

FCC TEST REPORT

- **REPORT NO.:** RF971015A03
 - MODEL NO.: BackBeat Adapter
 - **RECEIVED:** Oct. 15, 2008
 - **TESTED:** Oct. 16 ~ 23, 2008
 - **ISSUED:** Oct. 28, 2008

APPLICANT: Plantronics, Inc.

ADDRESS: 345 Encinal Street, Santa Cruz, CA, 95060, USA

ISSUED BY: Advance Data Technology Corporation

LAB LOCATION: No. 47, 14th Ling, Chia Pau Tsuen, Lin Kou Hsiang 244, Taipei Hsien, Taiwan, R.O.C.

This test report consists of 75 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by TAF or any government agencies. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

2. SUMMARY OF TEST RESULTS 5 2.1 MEASUREMENT UNCERTAINTY 6 3. GENERAL INFORMATION 7 3.1 GENERAL DESCRIPTION OF EUT 7 3.2 DESCRIPTION OF TEST MODES 8 3.2.1 CONFIGURATION OF SYSTEM UNDER TEST 9 3.2.2 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL 10 3.2.3 GENERAL DESCRIPTION OF APPLIED STANDARDS 12 3.2.4 DESCRIPTION OF SUPPORT UNITS 12 4.1 CONDUCTED EMISSION MEASUREMENT 13 4.1 CONDUCTED EMISSION MEASUREMENT 13 4.1.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT 13 4.1.2 TEST NORT DEST STANDARD 14 4.1.4 DEVIATION FROM TEST STANDARD 14 4.1.5 TEST RESULTS (1) 16 4.1.7 TEST RESULTS (2) 18 4.2 RADIATED EMISSION MEASUREMENT 20 4.2.1 TEST RESULTS (2) 18 4.2.2 TEST INSTRUMENTS 21 4.2.3 TEST RESULTS (2) 21 4.2.4 DEVIATION F	1.	CERTIFICATION	4
2.1 MEASUREMENT UNCERTAINTY 6 3. GENERAL INFORMATION 7 3.1 GENERAL DESCRIPTION OF EUT 7 3.2 DESCRIPTION OF TEST MODES 8 3.2.1 CONFIGURATION OF SYSTEM UNDER TEST 9 3.2.2 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL 10 3.2.3 GENERAL DESCRIPTION OF SUPPORT UNITS 12 3.4 DESCRIPTION OF SUPPORT UNITS 12 4. TEST TYPES AND RESULTS 13 4.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT 13 4.1.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT 13 4.1.2 TEST INSTRUMENTS 13 4.1.3 TEST SETUP 14 4.1.4 DEVIATION FROM TEST STANDARD 14 4.1.5 TEST RESULTS (1) 16 4.1.7 TEST RESULTS (2) 18 4.2 RADIATED EMISSION MEASUREMENT 20 4.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT 20 4.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT 20 4.2.2 TEST NERULIS 21 4.2	2.	SUMMARY OF TEST RESULTS	5
3.1 GENERAL DESCRIPTION OF EUT. .7 3.2 DESCRIPTION OF TEST MODES .8 3.2.1 CONFIGURATION OF SYSTEM UNDER TEST. .9 3.2.2 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL .10 3.3 GENERAL DESCRIPTION OF APPLIED STANDARDS .12 3.4 DESCRIPTION OF SUPPORT UNITS .12 4.4 TEST TYPES AND RESULTS .13 4.1 CONDUCTED EMISSION MEASUREMENT .13 4.1.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT .13 4.1.3 TEST PROCEDURES .14 4.1.4 DEVIATION FROM TEST STANDARD .14 4.1.5 TEST RESULTS (1) .16 4.1.7 TEST RESULTS (2) .18 4.1.8 EUT OPERATING CONDITIONS .16 4.1.7 TEST RESULTS (2) .18 4.2 TEST INSTRUMENTS .20 4.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT .20 4.2.2 TEST INSTRUMENTS .21 4.2.3 TEST PROCEDURES .21 4.2.4 DEVIATION FROM TEST STANDARD .22 4.2.5 </td <td>2.1</td> <td></td> <td></td>	2.1		
3.1 GENERAL DESCRIPTION OF EUT. .7 3.2 DESCRIPTION OF TEST MODES .8 3.2.1 CONFIGURATION OF SYSTEM UNDER TEST. .9 3.2.2 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL .10 3.3 GENERAL DESCRIPTION OF APPLIED STANDARDS .12 3.4 DESCRIPTION OF SUPPORT UNITS .12 4.4 TEST TYPES AND RESULTS .13 4.1 CONDUCTED EMISSION MEASUREMENT .13 4.1.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT .13 4.1.3 TEST PROCEDURES .14 4.1.4 DEVIATION FROM TEST STANDARD .14 4.1.5 TEST RESULTS (1) .16 4.1.7 TEST RESULTS (2) .18 4.1.8 EUT OPERATING CONDITIONS .16 4.1.7 TEST RESULTS (2) .18 4.2 TEST INSTRUMENTS .20 4.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT .20 4.2.2 TEST INSTRUMENTS .21 4.2.3 TEST PROCEDURES .21 4.2.4 DEVIATION FROM TEST STANDARD .22 4.2.5 </td <td>3.</td> <td>GENERAL INFORMATION</td> <td>7</td>	3.	GENERAL INFORMATION	7
3.2 DESCRIPTION OF TEST MODES. 8 3.2.1 CONFIGURATION OF SYSTEM UNDER TEST. 9 3.2.2 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL 10 3.2.3 GENERAL DESCRIPTION OF SUPPORT UNITS. 12 3.2.4 DESCRIPTION OF SUPPORT UNITS. 12 4. TEST TYPES AND RESULTS. 13 4.1 CONDUCTED EMISSION MEASUREMENT 13 4.1.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT. 13 4.1.2 TEST INSTRUMENTS 13 4.1.3 TEST PROCEDURES. 14 4.1.4 DEVIATION FROM TEST STANDARD 14 4.1.5 TEST RESULTS (1) 16 4.1.7 TEST RESULTS (2) 18 4.2 RADIATED EMISSION MEASUREMENT 20 4.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT 20 4.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT 20 4.2.2 TEST INSTRUMENTS 21 4.2.3 TEST PROCEDURES 21 4.2.4 DEVIATION FROM TEST STANDARD 22 4.2.5 TEST SETUP 23 4.2.6 <td>3.1</td> <td>GENERAL DESCRIPTION OF EUT</td> <td>7</td>	3.1	GENERAL DESCRIPTION OF EUT	7
32.1 CONFIGURATION OF SYSTEM UNDER TEST. 9 32.2 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL 10 3.2.3 GENERAL DESCRIPTION OF APPLIED STANDARDS 12 3.2.4 DESCRIPTION OF SUPPORT UNITS 12 4. TEST TYPES AND RESULTS 13 4.1 CONDUCTED EMISSION MEASUREMENT 13 4.1.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT 13 4.1.2 TEST INSTRUMENTS 13 4.1.3 TEST PROCEDURES 14 4.1.4 DEVIATION FROM TEST STANDARD 14 4.1.5 TEST RESULTS (1) 16 4.1.7 TEST RESULTS (2) 18 4.1.8 EUT OPERATING CONDITIONS 15 4.1.7 TEST RESULTS (2) 18 4.2 RADIATED EMISSION MEASUREMENT 20 4.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT 20 4.2.2 TEST INSTRUMENTS 21 4.2.3 TEST PROCEDURES 22 4.2.4 DEVIATION FROM TEST STANDARD 22 4.2.5 TEST NETOP 23 4.2.6 EUT OPERATIN	3.2		
32.2 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL 10 32.3 GENERAL DESCRIPTION OF APPLIED STANDARDS 12 32.4 DESCRIPTION OF SUPPORT UNITS 12 4 TEST TYPES AND RESULTS 13 4.1 CONDUCTED EMISSION MEASUREMENT 13 4.1.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT 13 4.1.2 TEST INSTRUMENTS 13 4.1.4 DEVIATION FROM TEST STANDARD 14 4.1.5 TEST SETUP 14 4.1.6 EUT OPERATING CONDITIONS 15 4.1.7 TEST RESULTS (1) 16 4.1.7 TEST RESULTS (2) 18 4.2 RADIATED EMISSION MEASUREMENT 20 4.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT 20 4.2.2 TEST INSTRUMENTS 21 4.2.3 TEST PROCEDURES 21 4.2.4 DEVIATION FROM TEST STANDARD 22 4.2.5 TEST NETUP 23 4.2 TEST INSTRUMENTS 24 4.2.4 DEVIATION FROM TEST STANDARD 22 4.2.5 TEST RESULTS <td< td=""><td>3.2.1</td><td></td><td></td></td<>	3.2.1		
32.3GENERAL DESCRIPTION OF APPLIED STANDARDS123.2.4DESCRIPTION OF SUPPORT UNITS124.TEST TYPES AND RESULTS134.1CONDUCTED EMISSION MEASUREMENT134.1.1LIMITS OF CONDUCTED EMISSION MEASUREMENT134.1.2TEST INSTRUMENTS134.1.3TEST PROCEDURES144.1.4DEVIATION FROM TEST STANDARD144.1.5TEST SETUP144.1.6EUT OPERATING CONDITIONS154.1.7TEST RESULTS (1)164.1.7TEST RESULTS (2)184.2RADIATED EMISSION MEASUREMENT204.2.1LIMITS OF RADIATED EMISSION MEASUREMENT204.2.2TEST INSTRUMENTS212.3TEST PROCEDURES224.4DEVIATION FROM TEST STANDARD224.2.5TEST SETUP234.2.6EUT OPERATING CONDITIONS242.7TEST RESULTS254.3NUMBER OF HOPPING FREQUENCY USED344.3.1LIMIT OF HOPPING FREQUENCY USED344.3.3TEST PROCEDURES344.3.4DEVIATION FROM TEST STANDARD354.3.5TEST RESULTS354.4DEVIATION FROM TEST STANDARD384.4.1LIMIT OF DWELL TIME USED384.4.2TEST INSTRUMENTS384.4.3TEST PROCEDURES384.4.4DEVIATION FROM TEST STANDARD384.4.5TEST SETUP394.6TEST R	3.2.2		
4.TEST TYPES AND RESULTS.134.1CONDUCTED EMISSION MEASUREMENT134.1.1LIMITS OF CONDUCTED EMISSION MEASUREMENT.134.1.2TEST INSTRUMENTS134.1.3TEST PROCEDURES.144.1.4DEVIATION FROM TEST STANDARD144.1.5TEST SETUP144.1.6EUT OPERATING CONDITIONS.154.1.7TEST RESULTS (1)164.1.7TEST RESULTS (2)184.2RADIATED EMISSION MEASUREMENT204.2.1LIMITS OF RADIATED EMISSION MEASUREMENT204.2.2TEST INSTRUMENTS214.2.3TEST PROCEDURES224.4DEVIATION FROM TEST STANDARD224.2.5TEST SETUP234.2.6EUT OPERATING CONDITIONS.244.2.7TEST RESULTS254.3NUMBER OF HOPPING FREQUENCY USED.344.3.1LIMIT OF HOPPING FREQUENCY USED.344.3.2TEST INSTRUMENTS344.3.3TEST PROCEDURES.344.3.4DEVIATION FROM TEST STANDARD354.3.5TEST SETUP354.3.6TEST RESULTS364.3.7TEST RESULTS364.3.8TEST PROCEDURES384.4.1LIMIT OF DWELL TIME USED.384.4.2TEST INSTRUMENTS384.4.3TEST RESULTS384.4.4DEVIATION FROM TEST STANDARD384.4.5TEST SETUP364.5 </td <td></td> <td></td> <td></td>			
4.TEST TYPES AND RESULTS.134.1CONDUCTED EMISSION MEASUREMENT134.1.1LIMITS OF CONDUCTED EMISSION MEASUREMENT.134.1.2TEST INSTRUMENTS134.1.3TEST PROCEDURES.144.1.4DEVIATION FROM TEST STANDARD144.1.5TEST SETUP144.1.6EUT OPERATING CONDITIONS.154.1.7TEST RESULTS (1)164.1.7TEST RESULTS (2)184.2RADIATED EMISSION MEASUREMENT204.2.1LIMITS OF RADIATED EMISSION MEASUREMENT204.2.2TEST INSTRUMENTS214.2.3TEST PROCEDURES224.4DEVIATION FROM TEST STANDARD224.2.5TEST SETUP234.2.6EUT OPERATING CONDITIONS.244.2.7TEST RESULTS254.3NUMBER OF HOPPING FREQUENCY USED.344.3.1LIMIT OF HOPPING FREQUENCY USED.344.3.2TEST INSTRUMENTS344.3.3TEST PROCEDURES.344.3.4DEVIATION FROM TEST STANDARD354.3.5TEST SETUP354.3.6TEST RESULTS364.3.7TEST RESULTS364.3.8TEST PROCEDURES384.4.1LIMIT OF DWELL TIME USED.384.4.2TEST INSTRUMENTS384.4.3TEST RESULTS384.4.4DEVIATION FROM TEST STANDARD384.4.5TEST SETUP364.5 </td <td>3.2.4</td> <td>DESCRIPTION OF SUPPORT UNITS</td> <td> 12</td>	3.2.4	DESCRIPTION OF SUPPORT UNITS	12
4.1CONDUCTED EMISSION MEASUREMENT134.1.1LIMITS OF CONDUCTED EMISSION MEASUREMENT134.1.2TEST INSTRUMENTS134.1.3TEST PROCEDURES144.1.4DEVIATION FROM TEST STANDARD144.1.5TEST SETUP144.1.6EUT OPERATING CONDITIONS154.1.7TEST RESULTS (1)164.1.7TEST RESULTS (2)184.1.7TEST RESULTS (2)184.1.8EUT OPERATING CONDITIONS204.1.9IMITS OF RADIATED EMISSION MEASUREMENT204.2.1LIMITS OF RADIATED EMISSION MEASUREMENT204.2.2TEST INSTRUMENTS214.2.3TEST PROCEDURES224.2.4DEVIATION FROM TEST STANDARD224.2.5TEST SETUP234.2.6EUT OPERATING CONDITIONS244.2.7TEST RESULTS254.3NUMBER OF HOPPING FREQUENCY USED344.3.1LIMIT OF HOPPING FREQUENCY USED344.3.2TEST INSTRUMENTS344.3.3TEST PROCEDURES354.3.4DEVIATION FROM TEST STANDARD354.3.5TEST SETUP354.3.4DEVIATION FROM TEST STANDARD364.3.5TEST SETUP354.4DEVIATION FROM TEST STANDARD364.5TEST NSTRUMENTS384.4.1LIMIT OF DWELL TIME USED384.4.2TEST INSTRUMENTS384.4.3TEST PROCEDURES<	4.		
4.1.1LIMITS OF CONDUCTED EMISSION MEASUREMENT.134.1.2TEST INSTRUMENTS134.1.3TEST PROCEDURES144.1.4DEVIATION FROM TEST STANDARD144.1.5TEST SETUP144.1.6EUT OPERATING CONDITIONS.154.1.7TEST RESULTS (1)164.1.7TEST RESULTS (2)184.1.8FRADIATED EMISSION MEASUREMENT204.2.1LIMITS OF RADIATED EMISSION MEASUREMENT204.2.2TEST INSTRUMENTS214.2.3TEST PROCEDURES224.2.4DEVIATION FROM TEST STANDARD224.2.5TEST SETUP234.2.6EUT OPERATING CONDITIONS244.2.7TEST RESULTS254.3NUMBER OF HOPPING FREQUENCY USED344.3.1LIMIT OF HOPPING FREQUENCY USED344.3.2TEST INSTRUMENTS344.3.3TEST PROCEDURES344.3.4DEVIATION FROM TEST STANDARD354.3LIMIT OF HOPPING FREQUENCY USED344.3.4DEVIATION FROM TEST STANDARD354.3TEST PROCEDURES364.4DEVIATION FROM TEST STANDARD384.4.1LIMIT OF DWELL TIME USED384.4.2TEST INSTRUMENTS384.4.3TEST PROCEDURES384.4.4DEVIATION FROM TEST STANDARD384.4.5TEST SETUP394.4.6TEST RESULTS394.4.7TEST SETUP39	4.1		
4.1.2 TEST INSTRUMENTS 13 4.1.3 TEST PROCEDURES 14 4.1.4 DEVIATION FROM TEST STANDARD 14 4.1.5 TEST SETUP 14 4.1.6 EUT OPERATING CONDITIONS 15 4.1.7 TEST RESULTS (1) 16 4.1.7 TEST RESULTS (2) 18 4.2 RADIATED EMISSION MEASUREMENT 20 4.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT 20 4.2.2 TEST INSTRUMENTS 21 4.2.3 TEST PROCEDURES 22 4.2.4 DEVIATION FROM TEST STANDARD 22 4.2.5 TEST SETUP 23 4.2.6 EUT OPERATING CONDITIONS 24 4.2.7 TEST RESULTS 25 3.8 NUMBER OF HOPPING FREQUENCY USED 34 4.3.1 LIMIT OF HOPPING FREQUENCY USED 34 4.3.2 TEST INSTRUMENTS 34 4.3.3 TEST PROCEDURES 34 4.3.4 DEVIATION FROM TEST STANDARD 35 4.3.5 TEST SETUP 35 4.3.6 TEST RESULTS </td <td>4.1.1</td> <td></td> <td></td>	4.1.1		
4.1.3TEST PROCEDURES.144.1.4DEVIATION FROM TEST STANDARD144.1.5TEST SETUP144.1.6EUT OPERATING CONDITIONS.154.1.7TEST RESULTS (1)164.1.7TEST RESULTS (2)184.2RADIATED EMISSION MEASUREMENT204.2.1LIMITS OF RADIATED EMISSION MEASUREMENT204.2.2TEST INSTRUMENTS214.2.3TEST PROCEDURES.224.2.4DEVIATION FROM TEST STANDARD224.2.5TEST SETUP234.2.6EUT OPERATING CONDITIONS244.2.7TEST RESULTS254.3NUMBER OF HOPPING FREQUENCY USED344.3.1LIMIT OF HOPPING FREQUENCY USED344.3.2TEST INSTRUMENTS344.3.3TEST PROCEDURES344.3.4DEVIATION FROM TEST STANDARD354.3DEVIATION FROM TEST STANDARD354.3.4DEVIATION FROM TEST STANDARD354.3.5TEST SETUP354.4DEVIATION FROM TEST STANDARD354.4DEVIATION FROM TEST STANDARD384.4.4DEVIATION FROM TEST STANDARD384.4.4DEVIATION FROM TEST STANDARD384.4.4DEVIATION FROM TEST STANDARD384.4.5TEST RESULTS384.4.6TEST RESULTS384.4.7TEST SETUP394.4.6TEST RESULTS394.4.7TEST SETUP39 <tr< td=""><td>412</td><td></td><td></td></tr<>	412		
4.1.4DEVIATION FROM TEST STANDARD144.1.5TEST SETUP144.1.6EUT OPERATING CONDITIONS154.1.7TEST RESULTS (1)164.1.7TEST RESULTS (2)184.2RADIATED EMISSION MEASUREMENT204.2.1LIMITS OF RADIATED EMISSION MEASUREMENT204.2.2TEST INSTRUMENTS214.2.3TEST PROCEDURES224.2.4DEVIATION FROM TEST STANDARD224.2.5TEST SETUP234.2.6EUT OPERATING CONDITIONS244.2.7TEST RESULTS254.3NUMBER OF HOPPING FREQUENCY USED344.3.1LIMIT OF HOPPING FREQUENCY USED344.3.2TEST INSTRUMENTS344.3.3TEST PROCEDURES344.3.4DEVIATION FROM TEST STANDARD354.3AUTION FROM TEST STANDARD354.3.4DEVIATION FROM TEST STANDARD354.3.5TEST SETUP354.3.6TEST RESULTS354.3.7TEST RESULTS364.4DEVIATION FROM TEST STANDARD384.4.1LIMIT OF DWELL TIME USED384.4.2TEST INSTRUMENTS384.4.3TEST PROCEDURES384.4.4DEVIATION FROM TEST STANDARD384.4.5TEST NESTUP394.4.6TEST RESULTS394.5.6CHANNEL BANDWIDTH474.5.2TEST INSTRUMENTS47			
4.1.5TEST SETUP144.1.6EUT OPERATING CONDITIONS154.1.7TEST RESULTS (1)164.1.7TEST RESULTS (2)184.2RADIATED EMISSION MEASUREMENT204.2.1LIMITS OF RADIATED EMISSION MEASUREMENT204.2.2TEST INSTRUMENTS214.2.3TEST PROCEDURES224.2.4DEVIATION FROM TEST STANDARD224.2.5TEST SETUP234.2.6EUT OPERATING CONDITIONS244.2.7TEST RESULTS254.3NUMBER OF HOPPING FREQUENCY USED344.3.1LIMIT OF HOPPING FREQUENCY USED344.3.2TEST INSTRUMENTS344.3.3TEST PROCEDURES344.3.4DEVIATION FROM TEST STANDARD354.3.5TEST SETUP354.3.6TEST RESULTS354.3.7TEST RESULTS354.3.8TEST RESULTS354.4DEVIATION FROM TEST STANDARD354.3TEST RESULTS354.4DWELL TIME ON EACH CHANNEL384.4.1LIMIT OF DWELL TIME USED384.4.2TEST INSTRUMENTS384.4.3TEST PROCEDURES384.4.4DEVIATION FROM TEST STANDARD384.4.5TEST SETUP394.4.6TEST RESULTS394.5.1LIMITS OF CHANNEL BANDWIDTH474.5.2TEST INSTRUMENTS47			
4.1.6EUT OPERATING CONDITIONS154.1.7TEST RESULTS (1)164.1.7TEST RESULTS (2)184.2RADIATED EMISSION MEASUREMENT204.2.1LIMITS OF RADIATED EMISSION MEASUREMENT204.2.2TEST INSTRUMENTS214.2.3TEST PROCEDURES224.2.4DEVIATION FROM TEST STANDARD224.2.5TEST SETUP234.2.6EUT OPERATING CONDITIONS244.2.7TEST RESULTS254.3NUMBER OF HOPPING FREQUENCY USED344.3.1LIMIT OF HOPPING FREQUENCY USED344.3.2TEST INSTRUMENTS344.3.3TEST PROCEDURES344.3.4DEVIATION FROM TEST STANDARD354.3.5TEST RESULTS354.3.6TEST RESULTS354.3.7TEST RESULTS354.4DEVIATION FROM TEST STANDARD354.3.4DEVIATION FROM TEST STANDARD354.3.5TEST RESULTS354.4DEVIATION FROM TEST STANDARD384.4.1LIMIT OF DWELL TIME USED384.4.2TEST INSTRUMENTS384.4.3TEST PROCEDURES384.4.4DEVIATION FROM TEST STANDARD384.4.5TEST RESULTS394.4.6TEST RESULTS394.5.6CHANNEL BANDWIDTH474.5.1LIMITS OF CHANNEL BANDWIDTH474.5.2TEST INSTRUMENTS47			
4.1.7 TEST RESULTS (1) 16 4.1.7 TEST RESULTS (2) 18 4.2 RADIATED EMISSION MEASUREMENT 20 4.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT 20 4.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT 20 4.2.2 TEST INSTRUMENTS 21 4.2.3 TEST PROCEDURES 22 4.2.4 DEVIATION FROM TEST STANDARD 22 4.2.5 TEST SETUP 23 4.2.6 EUT OPERATING CONDITIONS 24 4.2.7 TEST RESULTS 25 4.3 NUMBER OF HOPPING FREQUENCY USED 34 4.3.1 LIMIT OF HOPPING FREQUENCY USED 34 4.3.2 TEST INSTRUMENTS 34 4.3.3 TEST PROCEDURES 34 4.3.4 DEVIATION FROM TEST STANDARD 35 4.3.5 TEST SETUP 35 4.3.6 TEST RESULTS 34 4.3.7 DEVIATION FROM TEST STANDARD 35 4.3.8 TEST SETUP 35 4.3.4 DEVIATION FROM TEST STANDARD 38 4.4.1	4.1.6		
4.1.7TEST RESULTS (2)184.2RADIATED EMISSION MEASUREMENT204.2.1LIMITS OF RADIATED EMISSION MEASUREMENT204.2.2TEST INSTRUMENTS214.2.3TEST PROCEDURES224.2.4DEVIATION FROM TEST STANDARD224.2.5TEST SETUP234.2.6EUT OPERATING CONDITIONS244.2.7TEST RESULTS254.3NUMBER OF HOPPING FREQUENCY USED344.3.1LIMIT OF HOPPING FREQUENCY USED344.3.2TEST INSTRUMENTS344.3.3TEST PROCEDURES344.3.4DEVIATION FROM TEST STANDARD354.3.5TEST SETUP354.3.6TEST RESULTS354.3DEVIATION FROM TEST STANDARD354.3.4DEVIATION FROM TEST STANDARD354.3.5TEST SETUP354.4DEVIATION FROM TEST STANDARD384.4.1LIMIT OF DWELL TIME USED384.4.2TEST INSTRUMENTS384.4.3TEST PROCEDURES384.4.4DEVIATION FROM TEST STANDARD384.4.5TEST SETUP394.4.6TEST RESULTS394.4.6TEST RESULTS394.4.6TEST RESULTS394.4.6TEST RESULTS394.5.1LIMITS OF CHANNEL BANDWIDTH474.5.2TEST INSTRUMENTS47			
4.2RADIATED EMISSION MEASUREMENT204.2.1LIMITS OF RADIATED EMISSION MEASUREMENT204.2.2TEST INSTRUMENTS214.2.3TEST PROCEDURES224.2.4DEVIATION FROM TEST STANDARD224.2.5TEST SETUP234.2.6EUT OPERATING CONDITIONS244.2.7TEST RESULTS254.3NUMBER OF HOPPING FREQUENCY USED344.3.1LIMIT OF HOPPING FREQUENCY USED344.3.2TEST INSTRUMENTS344.3.3TEST PROCEDURES344.3.4DEVIATION FROM TEST STANDARD354.3.5TEST SETUP354.3.6TEST RESULTS354.4DWELL TIME ON EACH CHANNEL384.4.1LIMIT OF DWELL TIME USED384.4.2TEST INSTRUMENTS384.4.4DEVIATION FROM TEST STANDARD384.4.5TEST RESULTS394.4DEVIATION FROM TEST STANDARD384.4.4DEVIATION FROM TEST STANDARD384.4.5TEST SETUP394.4.6TEST RESULTS394.4.7TEST SETUP394.4.6TEST RESULTS394.4.7TEST SETUP394.4.6TEST RESULTS394.5.1LIMITS OF CHANNEL BANDWIDTH474.5.2TEST INSTRUMENTS47	4.1.7	TEST RESULTS (2)	18
4.2.1LIMITS OF RADIATED EMISSION MEASUREMENT.204.2.2TEST INSTRUMENTS214.2.3TEST PROCEDURES224.2.4DEVIATION FROM TEST STANDARD224.2.5TEST SETUP234.2.6EUT OPERATING CONDITIONS244.2.7TEST RESULTS254.3NUMBER OF HOPPING FREQUENCY USED344.3.1LIMIT OF HOPPING FREQUENCY USED344.3.2TEST INSTRUMENTS344.3.3TEST PROCEDURES344.3.4DEVIATION FROM TEST STANDARD354.3.5TEST SETUP354.3.6TEST RESULTS354.3.7TEST RESULTS354.4DEVIATION FROM TEST STANDARD354.4DEVIATION FROM TEST STANDARD384.4.1LIMIT OF DWELL TIME USED384.4.2TEST INSTRUMENTS384.4.3TEST PROCEDURES384.4.4DEVIATION FROM TEST STANDARD384.4.5TEST NSTRUMENTS384.4.4DEVIATION FROM TEST STANDARD384.4.5TEST SETUP394.4.6TEST RESULTS394.5CHANNEL BANDWIDTH474.5.1LIMITS OF CHANNEL BANDWIDTH474.5.2TEST INSTRUMENTS47			
4.2.2TEST INSTRUMENTS214.2.3TEST PROCEDURES224.2.4DEVIATION FROM TEST STANDARD224.2.5TEST SETUP234.2.6EUT OPERATING CONDITIONS244.2.7TEST RESULTS254.3NUMBER OF HOPPING FREQUENCY USED344.3.1LIMIT OF HOPPING FREQUENCY USED344.3.2TEST INSTRUMENTS344.3.3TEST PROCEDURES344.3.4DEVIATION FROM TEST STANDARD354.3.5TEST RESULTS354.3.6TEST RESULTS354.3.7TEST RESULTS354.4DEVIATION FROM TEST STANDARD354.4DEVIATION FROM TEST STANDARD364.4.1LIMIT OF DWELL TIME USED384.4.2TEST INSTRUMENTS384.4.3TEST PROCEDURES384.4.4DEVIATION FROM TEST STANDARD384.4.5TEST SETUP394.4.6TEST RESULTS394.5CHANNEL BANDWIDTH474.5.1LIMITS OF CHANNEL BANDWIDTH474.5.2TEST INSTRUMENTS47			
4.2.3 TEST PROCEDURES224.2.4 DEVIATION FROM TEST STANDARD224.2.5 TEST SETUP234.2.6 EUT OPERATING CONDITIONS244.2.7 TEST RESULTS254.3 NUMBER OF HOPPING FREQUENCY USED344.3.1 LIMIT OF HOPPING FREQUENCY USED344.3.2 TEST INSTRUMENTS344.3.3 TEST PROCEDURES344.3.4 DEVIATION FROM TEST STANDARD354.3.5 TEST SETUP354.3.6 TEST RESULTS354.3.7 DEVIATION FROM TEST STANDARD354.3.8 TEST PROCEDURES344.4.1 LIMIT OF DWELL TIME USED384.4.1 LIMIT OF DWELL TIME USED384.4.2 TEST INSTRUMENTS384.4.3 TEST PROCEDURES384.4.4 DEVIATION FROM TEST STANDARD384.4.5 TEST SETUP394.4.6 TEST RESULTS394.5 CHANNEL BANDWIDTH474.5.1 LIMITS OF CHANNEL BANDWIDTH474.5.2 TEST INSTRUMENTS47			
4.2.4 DEVIATION FROM TEST STANDARD 22 4.2.5 TEST SETUP 23 4.2.6 EUT OPERATING CONDITIONS 24 4.2.7 TEST RESULTS 25 4.3 NUMBER OF HOPPING FREQUENCY USED 34 4.3.1 LIMIT OF HOPPING FREQUENCY USED 34 4.3.2 TEST INSTRUMENTS 34 4.3.3 TEST PROCEDURES 34 4.3.4 DEVIATION FROM TEST STANDARD 35 4.3.5 TEST SETUP 35 4.3.6 TEST RESULTS 35 4.3.7 DEVIATION FROM TEST STANDARD 35 4.3.8 TEST SETUP 35 4.3.4 DEVIATION FROM TEST STANDARD 38 4.4.1 LIMIT OF DWELL TIME USED 38 4.4.1 LIMIT OF DWELL TIME USED 38 4.4.2 TEST INSTRUMENTS 38 4.4.3 TEST PROCEDURES 38 4.4.4 DEVIATION FROM TEST STANDARD 38 4.4.5 TEST SETUP 39 4.4.6 TEST RESULTS 39 4.4.7 TEST RESULTS 3			
4.2.6EUT OPERATING CONDITIONS244.2.7TEST RESULTS254.3NUMBER OF HOPPING FREQUENCY USED344.3.1LIMIT OF HOPPING FREQUENCY USED344.3.2TEST INSTRUMENTS344.3.3TEST PROCEDURES344.3.4DEVIATION FROM TEST STANDARD354.3.5TEST SETUP354.3.6TEST RESULTS354.4DWELL TIME ON EACH CHANNEL384.4.1LIMIT OF DWELL TIME USED384.4.2TEST INSTRUMENTS384.4.3TEST PROCEDURES384.4.4DEVIATION FROM TEST STANDARD384.4.5TEST INSTRUMENTS384.4.4DEVIATION FROM TEST STANDARD384.4.5TEST SETUP394.4.6TEST RESULTS394.5CHANNEL BANDWIDTH.474.5.1LIMITS OF CHANNEL BANDWIDTH.474.5.2TEST INSTRUMENTS47			
4.2.6EUT OPERATING CONDITIONS244.2.7TEST RESULTS254.3NUMBER OF HOPPING FREQUENCY USED344.3.1LIMIT OF HOPPING FREQUENCY USED344.3.2TEST INSTRUMENTS344.3.3TEST PROCEDURES344.3.4DEVIATION FROM TEST STANDARD354.3.5TEST SETUP354.3.6TEST RESULTS354.4DWELL TIME ON EACH CHANNEL384.4.1LIMIT OF DWELL TIME USED384.4.2TEST INSTRUMENTS384.4.3TEST PROCEDURES384.4.4DEVIATION FROM TEST STANDARD384.4.5TEST INSTRUMENTS384.4.4DEVIATION FROM TEST STANDARD384.4.5TEST SETUP394.4.6TEST RESULTS394.5CHANNEL BANDWIDTH.474.5.1LIMITS OF CHANNEL BANDWIDTH.474.5.2TEST INSTRUMENTS47	4.2.5	TEST SETUP	23
4.2.7TEST RESULTS254.3NUMBER OF HOPPING FREQUENCY USED344.3.1LIMIT OF HOPPING FREQUENCY USED344.3.2TEST INSTRUMENTS344.3.3TEST PROCEDURES344.3.4DEVIATION FROM TEST STANDARD354.3.5TEST SETUP354.3.6TEST RESULTS354.3.7DWELL TIME ON EACH CHANNEL384.4.1LIMIT OF DWELL TIME USED384.4.2TEST INSTRUMENTS384.4.3TEST PROCEDURES384.4.4DEVIATION FROM TEST STANDARD384.4.5TEST SETUP394.4.6TEST RESULTS394.5CHANNEL BANDWIDTH474.5.1LIMITS OF CHANNEL BANDWIDTH474.5.2TEST INSTRUMENTS47	4.2.6	EUT OPERATING CONDITIONS	24
4.3NUMBER OF HOPPING FREQUENCY USED344.3.1LIMIT OF HOPPING FREQUENCY USED344.3.2TEST INSTRUMENTS344.3.3TEST PROCEDURES344.3.4DEVIATION FROM TEST STANDARD354.3.5TEST SETUP354.3.6TEST RESULTS354.3.7DWELL TIME ON EACH CHANNEL384.4.1LIMIT OF DWELL TIME USED384.4.2TEST INSTRUMENTS384.4.3TEST PROCEDURES384.4.4DEVIATION FROM TEST STANDARD384.4.5TEST SETUP394.4.6TEST RESULTS394.5CHANNEL BANDWIDTH474.5.1LIMITS OF CHANNEL BANDWIDTH47			
4.3.2TEST INSTRUMENTS344.3.3TEST PROCEDURES344.3.4DEVIATION FROM TEST STANDARD354.3.5TEST SETUP354.3.6TEST RESULTS354.4DWELL TIME ON EACH CHANNEL384.4.1LIMIT OF DWELL TIME USED384.4.2TEST INSTRUMENTS384.4.3TEST PROCEDURES384.4.4DEVIATION FROM TEST STANDARD384.4.5TEST SETUP394.4.6TEST RESULTS394.5CHANNEL BANDWIDTH474.5.1LIMITS OF CHANNEL BANDWIDTH474.5.2TEST INSTRUMENTS47			
4.3.3TEST PROCEDURES344.3.4DEVIATION FROM TEST STANDARD354.3.5TEST SETUP354.3.6TEST RESULTS354.4DWELL TIME ON EACH CHANNEL384.4.1LIMIT OF DWELL TIME USED384.4.2TEST INSTRUMENTS384.4.3TEST PROCEDURES384.4.4DEVIATION FROM TEST STANDARD384.4.5TEST SETUP394.4.6TEST RESULTS394.5CHANNEL BANDWIDTH474.5.1LIMITS OF CHANNEL BANDWIDTH474.5.2TEST INSTRUMENTS47	4.3.1	LIMIT OF HOPPING FREQUENCY USED	34
4.3.4DEVIATION FROM TEST STANDARD354.3.5TEST SETUP354.3.6TEST RESULTS354.4DWELL TIME ON EACH CHANNEL384.4.1LIMIT OF DWELL TIME USED384.4.2TEST INSTRUMENTS384.4.3TEST PROCEDURES384.4.4DEVIATION FROM TEST STANDARD384.4.5TEST SETUP394.4.6TEST RESULTS394.5CHANNEL BANDWIDTH474.5.1LIMITS OF CHANNEL BANDWIDTH474.5.2TEST INSTRUMENTS47	4.3.2	TEST INSTRUMENTS	34
4.3.5TEST SETUP354.3.6TEST RESULTS354.4DWELL TIME ON EACH CHANNEL384.4.1LIMIT OF DWELL TIME USED384.4.2TEST INSTRUMENTS384.4.3TEST PROCEDURES384.4.4DEVIATION FROM TEST STANDARD384.4.5TEST SETUP394.4.6TEST RESULTS394.5CHANNEL BANDWIDTH474.5.1LIMITS OF CHANNEL BANDWIDTH474.5.2TEST INSTRUMENTS47	4.3.3	TEST PROCEDURES	34
4.3.6TEST RESULTS.354.4DWELL TIME ON EACH CHANNEL384.4.1LIMIT OF DWELL TIME USED.384.4.2TEST INSTRUMENTS384.4.3TEST PROCEDURES.384.4.4DEVIATION FROM TEST STANDARD384.4.5TEST SETUP.394.4.6TEST RESULTS.394.5CHANNEL BANDWIDTH.474.5.1LIMITS OF CHANNEL BANDWIDTH.474.5.2TEST INSTRUMENTS47	4.3.4	DEVIATION FROM TEST STANDARD	35
4.4DWELL TIME ON EACH CHANNEL384.4.1LIMIT OF DWELL TIME USED384.4.2TEST INSTRUMENTS384.4.3TEST PROCEDURES384.4.4DEVIATION FROM TEST STANDARD384.4.5TEST SETUP394.4.6TEST RESULTS394.5CHANNEL BANDWIDTH474.5.1LIMITS OF CHANNEL BANDWIDTH474.5.2TEST INSTRUMENTS47	4.3.5	TEST SETUP	35
4.4.1LIMIT OF DWELL TIME USED.384.4.2TEST INSTRUMENTS384.4.3TEST PROCEDURES.384.4.4DEVIATION FROM TEST STANDARD384.4.5TEST SETUP.394.4.6TEST RESULTS.394.5CHANNEL BANDWIDTH.474.5.1LIMITS OF CHANNEL BANDWIDTH.474.5.2TEST INSTRUMENTS.47			
4.4.2TEST INSTRUMENTS384.4.3TEST PROCEDURES384.4.4DEVIATION FROM TEST STANDARD384.4.5TEST SETUP394.4.6TEST RESULTS394.5CHANNEL BANDWIDTH474.5.1LIMITS OF CHANNEL BANDWIDTH474.5.2TEST INSTRUMENTS47	4.4	DWELL TIME ON EACH CHANNEL	38
4.4.3TEST PROCEDURES.384.4.4DEVIATION FROM TEST STANDARD384.4.5TEST SETUP.394.4.6TEST RESULTS.394.5CHANNEL BANDWIDTH.474.5.1LIMITS OF CHANNEL BANDWIDTH.474.5.2TEST INSTRUMENTS.47	4.4.1	LIMIT OF DWELL TIME USED	38
4.4.4DEVIATION FROM TEST STANDARD384.4.5TEST SETUP394.4.6TEST RESULTS394.5CHANNEL BANDWIDTH474.5.1LIMITS OF CHANNEL BANDWIDTH474.5.2TEST INSTRUMENTS47	4.4.2	TEST INSTRUMENTS	38
4.4.5 TEST SETUP	4.4.3	TEST PROCEDURES	38
4.4.6 TEST RESULTS	4.4.4	DEVIATION FROM TEST STANDARD	38
4.5CHANNEL BANDWIDTH	4.4.5	TEST SETUP	39
4.5.1LIMITS OF CHANNEL BANDWIDTH474.5.2TEST INSTRUMENTS47			
4.5.2 TEST INSTRUMENTS			
	4.5.3	TEST PROCEDURE	47

4.7.3 4.7.4 4.7.5	DEVIATION FROM TEST STANDARD TEST SETUP EUT OPERATING CONDITION TEST RESULTS	48 48 49 53 53 53 53 53 54 54 59 59 59 59 60 65 65 65
4.8.3	DEVIATION FROM TEST STANDARD	
4.8.5	EUT OPERATING CONDITION	
4.8.6	TEST RESULTS	
4.9	ANTENNA REQUIREMENT	
4.9.1	STANDARD APPLICABLE	
4.9.2	ANTENNA CONNECTED CONSTRUCTION	
5.	PHOTOGRAPHS OF THE TEST CONFIGURATION	73
6.	INFORMATION ON THE TESTING LABORATORIES	74
7.	APPENDIX A – MODIFICATIONS RECORDERS FOR ENGINEERING	
	CHANGES TO THE EUT BY THE LAB	75

1. CERTIFICATION

PRODUCT:BackBeatBRAND NAME:Altec LansingMODEL NO.:BackBeat AdapterAPPLICANT:Plantronics, Inc.TESTED:Oct. 16 ~ 23, 2008TEST SAMPLE:ENGINEERING SAMPLESTANDARDS:FCC Part 15, Subpart C (Section 15.247),
ANSI C63.4-2003

The above equipment has been tested by **Advance Data Technology Corporation**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

PREPARED BY DATE: Oct. 28, 2008 (Jessica Cheng / Specialist) **TECHNICAL** ACCEPTANCE DATE: Oct. 28, 2008 Responsible for RF (Jamison Chan / Supervisor) **APPROVED BY DATE:** Oct. 28, 2008 (Ken Liu / Deputy Manager)

2. SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

	APPLIED STANDARD: FCC Part 15, Subpart C									
STANDARD SECTION	TEST TYPE AND LIMIT	RESULT	REMARK							
15.207	AC Power Conducted Emission		Meet the requirement of limit. Minimum passing margin is –13.75dB at 0.638MHz.							
15.247(a)(1) (iii)	Number of Hopping Frequency Used Spec.: At least 15 channels	PASS	Meet the requirement of limit.							
15.247(a)(1) (iii)	Dwell Time on Each Channel Spec. : Max. 0.4 second within 31.6 second	PASS	Meet the requirement of limit.							
15.247(a)(1)	 Hopping Channel Separation Spec. : Min. 25 kHz or 20 dB bandwidth, whichever is greater (see Note) Spectrum Bandwidth of a Frequency Hopping Sequence Spread Spectrum System 	PASS	Meet the requirement of limit.							
15.247(b)	Maximum Peak Output Power Spec.: max. 21dBm (see Note)	PASS	Meet the requirement of limit.							
15.247(d)	Transmitter Radiated Emissions Spec.: Table 15.209	PASS	Meet the requirement of limit. Minimum passing margin is –6.70dB at 2483.500MHz.							
15.247(d)	Band Edge Measurement	PASS	Meet the requirement of limit.							

NOTE: If The Frequency Hopping System operating in 2400-2483.5MHz band and the output power less than 125mW. The hopping channel carrier frequencies separated by a minimum of 25kHz or two-thirds of the 20dB bandwidth of hopping channel whichever is greater.

2.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

MEASUREMENT	FREQUENCY	UNCERTAINTY
Conducted emissions	9kHz ~ 30MHz	2.44 dB
Dedicted emissions	30MHz ~ 1GHz	3.72 dB
Radiated emissions	1GHz ~ 40GHz	2.89 dB

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

DDODUCT	Deal/Deat		
PRODUCT	BackBeat		
MODEL NO.	BackBeat Adapter		
FCC ID	AL8-BB		
POWER SUPPLY	3.75Vdc from battery,		
	5Vdc from adapter or host equipment		
MODULATION TYPE	GFSK, π /4-DQPSK, 8DPSK		
RADIO TECHNOLOGY	FHSS		
TRANSFER RATE	1/2/3Mbps		
OPERATING FREQUENCY	2402 ~ 2480MHz		
NUMBER OF CHANNEL	79		
OUTPUT POWER	2.438 mW		
ANTENNA TYPE	Printed antenna with 1.88dBi gain		
I/O PORTS	Refer to user's manual		
DATA CABLE	USB Cable (1.2m).		
ASSOCIATED DEVICES	Refer to note 3 below		

NOTE:

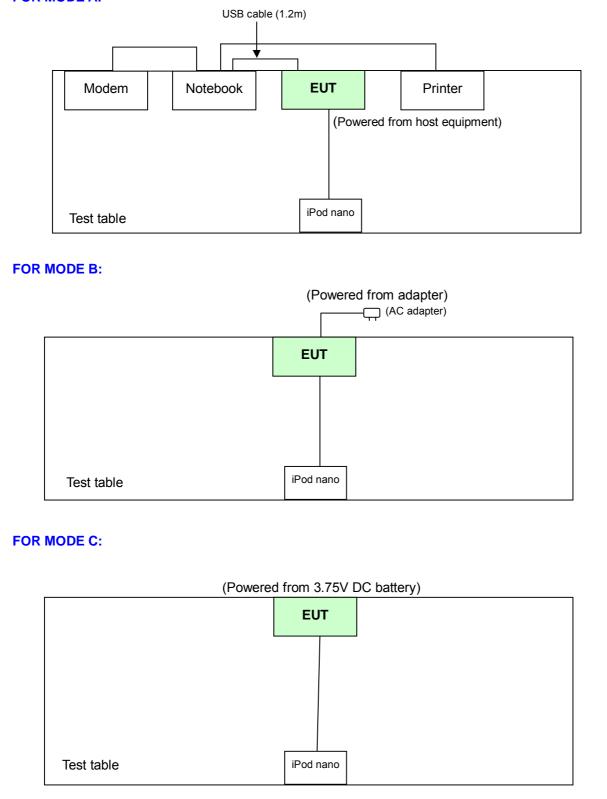
- 1. The EUT is a wireless audio dongle, with Bluetooth technology.
- 2. The EUT's battery can be charged via USB connector. A computer or charger can be used as charging device. The USB function on this product is for battery charging only, no data transmitting and/or receiving function involved.
- 3. The EUT was power supplied from the following power adapters and battery:

Item	Brand Name	Model No. / Part No.	Rating
			AC I/P: 100-240V, 50/60Hz, 0.2A
AC Adapter 1	PLANTRONICS	SSA-3W-05 050035F	DC O/P: 5.0V, 350mA
-			Non-shielded DC (1.8m), AC 2-pin
			AC I/P: 100-240V, 50/60Hz, 0.2A
AC Adapter 2	PLANTRONICS	SSA-3W-05 050018F	DC O/P: 5.0V, 180mA
			Non-shielded DC (1.8m), AC 2-pin
Battery	PLANTRONICS	65358-01	3.75Vdc

After pre-tested above two AC adapters and USB charging, the **AC Adapter 1** was the worst case, therefore, only its test data was recorded in this report.

4. For more detailed features description, please refer to the manufacturer's specifications or User's Manual.

3.2 DESCRIPTION OF TEST MODES


CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461		

79 channels are provided to this EUT:

3.2.1 CONFIGURATION OF SYSTEM UNDER TEST

FOR MODE A:

3.2.2 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

EUT		Applic	able to		Description
CONFIGURE MODE	PLC	RE<1G	RE³1G	APCM	Description
А	\checkmark	\checkmark	\checkmark	\checkmark	Operating Mode (EUT with Notebook)
В	\checkmark	\checkmark	-	-	Operating Mode(EUT with adapter)
С	Note	\checkmark	-	-	Operating Mode (EUT only)

Where PLC: Power Line Conducted Emission

RE<1G: Radiated Emission below 1GHz

RE³1G: Radiated Emission above 1GHz

APCM: Antenna Port Conducted Measurement

NOTE: No need to concern of Conducted Emission due to the EUT is powered by battery.

POWER LINE CONDUCTED EMISSION TEST:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and packet types.
- \bowtie
- Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	NFIGURE CHANNEL CHANNEL		MODULATION TECHNOLOGY	MODULATION TYPE	PACKET TYPE	DATE RATE
А	0 to 78	78	FHSS	GFSK	DH5	1
В	0 to 78	78	FHSS	GFSK	DH5	1

RADIATED EMISSION TEST (BELOW 1 GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, packet types data rate, XYZ axis and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	PACKET TYPE	DATE RATE	AXIS
А	0 to 78	78	FHSS	GFSK	DH5	1	х
В	0 to 78	78	FHSS	GFSK	DH5	1	х
С	0 to 78	78	FHSS	GFSK	DH5	1	х

RADIATED EMISSION TEST (ABOVE 1 GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, packet types data rate, XYZ axis and antenna ports (if EUT with antenna diversity architecture).
 - EUT AVAILABLE TESTED MODULATION MODULATION PACKET CONFIGURE DATE RATE AXIS CHANNEL CHANNEL TECHNOLOGY TYPE TYPE MODE А 0 to 78 0, 39, 78 FHSS GFSK DH5 1 Х А 0 to 78 0, 39, 78 FHSS 8DPSK DH5 3 х
- Following channel(s) was (were) selected for the final test as listed below.

BANDEDGE MEASUREMENT:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and packet types of the antenna and antenna ports (if EUT with antenna diversity architecture).
- \square
 - Following channel(s) was (were) selected for the final test as listed below.

,	EUT CONFIGURE MODE			MODULATION TECHNOLOGY	MODULATION TYPE	PACKET TYPE	DATE RATE
ſ	А	0 to 78	0, 78	FHSS	GFSK	DH5	1
	A	0 to 78	0, 78	FHSS	8DPSK	DH5	3

ANTENNA PORT CONDUCTED MEASUREMENT:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and packet types of the antenna and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	GURE AVAILABLE TESTED		MODULATION TECHNOLOGY	MODULATION TYPE	PACKET TYPE	DATE RATE
А	0 to 78	0, 39, 78	FHSS	GFSK	DH5	1
A	0 to 78	0, 39, 78	FHSS	8DPSK	DH5	3

3.2.3 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C. (15.247) ANSI C63.4- 2003

All test items have been performed and recorded as per the above standards.

3.2.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	NOTEBOOK COMPUTER	DELL	PP05L	20375526736	FCC DoC Approved
2	MODEM	ACEEX	1414	980020520	IFAXDM1414
3	PRINTER	EPSON	LQ-300+	DCGY017054	FCC DoC Approved

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	N/A
2	1.2 m braid shielded wire, terminated with DB25 and DB9 connector via metallic frame,
2	w/o core.
2	1.8m braid shielded wire, terminated with DB25 and Centronics connector via metallic
3	frame, w/o core

NOTE: All power cords of the above support units are non shielded (1.8m).

4. TEST TYPES AND RESULTS

4.1 CONDUCTED EMISSION MEASUREMENT

4.1.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT

FREQUENCY OF EMISSION (MHz)	CONDUCTED LIMIT (dBµV)				
	Quasi-peak	Average			
0.15 ~ 0.5	66 to 56	56 to 46			
0.5 ~ 5	56	46			
5 ~ 30	60	50			

NOTE: 1. The lower limit shall apply at the transition frequencies.

- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.
- 3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

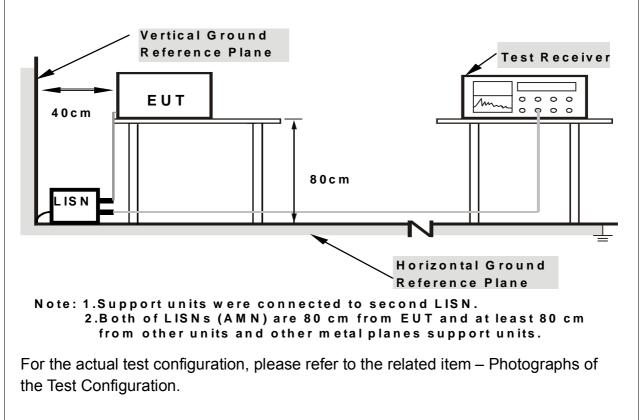
4.1.2 TEST INSTRUMENTS

MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
ESCS 30	838251/021	Dec. 20, 2007	Dec. 19, 2008
ESH3-Z5	100218	Nov. 21, 2007	Nov. 20, 2008
AD10	C10Ada-001	Nov. 22, 2007	Nov. 21, 2008
ESH3-Z5	100219	Nov. 09, 2007	Nov. 08, 2008
ESH3-Z5	100220	Oct. 26, 2008	Oct. 25, 2009
ADT_Cond_V7. 3.5	NA	NA	NA
ADT_ISN_V7.3. 5	NA	NA	NA
5D-FB	Cable-C10.01	Feb. 27, 2008	Feb. 26, 2009
65BNC-5001	E1-010773	Feb. 14, 2008	Feb. 13, 2009
	ESCS 30 ESH3-Z5 AD10 ESH3-Z5 ESH3-Z5 ESH3-Z5 ADT_Cond_V7. 3.5 ADT_ISN_V7.3. 5 5D-FB 65BNC-5001	ESCS 30 838251/021 ESH3-Z5 100218 AD10 C10Ada-001 ESH3-Z5 100219 ESH3-Z5 100220 ADT_Cond_V7: NA ADT_ISN_V7.3: NA 5D-FB Cable-C10.01 65BNC-5001 E1-010773	MODEL NO. SERIAL NO. DATE ESCS 30 838251/021 Dec. 20, 2007 ESH3-Z5 100218 Nov. 21, 2007 AD10 C10Ada-001 Nov. 22, 2007 ESH3-Z5 100219 Nov. 09, 2007 ESH3-Z5 100220 Oct. 26, 2008 ADT_Cond_V7. 3.5 NA NA ADT_ISN_V7.3. 5 NA NA 5D-FB Cable-C10.01 Feb. 27, 2008

calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in Shielded Room No. 10.

3. The VCCI Site Registration No. C-1852.


4.1.3 TEST PROCEDURES

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) were not recorded.

4.1.4 DEVIATION FROM TEST STANDARD

No deviation

4.1.5 TEST SETUP

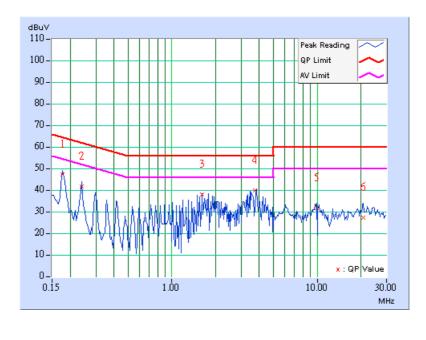
4.1.6 EUT OPERATING CONDITIONS

For Mode A:

- a. Connected the EUT to Notebook via USB cable.
- b. Turned on the power of all equipment.
- c. Notebook ran a test program to enable all functions.
- d. Notebook read and wrote messages from HDD.
- e. Notebook sent "H" messages to its screen and monitor displays "H" patterns on the screen.
- f. Notebook sent messages to printer, and then printer printed them out.
- g. Notebook sent messages to modem.
- h. Set the EUT under transmission/receiving condition continuously at specific channel frequency.
- i. Steps e-i were repeated.

For Mode B:

- a. Connected the EUT with AC adapter placed on testing table.
- b. Set the EUT under transmission/receiving condition continuously at specific channel frequency.

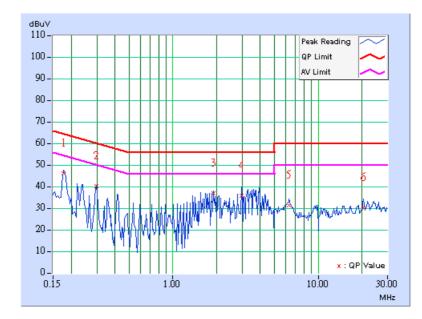

4.1.7 TEST RESULTS (1)

TEST MODE	A	CHANNEL	78
INPUT POWER (SYSTEM)	120Vac, 60 Hz	6dB BANDWIDTH	9 kHz
ENVIRONMENTAL CONDITIONS	25deg. C, 82% RH, 1002hPa	PHASE	Line 1
TESTED BY	Jun Wu		

	Freq.	Corr.	Readin	g Value	Emission Level		Liı	nit	Margin	
No		Factor	[dB	(uV)]	[dB ((uV)]	[dB	(uV)]	(dl	B)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.177	0.20	46.10	-	46.30	-	64.61	54.61	-18.31	-
2	0.240	0.22	40.32	-	40.54	-	62.10	52.10	-21.56	-
3	1.609	0.27	36.52	-	36.79	-	56.00	46.00	-19.21	-
4	3.754	0.35	38.72	-	39.07	-	56.00	46.00	-16.93	-
5	9.953	0.76	30.58	-	31.34	-	60.00	50.00	-28.66	-
6	20.844	1.45	25.98	-	27.43	-	60.00	50.00	-32.57	-

REMARKS: 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

- "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
 - 3. The emission levels of other frequencies were very low against the limit.
 - 4. Margin value = Emission level Limit value
 - 5. Correction factor = Insertion loss + Cable loss
 - 6. Emission Level = Correction Factor + Reading Value.



TEST MODE	А	CHANNEL	78
INPUT POWER (SYSTEM)	120Vac, 60 Hz	6dB BANDWIDTH	9 kHz
ENVIRONMENTAL CONDITIONS	25deg. C, 82% RH, 1002hPa	PHASE	Line 2
TESTED BY	Jun Wu	•	

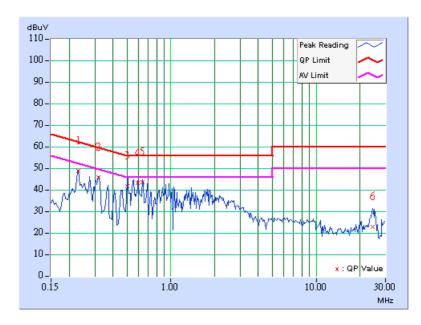
	Freq.	Corr.	Reading Value		Emission Level		Limit		Margin	
No		Factor	[dB	(uV)]	[dB	(uV)]	[dB	(uV)]	(dl	3)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.177	0.20	45.10	-	45.30	-	64.61	54.61	-19.31	-
2	0.298	0.22	39.15	-	39.37	-	60.29	50.29	-20.92	-
3	1.906	0.27	35.82	-	36.09	-	56.00	46.00	-19.91	-
4	2.980	0.30	34.74	-	35.04	-	56.00	46.00	-20.96	-
5	6.316	0.47	30.35	-	30.82	-	60.00	50.00	-29.18	-
6	20.441	1.13	29.35	-	30.48	-	60.00	50.00	-29.52	-

REMARKS: 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Emission level Limit value
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.

4.1.7 TEST RESULTS (2)

TEST MODE	В	CHANNEL	78
INPUT POWER	120Vac, 60 Hz	6dB BANDWIDTH	9 kHz
ENVIRONMENTAL CONDITIONS	25deg. C, 82% RH, 1002hPa	PHASE	Line 1
TESTED BY	Jun Wu		

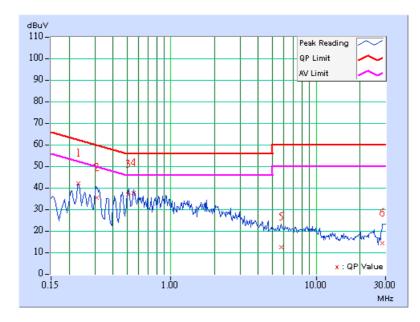

	Freq.	Corr.	Reading Value		Le	Emission Level		nit	Margin	
No		Factor	[dB ((uV)]	[dB	(uV)]	[dB	(uV)]	(dl	B)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.231	0.22	47.21	-	47.43	-	62.42	52.42	-14.99	-
2	0.318	0.23	44.30	-	44.53	-	59.76	49.76	-15.23	-
3	0.501	0.23	40.33	-	40.56	-	56.00	46.00	-15.44	-
4	0.594	0.24	41.72	-	41.96	-	56.00	46.00	-14.04	-
5	0.638	0.24	42.01	-	42.25	-	56.00	46.00	-13.75	-
6	24.410	1.66	21.16	-	22.82	-	60.00	50.00	-37.18	-

REMARKS: 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.

3. The emission levels of other frequencies were very low against the limit.

- 4. Margin value = Emission level Limit value
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.



TEST MODE	В	CHANNEL	78
INPUT POWER	120Vac, 60 Hz	6dB BANDWIDTH	9 kHz
ENVIRONMENTAL CONDITIONS	25deg. C, 82% RH, 1002hPa	PHASE	Line 2
TESTED BY	Jun Wu		

	Freq.	Corr.	Reading Value		Emission Level		Limit		Margin	
No		Factor	[dB	(uV)]	[dB	(uV)]	[dB	(uV)]	(dl	B)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.231	0.22	40.92	-	41.14	-	62.43	52.43	-21.29	-
2	0.311	0.22	34.11	-	34.33	-	59.93	49.93	-25.60	-
3	0.508	0.22	35.85	-	36.07	-	56.00	46.00	-19.93	-
4	0.552	0.23	36.58	-	36.81	-	56.00	46.00	-19.19	-
5	5.781	0.44	11.06	-	11.50	-	60.00	50.00	-48.50	-
6	28.632	1.35	13.15	-	14.50	-	60.00	50.00	-45.50	-

REMARKS: 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Emission level Limit value
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.

4.2 RADIATED EMISSION MEASUREMENT

4.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT

Emissions radiated outside of the specified bands, shall be according to the general radiated limits in 15.209 as following:

FREQUENCIES (MHz)	FIELD STRENGTH (microvolts/meter)	MEASUREMENT DISTANCE (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.2.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
HP Preamplifier	8447D	2432A03504	May 09, 2008	May 08, 2009
HP Preamplifier	8449B	3008A01924	Sep. 03, 2008	Sep. 02, 2009
HP Preamplifier	8449B	3008A01292	Aug. 06, 2008	Aug. 05, 2009
ROHDE & SCHWARZ TEST RECEIVER	ESI7	836697/012	Dec. 06, 2007	Dec. 05, 2008
Schwarzbeck Antenna	VULB 9168	137	May 02, 2008	May 01, 2009
Schwarzbeck Antenna	VHBA 9123	480	Apr. 23, 2008	Apr. 22, 2009
EMCO Horn Antenna	3115	6714	Oct. 17, 2008	Oct. 16, 2009
EMCO Horn Antenna	3115	9312-4192	Apr. 21, 2008	Apr. 20, 2009
ADT. Turn Table	TT100	0306	NA	NA
ADT. Tower	AT100	0306	NA	NA
Software	ADT_Radiated_V 7.6.15	NA	NA	NA
SUHNER RF cable	SF104-26.5	CABLE-CH6-17m -01	Nov. 05, 2007	Nov. 04, 2008
ROHDE & SCHWARZ Spectrum Analyzer	FSP 40	100035	Mar. 26, 2008	Mar. 25, 2009

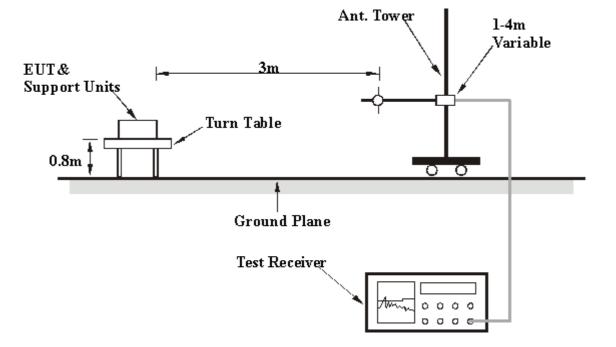
NOTE: 1. The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.
- 3. The test was performed in Chamber No. 6.
- 4. The Industry Canada Reference No. IC 3789-6.
- 5. The FCC Site Registration No. is 447212.

4.2.3 TEST PROCEDURES

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

NOTE:


- 1. The resolution bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection at frequency below 1GHz.
- 2. The resolution bandwidth is 1MHz and video bandwidth of test receiver/spectrum analyzer is 3MHz for Peak detection at frequency above 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz for Average detection (AV) at frequency above 1GHz.

4.2.4 DEVIATION FROM TEST STANDARD

No deviation

4.2.5 TEST SETUP

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

4.2.6 EUT OPERATING CONDITIONS

For Mode A:

- a. Connected the EUT to Notebook via USB cable.
- b. Turned on the power of all equipment.
- c. Notebook ran a test program to enable all functions.
- d. Notebook read and wrote messages from HDD.
- e. Notebook sent "H" messages to its screen and monitor displays "H" patterns on the screen.
- f. Notebook sent messages to printer, and then printer printed them out.
- g. Notebook sent messages to modem.
- h. Set the EUT under operating mode.
- i. Steps e-i were repeated.

For Mode B:

- a. Connected the EUT with AC adapter placed on testing table.
- b. Set the EUT under transmission/receiving condition continuously at specific channel frequency.

For Mode C:

Set the EUT under transmission/receiving condition continuously at specific channel frequency.

4.2.7 TEST RESULTS

RADIATED WORST CASE DATA: FOR GFSK (BELOW 1GHz)

TEST MODE	A					
MODULATION TYPE	GFSK	GFSK CHANNEL 78				
INPUT POWER			Dolow 1000MHz			
(SYSTEM)	120Vac, 60 Hz	FREQUENCY RANGE	Below 1000MHz			
ENVIRONMENTAL CONDITIONS	24deg. C, 74% RH, 1002hPa	DETECTOR FUNCTION	Quasi-Peak			
TESTED BY	Chad Lee					

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M							
	Freq.	Emission	Limit	Margin	Antenna	Table	Raw	Correction
No.	(MHz)	Level	(dRu)/(m)	(dB)	Height	Angle	Value	Factor
	(IVIFIZ)	MHz) (dBuV/m) (dBuV/m)	(ub)	(m)	(Degree)	(dBuV)	(dB/m)	
1	249.659	37.70 QP	46.00	-8.30	1.01 H	175	22.51	15.19
2	296.313	34.31 QP	46.00	-11.69	1.08 H	328	18.39	15.92
3	377.956	33.37 QP	46.00	-12.63	1.00 H	109	15.16	18.21
4	401.283	35.85 QP	46.00	-10.15	1.00 H	46	16.94	18.91
5	735.631	33.81 QP	46.00	-12.19	1.06 H	223	8.41	25.40
6	867.816	34.66 QP	46.00	-11.34	1.00 H	268	6.71	27.95

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M							
No.	Freq. (MHz)	Emission Level	Limit (dBuV/m)	Margin (dB)	Antenna Height	Table Angle	Raw Value	Correction Factor
	(101112)	(dBuV/m)		Buv/III) (ub)	(m)	(Degree)	(dBuV)	(dB/m)
1	156.353	34.23 QP	43.50	-9.27	1.00 V	247	19.87	14.36
2	249.659	33.99 QP	46.00	-12.01	1.18 V	148	18.80	15.19
3	393.507	33.21 QP	46.00	-12.79	1.00 V	52	14.53	18.68
4	521.804	34.04 QP	46.00	-11.96	1.69 V	157	12.30	21.74
5	572.345	35.06 QP	46.00	-10.94	1.52 V	100	12.16	22.90
6	630.661	35.12 QP	46.00	-10.88	1.12 V	25	11.29	23.83

REMARKS: 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).

2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).

3. The other emission levels were very low against the limit.

4. Margin value = Emission level – Limit value.

TEST MODE	В		
MODULATION TYPE	GFSK	CHANNEL	78
INPUT POWER	120Vac, 60 Hz	FREQUENCY RANGE	Below 1000MHz
ENVIRONMENTAL CONDITIONS	24deg. C, 74% RH, 1002hPa	DETECTOR FUNCTION	Quasi-Peak
TESTED BY	Chad Lee	·	

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M							
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height	Table Angle	Raw Value	Correction Factor
1	66.934	(0B0V/III) 29.70 QP	40.00	-10.30	(m) 1.00 H	(Degree) 301	(dBuV) 16.88	(dB/m) 12.82
2	358.517	28.42 QP	46.00	-17.58	1.10 H	277	10.80	17.62
3	374.068	32.92 QP	46.00	-13.08	1.04 H	265	14.83	18.09
4 5	395.451 867.816	28.15 QP 26.53 QP	46.00 46.00	-17.85 -19.47	1.52 H 1.00 H	271 40	9.41 -1.42	18.74 27.95
6	918.357	26.11 QP	46.00	-19.89	1.42 H	82	-2.54	28.65

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M							
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	61.102	33.12 QP	40.00	-6.88	1.00 V	232	19.76	13.36
2	556.794	30.74 QP	46.00	-15.26	1.15 V	112	8.22	22.52
3	615.110	27.75 QP	46.00	-18.25	1.74 V	298	4.05	23.70
4	628.717	29.06 QP	46.00	-16.94	1.24 V	331	5.24	23.82
5	937.796	27.09 QP	46.00	-18.91	1.43 V	250	-1.82	28.91
6	949.459	27.06 QP	46.00	-18.94	1.00 V	4	-2.01	29.06

REMARKS: 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).

2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).

3. The other emission levels were very low against the limit.

4. Margin value = Emission level – Limit value.

TEST MODE	С		
MODULATION TYPE	GFSK	CHANNEL	78
INPUT POWER	3.75Vdc	FREQUENCY RANGE	Below 1000MHz
ENVIRONMENTAL CONDITIONS	24deg. C, 74% RH, 1002hPa	DETECTOR FUNCTION	Quasi-Peak
TESTED BY	Chad Lee	·	

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M							
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	799.780	24.81 QP	46.00	-21.19	1.12 H	133	-2.23	27.04
2	840.601	24.98 QP	46.00	-21.02	1.04 H	349	-2.59	27.57
3	871.703	25.34 QP	46.00	-20.66	1.13 H	205	-2.66	28.00
4	889.198	26.28 QP	46.00	-19.72	1.07 H	283	-1.97	28.25
5	937.796	27.15 QP	46.00	-18.85	1.00 H	103	-1.76	28.91
6	957.234	27.24 QP	46.00	-18.76	1.00 H	337	-1.90	29.14

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M							
No.	Freq. (MHz)	Emission Level	Limit (dBuV/m)	Margin (dB)	Antenna Height	Table Angle	Raw Value	Correction Factor
	()	(dBuV/m)	、 ,	. ,	(m)	(Degree)	(dBuV)	(dB/m)
1	780.341 813.387	24.24 QP 25.07 QP	46.00 46.00	-21.76 -20.93	1.05 V 1.13 V	355 343	-2.29 -2.15	26.53 27.22
3	832.826	24.87 QP	46.00	-21.13	1.06 V	289	-2.60	27.47
4	848.377	25.86 QP	46.00	-20.14	1.00 V	205	-1.81	27.67
5	902.806	26.17 QP	46.00	-19.83	1.00 V	43	-2.27	28.44
6	924.188	26.32 QP	46.00	-19.68	1.08 V	223	-2.40	28.72

REMARKS: 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).

2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).

3. The other emission levels were very low against the limit.

4. Margin value = Emission level – Limit value.

RADIATED DATA: FOR GFSK (ABOVE 1GHz)

TEST MODE	A		
MODULATION TYPE	GFSK	CHANNEL	0
INPUT POWER (SYSTEM)	120Vac, 60 Hz	FREQUENCY RANGE	1 ~ 25GHz
ENVIRONMENTAL CONDITIONS	24 deg. C, 74% RH, 1000hPa	DETECTOR FUNCTION	Peak (PK) Average (AV)
TESTED BY	Chad Lee		

	ANTENN	NA POLARI	TY & TE	st dist	ANCE: I	HORIZO	NTAL AT	3 M
	Freg.	Emission	Limit	Margin	Antenna	Table	Raw	Correction
No.	(MHz)	Level	(dBuV/m)	(dB)	Height	Angle	Value	Factor
	(IVITZ)	(dBuV/m)	(ubu v/m)	(ub)	(m)	(Degree)	(dBuV)	(dB/m)
1	1602.000	43.31 PK	74.00	-30.69	1.00 H	281	12.04	31.27
2	1602.000	34.37 AV	54.00	-19.63	1.00 H	281	3.10	31.27
3	2390.000	57.63 PK	74.00	-16.37	1.00 H	213	24.33	33.30
4	2390.000	27.53 AV	54.00	-26.47	1.00 H	213	-5.77	33.30
5	*2402.000	101.71 PK			1.00 H	213	68.36	33.35
6	*2402.000	71.61 AV			1.00 H	213	38.26	33.35
7	4804.000	56.64 PK	74.00	-17.36	1.11 H	192	16.25	40.39
8	4804.000	26.54 AV	54.00	-27.46	1.11 H	192	-13.85	40.39

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M									
No.	Freq.	Emission Level	Limit	Margin	Antenna Height	Table Angle	Raw Value	Correction Factor		
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(m)	(Degree)	(dBuV)	(dB/m)		
1	1602.000	42.41 PK	74.00	-31.59	1.08 V	273	11.14	31.27		
2	1602.000	31.61 AV	54.00	-22.39	1.08 V	273	0.34	31.27		
3	2390.000	57.09 PK	74.00	-16.91	1.00 V	0	23.79	33.30		
4	2390.000	26.99 AV	54.00	-27.01	1.00 V	0	-6.31	33.30		
5	*2402.000	98.20 PK			1.00 V	0	64.85	33.35		
6	*2402.000	68.10 AV			1.00 V	0	34.75	33.35		
7	4804.000	58.51 PK	74.00	-15.49	1.00 V	159	18.12	40.39		
8	4804.000	28.41 AV	54.00	-25.59	1.00 V	159	-11.98	40.39		

REMARKS: 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).

- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.
- 5. The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625 * 5 per 296.25 ms per channel. Therefore, the duty cycle be equal to: 20log(3.125/100)= -30.1 dB.
- 6. Average value = peak reading + 20log(duty cycle).

TEST MODE	A					
MODULATION TYPE	GFSK	CHANNEL	39			
INPUT POWER (SYSTEM)	120Vac, 60 Hz	FREQUENCY RANGE	1 ~ 25GHz			
ENVIRONMENTAL CONDITIONS	24 deg. C, 74% RH, 1000hPa	DETECTOR FUNCTION	Peak (PK) Average (AV)			
TESTED BY	Chad Lee					

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	1626.000	43.83 PK	74.00	-30.17	1.00 H	294	12.54	31.29	
2	1626.000	32.88 AV	54.00	-21.12	1.00 H	294	1.59	31.29	
3	*2441.000	102.73 PK			1.11 H	292	69.20	33.53	
4	*2441.000	72.63 AV			1.11 H	292	39.10	33.53	
5	4882.000	58.64 PK	74.00	-15.36	1.00 H	188	18.07	40.57	
6	4882.000	28.54 AV	54.00	-25.46	1.00 H	188	-12.03	40.57	

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M									
No.	Freq. (MHz)	Emission Level	Limit (dBuV/m)	Margin (dB)	Antenna Height	Table Angle	Raw Value	Correction Factor		
	(10172)	(dBuV/m)			(m)	(Degree)	(dBuV)	(dB/m)		
1	1626.000	41.81 PK	74.00	-32.19	1.13 V	174	10.52	31.29		
2	1626.000	32.44 AV	54.00	-21.56	1.13 V	174	1.15	31.29		
3	*2441.000	98.45 PK			1.30 V	0	64.92	33.53		
4	*2441.000	68.35 AV			1.30 V	0	34.82	33.53		
5	4882.000	58.38 PK	74.00	-15.62	1.09 V	192	17.81	40.57		
6	4882.000	28.28 AV	54.00	-25.72	1.09 V	192	-12.29	40.57		

REMARKS: 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).

- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.
- 5. The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625 * 5 per 296.25 ms per channel. Therefore, the duty cycle be equal to: 20log(3.125/100)= -30.1 dB.
- 6. Average value = peak reading + 20log(duty cycle).

TEST MODE	A					
MODULATION TYPE	GFSK	78				
INPUT POWER (SYSTEM)	120Vac, 60 Hz	FREQUENCY RANGE	1 ~ 25GHz			
ENVIRONMENTAL CONDITIONS	24 deg. C, 74% RH, 1000hPa	DETECTOR FUNCTION	Peak (PK) Average (AV)			
TESTED BY	Chad Lee					

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
No.	Freq. (MHz)	Emission Level	Limit (dBuV/m)	Margin	Antenna Height	Table Angle	Raw Value	Correction Factor		
	(10172)	(dBuV/m)	(ubuv/iii)	(dB)	(m)	(Degree)	(dBuV)	(dB/m)		
1	1652.000	43.63 PK	74.00	-30.37	1.00 H	295	12.32	31.31		
2	1652.000	33.87 AV	54.00	-20.13	1.00 H	295	2.56	31.31		
3	*2480.000	102.69 PK			1.05 H	292	68.99	33.70		
4	*2480.000	72.59 AV			1.05 H	292	38.89	33.70		
5	2483.500	67.30 PK	74.00	-6.70	1.05 H	292	33.58	33.72		
6	2483.500	37.20 AV	54.00	-16.80	1.05 H	292	3.48	33.72		
7	4960.000	54.86 PK	74.00	-19.14	1.00 H	193	14.10	40.76		
8	4960.000	24.76 AV	54.00	-29.24	1.00 H	193	-16.00	40.76		

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M									
	Freq.	Emission	Limit	Margin	Antenna	Table	Raw	Correction		
No.	(MHz)	Level	(dBuV/m)	(dB)	Height	Angle	Value	Factor		
	(IVIHZ)	(dBuV/m)	(ubuv/iii)	(ub)	(m)	(Degree)	(dBuV)	(dB/m)		
1	1652.000	43.34 PK	74.00	-30.66	1.07 V	52	12.03	31.31		
2	1652.000	28.21 AV	54.00	-25.79	1.07 V	52	-3.10	31.31		
3	*2480.000	97.10 PK			1.00 V	173	63.40	33.70		
4	*2480.000	67.00 AV			1.00 V	173	33.30	33.70		
5	2483.500	60.28 PK	74.00	-13.72	1.00 V	173	26.56	33.72		
6	2483.500	30.18 AV	54.00	-23.82	1.00 V	173	-3.54	33.72		
7	4960.000	57.23 PK	74.00	-16.77	1.09 V	201	16.47	40.76		
8	4960.000	27.13 AV	54.00	-26.87	1.09 V	201	-13.63	40.76		

REMARKS:

1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).

- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.
- 5. The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625 * 5 per 296.25 ms per channel. Therefore, the duty cycle be equal to: 20log(3.125/100)= -30.1 dB.
- 6. Average value = peak reading + 20log(duty cycle).

RADIATED DATA: MODE A FOR 8DPSK (ABOVE 1GHz)

TEST MODE	A					
MODULATION TYPE	8DPSK	0				
INPUT POWER	120Vac, 60 Hz	FREQUENCY RANGE	1 ~ 25GHz			
(SYSTEM)		FREQUENCI KANGE				
ENVIRONMENTAL CONDITIONS	24 deg. C, 74% RH, 1000hPa	DETECTOR FUNCTION	Peak (PK) Average (AV)			
TESTED BY	Chad Lee					

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	1602.000	46.20 PK	74.00	-27.80	1.02 H	269	14.93	31.27		
2	1602.000	40.92 AV	54.00	-13.08	1.02 H	269	9.65	31.27		
3	2390.000	56.59 PK	74.00	-17.41	1.09 H	292	23.29	33.30		
4	2390.000	26.49 AV	54.00	-27.51	1.09 H	292	-6.81	33.30		
5	*2402.000	102.97 PK			1.09 H	292	69.62	33.35		
6	*2402.000	72.87 AV			1.09 H	292	39.52	33.35		
7	4804.000	55.85 PK	74.00	-18.15	1.00 H	190	15.46	40.39		
8	4804.000	25.75 AV	54.00	-28.25	1.00 H	190	-14.64	40.39		

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M									
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	1602.000	43.21 PK	74.00	-30.79	(m) 1.08 V	(Degree) 268	(ubuv) 11.94	(ub/iii) 31.27		
2	1602.000	34.21 AV	54.00	-19.79	1.08 V	268	2.94	31.27		
3	2390.000	56.11 PK	74.00	-17.89	1.00 V	1	22.81	33.30		
4	2390.000	26.01 AV	54.00	-27.99	1.00 V	1	-7.29	33.30		
5	*2402.000	98.89 PK			1.00 V	1	65.54	33.35		
6	*2402.000	68.79 AV			1.00 V	1	35.44	33.35		
7	4804.000	54.67 PK	74.00	-19.33	1.00 V	13	14.28	40.39		
8	4804.000	24.57 AV	54.00	-29.43	1.00 V	13	-15.82	40.39		

REMARKS:

1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).

- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.
- 5. The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625 * 5 per 296.25 ms per channel. Therefore, the duty cycle be equal to: 20log(3.125/100)= -30.1 dB.
- 6. Average value = peak reading + 20log(duty cycle).

TEST MODE	A					
MODULATION TYPE	8DPSK	39				
INPUT POWER (SYSTEM)	120Vac, 60 Hz	FREQUENCY RANGE	1 ~ 25GHz			
ENVIRONMENTAL CONDITIONS	24 deg. C, 74% RH, 1000hPa	DETECTOR FUNCTION	Peak (PK) Average (AV)			
TESTED BY	Chad Lee					

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	1626.000	44.06 PK	74.00	-29.94	1.01 H	282	12.77	31.29	
2	1626.000	38.71 AV	54.00	-15.29	1.01 H	282	7.42	31.29	
3	*2441.000	103.87 PK			1.11 H	290	70.34	33.53	
4	*2441.000	73.77 AV			1.11 H	290	40.24	33.53	
5	4882.000	51.35 PK	74.00	-22.65	1.00 H	55	10.78	40.57	
6	4882.000	21.25 AV	54.00	-32.75	1.00 H	55	-19.32	40.57	

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M									
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	1626.000	42.44 PK	74.00	-31.56	1.03 V	273	11.15	31.29		
2	1626.000	31.76 AV	54.00	-22.24	1.03 V	273	0.47	31.29		
3	*2441.000	98.28 PK			1.29 V	1	64.75	33.53		
4	*2441.000	68.18 AV			1.29 V	1	34.65	33.53		
5	4882.000	54.34 PK	74.00	-19.66	1.00 V	23	13.77	40.57		
6	4882.000	24.24 AV	54.00	-29.76	1.00 V	23	-16.33	40.57		

REMARKS: 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).

- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.
- 5. The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625 * 5 per 296.25 ms per channel. Therefore, the duty cycle be equal to: 20log(3.125/100)= -30.1 dB.
- 6. Average value = peak reading + 20log(duty cycle).

TEST MODE	A		
MODULATION TYPE	8DPSK	CHANNEL	78
INPUT POWER (SYSTEM)	120Vac, 60 Hz	FREQUENCY RANGE	1 ~ 25GHz
ENVIRONMENTAL CONDITIONS	24 deg. C, 74% RH, 1000hPa	DETECTOR FUNCTION	Peak (PK) Average (AV)
TESTED BY	Chad Lee		

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	1652.000	44.07 PK	74.00	-29.93	1.00 H	290	12.76	31.31		
2	1652.000	35.99 AV	54.00	-18.01	1.00 H	290	4.68	31.31		
3	*2480.000	102.95 PK			1.05 H	294	69.25	33.70		
4	*2480.000	72.85 AV			1.05 H	294	39.15	33.70		
5	2483.500	66.85 PK	74.00	-7.15	1.05 H	294	33.13	33.72		
6	2483.500	36.75 AV	54.00	-17.25	1.05 H	294	3.03	33.72		
7	4960.000	56.21 PK	74.00	-17.79	1.05 H	291	15.45	40.76		
8	4960.000	26.11 AV	54.00	-27.89	1.05 H	291	-14.65	40.76		

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								
	Freq.	Emission	Limit Margin (dBuV/m) (dB)	U	Antenna	Table	Raw	Correction	
No.	(MHz)	Level			Height	Angle	Value	Factor	
	(IVIFIZ)	(dBuV/m)		(ub)	(m)	(Degree)	(dBuV)	(dB/m)	
1	1652.000	42.33 PK	74.00	-31.67	1.06 V	272	11.02	31.31	
2	1652.000	31.78 AV	54.00	-22.22	1.06 V	272	0.47	31.31	
3	*2480.000	96.12 PK			1.00 V	267	62.42	33.70	
4	*2480.000	66.02 AV			1.00 V	267	32.32	33.70	
5	2483.500	61.71 PK	74.00	-12.29	1.00 V	267	27.99	33.72	
6	2483.500	31.61 AV	54.00	-22.39	1.00 V	267	-2.11	33.72	
7	4960.000	53.38 PK	74.00	-20.62	1.00 V	57	12.62	40.76	
8	4960.000	23.28 AV	54.00	-30.72	1.00 V	57	-17.48	40.76	

REMARKS: 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).

- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.
- 5. The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625 * 5 per 296.25 ms per channel. Therefore, the duty cycle be equal to: 20log(3.125/100)= -30.1 dB.
- 6. Average value = peak reading + 20log(duty cycle).

4.3 NUMBER OF HOPPING FREQUENCY USED

4.3.1 LIMIT OF HOPPING FREQUENCY USED

At least 15 channels frequencies, and should be equally spaced.

4.3.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL	
SPECTRUM ANALYZER	FSP 40	100035	Mar. 26, 2008	Mar. 25, 2009	

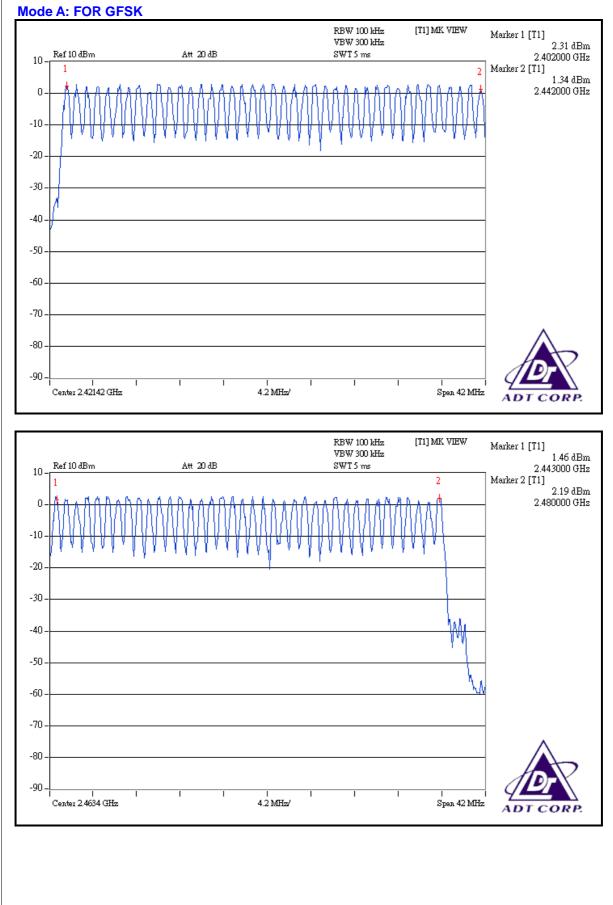
NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.3.3 TEST PROCEDURES

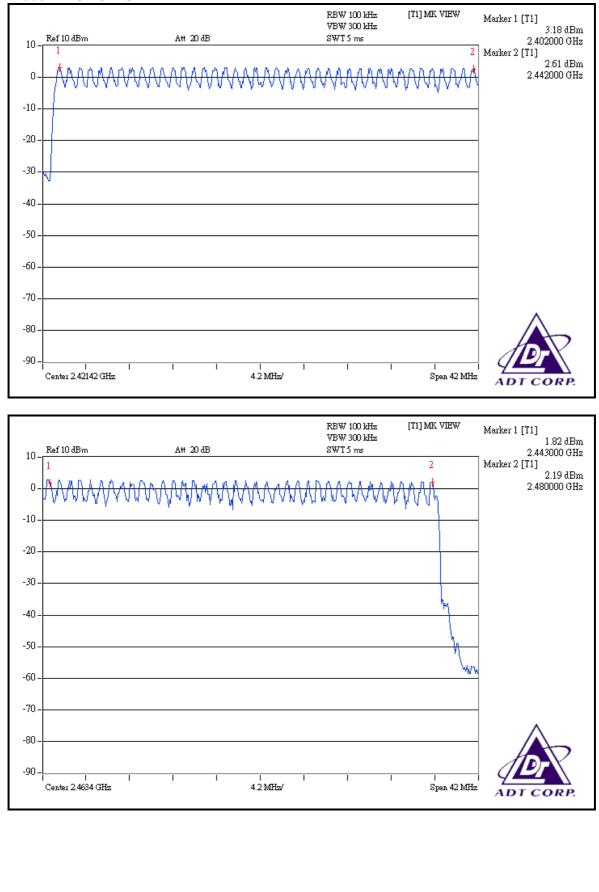
- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Set the SA on MaxHold Mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded.
- d. Set the SA on View mode and then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.

4.3.4 DEVIATION FROM TEST STANDARD

No deviation.


4.3.5 TEST SETUP

4.3.6 TEST RESULTS


There are 79 hopping frequencies in the hopping mode. Please refer to next two pages for the test result. On the plots, it shows that the hopping frequencies are equally spaced.

Mode A: FOR 8DPSK

4.4 DWELL TIME ON EACH CHANNEL

4.4.1 LIMIT OF DWELL TIME USED

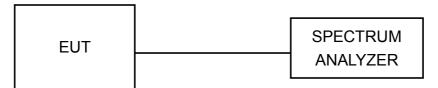
The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

4.4.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
SPECTRUM ANALYZER	FSP 40	100035	Mar. 26, 2008	Mar. 25, 2009

NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

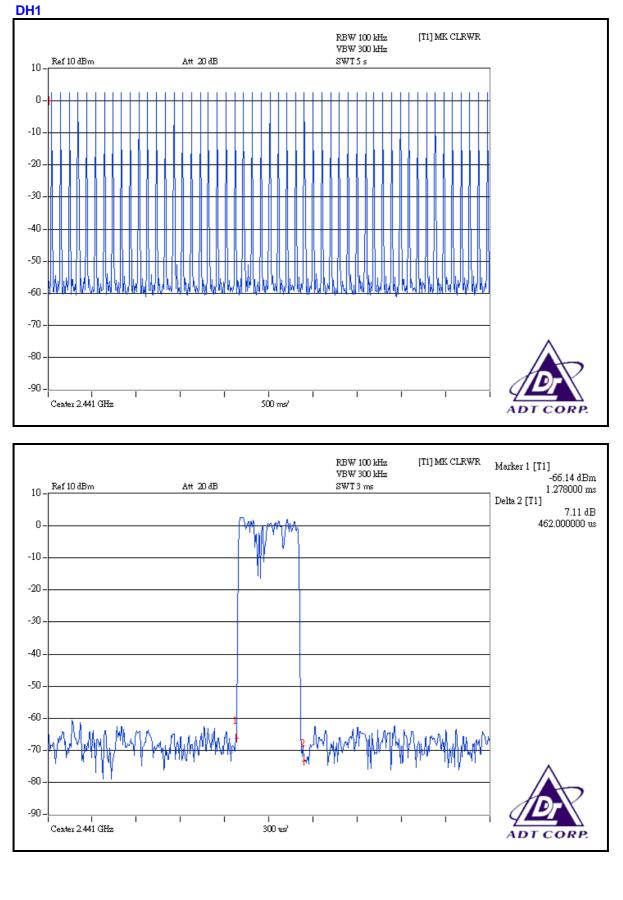
4.4.3 TEST PROCEDURES


- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Adjust the center frequency of SA on any frequency be measured and set SA to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- d. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
- e. Repeat above procedures until all different time-slot modes have been completed.

4.4.4 DEVIATION FROM TEST STANDARD

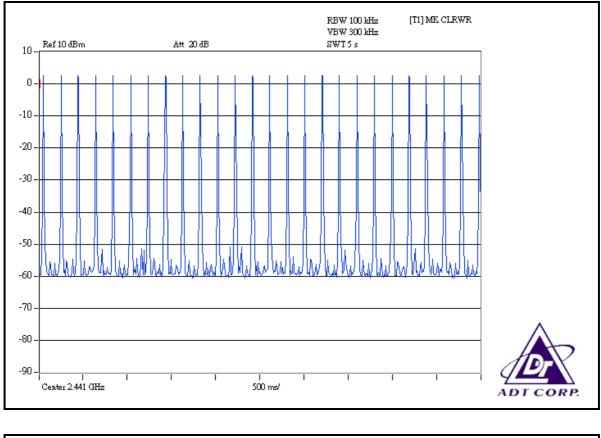
No deviation.

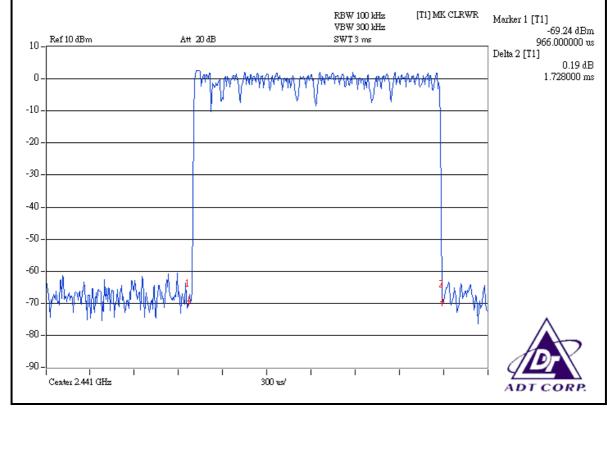
4.4.5 TEST SETUP

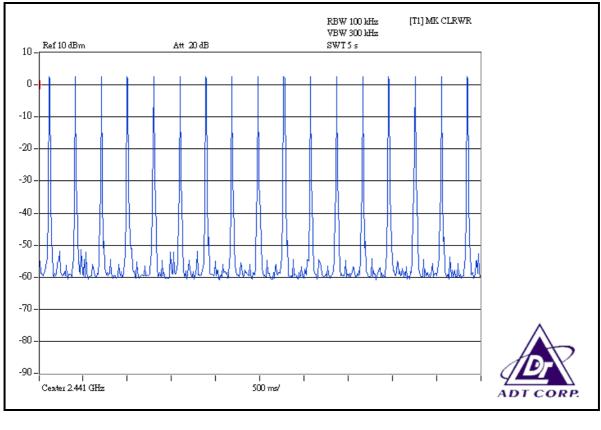

4.4.6 TEST RESULTS

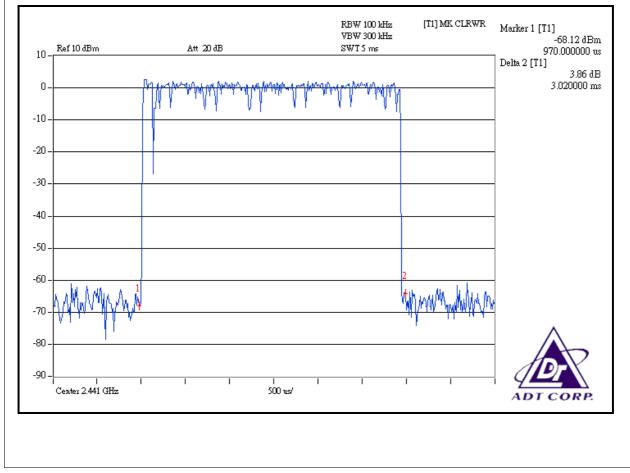
Mode A: FOR GFSK

Mode	Number of transmission in a 31.6 (79Hopping*0.4)	Length of transmission time (msec)	Result (msec)	Limit (msec)
DH1	51 (times / 5 sec) *6.32=322.32 times	0.462	148.912	400
DH3	26 (times / 5 sec) *6.32=164.32 times	1.728	283.945	400
DH5	17 (times / 5 sec) *6.32=107.44 times	3.02	324.469	400

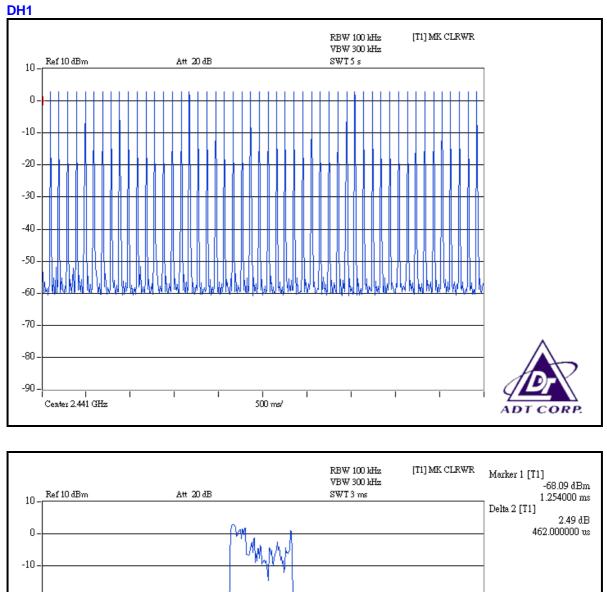

NOTE: Test plots of the transmitting time slot are shown on next 3 pages.

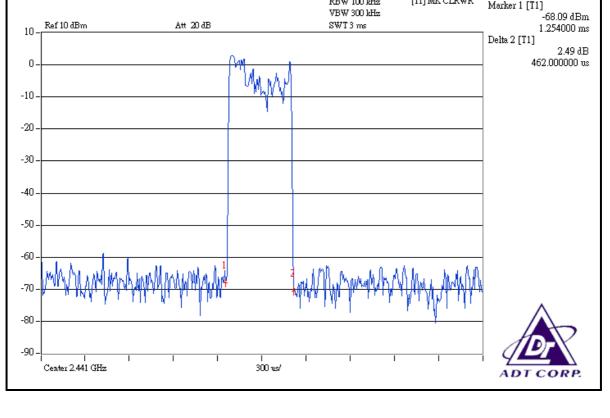



DH3



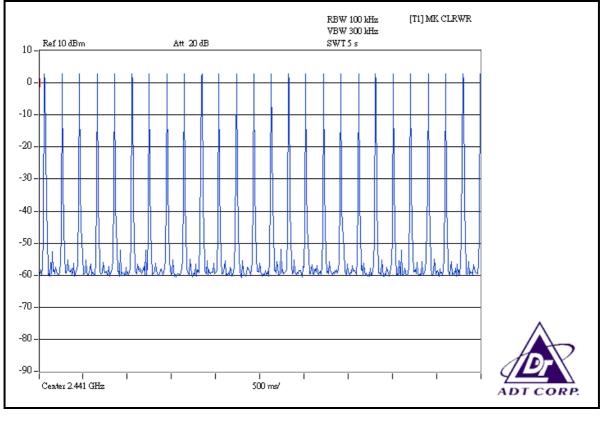
DH5

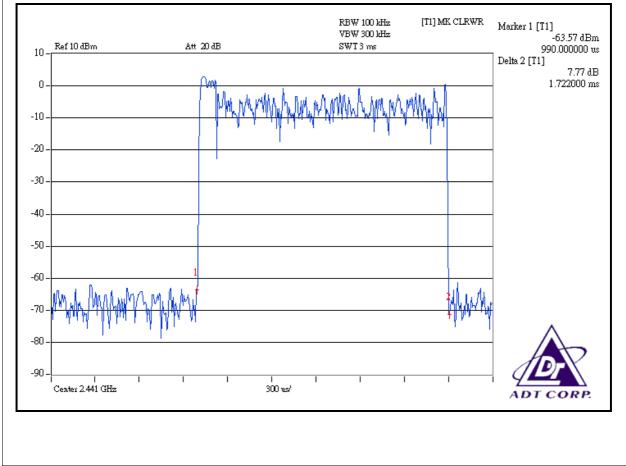


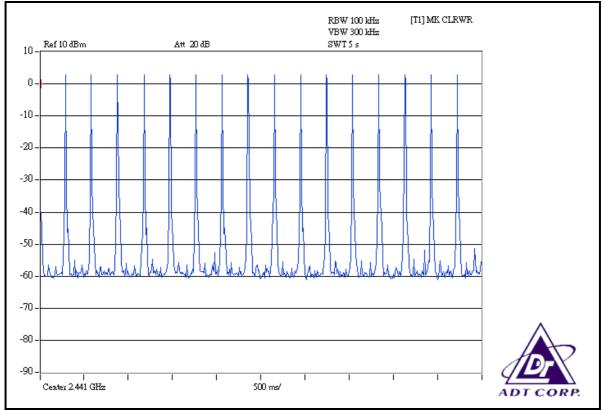

Mode A: FOR 8DPSK

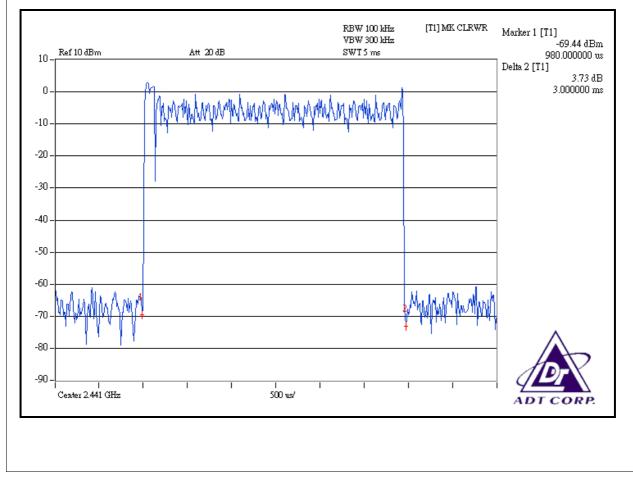
Mode	Number of transmission in a 31.6 (79Hopping*0.4)	Length of transmission time (msec)	Result (msec)	Limit (msec)
DH1	50 (times / 5 sec) *6.32=316.00 times	0.462	145.992	400
DH3	25 (times / 5 sec) *6.32=158.00 times	1.722	272.076	400
DH5	16 (times / 5 sec) *6.32=101.12 times	3.000	303.360	400

NOTE: Test plots of the transmitting time slot are shown on next 3 pages.






DH3



DH5

4.5 CHANNEL BANDWIDTH

4.5.1 LIMITS OF CHANNEL BANDWIDTH

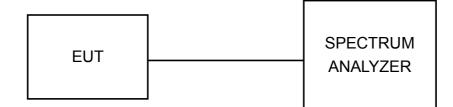
For frequency hopping system operating in the 2400-2483.5MHz, If the 20dB bandwidth of hopping channel is greater than 25kHz, two-thirds 20dBbandwidth of hopping channel shell be a minimum limit for the hopping channel separation.

4.5.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
SPECTRUM ANALYZER	FSP 40	100035	Mar. 26, 2008	Mar. 25, 2009

NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.5.3 TEST PROCEDURE


- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.
- d. Repeat above procedures until all frequencies measured were complete.

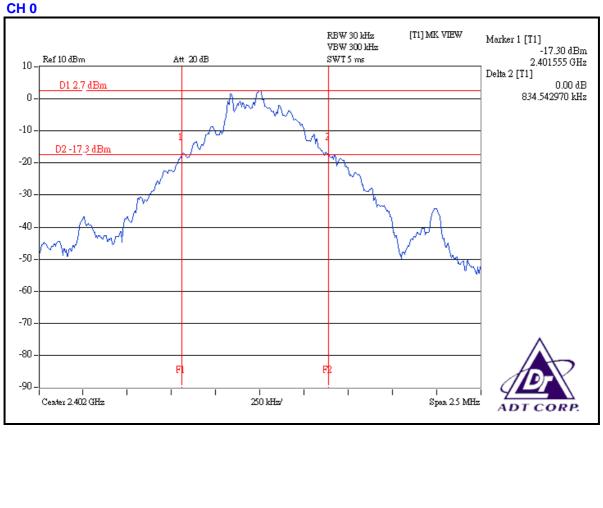
4.5.4 DEVIATION FROM TEST STANDARD

No deviation.

4.5.5 TEST SETUP

4.5.6 EUT OPERATING CONDITION

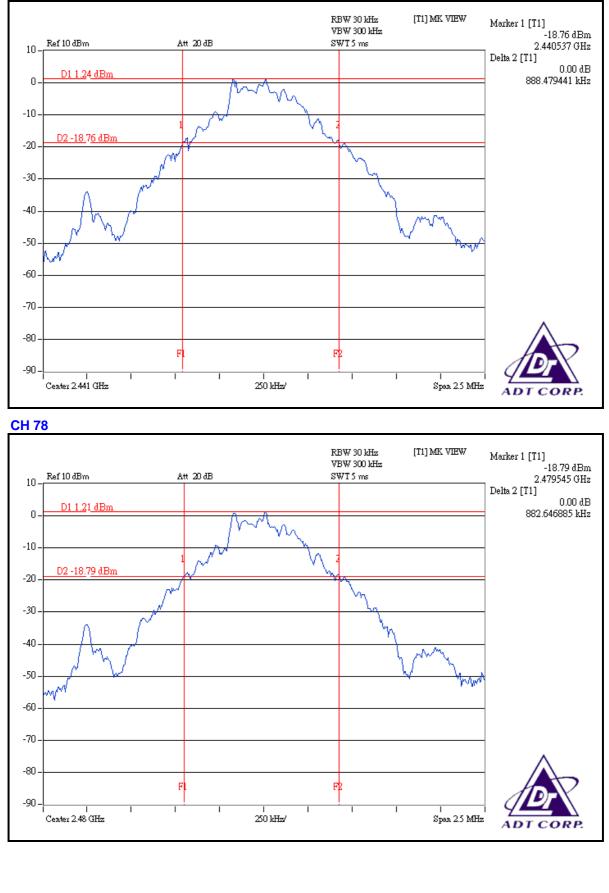
The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.



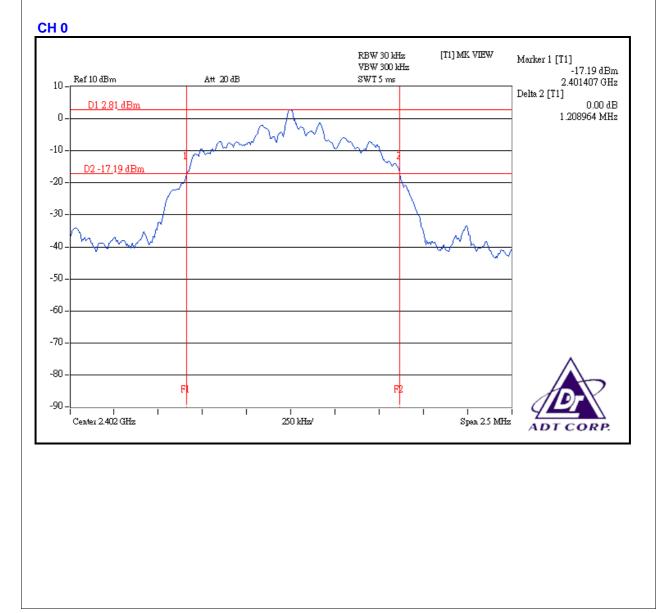
4.5.7 TEST RESULTS

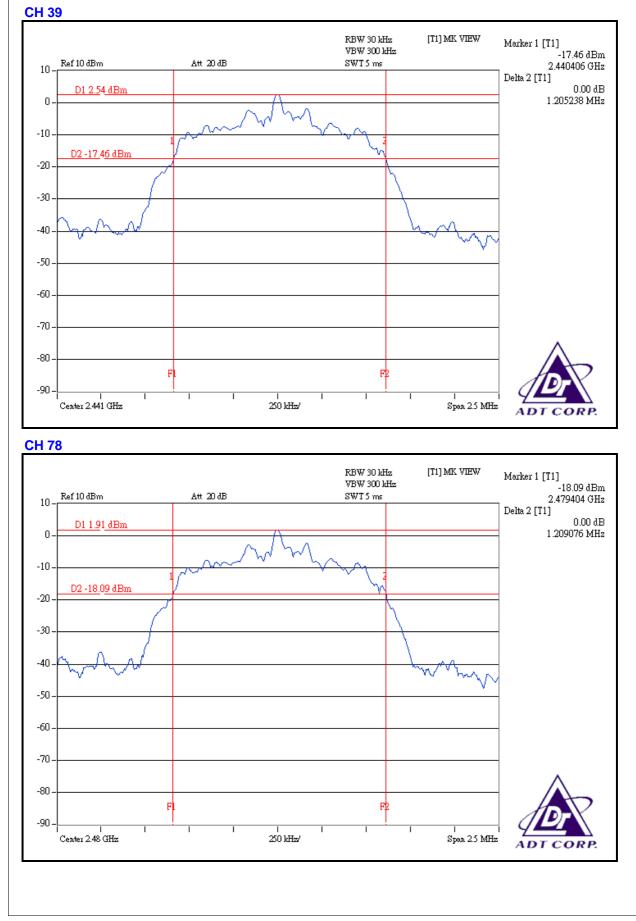
FOR GFSK

TEST MODE	A				
MODULATION TYPE	GFSK	CHANNEL	0, 39, 78		
INPUT POWER (SYSTEM)	120Vac, 60 Hz	ENVIRONMENTAL CONDITIONS	24deg. C, 74% RH, 1002hPa		
TESTED BY	Chad Lee				


CHANNEL	CHANNEL FREQUENCY (MHz)	20dB BANDWIDTH (MHz)
0	2402	0.834
39	2441	0.888
78	2480	0.882

Report No.: RF971015A03




FOR 8DPSK

TEST MODE	A				
MODULATION TYPE	8DPSK	CHANNEL	0, 39, 78		
INPUT POWER (SYSTEM)	120Vac, 60 Hz	ENVIRONMENTAL CONDITIONS	24deg. C, 74% RH, 1002hPa		
TESTED BY	Chad Lee				

CHANNEL	CHANNEL FREQUENCY (MHz)	20dB BANDWIDTH (MHz)
0	2402	1.208
39	2441	1.205
78	2480	1.209

Report No.: RF971015A03

4.6 HOPPING CHANNEL SEPARATION

4.6.1 LIMIT OF HOPPING CHANNEL SEPARATION

At least 25kHz or two-third of 20dB hopping channel bandwidth (whichever is greater).

4.6.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
SPECTRUM ANALYZER	FSP 40	100035	Mar. 26, 2008	Mar. 25, 2009

NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.6.3 TEST PROCEDURES

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range.
- 3. By using the MaxHold function record the separation of two adjacent channels.
- 4. Measure the frequency difference of these two adjacent channels by SA MARK function. And then plot the result on SA screen.
- 5. Repeat above procedures until all frequencies measured were complete.

4.6.4 DEVIATION FROM TEST STANDARD

No deviation.

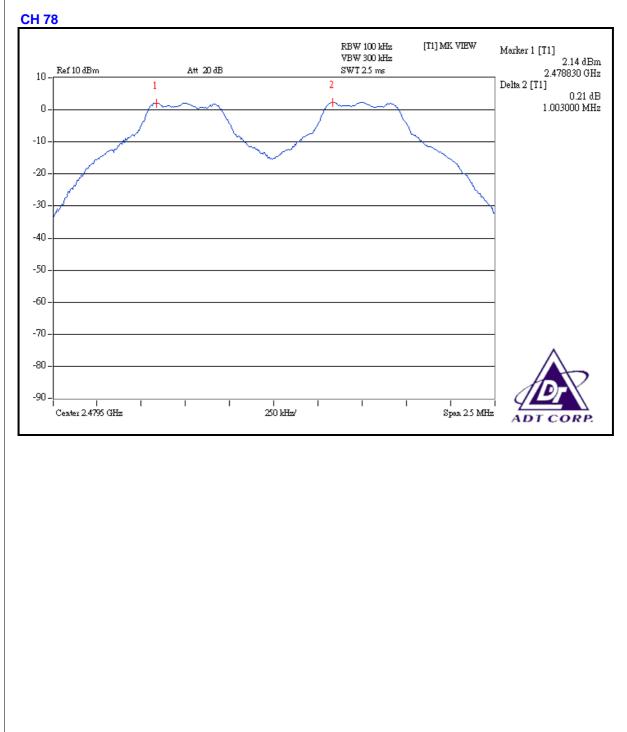
4.6.5 TEST SETUP

4.6.6 TEST RESULTS

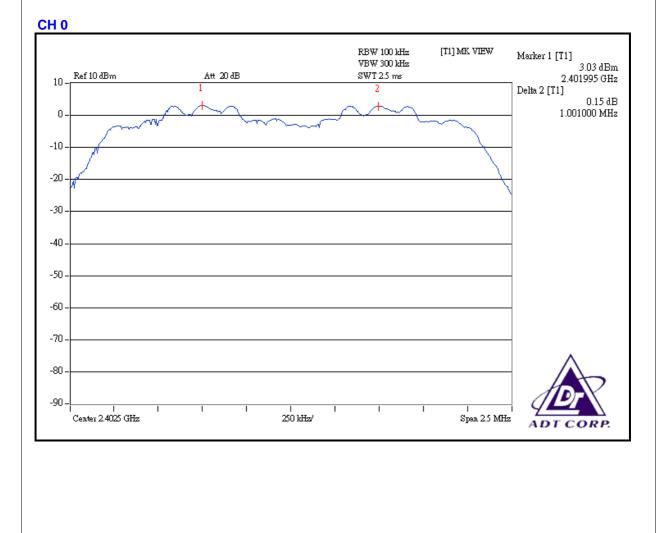
FOR GFSK

TEST MODE	A				
MODULATION TYPE	GFSK	CHANNEL	0, 39, 78		
INPUT POWER (SYSTEM)	120Vac, 60 Hz	ENVIRONMENTAL CONDITIONS	24 deg. C, 74% RH, 1002hPa		
TESTED BY	Chad Lee				

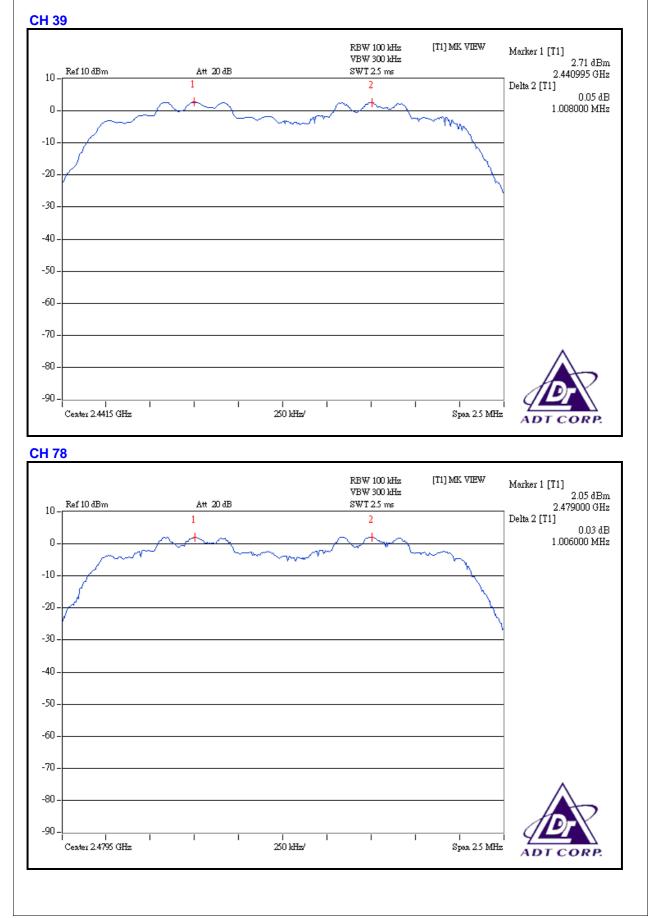
CHANNEL	FREQUENCY (MHz)	ADJACENT CHANNEL SEPARATION (MHz)	20dB BANDWIDTH (MHz)	MINIMUM LIMIT (MHz)	PASS / FAIL
0	2402	1.003	0.834	0.556	PASS
39	2441	1.002	0.888	0.592	PASS
78	2480	1.003	0.882	0.588	PASS


NOTE: The minimum limit is two-third 20dB bandwidth. Test results please refer to following three plots.

Report No.: RF971015A03



FOR 8DPSK


TEST MODE	A				
MODULATION TYPE	8DPSK CHANNEL 0, 39, 78				
INPUT POWER (SYSTEM)	120\/ac_60.Hz	ENVIRONMENTAL CONDITIONS	24 deg. C, 74% RH, 1002hPa		
TESTED BY	Chad Lee				

CHANNEL	FREQUENCY (MHz)	ADJACENT CHANNEL SEPARATION (MHz)	20dB BANDWIDTH (MHz)	MINIMUM LIMIT (MHz)	PASS / FAIL
0	2402	1.001	1.208	0.805	PASS
39	2441	1.008	1.205	0.803	PASS
78	2480	1.006	1.209	0.806	PASS

NOTE: The minimum limit is two-third 20dB bandwidth. Test results please refer to following three plots.

4.7 MAXIMUM PEAK OUTPUT POWER

4.7.1 LIMITS OF MAXIMUM PEAK OUTPUT POWER MEASUREMENT

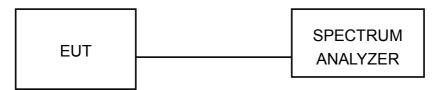
The Maximum Peak Output Power Measurement is 125mW.

4.7.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
SPECTRUM ANALYZER	FSP 40	100035	Mar. 26, 2008	Mar. 25, 2009

NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.7.3 TEST PROCEDURES


- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. The center frequency of the spectrum analyzer is set to the fundamental frequency and using 3MHz RBW and 10 MHz VBW.
- d. Measure the captured power within the band and recording the plot.
- e. Repeat above procedures until all frequencies required were complete.

4.7.4 DEVIATION FROM TEST STANDARD

No deviation

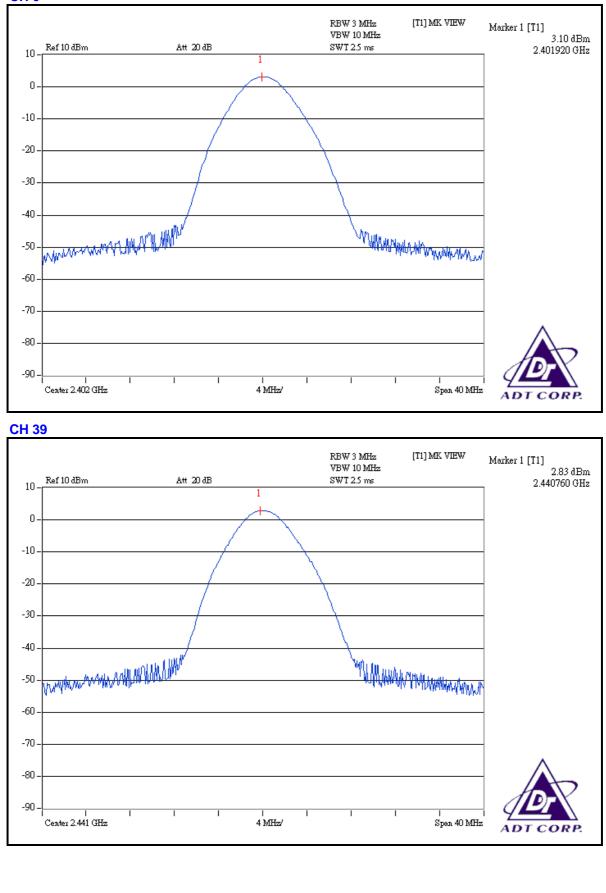
4.7.5 TEST SETUP

For the actual test configuration, please refer to the related Item – Photographs of the Test Configuration.

4.7.6 EUT OPERATING CONDITION

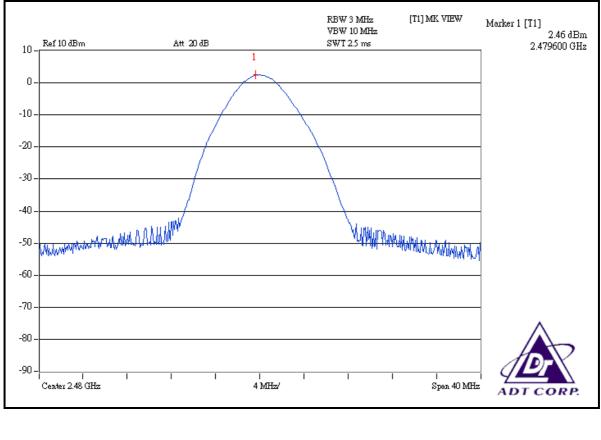
The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

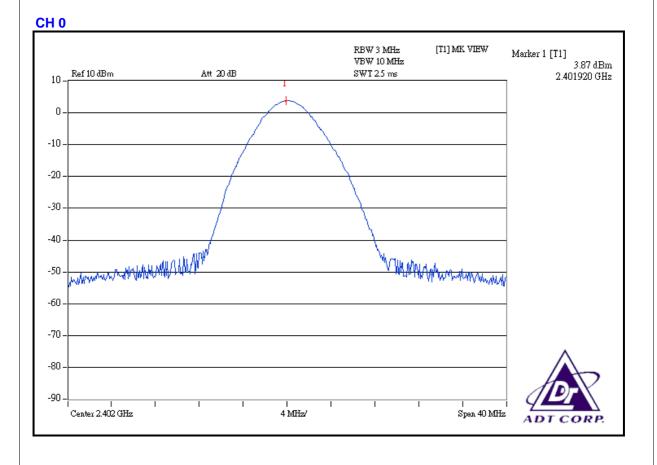
4.7.7 TEST RESULTS

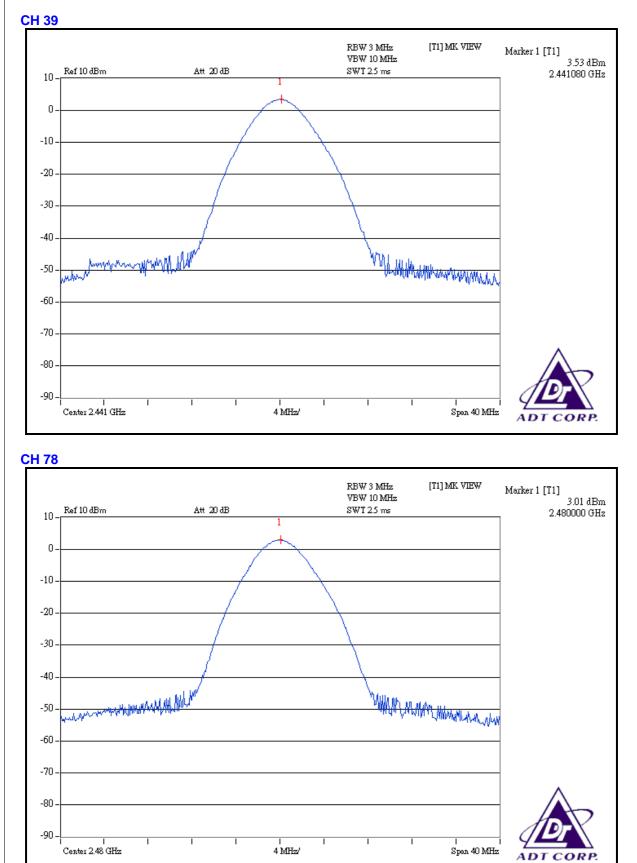

FOR GFSK

TEST MODE	A		
MODULATION TYPE	GFSK	CHANNEL	0, 39, 78
INPUT POWER (SYSTEM)	120Vac, 60 Hz	ENVIRONMENTAL CONDITIONS	24 deg. C, 74% RH, 1002hPa
TESTED BY	Chad Lee		

CHANNEL	CHANNEL FREQUENCY (MHz)	PEAK POWER OUTPUT (dBm)	PEAK POWER OUTPUT (mW)	PEAK POWER LIMIT (mW)	PASS/FAIL
0	2402	3.10	2.042	125	PASS
39	2441	2.83	1.919	125	PASS
78	2480	2.46	1.762	125	PASS






FOR 8DPSK

TEST MODE	A		
MODULATION TYPE	8DPSK	CHANNEL	0, 39, 78
INPUT POWER (SYSTEM)	120Vac, 60 Hz	ENVIRONMENTAL CONDITIONS	24 deg. C, 74% RH, 1002hPa
TESTED BY	Chad Lee		

CHANNEL	CHANNEL FREQUENCY (MHz)	PEAK POWER OUTPUT (dBm)	PEAK POWER OUTPUT (mW)	PEAK POWER LIMIT (mW)	PASS/FAIL
0	2402	3.87	2.438	125	PASS
39	2441	3.53	2.254	125	PASS
78	2480	3.01	2.000	125	PASS

4.8 BAND EDGES MEASUREMENT

4.8.1 LIMITS OF BAND EDGES MEASUREMENT

Below –20dB of the highest emission level of operating band (in 100KHz RBW).

4.8.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
SPECTRUM ANALYZER	FSP 40	100035	Mar. 26, 2008	Mar. 25, 2009

NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.8.3 TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer via a low lose cable. Set both RBW and VBW of spectrum analyzer to 100 kHz and 300 kHz with suitable frequency span including 100 MHz bandwidth from band edge. The band edges was measured and recorded.

The spectrum plots are attached on the following pages.

4.8.4 DEVIATION FROM TEST STANDARD

No deviation.

4.8.5 EUT OPERATING CONDITION

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.8.6 TEST RESULTS

The spectrum plots are attached on the following 8 images. D1 line indicates the highest level, D2 line indicates the 20dB offset below D1. It shows compliance with the requirement in part 15.247(d).

Mode A: FOR GFSK

NOTE 1:

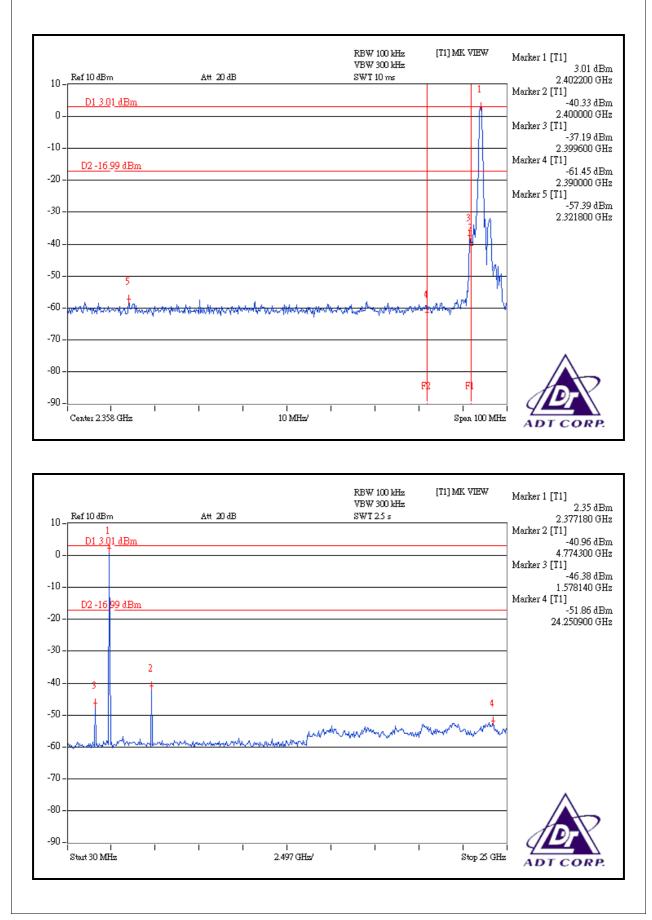
The band edge emission plot on the next page shows 60.4dBc between carrier maximum power and local maximum emission in restrict band (2.3218GHz). The emission of carrier strength list in the test result of channel 0 at the item 4.2.7 is 101.71dBuV/m (Peak), so the maximum field strength in restrict band is 101.71 –60.4= 41.31dBuV/m, which is under 74 dBuV/m limit.

Average value = 41.31 - 30.10= 11.21dBuV/m, which is under 54dBuV/m limit.

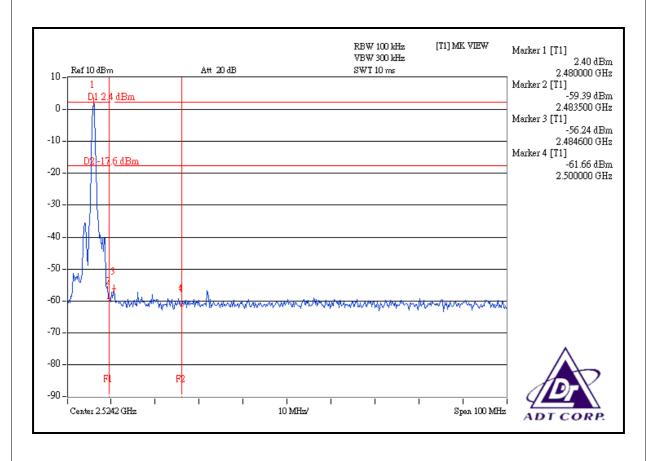
*The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625 * 5 per 296.25 ms per channel. Therefore, the duty cycle be equal to: $20\log(3.125/100)=-30.1$ dB.

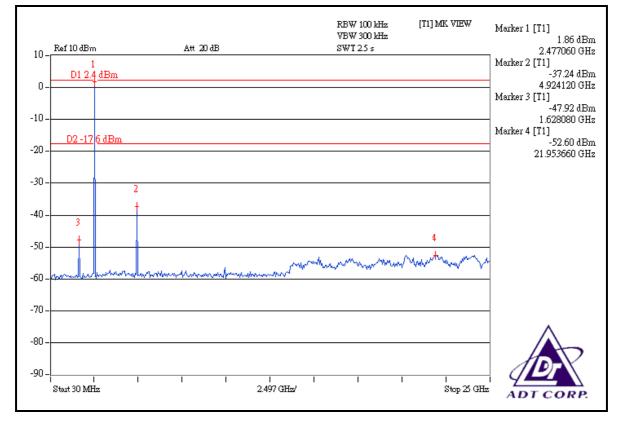
Average value = peak reading –30.10.

NOTE 2:


The band edge emission plot on the next second page shows 58.64dBc between carrier maximum power and local maximum emission in restrict band (2.4846GHz). The emission of carrier strength list in the test result of channel 78 at the item 4.2.7 is 102.69dBuV/m (Peak), so the maximum field strength in restrict band is 102.69 - 58.64 = 44.05dBuV/m, which is under 74 dBuV/m limit.

Average value = 44.05 - 30.10= 13.95dBuV/m, which is under 54dBuV/m limit.


*The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625 * 5 per 296.25 ms per channel. Therefore, the duty cycle be equal to: 20log(3.125/100)= -30.1 dB.


Average value = peak reading -30.10.

Mode A: FOR 8DPSK

NOTE 1:

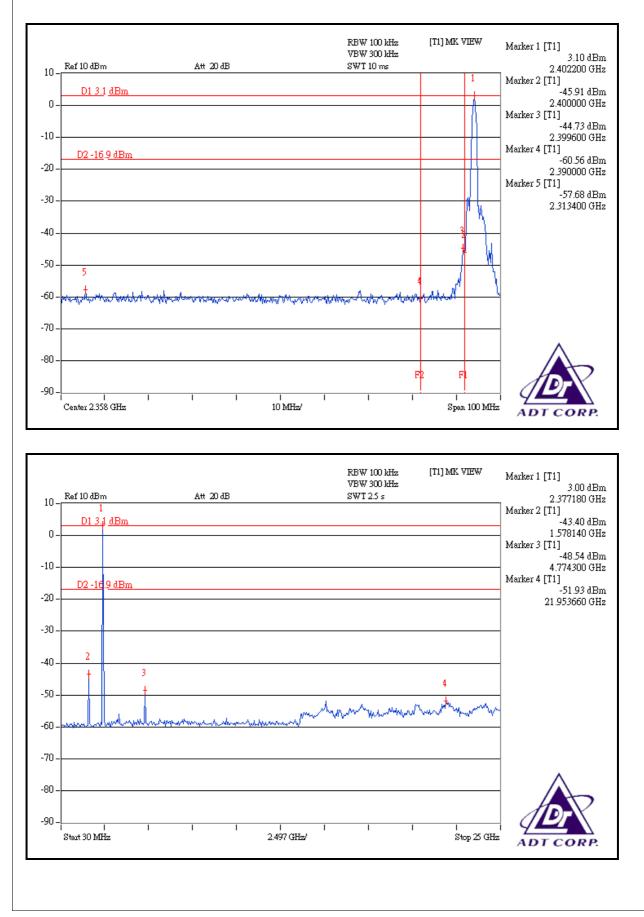
The band edge emission plot on the next page shows 60.78dBc between carrier maximum power and local maximum emission in restrict band (2.3134GHz). The emission of carrier strength list in the test result of channel 0 at the item 4.2.7 is 102.97dBuV/m (Peak), so the maximum field strength in restrict band is 102.97 -60.78 = 42.19dBuV/m, which is under 74 dBuV/m limit.

Average value = 42.19 - 30.10= 12.09dBuV/m, which is under 54dBuV/m limit.

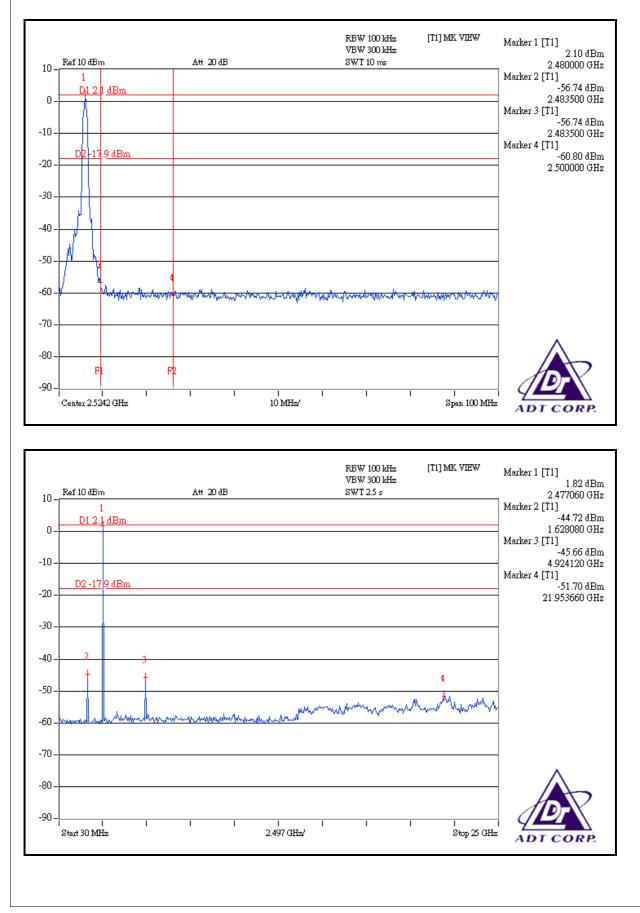
*The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625×5 per 296.25 ms per channel. Therefore, the duty cycle be equal to: $20\log(3.125/100) = -30.1$ dB.

Average value = peak reading –30.10.

NOTE 2:


The band edge emission plot on the next second page shows 58.84dBc between carrier maximum power and local maximum emission in restrict band (2.4835GHz). The emission of carrier strength list in the test result of channel 78 at the item 4.2.7 is 102.95dBuV/m (Peak), so the maximum field strength in restrict band is 102.95 - 58.84 = 44.11dBuV/m, which is under 74 dBuV/m limit.

Average value = 44.11 - 30.10= 14.01dBuV/m, which is under 54dBuV/m limit.


*The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625 * 5 per 296.25 ms per channel. Therefore, the duty cycle be equal to: $20\log(3.125/100)=-30.1$ dB.

Average value = peak reading –30.10.

4.9 ANTENNA REQUIREMENT

4.9.1 STANDARD APPLICABLE

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

4.9.2 ANTENNA CONNECTED CONSTRUCTION

The antenna used in this product is Printed antenna without antenna connector. The maximum gain of this antenna is 1.88dBi.

5. PHOTOGRAPHS OF THE TEST CONFIGURATION

Please refer to the attached file (Test Setup Photo).

6. INFORMATION ON THE TESTING LABORATORIES

We, ADT Corp., were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved by the following approval agencies according to ISO/IEC 17025.

USA	FCC, UL
Germany	TUV Rheinland
Japan	VCCI
Norway	NEMKO
Canada	INDUSTRY CANADA, CSA
R.O.C.	TAF, BSMI, NCC
Netherlands	Telefication
Singapore	GOST-ASIA(MOU)
Russia	CERTIS(MOU)

Copies of accreditation certificates of our laboratories obtained from approval agencies can be downloaded from our web site: <u>www.adt.com.tw/index.5/phtml</u>. If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab: Tel: 886-2-26052180 Fax: 886-2-26051924

Hsin Chu EMC/RF Lab:

Tel: 886-3-5935343 Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety Telecom Lab: Tel: 886-3-3183232 Fax: 886-3-3185050

Web Site: <u>www.adt.com.tw</u>

The address and road map of all our labs can be found in our web site also.

7. APPENDIX A – MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No any modifications are made to the EUT by the lab during the test.

---END----