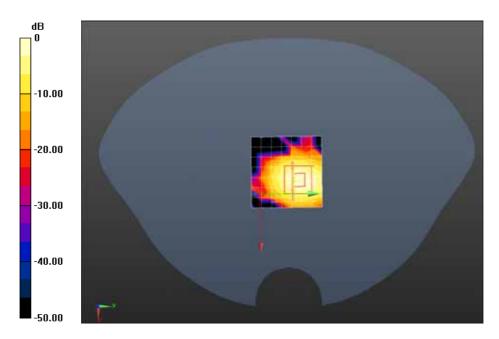
Communication System: UID 0, Bluetooth (0); Communication System Band: ISM Band; Duty Cycle: 1:1.0; Frequency: 2480 MHz; Medium parameters used: f = 2480 MHz; $\sigma = 2.02$ S/m; $\epsilon = 52.01$; $\rho = 1000$ kg/m3;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(6.88, 6.88, 6.88); Calibrated: 04/03/2014;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 22/01/2014
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

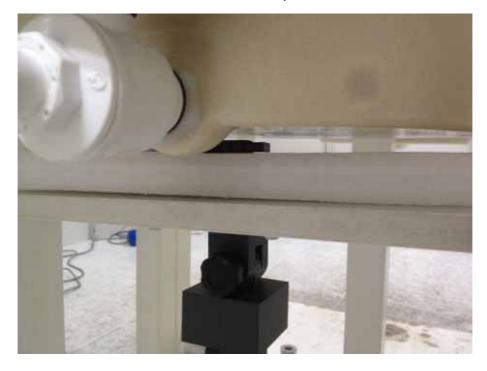

Configuration/Bluetooth 2480MHz Vertical-Back /Area Scan (8x8x1): Measurement grid: dx=8mm, dy=8mm

Maximum value of SAR (measured) = 0.0796 W/kg

Configuration/Bluetooth 2480MHz Vertical-Back /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 4.449 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 0.127 W/kg

SAR(1 g) = 0.070 W/kg; SAR(10 g) = 0.025 W/kg Maximum value of SAR (measured) = 0.0827 W/kg


0 dB = 0.0827 W/kg = -10.82 dBW/kg

Appendix C. Test Setup Photographs & EUT Photographs

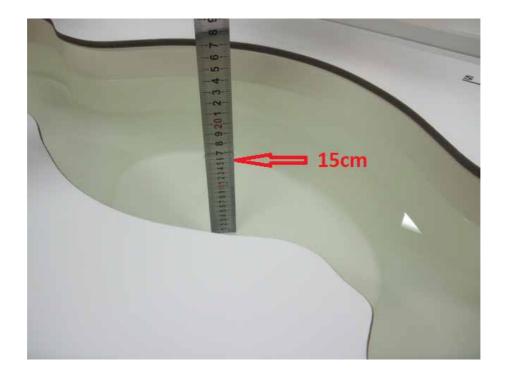
Test Setup Photographs

Horizontal up

Horizontal down

Vertical front

Horizontal down



Tip

Depth of the liquid in the phantom – Zoom in

Note: The position used in the measurements were according to IEEE1528

EUT Photographs

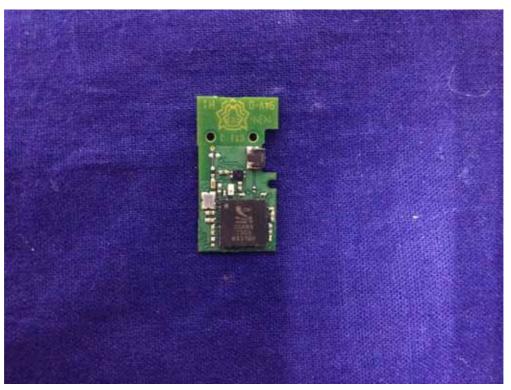
(1) EUT Photo

(2) EUT Photo

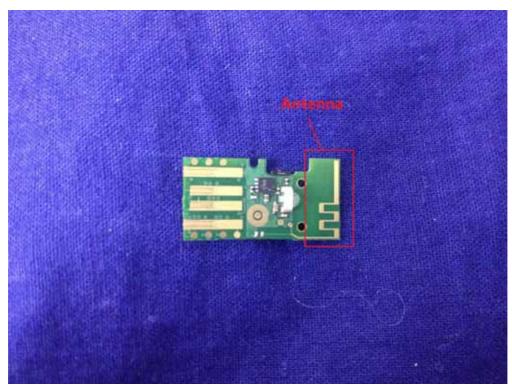
(3) EUT Photo

(4) EUT Photo

(5) EUT Photo



(6) EUT Photo



(7) EUT Photo

(8) EUT Photo

Appendix D. Probe Calibration Data

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Quietek (Auden)

Certificate No: EX3-3710 Mar14

CALIBRATION CERTIFICATE

Object EX3DV4 - SN:3710

QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v4, QA CAL-23.v5, Calibration procedure(s)

QA CAL-25.v6

Calibration procedure for dosimetric E-field probes

March 4, 2014 Calibration date:

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	04-Apr-13 (No. 217-01733)	Apr-14
Power sensor E4412A	MY41498087	04-Apr-13 (No. 217-01733)	Apr-14
Reference 3 dB Attenuator	SN: S5054 (3c)	04-Apr-13 (No. 217-01737)	Apr-14
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-13 (No. 217-01735)	Apr-14
Reference 30 dB Attenuator	SN: S5129 (30b)	04-Apr-13 (No. 217-01738)	Apr-14
Reference Probe ES3DV2	SN: 3013	30-Dec-13 (No. ES3-3013_Dec13)	Dec-14
DAE4	SN: 660	13-Dec-13 (No. DAE4-660_Dec13)	Dec-14
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-13)	In house check: Oct-14

Function Signature Calibrated by: Jeton Kastrati Laboratory Technician Katja Pokovic Technical Manager Approved by: Issued: March 4, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX3-3710_Mar14 Page 1 of 11

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

tissue simulating liquid TSL NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters A, B, C, D

Polarization o φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close
- proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-3710 Mar14 Page 2 of 11

Probe EX3DV4

SN:3710

Manufactured: Calibrated:

July 21, 2009 March 4, 2014

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: EX3-3710_Mar14

Page 3 of 11

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3710

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	0.51	0.56	0.44	± 10.1 %
DCP (mV) ⁸	100.3	97.6	101.3	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc ^b (k=2)
0	CW	W X 0.0	0.0	1.0	0.00	137.9	±3.5 %	
		Y	0.0	0.0	1.0		136.7	
		Z	0.0	0.0	1.0		139.8	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6).

Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3710

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
450	43.5	0.87	10.42	10.42	10.42	0.17	2.22	± 13.3 %
750	41.9	0.89	9.76	9.76	9.76	0.62	0.69	± 12.0 %
835	41.5	0.90	9.56	9.56	9.56	0.57	0.69	± 12.0 %
900	41.5	0.97	9.42	9.42	9.42	0.53	0.72	± 12.0 %
1810	40.0	1.40	7.74	7.74	7.74	0.41	0.94	± 12.0 %
1900	40.0	1.40	7.72	7.72	7.72	0.49	0.85	± 12.0 %
2450	39.2	1.80	7.04	7.04	7.04	0.39	1.03	± 12.0 %
2600	39.0	1.96	6.87	6.87	6.87	0.60	0.80	± 12.0 %
3500	37.9	2.91	6.82	6.82	6.82	0.55	0.88	± 13.1 %
5200	36.0	4.66	4.91	4.91	4.91	0.40	1.80	± 13.1 %
5500	35.6	4.96	4.63	4.63	4.63	0.40	1.80	± 13.1 %
5800	35.3	5.27	4.43	4.43	4.43	0.40	1.80	± 13.1 %

^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of

the ConvF uncertainty for indicated target tissue parameters.

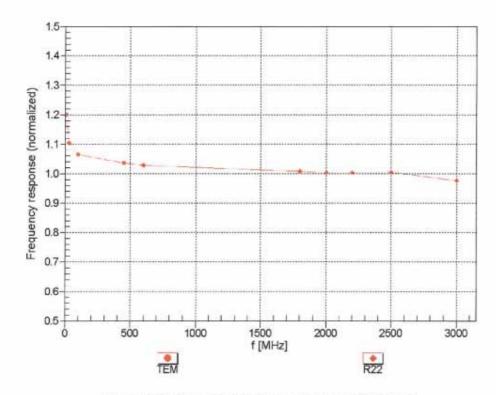
Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

March 4, 2014 EX3DV4-SN:3710

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3710

Calibration Parameter Determined in Body Tissue Simulating Media

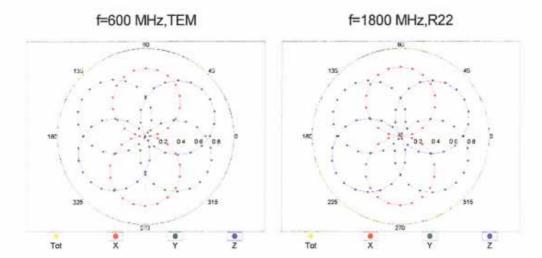
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
450	56.7	0.94	10.53	10.53	10.53	0.10	1.00	± 13.3 %
750	55.5	0.96	9.28	9.28	9.28	0.39	0.93	± 12.0 %
835	55.2	0.97	9.22	9.22	9.22	0.65	0.72	± 12.0 %
900	55.0	1.05	9.04	9.04	9.04	0.75	0.67	± 12.0 %
1810	53.3	1.52	7.36	7.36	7.36	0.80	0.62	± 12.0 %
1900	53.3	1.52	7.25	7.25	7.25	0.55	0.76	± 12.0 %
2450	52.7	1.95	6.88	6.88	6.88	0.80	0.58	± 12.0 %
2600	52.5	2.16	6.67	6.67	6.67	0.80	0.50	± 12.0 %
3500	51.3	3.31	6.29	6.29	6.29	0.44	1.02	± 13.1 %
5200	49.0	5.30	4.22	4.22	4.22	0.50	1.90	± 13.1 %
5500	48.6	5.65	3.91	3.91	3.91	0.50	1.90	± 13.1 %
5800	48.2	6.00	4.00	4.00	4.00	0.50	1.90	± 13.1 %

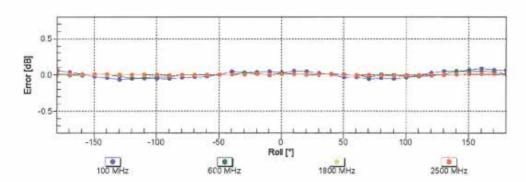

 $^{^{\}rm C}$ Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

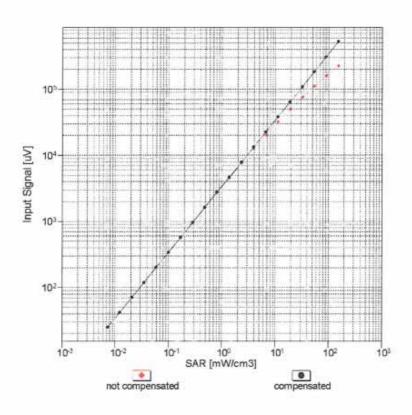
Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

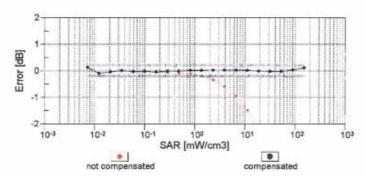



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: EX3-3710_Mar14 Page 7 of 11

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$


Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Certificate No: EX3-3710_Mar14

Page 8 of 11


Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: EX3-3710_Mar14

Page 10 of 11

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3710

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-19.6
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

Certificate No: EX3-3710_Mar14

Page 11 of 11

Appendix E. Dipole Calibration Data

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client Quitek-CN (Auden)

Certificate No: D2450V2-839_Feb14

Accreditation No.: SCS 108

Object D2450V2 - SN: 839

Calibration procedure(s) QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date: February 24, 2014

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	09-Oct-13 (No. 217-01827)	Oct-14
Power sensor HP 8481A	US37292783	09-Oct-13 (No. 217-01827)	Oct-14
Power sensor HP 8481A	MY41092317	09-Oct-13 (No. 217-01828)	Oct-14
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-13 (No. 217-01736)	Apr-14
Type-N mismatch combination	SN: 5047.3 / 06327	04-Apr-13 (No. 217-01739)	Apr-14
Reference Probe ES3DV3	SN: 3205	30-Dec-13 (No. ES3-3205_Dec13)	Dec-14
DAE4	SN: 601	25-Apr-13 (No. DAE4-601_Apr13)	Apr-14
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-13)	In house check: Oct-14
	Name	Function	Signature
Calibrated by:	Israe El-Naouq	Laboratory Technician	Osran Mouses
Approved by:	Katja Pokovic	Technical Manager	le le

Issued: February 24, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-839_Feb14 Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.1 ± 6 %	1.86 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.3 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.0 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.15 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.3 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.7 ± 6 %	2.02 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.8 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	49.9 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.86 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.1 W/kg ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.5 Ω + 2.4 jΩ
Return Loss	- 26.2 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$50.6 \Omega + 4.3 j\Omega$
Return Loss	- 27.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.159 ns	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 20, 2009

DASY5 Validation Report for Head TSL

Date: 24.02.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 839

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.86 \text{ S/m}$; $\varepsilon_r = 38.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

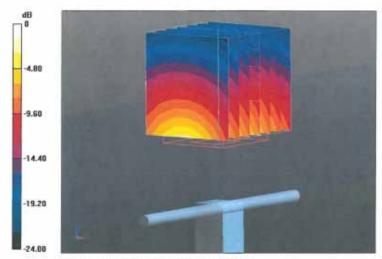
Probe: ES3DV3 - SN3205; ConvF(4.53, 4.53, 4.53); Calibrated: 30.12.2013;

· Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 25.04.2013

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

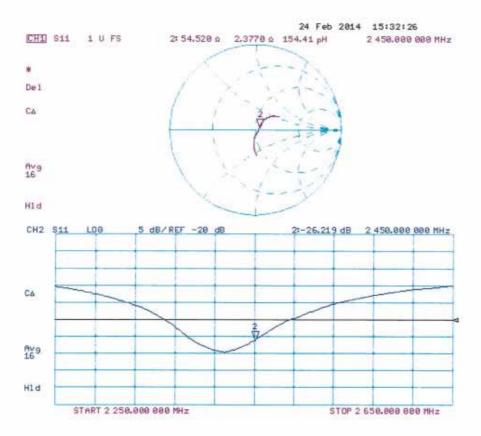
DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)


Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 99.591 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 27.9 W/kg

SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.15 W/kg


Maximum value of SAR (measured) = 17.0 W/kg

0 dB = 17.0 W/kg = 12.30 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 24.02.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 839

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2.02 \text{ S/m}$; $\varepsilon_r = 50.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.35, 4.35, 4.35); Calibrated: 30.12.2013;

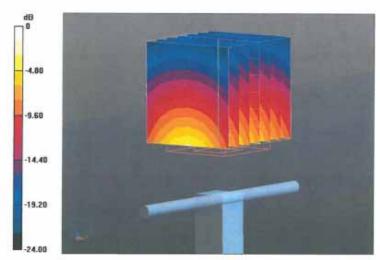
· Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 25.04.2013

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

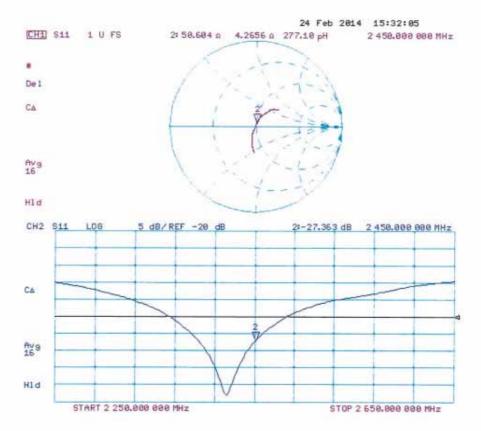

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.267 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 27.1 W/kg

SAR(1 g) = 12.8 W/kg; SAR(10 g) = 5.86 W/kg

Maximum value of SAR (measured) = 17.0 W/kg


0 dB = 17.0 W/kg = 12.30 dBW/kg

Certificate No: D2450V2-839_Feb14

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: D2450V2-839_Feb14

Page 8 of 8

Appendix F. DAE Calibration Data

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Object	DAE4 - SD 000 D	004 BM - SN: 1220	
Calibration procedure(s)	QA CAL-06.v26 Calibration proces	dure for the data acquisition of	electronics (DAE)
Calibration date:	January 22, 2014		
All calibrations have been cond		y facility: environment temperature (22 ±	s and are part of the certificate. 3)°C and humidity < 70%.
	&TE critical for calibration)		
All calibrations have been cond Calibration Equipment used (M Primary Standards	&TE critical for calibration)	r facility: environment temperature (22 ±	3)°C and humidity < 70%.
All calibrations have been cond	&TE critical for calibration)	r facility: environment temperature (22 ± cal Date (Certificate No.)	3)°C and humidity < 70%. Scheduled Calibration
All calibrations have been cond Calibration Equipment used (M Primary Standards Keithley Multimeter Type 2001	8TE critical for calibration) ID # SN: 0810278 ID # SE UWS 053 AA 1001	Cal Date (Certificate No.) 01-Oct-13 (No:13976) Check Date (in house)	Scheduled Calibration Oct-14

Fin Bomholt Approved by: Deputy Technical Manager

Issued: January 22, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: DAE4-1220_Jan14

Page 1 of 5

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstresse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S wiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-1220_Jan14

Page 2 of 5

DC Voltage Measurement A/D - Converter Resolution nominal

High Range: $1LSB = 6.1 \mu V$, full range = -100...+300 mVLow Range: 1LSB = 61 n V, full range = -1......+3 n VDASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Υ	Z
High Range	405.217 ± 0.02% (k=2)	404.944 ± 0.02% (k=2)	404.170 ± 0.02% (k=2)
Low Range	3.97747 ± 1.50% (k=2)	3.99640 ± 1.50% (k=2)	3.98639 ± 1.50% (k=2)

Connector Angle

Connector Angle to be used in DASY system	176.5 ° ± 1 °
---	---------------

Certificate No: DAE4-1220_Jan14

Page 3 of 5

Appendix

1. DC Voltage Linearity

High Range	Reading (μV)	Difference (μV)	Error (%)
Channel X + Input	199996.00	0.76	0.00
Channel X + Input	20002.66	1.98	0.01
Channel X - Input	-19998.07	2.88	-0.01
Channel Y + Input	199996.91	1.60	0.00
Channel Y + Input	20001.20	0.56	0.00
Channel Y - Input	-20001.74	-0.74	0.00
Channel Z + Input	199994.91	-0.44	-0.00
Channel Z + Input	20000.27	-0.23	-0.00
Channel Z - Input	-20001.65	-0.63	0.00

Low Range	Reading (μV)	Difference (μV)	Error (%)
Channel X + Input	2001.09	0.27	0.01
Channel X + Input	202.00	0.81	0.40
Channel X - Input	-197.89	0.69	-0.35
Channel Y + Input	2000.99	0.22	0.01
Channel Y + Input	200.07	-1.02	-0.50
Channel Y - Input	-201.19	-2.34	1.18
Channel Z + Input	2000.92	0.16	0.01
Channel Z + Input	200.20	-0.82	-0.41
Channel Z - Input	-199.32	-0.45	0.23

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	10.55	8.63
	- 200	-6.76	-8.77
Channel Y	200	-9.89	-10.34
	- 200	7.59	7.71
Channel Z	200	12.72	12.38
	- 200	-13.94	-14.25

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (μV)
Channel X	200	-	1.02	-3.16
Channel Y	200	8.35	-	2.35
Channel Z	200	10.56	5.06	-

Certificate No: DAE4-1220_Jan14

Page 4 of 5

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15888	15493
Channel Y	16012	15900
Channel Z	15706	16099

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input 10MΩ

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	1.13	-0.62	2.79	0.50
Channel Y	-0.89	-2.63	0.76	0.48
Channel Z	-0.60	-2.36	0.94	0.50

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Certificate No: DAE4-1220_Jan14