

SAR Test Report

Test Report No. 15260493S-A-R1

Customer	Sony Group Corporation
Description of EUT	Wireless Noise Canceling Stereo Headset
Model Number of EUT	YY2975
FCC ID	AK8YY2975
Test Regulation	FCC 47CFR 2.1093
Test Result	Complied
Issue Date	June 11, 2024
Remarks	-

Representative Test Engineer	Approved By
H. haka	T.Amamura
Hiroshi Naka Engineer	Toyokazu Imamura Engineer
The testing in which "Non-accreditation" is displayed i	CERTIFICATE 1266.03 s outside the accreditation scopes in UL Japan, Inc.
There is no testing item of "Non-accreditation".	
Report Cover Page -Form-	ULID-003532 (DCS:13-EM-F0429) Issue# 23.0 (SAR Revision- v23.7sar240510)

ANNOUNCEMENT

- This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- The results in this report apply only to the sample tested.
- This sample tested is in compliance with the limits of the above regulation.
- The test results in this test report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- This test report covers Radio technical requirements.
 It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- The all test items in this test report are conducted by UL Japan, Inc. Shonan EMC Lab.
- The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan, Inc. has been accredited.
- The information provided by the applicant for this report is identified in Section 1.
- The laboratory is not responsible for information provided by the customer which can impact the validity of the results.
- For test report(s) referred in this report, the latest version (including any revisions) is always referred.

REVISION HISTORY

Original Test Report No.: 15260493S-A

This report is a revised version of 15260493S-A. 15260493S-A is replaced with this report.

Revision	Test Report No.	Date	Page Revised Contents				
- (Original)	15260493S-A	May 21, 2024					
-R1	15260493S-A-R1	June 11, 2024	(P8)(4.1) "Bandwidth" was changed to "Channel width" in the table.				
			P9)(5.1) Error corrected. Corrected the title of the last plot from BT LE (1 Mbps) to BT LE (2 Mbps).				
			(P9)(5.1) The duty cycle plots were enlarged to make the text easier to read.				
			(p11)(7.1) Corrected a numerical error in the SAR results table.				
			Lett Front 0 BR (DH5)* 2402 0 77.3 12.8 15.4 14.7 12.1 0.952- sep- NA/ray 13.89 0.16 1- P1. Lett Front 0 BR (DH5)* 2441 39 77.3 12.8 15- 14.22 12.0 0.765 sep NA/ray 13.89 0.16 1- P1. Lett Front 0 BR (DH5)* 2403 79 12.9 15- 14.22 12.0 0.515 sep NA/ray 0.523 0.523 0.515 sep NA/ray 0.527 19 16 P1. Lett Front 0 BR (DH5)* 2402 0 77.3 12.9 15- 14.77 12.1 0.163 sep NA/ray 0.355 19 16 P2. Lett Top 0 BR (DH5)* 2402 0 77.3 12.9 15- 14.77 12.1 0.253 sep				
			(new) Left Bade 0 BR(DH5) 2402 0 773 129 15 1417 121 0.023 - P NA(a) 0.036 19 16 - P6				
			(p12)(7.4) Corrected errors in the table.				
			Right Front: BR:- 2402 Series Wee 0.837↔ (Reported: 1.332) 0.814↔ (Reported: 1.344) 2.8.%↔ 2 (P1)↔ 6 (P15)↔				
			(new) Right Front: BR- 2402 Serie We 0.837- (Reported:1.3329) (Reported:1.3349) 2.8% (2 (P7)- 6 (P16)-				
			(p14)(Appendix 1-2) The serial number of the EUT in the table has been corrected from "121078" to "1201078".				
			(p16)(Appendix 1-3) Corrected the title of the table from (L unit) to (R unit). Photo number of Front setup photo was				
			changed from "P1" to "P7".				

Reference : Abbreviations (Including words undescribed in this report) (R15v240501S07v240507)

A2LAThe American Association for Laboratory AccreditationJABJapan Accreditation BoardACAlternating CurrentLANLocal Area NetworkAFHAdaptive Frequency HoppingLIMSLaboratory Information Management SystemAMAmplitude ModulationMCSModulation and Coding SchemeAmp, AMPAmplifierMIMOMultiple Input Multiple Output (Radio)ANSIAmerican National Standards InstituteMPEMaximum Permissible ExposureAnt, ANTAntennaMRAMutual Recognition ArrangementAPAccess PointMU-MIMOMulti-User Multiple Output (Radio)APDAbsorbed Power DensityN/ANot Applicable, Not Applied	
ACAlternating CurrentLANLocal Area NetworkAFHAdaptive Frequency HoppingLIMSLaboratory Information Management SystemAMAmplitude ModulationMCSModulation and Coding SchemeAmp, AMPAmplifierMIMOMultiple Input Multiple Output (Radio)ANSIAmerican National Standards InstituteMPEMaximum Permissible ExposureAnt, ANTAntennaMRAMutual Recognition ArrangementAPAccess PointMU-MIMOMulti-User Multiple Output (Radio)APDAbsorbed Power DensityN/ANot Applicable, Not Applied	
AFHAdaptive Frequency HoppingLIMSLaboratory Information Management SystemAMAmplitude ModulationMCSModulation and Coding SchemeAmp, AMPAmplifierMIMOMultiple Input Multiple Output (Radio)ANSIAmerican National Standards InstituteMPEMaximum Permissible ExposureAnt, ANTAntennaMRAMutual Recognition ArrangementAPAccess PointMU-MIMOMulti-User Multiple Output (Radio)APDAbsorbed Power DensityN/ANot Applicable, Not Applied	
AMAmplitude ModulationMCSModulation and Coding SchemeAmp, AMPAmplifierMIMOMultiple Input Multiple Output (Radio)ANSIAmerican National Standards InstituteMPEMaximum Permissible ExposureAnt, ANTAntennaMRAMutual Recognition ArrangementAPAccess PointMU-MIMOMulti-User Multiple Input Multiple Output (Radio)APDAbsorbed Power DensityN/ANot Applicable, Not Applied	
Amp, AMPAmplifierMIMOMultiple Input Multiple Output (Radio)ANSIAmerican National Standards InstituteMPEMaximum Permissible ExposureAnt, ANTAntennaMRAMutual Recognition ArrangementAPAccess PointMU-MIMOMulti-User Multiple Input Multiple Output (Radio)APDAbsorbed Power DensityN/ANot Applicable, Not Applied	
ANSIAmerican National Standards InstituteMPEMaximum Permissible ExposureAnt, ANTAntennaMRAMutual Recognition ArrangementAPAccess PointMU-MIMOMulti-User Multiple Input Multiple Output (Radio)APDAbsorbed Power DensityN/ANot Applicable, Not Applied	
Ant, ANTAntennaMRAMutual Recognition ArrangementAPAccess PointMU-MIMOMulti-User Multiple Input Multiple Output (Radio)APDAbsorbed Power DensityN/ANot Applicable, Not Applied	
AP Access Point MU-MIMO Multi-User Multiple Input Multiple Output (Radio) APD Absorbed Power Density N/A Not Applicable, Not Applied	
APD Absorbed Power Density N/A Not Applicable, Not Applied	
ASK Amplitude Shift Keying NII National Information Infrastructure (Radio)	
Atten., ATT Attenuator NIST National Institute of Standards and Technology	
AV Average NR New Radio	
BPSK Binary Phase-Shift Keying NS Nerve Stimulation	
BR Bluetooth Basic Rate NSA Normalized Site Attenuation	
BT Bluetooth NVLAP National Voluntary Laboratory Accreditation Prog	ram
BT LE Bluetooth Low Energy OBW Occupied Band Width	
BW BandWidth OFDM Orthogonal Frequency Division Multiplexing	
Cal Int Calibration Interval PD Power Density	
CCK Complementary Code Keying P/M Power meter	
CDD Cyclic Delay Diversity PCB Printed Circuit Board	
CFR Code of Federal Regulations PER Packet Error Rate	
Ch., CH Channel PHY Physical Layer	
CISPR Comite International Special des Perturbations Radioelectriques PK Peak	
CW Continuous Wave PN Pseudo random Noise	
DBPSK Differential BPSK PRBS Pseudo-Random Bit Sequence	
DC Direct Current PSD Power Spectral Density	
D-factor Distance factor QAM Quadrature Amplitude Modulation	
DFS Dynamic Frequency Selection QP Quasi-Peak	
DQPSK Differential QPSK Quadrature Phase Shift Keying	
DSSS Direct Sequence Spread Spectrum RBW Resolution Band Width	
DUT Device Under Test RDS Radio Data System	
EDR Enhanced Data Rate RE Radio Equipment	
EIRP, e.i.r.p. Equivalent Isotropically Radiated Power RF Radio Frequency	
EMC ElectroMagnetic Compatibility RMS Root Mean Square	
EMI ElectroMagnetic Interference RSS Radio Standards Specifications	
EN European Norm RU Resource Unit	
ERP, e.r.p. Effective Radiated Power Rx Receiving	
ETSI European Telecommunications Standards Institute SA, S/A Spectrum Analyzer	
EU European Union SAR Specific Absorption Rate	
EUT Equipment Under Test SDM Space Division Multiplexing	
Fac. Factor SISO Single Input Single Output (Radio)	
FCC Federal Communications Commission SG Signal Generator	
FHSS Frequency Hopping Spread Spectrum SPLSR SAR to Peak Location Separation Ratio	
FM Frequency Modulation SVSWR Site-Voltage Standing Wave Ratio	
Freq. Frequency TER Total Exposure Ratio	
FSK Frequency Shift Keying TSL Tissue Simulation Liquid	
GFSK Gaussian Frequency-Shift Keying T/R Test Receiver	
GNSS Global Navigation Satellite System Ix Transmitting GPS Global Positioning System U-NII Unlicensed National Information Infrastructure (F	adia)
HE High Efficiency (e.g. IEEE 802.11ax20HE) URS Unintentional Radiator(s)	30I0)
HT High Throughput (e.g. IEEE 802.11n20HT) VBW Video BandWidth	
	т)
	')
IEEE Institute of Electrical and Electronics Engineers Wi-Fi, WiFi Wireless LAN, trademarked by Wi-Fi Alliance	
IF Intermediate Frequency WPT Wireless Power Transmit	
ILAC International Laboratory Accreditation Conference	
IPD Incident Power Density	
ISED Innovation, Science and Economic Development Canada	
ISO International Organization for Standardization	

CONTENTS

PAGE	

ANNOUNCEMEN	Π	
	RY	
Reference : Abbr	eviations (Including words undescribed in this report)	3
	······································	
SECTION 1:	Customer information	
SECTION 2: 2.1 2.2	Equipment under test (EUT) Identification of EUT Product Description	5
SECTION 3: 3.1 3.2 3.3 3.4 3.5 3.6	Maximum SAR value, test specification and procedures Summary of Maximum SAR Value RF Exposure limit Test specification Addition, deviation and exclusion to the test procedure Test location SAR measurement procedure	6 6 6 6 6
SECTION 4: 4.1 4.2	Operation of EUT during testing Operation modes for testing RF exposure conditions (Test exemption)	8
SECTION 5: 5.1	Confirmation before testing Test reference power measurement	
SECTION 6: 6.1 6.2 6.3	Tissue simulating liquid Liquid measurement Target of tissue simulating liquid Simulated tissue composition	
SECTION 7: 7.1 7.2 7.3 7.4 7.5	Measurement results Measurement results Simultaneous transmission evaluation SAR Measurement Variability (Repeated measurement requirement) Device holder perturbation verification Requirements on the Uncertainty Evaluation	
Contents of appe	ndixes	
APPENDIX 1: Appendix 1-1	Photographs of test setup Photograph of EUT and antenna position	

Appendix 1-2 Appendix 1-3	EUT and support equipment Photograph of test setup (SAR)	14 15
APPENDIX 2: Appendix 2-1 Appendix 2-2 Appendix 2-3	Measurement data Plot(s) of Worst Reported Value SAR Plot for SAR Measurement Variability (Repeated measurement requirement) SAR Plot for Device holder perturbation verification	18 19
APPENDIX 3: Appendix 3-1 Appendix 3-2 Appendix 3-2-1 Appendix 3-2-2 Appendix 3-2-3	SAR system check measurement data	21 22 22 25 25
Appendix 3-3 Appendix 3-4	Measurement Uncertainty Calibration certificates	

SECTION 1: Customer information

Company Name	Sony Group Corporation		
Address	1-7-1 Konan Minato-ku, Tokyo, 108-0075 Japan		
Contact Person	Kouhei Nagamine		
The information provided from the customer is as follows;			

Customer name, Company name, Type of Equipment, Model No., FCC ID on the cover and other relevant pages. SECTION 1: Customer information

-

SECTION 2: Equipment under test (EUT) SECTION 4: Operation of EUT during testing -

Appendix 1: The part of Antenna location information, Description of EUT and Support Equipment -

SECTION 2: Equipment under test (EUT)

2.1 Identification of EUT

Туре	Wireless Noise Canceling Stereo Headset		
Model Number	YY2975		
Serial Number	1201078		
Rating	DC 3.85 V (Re-chargeable Li-ion battery)		
Condition of sample	Engineering prototype (Not for sale: The sample is equivalent to mass-produced items.)		
Dessint Data of sample	April 17, 2024 (for power measurement) (*. No modification by the Lab.)		
Receipt Date of sample	May 9, 2024 (for SAR test) (*. No modification by the Lab.)		
Test Date (SAR)	May 13, 2024		

Product Description 2.2

This report contains data provided by the customer which can impact the validity of results. UL Japan, Inc. is only responsible for the validity of results after the integration of the data provided by the customer. The data provided by the customer is marked "a)" in the table below.

General

Feature of EUT	Model: YY2975 (referred to as the EUT in this report) is a Wireless Noise Canceling Stereo Headset.
SAR Category	Portable device (*. Since EUT may contact to a localized human body during wireless operation, the partial-
Identified	body SAR (1g) shall be observed.)
SAR Accessory	Supporter made of silicone (*. During SAR test, it was removed.)

Radio specification					
Equipment type	Transceiver				
Frequency of operation	Bluetooth: 2402 MHz ~ 2480 MHz				
Supported modulations	Bluetooth: BR/EDR/BT LE (FHSS, GFSK (*. EDR: GFSK+				
Typical and maximum transmit power	*. The specification of typical and maximum transmit power (which may occur) refer to remarks in below "Table of Typical power and Maximum tune-up tolerance limit power". The measured output power (conducted) as SAR reference power refers to section 5 in this report.				
Antenna	L-ch (L unit side)	R-ch (R unit side)			
Antenna model	101770211 101770111				
Antenna quantity	1 pc 1 pc				
Antenna type / connector type	Monopole antenna / On board contact Monopole antenna / On board contact				
Antenna gain (max. gain)*a)	-4.4 dBi -4.4 dBi				

*. Table of Typical power and Maximum power (= Maximum tune-up tolerance limit power)							
Band	Channel	Frequency [MHz]	Mode	BW [MHz]	Data Rate	Typical [dBm]	Maximum power
	0~79	2402~2480	BR	1	1 Mbps (DH5)	Not applicable	<mark>15 dBm</mark>
	0~79	2402~2480	EDR	1	2 Mbps (2DH5)	Not applicable	0 ch: 11.5,dBm other ch: 12.5 dBm
Bluetooth	0~79	2402~2480	EDR	1	3 Mbps (3DH5)	Not applicable	0 ch: 11.5,dBm other ch: 12.5 dBm
	0~39	2402~2480	BTLE	2	1 Mbps (PHY1)	Not applicable	12 dBm
	0~39	2402~2480	BTLE	2	2 Mbps (PHY2)	Not applicable	12 dBm

Maximum tune-up tolerance limit is conducted burst average power and is defined by a customer as Duty cycle 100% (continuous transmitting). The higher maximum output power is marked with yellow marker (xx dBm). *.

General population / uncontrolled exposure

SECTION 3: Maximum SAR value, test specification and procedures

Summary of Maximum SAR Value 3.1

					High	nest Reported	SAR [W/kg]					
Mode	/Band		Partial-bo			Head	· /	Limbs				
mode	/ Dana		(Flat phantom, Sep	paration 0 mm)	SAR	(SAM phar	ntom)		(Flat pha	ntom)		
		SAR type	L-ch (L unit)	R-ch (R unit)	SAR type	L-ch (L unit)	R-ch (R unit)					
Blue	tooth	1g	1.35	1.38	1g	N/A	N/A	1g	N/A	N/A		
Simultaneous	Transmission	1g	N/A	N/A	1g	N/A	N/A	1g	N/A	N/A		
Limit applied	Partial bod y: 1.	6W/	kg (SAR1g) for ger	neral population/un	contro	olled exposure is s	pecified in FCC 47	7 CFR	2.1093.			
Test	Refer to Section	n 3.2	in this report. In ad	dition;								
Procedure	UL Japan's SA	R me	asurement work p	rocedures No. ULI	D-003	3599 (13-EM-W04	130).					
Flocedule	UL Japan's SAI	R me	asurement equipn	nent calibration and	d insp	ection work proced	dures No. ULID-0	03598	(13-EM-W0429)).		
1 Cinco the e									1	/		

Since the device is inserted inside the ear, the ear (head) SAR1g was evaluated under touch conditions on a flat phantom without using the SAM's 4 mm ear spacer. The evaluated SAR1g was reported as Partial body SAR1g.

Conclusion

The SAR test values found for each device (L unit / R unit) is below the maximum limit of 1.6 W/kg.

RF Exposure limit 3.2

SAR E	xposure Limit (100 kHz ~ 6 GHz)	
	General Population / Uncontrolled Exposure (*1)	Occupational / Controlled Exposure (*2)
Spatial Peak SAR (*3) (Whole Body)	0.08 W/kg	0.4 W/kg
Spatial Peak SAR (*4) (Partial-Body, Head or Body)	1.6 W/kg	8 W/kg
Spatial Peak SAR (*5) (Hands / Feet / Ankle / Wrist)	4 W/kg	20 W/kg

For the purpose of this Regulation, FCC has adopted the SAR and RF exposure limits established in FCC 47 CFR 1.1310: Radiofrequency radiation exposure limits.

General Population / Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. Occupational / Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

*3

The Spatial Average value of the SAR averaged over the whole body. The Spatial Average value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time *4.

*5.

The limit applied to this device which tested in this report is; Limit of Spatial Peak SAR (Partial-Body) 1.6 W/ka

3.3 Test specification

•		
Standard	Description	Version
47 CFR 2.1093	(Limit) Radiofrequency radiation exposure evaluation: portable devices	-
ANSI/IEEE C95.1	IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 KHz to 300 GHz	1992
IEEE Std. 1528	IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.	2013
KDB 248227 D01	SAR Guidance for IEEE 802.11 (Wi-Fi) transmitters v02r02	v02r02
KDB 447498 D04	Interim General RF Exposure Guidance v01	v01
KDB 447498 D03	OET Bulletin 65, Supplement C Cross-Reference v01	v01
KDB 865664 D01	SAR measurement 100 MHz to 6 GHz v01r04	v01r04
KDB 865664 D02	RF exposure compliance reporting and documentation considerations v01r02	v01r02
*. The measurement unc	ertainty budget is suggested by IEC/IEEE 62209-1528:2020 and determined by SPEAG, DASY8 Manual for Module S	SAR. Refer to

Appendix3-3 for more details.

In addition to the above, the following information was used:

TCB workshop, 2016-10	RF Exposure Procedure, DUT Holder Perturbations; When the highest reported SAR of an antenna is > 1.2 W/kg, holder
TCB WORKSHOP, 2010-10	perturbation verification is required for each antenna, using the highest SAR configuration among all applicable frequency bands.
TCB workshop, 2018-04	Expedited Area Scans. (including mother scans)
TCB workshop, 2019-04	RF Exposure Procedure, 802.11ax SAR Testing
	RF Exposure Procedure, Tissue Simulating Liquids (TSL)
TCB workshop, 2019-10	-FCC has permitted the use of single head tissue simulating liquid specified in IEC 62209 for all SAR tests.
	-If FCC parameters are used, 5 % tolerance. If IEC parameters, 10 %.

Addition, deviation and exclusion to the test procedure 3.4

No addition, exclusion nor deviation has been made from the test procedure.

3.5 **Test Location**

UL Japan, Inc., Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken 259-1220 JAPAN Telephone number: +81 463 50 6400

*. A2LA Certificate Number: 1266.03 (FCC Test Firm Registration Number: 626366, ISED Lab Company Number: 2973D / CAB identifier: JP0001)

Place	Width \times Depth \times Height (m)	Size of reference ground plane (m) / horizontal conducting plane
No.7 Shielded room	2.76 × 3.76 × 2.4	2.76×3.76

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN / Telephone: +81 463 50 6400

3.6 SAR measurement procedure

3.6.1 SAR Definition

SAR is defined as the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). The equation description is shown in right.	$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho * dV} \right)$
SAR measurement can be related to the electrical field in the tissue by the equation in right. SAR is expressed in units of	$\sigma F ^2$
Watts per kilogram (W/kg).	$SAR = \frac{\sigma E ^2}{2}$
Where : σ = conductivity of the tissue (S/m), ρ = mass density of the tissue (kg/m ³), E = RMS electric field strength in tissue (V/m)	ρ

3.6.2 Full SAR measurement procedure

The SAR measurement procedures are as follows: (1) The EUT is installed engineering testing software that provides continuous transmitting signal; (2) Measure output power through RF cable and power meter; (3) Set scan area, grid size and other setting on the DASY software; (4) Find out the largest SAR result on these testing positions of each band; (5) Measure SAR results for other channels in worst SAR testing position if the SAR of highest power channel is larger than 0.8 W/kg.

- According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:
- Step 1) Power measurement --> SAR: Step 2) Power reference measurement -> Step 3) Area scan -> Step 4) Zoom scan -> Step 5) Power drift measurement

Step 1: Confirmation before SAR testing

Before SAR test, the RF wiring for the sample had been switched to the antenna conducted power measurement line from the antenna line and the average power was measured. This SAR reference power measurement was proceeded with the lowest data rate (which may have the higher time-based average power typically) on each operation mode and on the lower, middle (or near middle), upper and specified channels. The power measurement result is shown in Section 5.

The EUT transmission power used SAR test was verified that it was not more than 2 dB lower than the maximum tune-up tolerance limit. (KDB447498 D01 (v06))

Maximum distance from closest

measurement point (geometric

Step 2: Power reference measurement

Measured psSAR value at a peak location of Fast Area Scan was used as a reference value for assessing the power drop.

Step 3: Area Scan

(Scan parameters: KDB 865664 D01, IEC/IEEE 62209-1528 (> 6GHz))

Area Scans are used to determine the peak location of the measured field before doing a finer measurement around the hotspot. Peak location can be found accurately even on coarse grids using the advanced interpolation routines implemented in DASY8. Area Scans measure a two dimensional volume covering the full device under test area. DASY8 uses Fast Averaged SAR algorithm to compute the 1 g and 10 g of simulated tissue from the Area Scan. DASY8 can either manually or automatically generates Area Scan grid settings based on device dimensions. In automatically case, the scan extent is defined by the device dimensions plus additional 15mm on each side. In manually, the scan covered the entire dimension of the antenna of FUT.

Step 4: Zoom Scan and post-processing

(Scan parameters: KDB 865664 D01, IEC/IEEE 62209-1528 (> 6GHz)) Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure.

- area scan job within the same proceedure.
 A minimum volume of 30 mm (x) × 30 mm (y) × 30 mm (z) was assessed by "Ratio step" method (*1), for 2.4 GHz band. (Step XY: 5 mm)
 A minimum volume of 24 mm (x) × 24 mm (y) × 24 mm (z) was assessed by "Ratio step" method (*1), for 5 GHz band (Step XY: 4 mm).
 A minimum volume of 24 mm (x) × 24 mm (y) × 24 mm (z) was assessed by "Ratio step" method (*1), for 6 GHz band (Step XY: 34 mm).

When the SAR of the highest peak is within 2 dB of the SAR limit, additional zoom scans are proceeded for other peaks within 2 dB of the highest peak that have not been included in any zoom scan to ensure there is no increase in SAR. If the zoom scan measured as defined above complies with both of the following criteria. or if the peak spatial-average SAR is below 0.1 W/kg, no additional measurements are needed.

- The smallest horizontal distance from the local SAR peaks to all points 3 dB below the SAR peak shall be larger than the horizontal grid steps in both x and y directions and recorded.
- The ratio of the SAR at the second measured point to the SAR at the closest measured point at the x-y location of the measured maximum SAR value shall be at least 30 % and recorded.

center of pro	be sens		$5\text{mm}\pm1\text{mm}$	$\pm 0.5 \mathrm{mm}$					
	tom sur	gle from probe face normal at cation	$5^{\circ} \pm 1^{\circ}$ (flat phantom only) $30^{\circ} \pm 1^{\circ}$ (other phantom)	$5^{\circ} \pm 1^{\circ}$ (flat phantom only) $30^{\circ} \pm 1^{\circ}$ (other phantom)					
Maximum a resolution: 2			\leq 2 GHz : \leq 15 mm, 2-3 GHz : \leq 12 mm When the x or y dimension o measurement plane orientati						
			above, the measurement res corresponding x or y dimensi least one measurement poin	on of the test device with at					
Maximum z resolution: Δ			\leq 2 GHz : \leq 8 mm, 2~3 GHz : \leq 5 mm (*1)	$3 \sim 4 \text{ GHz} : \le 5 \text{ mm (*1)},$ $4 \sim 6 \text{ GHz} : \le 4 \text{ mm (*1)}$ $> 6 \text{ GHz} : \le 24/f \text{ mm}$					
Maximum zoom scan	uniform	n grid: Δz _{zcom} (n)	≤5mm	$3 \sim 4 \text{ GHz} : \le 4 \text{ mm},$ $4 \sim 5 \text{ GHz} : \le 3 \text{ mm},$ $5 \sim 6 \text{ GHz} : \le 2 \text{ mm}$ $> 6 \text{ GHz} : \le 10/(f-1) \text{ mm}$					
spatial resolution, normal to phantom	graded grid	$\Delta z_{Zcom}(1)$: between 1st two points closest to phantom surface	≤4mm	$3 \sim 4 \text{ GHz} : \le 3 \text{ mm},$ $4 \sim 5 \text{ GHz} : \le 2.5 \text{ mm},$ $5 \sim 6 \text{ GHz} : \le 2 \text{ mm}$ $> 6 \text{ GHz} : \le 12/\text{fmm}$					
surface	gnu	Δz _{Zcom} (n>1): between subsequent points	\leq 1.5 × Δ z _{zo}	_m (n-1) mm					
Minimum zoom scan volume			≥ 30 mm	$3-4$ GHz : ≥ 28 mm, $4 \sim 5$ GHz : ≥ 25 mm, $5 \sim 6$ GHz : ≥ 22 mm > 6 GHz : ≥ 22 mm					
Note: $\overline{\delta}$ is the	penetrat	ion depth of a plane	e-wave at normal incidence to	the tissue medium; see IEEE					

f≤3GHz

 $3 \text{ GHz} < f \le 10 \text{ GHz}$

 $1/2 \times \delta \times \ln(2)$ mm

Std 1528-2013 (≤ 6 GHz) and IEC/IEEE 62209-1528 (≤ 10 GHz) for details. *1. When zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of KDB Publication 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz. (KDB 865664 D01) *. The scan parameters of > 6GHz is defined IEC/IEEE 62209-1528.

Step 5: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same project. The Power Drift Measurement gives the SAR difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. It was checked that the power drift was within ± 5% (0.21 dB) in single SAR project run. The verification of power drift during the SAR test shown in SAR plot data of APPENDIX 2.

The most of SAR tests were conservatively performed with test separation distance 0 mm. The phantom bottom thickness is approx. 2mm. Therefore, the distance between the SAR probe tip to the surface of test device which is touched the bottom surface of the phantom is approx. 2.4 mm. Typical distance from probe tip to probe's dipole centers is 1mm.

"Ratio step" method parameters used; the first measurement point: "1.4 mm" from the phantom surface, the initial z grid separation: "1.5 mm", subsequent graded requirement of KDB 865664 D01and recommended by Schmid & Partner Engineering AG (DASY8 manual).

SECTION 4: Operation of EUT during testing

4.1 Operating modes for testing

The EUT has BR, EDR and BT LE and continuous transmitting modes. The frequency and the modulation used in the SAR testing are shown as a following.

0	0														
Operation mode	node BR EDR BT LE														
band															
Tx band [MHz] 2402~2480															
Channel width [MHz]	1	1	1	2	2										
Maximum power [dBm]	<mark>15</mark>	12.5 (0ch: 11.5)	12.5 (0ch: 11.5)	12	12										
Data Rate [Mbps]	1	2	3	1	2										
Frequency tested [MHz] 2402, 2441, 2480 2441 (*. lower power than BR) 2441 (*. lower power than BR) 2402 (*. lower power than															
*. The higher maximum	*. The higher maximum output power is marked with yellow marker (xx).														

Controlled	Test name	Software name	Version	Date	Storage location / Remarks	
software	Power measurement	Earbuds BT Test 1.05	1.05	2024-04-17	 Memory of platform (firmware) 	
SUIWAIE	SAR test	Earbuds BT Test 1.05	1.05	2024-05-09	 Memory of platform (firmware) 	
						•

SAR test reduction considerations

(KDB 447498 D04(v01), General RF Exposure Guidance) Testing of other required channels within the operating mode of a frequency band is not required when the reported 1g or 10g SAR for the mid-band or highest output power channel is:

(1) ≤ 0.8 W/kg for 1g, or 2.0 W/kg for 10g respectively, when the transmission band is ≤ 100 MHz (2) ≤ 0.6 W/kg for 1g, or 1.5 W/kg for 10g respectively, when the transmission band is between 100 MHz and 200 MHz

(3) \leq 0.4 W/kg for 1g, or 1.0 W/kg for 10g respectively, when the transmission band is \geq 200 MHz

The SAR has been measured with highest transmission duty factor supported by the test mode tool for WLAN and/or Bluetooth. When the transmission duty factor could not be 100%, the reported SAR will be scaled to 100% transmission duty factor to determine compliance. When SAR is not measured at the maximum power level allowed for production unit, the measured SAR will be scaled to the maximum tune-up tolerance limit to determine compliance.

4.2 RF exposure conditions (Test exemption)

Antenna separation distances in each test setup plan are shown as follows.

Setup	Explanation of EUT setup (*. Refer to Appendix 1 for test setup photographs.)	D [mm] (L-ch)	D [mm] (R-ch)
Front	The front surface of EUT was touched to the Flat phantom.	0.7	0.7
Left	The left surface of EUT was touched to the Flat phantom.	4.0	5.7
Right	The right surface of EUT was touched to the Flat phantom.	5.7	4.0
Тор	The top surface of EUT was touched to the Flat phantom.	6.8	6.8
Bottom	The bottom surface of EUT was touched to the Flat phantom.	9.2	9.2
Back	The back surface of EUT was touched to the Flat phantom.	21.7	21.7

D: Antenna separation distance. It is the distance from the antenna inside EUT to the outer surface of EUT which user may touch.

Details of antenna separation distance is shown in Annex 1-1 SAR test exemption consideration by KDB 447498 D04 (v01)

Judge of SAR test exemption ("Test "or "Exempt") (upper row) / SAR based Threshold power (lower row)

							Antenna separation distance (*1)													
	I Bada an	Ma	ax.		Antenna	a	≤5 mm	≤5mm	6 mm	7 mm	9 mm	22 mm	≤5mm	≤5 mm	6 mm	7 mm	9 mm	22 mm		
Tx	Higher frequency		ucted	Gain	ain ERP		Front	Left	Right	Тор	Bottom	Back	Front	Right	Left	Тор	Bottom	Back		
mode	[MHz]	ouipui	power				(L-ch)	(L-ch)	(L-ch)	(L-ch)	(L-ch)	(L-ch)	(R-ch)	(R-ch)	(R-ch)	(R-ch)	(R-ch)	(R-ch)		
		[dBm]	[mW]	[dBi]	[dBm]	[mW]	SAR1 g	SAR1 g	SAR1 g	SAR1 g	SAR1 g	SAR1g								
BR	2480	15	32	-4.4	8.45	7	Test	Test	Test	Test	Test	Exempt	Test	Test	Test	Test	Test	Exempt		
DIN	2400	15	32	~4.4	0.40	'	3mW	3 mW	4 mW	5 mW	8mW	46 mW	3 mW	3 mW	4 mW	5 mW	8 mW	46 mW		
EDR	2480	12.5	18	-4.4	5.95	4	Test	Test	Test	Test	Test	Exempt	Test	Test	Test	Test	Test	Exempt		
LDR	2400	12.0	10	~4.4	5.85	4	3mW	3 mW	4 mW	5 mW	8mW	46 mW	3 mW	3 mW	4 mW	5 mW	8 mW	46 mW		
BTLE	2480	12	16	-4.4	5.45	4	Test	Test	Test	Test	Test	Exempt	Test	Test	Test	Test	Test	Exempt		
DILE	2400	12	10	-4.4	5.45	4	3mW	3 mW	4 mW	5 mW	8 mW	46 mŴ	3mW	3 mW	4 mW	5 mW	8 mW	46 mŴ		

Power and distance are rounded to the nearest integer numbers "mW" and "mm" before calculation. (Calculating formula) ERP (dBm) = (max. conducted output power, dBm) + (antenna gain, dBi) - 2.15

<Conclusion for consideration for SAR test reduction>

The all SAR tests were conservatively performed with test separation distance 0 mm.

2) All surface (6 face) of EUT's setup are applied the SAR test because the EUT is small device.

SAR-based thresholds (Pth (mW) shown below table of "Example Power Thresholds [mW]" are derived based on frequency, power, and separation distance of the RF source. The formula defines the thresholds in general for either available maximum time-averaged power (ERP), whichever is greater. The SAR-based exemption is calculated by Formula (B.2) in below, applies for single fixed, mobile, and portable RF sources with available maximum time-averaged power or effective radiated power (ERP), whichever is greater, of less than or equal to the threshold Pth (mW).

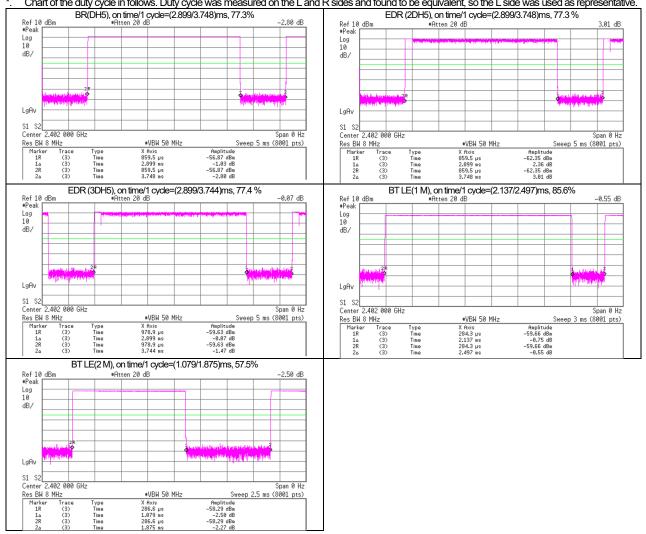
When 10 g extremity SAR applies, SAR test exemption may be considered by applying a factor of 2.5 to the SAR-based exemption thresholds. *. This method shall only be used at separation distances from 0.5 cm to 40 cm and at frequencies from 0.3 GHz to 6 GHz (inclusive).

	T	able	: E)	cam	ple	Pov	ver	Thre	sho	olds	[m)	M] f	or S.	AR(1	g) (s	hade	ed val	ues	are st	anda	ard va	lues.	Table	B.2	of KD	B 44	7498	004 (v0	(11)							SINGLE RF S			
2	1			-	-	-	-			-	-	-	-																		RF Source Frequency Minimum Distance					Distance	Threshold ERP		
									22 23 24 25 26 27 28 29 30 35 40 45 50												∫t MHz		f _H MHz	$\lambda_L/2\pi$		$\lambda_{\rm H}/2\pi$	W												
Σ		5	6	1	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22 2	3	24 2	5 2	6 27	28	29	30	35	40	45	50	0.3	-	1.34	159 m	-	35.6 m	1,920 R ²		
-	1900	3	5	6	8	10	12	14	17	20	23	26	29	32	36	40	44	48	52 5	6 1	61 6	6 7	1 76	81	86	92	122	157	195	236	1.34	-	30	35.6 m	-	1.6 m	3.450 R ² /f ²		
0		-	1×	Ť	1.	1.0	1		1.	1.0	100	-	-	-	-	-	-	-	-	-	-	-	-					-	-	-	30	-	300	1.6 m	-	159 mm	3.83 R ²		
5	2450	3	4	5	1	8	10	12	15	1/	19	22	25	28	31	35	38	42	46 5	0	54 5	9 6	3 68	13	78	83	111	143	1/9	219	300	-	1,500	159 mm	-	31.8 mm	0.0128 R¥		
ž	2462	3	4	5	7	8	10	12	14	17	19	22	25	28	31	35	38	42	46 5	10	54 5	8 6	3 68	73	78	83	111	143	179	219	1,500	-	100,000	31.8 mm	-	0.5 mm	19.2R ²		
Leq	2480	3	4	5	7	8	10	12	14	17	19	22	25	-	_	35	38	42	46 5	0	54 5	8 6	3 67	72	77	82	111	143	179	218	Subscripts L and H are low and high; λ is wavelength. From §1.1307(b)(3)(i)(C), modified by adding Minimum Distance columns.								
Ē	3600	2	3	4	5	6	8	10	11	13	16	18	20	23	26	29	32	35	38 4	2 4	15 4	9 5	3 57	62	66	71	96	125	158	195			Ris	s in mete	r, f is	s in MHz			
																				-									1.000		Thre	sho		$P[W] = 19.2 \times R^2 ($ -formula (A.1)) Distance: over 40 cm)					
Cal	culatii	ng f	forr	nu	a:																												(D	15101100.0	5001	-to only			
Pth	mW)	= E	RP	20 cm	n (n	W)	= }	204 306			5 GI		'		GHz		(B.1)			mW) f is i	=	ERF	20 c	n		em)	2	0 cm		≤ 40 cm), and <i>EF</i>		.2)	= — lo er Formu		\LAr2	$\frac{60}{10 \text{ cm}\sqrt{f}}$		

SECTION 5: Confirmation before testing

5.1 Test reference power measurement

					-															
				Power	spec.		Duty cy	de				_ unit					R	unit		
Mode	Freque	ency	Data rate	on e ante Typical	nna	duty cycle	duty factor	scaled factor	Set pwr.	Burst Ave.	Δ Max.	Tune-up factor	Time Ave.	Adjusted power setting?	Set pwr.	Burst Ave.	Δ Max.	Tune-up factor	Time Ave.	Adjusted power setting?
	[MHz]	CH	[Mbps]	[dBm]	[dBm]	[%]	[dB]	[-]	[-]	[dBm]	[dB]	[-]	[dBm]	(*1)	[-]	[dBm]	[dB]	[-]	[dBm]	(*1)
	2402	0	1	-	15	77.3	1.12	1.29	55	14.17	0.83	1.21	13.05	No	55	13.92	1.08	1.28	12.80	No
BR (DH5)	2441	39	1	-	15	77.3	1.12	1.29	55	14.22	0.78	1.2	13.10	No	55	13.92	1.08	1.28	12.80	No
(DI 15)	2480	78	1	-	15	77.3	1.12	1.29	55	14.31	0.69	1.17	13.19	No	55	14.06	0.94	1.24	12.94	No
	2402	0	2	-	11.5	77.3	1.12	1.29	55	10.80	0.70	1.17	9.68	No	55	10.48	1.02	1.26	9.36	No
EDR (2DH5)	2441	39	2	-	12.5	77.3	1.12	1.29	57	11.76	0.74	1.19	10.64	No	57	11.38	1.12	1.29	10.26	No
(2010)	2480	78	2		12.5	77.3	1.12	1.29	57	11.87	0.63	1.16	10.75	No	57	11.53	0.97	1.25	10.41	No
500	2402	0	3	-	11.5	77.4	1.11	1.29	55	10.82	0.68	1.17	9.71	No	55	10.48	1.02	1.26	9.37	No
EDR (3DH5)	2441	39	3		12.5	77.4	1.11	1.29	57	11.77	0.73	1.18	10.66	No	57	11.38	1.12	1.29	10.27	No
(00110)	2480	78	- 3		12.5	77.4	1.11	1.29	57	11.85	0.65	1.16	10.74	No	57	11.53	0.97	1.25	10.42	No
DTIE	2402	0	1	-	12	85.6	0.68	1.17	49	11.45	0.55	1.14	10.77	No	49	11.05	0.95	1.24	10.37	No
BT LE (PHY1)	2440	19	1	[]	12	85.6	0.68	1.17	49	11.50	0.50	1.12	10.82	No	49	11.09	0.91	1.23	10.41	No
(, , , , , , , , , , , , , , , , , , ,	2480	39	- 1 -		12	85.6	0.68	1.17	49	11.62	0.38	1.09	10.94	No	49	11.24	0.76	1.19	10.56	No
DTIE	2402	0	2	-	12	57.5	2.40	1.74	49	11.40	0.60	1.15	9.00	No	49	11.02	0.98	1.25	8.62	No
BT LE (PHY2)	2440	19	2		12	57.5	2.40	1.74	49	11.48	0.52	1.13	9.08	No	49	11.06	0.94	1.24	8.66	No
(F1(12)	2480	39	2		12	57.5	2.40	1.74	49	11.59	0.41	1.1	9.19	No	49	11.22	0.78	1.2	8.82	No


: SAR test was applied.

"Yes": The power setting was adjusted so that measured average power was not more than 2 dB lower than the maximum tune-up tolerance limit. *1.

CH: Channel; Power spec.: Power specification; Max.: Maximum; Set pwr.: Setting power by tested software; Burst Ave.: Measured burst average power; Time Ave.: Measured time-based average power.

*

Calculating formula: Time average power (dBm) = (P/M Reading, dBm)+(Cable loss, dB)+(Attenuator, dB) Burst power (dBm) = (P/M Reading, dBm)+(Cable loss, dB)+(Attenuator, dB) Duty cycle: (duty cycle, %) = (Tx on time) / (1 cycle time) × 100, Duty factor (dBm) = 10 × log (100/(duty cycle, %)) Duty cycle scaled factor: Duty cycle correction factor for obtained SAR value, Duty scaled factor [-] = 100(%) / (duty cycle, %) ΔMax. (Deviation form max.power, dB) = (Max.tune-up limit power (average, dBm)) - (Burst power measured (average, dBm)) Tune-up factor: Power tune-up factor for obtained SAR value, Tune-up factor [-] = 10 ^ ("Deviation from max., dB" / 10) Date measured: 2024-04-22 / Measured by: A. Oda/ Place: Preparation room of No. 7 shield room. (23 deg.C / 45 %RH) Chart of the duty cycle in follows. Duty cycle was measured on the L and R sides and found to be equivalent, so the L side was used as representative. BR(DH5). on time/1 cycle=(2899(3748)ms, 77.3 %

SECTION 6: Tissue simulating liquid

6.1 Liquid measurement

							Liqu	id paran	neters						ΔSAR	Coef	ficients (*a)		
-			Liquid		Permi	ttivity (εr) [-]			Condu	ıctivity	[,] [S/m]		Interpolated	ΔS	AR			
	Frequency Liquid Liquid [MHz] type Temp.		عم والأسرواء	Torget	Me	asure	d	Δend,	Target	Me	asure	d	∆end,	? □: No	10	100	∆SAR correct	Date measured	
[IVII IZ] UPC		[deg.C.]	g.C.] [mm]	Target value	Value	Δεr	Limit		value	Value	Δσ	Limit	>48hrs.	⊡:Yes	1g [%]	10g [%]	D . D		
			[[%]	[%]	(*1)			[%]	[%]	(*1)		[/9]				
2450 (*2)	Head	22.5	150	39.2	38.94	-0.7	±5	begin	1.8	1.835	1.9	±5	begin		1.1	0.6	no	2024-05-13, before SAR test.	
2402	Head	22.5	150	39.29	39.05	-0.6	±5	begin	1.757	1.798	2.3	±5	begin		1.3	0.7	no		
2440	Head	22.5	150	39.22	38.95	-0.7	±5	begin	1.791	1.829	2.1	±5	begin		1.2	0.7	no	2024-05-13. before SAR test.	
2441	Head	22.5	150	39.22	38.95	-0.7	±5	begin	1.792	1.829	2.1	±5	begin		1.2	0.7	no	2024-05-13, Defore SAR test.	
2480	Head	-	150	39.16		-0.7	±5	begin	1.833	1.856	1.3	±5	begin		0.8	0.4	no		

*1. "begin": SAR test has ended within 24 hours from the liquid parameter measurement, "< 48 hrs.": Since SAR test has ended within 48 hours (2 days) from the liquid parameter measurement and a change in the liquid temperature was within 1 degree, liquid parameters measured on first day were used on next day continuously, "value (%)": Since the SAR test series took longer than 48 hours, the liquid parameters were measured on every 48 hours period and on the date which was end of</p> test series. Since the difference of liquid parameters between the beginning and next measurement was smaller than 5%, the liquid parameters measured in beginning were used until end of each test series.

Calculating formula: " Δ end(>48 hrs.) (%)" = {(dielectric properties, end of test series) / (dielectric properties, beginning of test series) -1} × 100 These frequencies were for system check.

*2. The dielectric parameters were checked prior to assessment using the DAK-3.5 dielectric probe kit.

The target values refers to clause 6.2 of this report.

*a. The coefficients in below are parameters defined in IEEE Std.1528-2013.

 $(Calculating formula, 4 MHz-6 GHz): \Delta SAR(1g) = Cer \times \Delta er + C_{\sigma} \times \Delta_{\sigma}, C_{er=7.854} = 4x^3 + 9.402 = 3x^2 - 2.742 = -2x^4 - 0.2026 / C_{\sigma} = 9.804 = 3x^3 - 8.661 = -2x^2 + 2.981 = -2x^4 - 0.7829 = -2x^4 - 0.2026 / C_{\sigma} = -2.854 =$ $\Delta SAR(10g) = Cer \times \Delta er + C\sigma \times \Delta \sigma, Cer = 3.456 \times 10^3 \times 10^3 \times 10^2 \times$ Since the calculated Δ SAR values of the tested liquid had shown positive correction, the measured SAR was not converted by Δ SAR correction conservatively. Δ SAR corrected SAR (W/kg) = (Measured SAR (W/kg)) × (100 - (Δ SAR(%)) / 100 (Calculating formula):

6.2 Target of tissue simulating liquid

Nominal dielectric values of the tissue simulating liquids in the phantom are listed in the following table. (Appendix A, KDB 865664 v01r04)

Target Frequenc	y H	ead	E	Body	Target Frequency	He	ead	В	ody
(MHz)	ε _r	σ(S/m)	ε _r	σ(S/m)	(MHz)	ε _r	σ(S/m)	ε _r	σ(S/m)
1800~2000	40.0	1.40	53.3	1.52	3000	38.5	2.40	52.0	2.73
2450	39.2	1.80	52.7	1.95	5800	35.3	5.27	48.2	6.00

For other frequencies, the target nominal dielectric values shall be obtained by linear interpolation between the higher and lower tabulated figures. Above 5800MHz were obtained using linear extrapolation.

6.3 Simulated tissue composition

Liquid type	Head	Control No.	SSLHV6-01	Model No. / Product No.	HBBL600-10000V6 / SL AAH U16 BC
Ingredient: Mixture [%]	Wate	er: >77, Ethanedio	l: <5.2, Sodium pet	roleum sulfonate:<2.9, Hexylene G	lycol: <2.9, alkoxylated alcohol (>C16):<2.0
Tolerance specification				± 10%	
Temperature gradients [% / deg.C]		permittivity: -0.1	9/conductivity:-0	.57 (at 2.6 GHz), permittivity: +0.31	/ conductivity: -1.43 (at 5.5 GHz) (*)
Manufacture	Schmid &	Partner Engineeri	ng AG No	ote: *. speag_920-SLAAxyy-E_1.12.15	5CL (Maintenance of tissue simulating liquid)

SECTION 7: Measurement results

Measurement results 7.1

1	Test setup		Mode and Fr	equenc	у	Duty	cycle	Po	wer corre	ction		SA	R results	s [W/ka]			SAR	Setup	
	Test	Car	Mode (D/R)	[MHz]	CH	Duty	Duty	Max. tune-up	Measured	Power scaled			ax.value of n				plot# in	photo #in	Memo
EUT.	position	Gap [mm]	Mark with "*" is	the initi	al	[%]	scaled	limit	conducted	(tune-up)	Measured	∆SAR	∆SAR	Reported	SAR	Limit	Appx.	Appx.	Wento
			mode & freque).		factor	[dBm]	[dBm]	factor	SAR	[%]	corrected		type		2	1-3	
Left	Front	0	BR (DH5)*	2402*	0	77.3	1.29	15	14.17	1.21	0.864	+sign	N/A(*a)	1.349	1g	1.6	1	P1	-
Left	Front	0	BR (DH5)*	2441	39	77.3	1.29	15	14.22	1.20	0.776	+sign	N/A(*a)	1.201	1g	1.6	-	P1	
Left	Front	0	BR (DH5)*	2480	79	77.3	1.29	15	14.31	1.17	0.615	+sign	N/A(*a)	0.928	1g	1.6		P1	-
Left	Left	0	BR (DH5)*	2402	0	77.3	1.29	15	14.17	1.21	0.152	+sign	N/A(*a)	0.237	1g	1.6		P2	-
Left	Right	0	BR (DH5)*	2402*	0	77.3	1.29	15	14.17	1.21	0.108	+sign	N/A(*a)	0.169	1g	1.6		P3	
Left	Тор	0	BR (DH5)*	2402*	0	77.3	1.29	15	14.17	1.21	0.048	+sign	N/A(*a)	0.075	1g	1.6		P4	-
Left	Bottom	0	BR (DH5)*	2402*	0	77.3	1.29	15	14.17	1.21	0.226	+sign	N/A(*a)	0.353	1g	1.6		P5	-
Left	Back	0	BR (DH5)*	2402*	0	77.3	1.29	15	14.17	1.21	0.023	+sign	N/A(*a)	0.036	1g	1.6	-	P6	-
Left	Front	0	EDR (2DH5)	2402	0	77.3	1.29	11.5	10.80	1.17	N/A	+sign	N/A(*a)	N/A	1g	1.6			*. lower power
Left	Front	0	EDR (2DH5)	2441	39	77.3	1.29	12.5	11.76	1.19	0.495	+sign	N/A(*a)	0.760	1g	1.6		P1	*. lower power
Left	Front	0	EDR (2DH5)	2480	79	77.3	1.29	12.5	11.87	1.16	N/A	+sign	N/A(*a)	N/A	1g	1.6	-	-	*. lower power
Left	Front	0	EDR (3DH5)	2402	0	77.4	1.29	11.5	10.82	1.17	N/A	+sign	N/A(*a)	N/A	1g	1.6		-	*. lower power
Left	Front	0	EDR (3DH5)	2441	39	77.4	1.29	12.5	11.77	1.18	0.455	+sign	N/A(*a)	0.693	1g	1.6		P1	*. lower power
Left	Front	0	EDR (3DH5)	2480	79	77.4	1.29	12.5	11.85	1.16	N/A	+sign	N/A(*a)	N/A	1g	1.6	-	-	*. lower power
Left	Front	0	BT LE (1Mbps)	2402	0	85.6	1.17	12	11.45	1.14	0.519	+sign	N/A(*a)	0.692	1g	1.6		P1	*. lower power
Left	Front	0	BT LE (1Mbps)	2440	17	85.6	1.17	12	11.50	1.12	N/A	+sign	N/A(*a)	N/A	1g	1.6	-	-	*. lower power
Left	Front	0	BT LE (1Mbps)	2480	39	85.6	1.17	12	11.62	1.09	N/A	+sign	N/A(*a)	N/A	1g	1.6	-	-	*. lower power
Left	Front	0	BT LE (2Mbps)	2402	0	57.5	1.74	12	11.40	1.15	0.339	+sign	N/A(*a)	0.678	1g	1.6	-	P1	*. lower power
Left	Front	0	BT LE (2Mbps)	2440	17	57.5	1.74	12	11.48	1.13	N/A	+sign	N/A(*a)	N/A	1g	1.6	-	-	*. lower power
Left	Front	0	BT LE (2Mbps)	2480	39	57.5	1.74	12	11.59	1.10	N/A	+sign	N/A(*a)	N/A	1g	1.6	-	-	*. lower power
Right	Front	0	BR (DH5)*	2402*	0	77.3	1.29	15	13.92	1.28	0.837	+sign	N/A(*a)	1.382	1g	1.6	2	P7	-
Right	Front	0	BR (DH5)*	2441	39	77.3	1.29	15	13.92	1.28	0.787	+sign	N/A(*a)	1.299	1g	1.6	-	P7	-
Right	Front	0	BR (DH5)*	2480	79	77.3	1.29	15	14.06	1.24	0.770	+sign	N/A(*a)	1.232	1g	1.6	-	P7	-
Right	Right	0	BR (DH5)*	2402	0	77.3	1.29	15	13.92	1.28	0.233	+sign	N/A(*a)	0.385	1g	1.6	-	P8	
Right	Left	0	BR (DH5)*	2402*	0	77.3	1.29	15	13.92	1.28	0.069	+sign	N/A(*a)	0.114	1g	1.6	-	P9	-
Right	Тор	0	BR (DH5)*	2402*	0	77.3	1.29	15	13.92	1.28	0.035	+sign	N/A(*a)	0.058	1g	1.6	-	P10	-
Right	Bottom	0	BR (DH5)*	2402*	0	77.3	1.29	15	13.92	1.28	0.159	+sign	N/A(*a)	0.263	1g	1.6	-	P11	-
Right	Back	0	BR (DH5)*	2402*	0	77.3	1.29	15	13.92	1.28	0.017	+sign	N/A(*a)	0.028	1g	1.6	-	P12	-
Right	Front	0	EDR (2DH5)	2402	0	77.3	1.29	11.5	10.48	1.26	N/A	+sign	N/A(*a)	N/A	1g	1.6	-	-	*. lower power
Right	Front	0	EDR (2DH5)	2441	39	77.3	1.29	12.5	11.38	1.29	0.439	+sign	N/A(*a)	0.731	1g	1.6	-	P7	*. lower power
Right	Front	0	EDR (2DH5)	2480	79	77.3	1.29	12.5	11.53	1.25	N/A	+sign	N/A(*a)	N/A	1g	1.6	-	-	*. lower power
Right	Front	0	EDR (3DH5)	2402	0	77.4	1.29	11.5	10.48	1.26	N/A	+sign	N/A(*a)	N/A	1g	1.6	-	-	*. lower power
Right	Front	0	EDR (3DH5)	2441	39	77.4	1.29	12.5	11.38	1.29	0.438	+sign	N/A(*a)	0.729	1g	1.6	-	P7	*. lower power
Right	Front	0	EDR (3DH5)	2480	79	77.4	1.29	12.5	11.53	1.25	N/A	+sign	N/A(*a)	N/A	1g	1.6	-	-	*. lower power
Right	Front	0	BT LE (1Mbps)	2402	0	85.6	1.17	12	11.05	1.24	0.465	+sign	N/A(*a)	0.675	1g	1.6	-	P7	*. lower power
Right	Front	0	BT LE (1Mbps)	2440	17	85.6	1.17	12	11.09	1.23	N/A	+sign	N/A(*a)	N/A	1g	1.6	-		*. lower power
Right	Front	0	BT LE (1Mbps)	2480	39	85.6	1.17	12	11.24	1.19	N/A	+sign	N/A(*a)	N/A	1g	1.6	-	-	*. lower power
Right	Front	0	BT LE (2Mbps)	2402	0	57.5	1.74	12	11.02	1.25	0.304	+sign	N/A(*a)	0.661	1g	1.6	-	P7	*. lower power
Right	Front	0	BT LE (2Mbps)	2440	17		1.74	12	11.06	1.24	N/A	+sign	N/A(*a)	N/A	1g	1.6	-	-	*. lower power
Right	Front	0	BT LE (2Mbps)	2480	39	57.5	1.74	12	11.22	1.2	N/A	+sign	N/A(*a)	N/A	1g	1.6		-	*. lower power
	he highes	st Re	eported (scaled) SAR	ism		with	vellow	/ marker	$(\mathbf{x},\mathbf{x}\mathbf{x}\mathbf{x})$, respect	ivelv			-				÷

I he highest Reported (scaled) SAR is marked with yellow marker (<mark>x</mark> xx), respect

Appx. Appendix, Max.: maximum. Gap: It is the separation distance between the EUT surface and the bottom outer surface of phantom. Before SAR test, the battery of EUT was full charged.

During SAR test, the radiated power is always monitored by Spectrum Analyzer and/or MAIA.

*1. Since ch 0 of BR mode had the worst SAR, ch 0 was made the initial channel for other setups.

*a. Since the calculated ΔSAR values of the tested liquid had shown positive correction, the measured SAR was not converted by ΔSAR correction. Calculating formula: ΔSAR corrected SAR (W/kg) = (Measured SAR (W/kg)) × (100 - (ΔSAR(%)) / 100
 *b. Calculating formula: Reported (Scaled) SAR (W/kg) = (Measured SAR (W/kg)) × (Duty scaled factor) × (Power scaled factor) where, Duty scaled factor [-] = 100(%) / (measured duty cycle, %), Power scaled factor [-] = 10^{((Max.tune-up limit power, dBm) - (Measured conducted power, dBm))/10)

Calibration frequency of the SAR measurement probe (and used conversion factors for each frequency.) The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Liquid	SAR test frequency	Probe calibration frequency	Validity	Conversion factor (X,Y,Z)	Uncertainty
Head	(2402, 2440, 2441, 2480) MHz	2450 MHz	within \pm 50 MHz of calibration frequency	6.83, 7.07, 6.68	± 12.0 %

7.2 Simultaneous transmission evaluation

Result: Simultaneous transmission did not exist on each product (L unit / R unit).

*. Since the EUT has single operation mode (BT), single source and single antenna, simultaneous transmission is not existed.

7.3 SAR Measurement Variability (Repeated measurement requirement)

Result: Pass ("Largest to Smallest SAR Ratio" is smaller than KDB 865664 D01 requirement.)

In accordance with published RF Exposure KDB 865664 D01: SAR measurement 100 MHz to 6 GHz. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

Repeated measurement is not required when the original highest measured SAR(1g) is < 0.80 W/kg; steps 2) through 4) do not apply.

- <u>2)</u> 3)
- When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once. Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR 4) for the original, first and second repeated measurements is > 1.20.

EU	T setup	Band	Mada	Frequency		SAR Measurement Variability Result											ot # in App noto# in Appe		
EUT	Position	[GHz]	Iviode	Frequency [MHz]	Туре	Unit	Original			1 st Rep	eated		2 nd Repeated				Original	1 st	2 nd
LUI	EUT Position			турс		Highest	Judge	Measured	Judge	Ratio	Judge	Measured	Judge	Ratio	Judge	Onginai	Repeated	Repeated	
Left	Front	2.4	BR	2402	SAR1g	W/kg	0.864	≥ 0.8	0.797	< 1.45	1.084 (*1)	< 1.2	N/A	-	-	-	1 (P1)	3 (P13)	-
Right	Front	2.4	BR	2402	SAR1g W/kg 0.837 ≥0.8 0.830 <1.45 1.008(*1) <1.2 WA						2 (P7)	4 (P14)	-						

Calculating formula: "Ratio": Largest to Smallest SAR Ratio (%) = (Largest SAR (W/kg)) / Smallest SAR (W/kg)

*1 It was smaller than 5.0 % of uncertainty of the "Dxyz: Test Sample positioning."

7.4 Device Holder (D/H) perturbation verification (SAR)

Result: Pass (The influence of a device holder is small enough.)

When the highest reported SAR of an antenna is > 1.2 W/kg, holder perturbation verification (by Urethane form alone) is required by using the highest SAR configuration among all applicable frequency bands.

During SAR measurement the EUT was not placed on the device holder directly. The EUT was mounted in the device holder using Urethane form (low-permittivity and low-loss foam) to avoid changes of EUT performance by the holder material (Refer to Appendix 1-3, photographs of test setup). However, the "Device Holder (D/H) perturbation" was confirmed by the setup for which device holder was not used in highest SAR configuration.

EUT	l setup		F rom			Measured SAR	W/kg]	D/H		n Appendix 2			
EUT	Position	Mode	Freq. [MHz]	Type	Unit	D/H Exist	D/H None	perturbation		n Appendix 1-3)	Remarks		
201				.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.110	D/TTEXIS	Diritione	SAR Ratio	D/H Exist	D/H None			
Left	Front	BR	2402	SAR1g	W/kg	0.864 (Reported: 1.349)	0.840 (Reported: 1.311)	2.9 %	1 (P1)		*. It was smaller than 3.6 % of uncertainty of the "H: Device holder uncertainty", so influence of a device holder was judged to be no problem.		
Right	Front	BR	2402	SAR1g	W/kg	0.837 (Reported: 1.382)	0.814 (Reported: 1.344)	2.8 %	2 (P7)	6 (P16)	*. It was smaller than 3.6 % of uncertainty of the "H: Device holder uncertainty", so influence of a device holder was judged to be no problem.		
*. C	Calculating formula: D/H perturbation SAR Ratio (%) = {{(Measured SAR-exist (W/kg) - (Measured SAR-none (W/kg))/ (Measured SAR-none (W/kg))*100												

7.5 **Requirements on the Uncertainty Evaluation**

Decision Rule

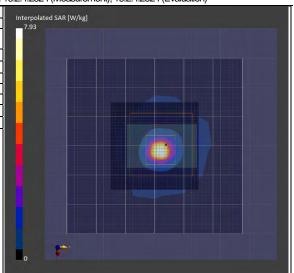
 \square Uncertainty is not included.

□ Uncertainty is included.

The highest measured SAR(1g) is less than 1.5 W/kg and the highest measured SAR(10g) is less than 3.75 W/kg. Therefore, per KDB Publication 865664 DO1, the extended measurement uncertainty analysis described in IEEE 1528-2013 and IEC/IEEE 62209-1528 is not required.

APPENDIX 2: Measurement data

Appendix 2-1: Plot(s) of Worst Reported Value


SAR1g) Left unit; Front & touch (d=0mm), BR (DH5), 2402 MHz Plot 1:

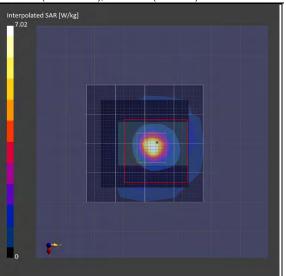
EUT: Wireless Noise Canceling Stereo Headset; Model: YY2975; Serial: 1201078

Mode: BR(DH5) (UID: 0 (CW)) ; Frequency: 2402 MHz ; Test Distance: 0.00 mm TSL parameters used: Head(v6) ; f= 2402 MHz; Conductivity: 1.798 S/m; Permittivity: 39.05

DASY8 Configuration: - Electronics: DAE4 - SN626 (Calibrated: 2024-01-09) / - Phantom: ELI V8.0 (20deg probe tilt); Serial: 2161; Phantom section: Flat - Probe: EX3DV4 - SN3907(Calibrated: 2024-01-15); ConvF: (6.83, 7.07, 6.68) / - Software: 16.2.4.2524 (Measurement); 16.2.4.2524 (Evaluation)

				,,	-)/			
5	Scan Setup		Measurement Results					
Setup items	Area Scan	Zoom Scan	Meas. Items	Area Scan	Zoom Scan			
Grid Extents [mm]	60.0×60.0	30.0× 30.0 ×30.0	psSAR 1g [W/kg]	0.762	0.864			
Grid Steps [mm]	10.0×10.0	3.0×3.0×1.5	psSAR 10g [W/kg]	0.247	0.207			
Sensor Surface [mm]	3.0	1.4	Power Drift [dB]	-0.01	0.01			
Graded Grid	N/A	Yes	Power Scaling	Disabled	Disabled			
Grading Ratio	N/A	1.5	Scaling Factor [dB]	N/A	N/A			
MAIA monitored	Y	Y	TSL Correction	No correction	No correction			
Surface Detection	VMS+6p	VMS+6p	M2/M1 [%]	N/A	35.9			
Scan Method	Measured	Measured	Dist 3dB Peak [mm]	N/A	3.3			

*. Date tested: 2024-05-13;Tested by: Hiroshi Naka; Tested place:No.7 shielded room; Ambient: 23 deg.C. / 82 %RH; Liquid depth: 150 mm; *. Liquid temperature: 22.5 deg.C. ± 0.5 deg.C. (22.5 deg.C., in check); *. Red cubic: big=SAR(10g) / small=SAR(1g) *. Project file name-Measurement Group: 240509-_15260493_YY2975.d8sar-5/9-1,L,dh5,2402,front Remarks:


Plot 2: SAR1g) Right unit; Front & touch (d=0mm), BR (DH5), 2402 MHz

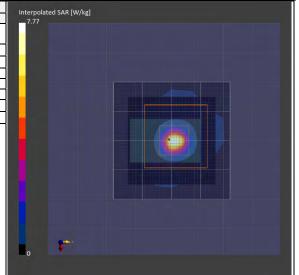
EUT: Wireless Noise Canceling Stereo Headset; Model: YY2975; Serial: 1201078

Mode: BR(DH5) (UID: 0 (CW)) ; Frequency: 2402 MHz ; Test Distance: 0.00 mm TSL parameters used: Head(v6) ; f= 2402 MHz; Conductivity: 1.798 S/m; Permittivity: 39.05

DASY8 Configuration: - Electronics: DAE4 - SN626 (Calibrated: 2024-01-09) / - Phantom: ELI V8.0 (20deg probe tilt) ; Serial: 2161 ; Phantom section: Flat - Probe: EX3DV4 - SN3907(Calibrated: 2024-01-15); ConvF: (6.83, 7.07, 6.68) / - Software: 16.2.4.2524 (Measurement); 16.2.4.2524 (Evaluation)

Prode. EX3DV4 - SN3907 (Calibrateu. 2024-01-15), Col IVF. (0.83, 7.07, 0.08)/ - Solitivale. I												
5	Scan Setup		Measu	rement Res	ults							
Setup items	Area Scan	Zoom Scan	Meas. Items	Area Scan	Zoom Scan							
Grid Extents [mm]	40.0×40.0	30.0× 30.0 ×30.0	psSAR 1g [W/kg]	0.673	0.837							
Grid Steps [mm]	10.0×10.0	3.0×3.0×1.5	psSAR 10g [W/kg]	0.234	0.207							
Sensor Surface [mm]	3.0	1.4	Power Drift [dB]	-0.01	-0.01							
Graded Grid	N/A	Yes	Power Scaling	Disabled	Disabled							
Grading Ratio	N/A	1.5	Scaling Factor [dB]	N/A	N/A							
MAIA monitored	Y	Y	TSL Correction	No correction	No correction							
Surface Detection	VMS+6p	VMS+6p	M2/M1 [%]	N/A	41.6							
Scan Method	Measured	Measured	Dist 3dB Peak [mm]	N/A	3.5							

*. Date tested: 2024-05-13;Tested by: Hiroshi Naka; Tested place:No.7 shielded room; Ambient; 23 deg.C. / 82 %RH; Liquid depth: 150 mm; Remarks: *. Liquid temperature: 22.5 deg.C. ± 0.5 deg.C. (22.5 deg.C., in check); *. Red cubic: big=SAR(10g) / small=SAR(1g) *. Project file name-Measurement Group: 240509_15260493_YY2975.d8sar-5/9-3,R,dh5,2402,front


Appendix 2-2: SAR Plot for SAR Measurement Variability (Repeated measurement requirement)

(Repeat) SAR1g) Left unit; Front & touch (d=0mm), BR (DH5), 2402 MHz Plot 3:

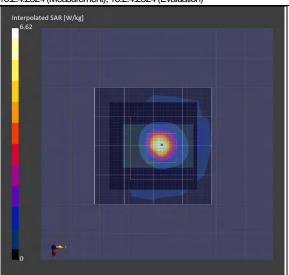
EUT: Wireless Noise Canceling Stereo Headset; Model: YY2975; Serial: 1201078 Mode: BR(DH5) (UID: 0 (CW)) ; Frequency: 2402 MHz ; Test Distance: 0.00 mm TSL parameters used: Head(v6) ; f= 2402 MHz; Conductivity: 1.798 S/m; Permittivity: 39.05

DASY8 Configuration: - Electronics: DAE4 - SN626 (Calibrated: 2024-01-09) / - Phantom: ELI V8.0 (20deg probe tilt) ; Serial: 2161 ; Phantom section: Flat - Probe: EX3DV4 - SN3907(Calibrated: 2024-01-15); ConvF: (6.83, 7.07, 6.68) / - Software: 16.2.4.2524 (Measurement); 16.2.4.2524 (Evaluation)

11000. EXOD 14													
5	Scan Setup		Measu	rement Res	ults								
Setup items	Area Scan	Zoom Scan	Meas. Items	Area Scan	Zoom Scan								
Grid Extents [mm]	40.0×40.0	30.0× 30.0 ×30.0	psSAR 1g [W/kg]	0.760	0.797								
Grid Steps [mm]	10.0×10.0	3.0×3.0×1.5	psSAR 10g [W/kg]	0.236	0.189								
Sensor Surface [mm]	3.0	1.4	Power Drift [dB]	0.02	0.02								
Graded Grid	N/A	Yes	Power Scaling	Disabled	Disabled								
Grading Ratio	N/A	1.5	Scaling Factor [dB]	N/A	N/A								
MAIA monitored	Y	Y	TSL Correction	No correction	No correction								
Surface Detection	All points	All points	M2/M1 [%]	N/A	37.7								
Scan Method	Measured	Measured	Dist 3dB Peak [mm]	N/A	3.1								

*. Date tested: 2024-05-13;Tested by: Hiroshi Naka; Tested place:No.7 shielded room; Ambient: 24 deg.C. / 78 %RH; Liquid depth: 150 mm; *. Liquid temperature: 22.5 deg.C. ± 0.5 deg.C. (22.5 deg.C., in check); *. Red cubic: big=SAR(10g) / small=SAR(1g) *. Project file name-Measurement Group: 240509-_15260493_YY2975.d8sar- 5/13-1,L,dh5,2402,front,2nd Remarks:

(Repeat) SAR1g) Right unit; Front & touch (d=0mm), BR (DH5), 2402 MHz Plot 4:


EUT: Wireless Noise Canceling Stereo Headset; Model: YY2975; Serial: 1201078

Mode: BR(DH5) (UID: 0 (CW)) ; Frequency: 2402 MHz ; Test Distance: 0.00 mm

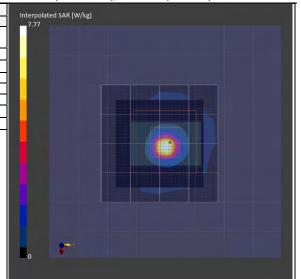
TSL parameters used: Head(v6); f= 2402 MHz; Conductivity: 1.798 S/m; Permittivity: 39.05

DASY8 Configuration: - Electronics: DAE4 - SN626 (Calibrated: 2024-01-09) / - Phantom: ELI V8.0 (20deg probe tilt) ; Serial: 2161 ; Phantom section: Flat - Probe: EX3DV4 - SN3907(Calibrated: 2024-01-15); ConvF: (6.83, 7.07, 6.68) / - Software: 16.2.4.2524 (Measurement); 16.2.4.2524 (Evaluation)

				, ,	-),
S	Scan Setup		Measu	rement Res	ults
Setup items	Area Scan	Zoom Scan	Meas. Items	Area Scan	Zoom Scan
Grid Extents [mm]	40.0×40.0	30.0× 30.0 ×30.0	psSAR 1g [W/kg]	0.710	0.830
Grid Steps [mm]	10.0×10.0	3.0×3.0×1.5	psSAR 10g [W/kg]	0.240	0.205
Sensor Surface [mm]	3.0	1.4	Power Drift [dB]	0.00	-0.00
Graded Grid	N/A	Yes	Power Scaling	Disabled	Disabled
Grading Ratio	N/A	1.5	Scaling Factor [dB]	N/A	N/A
MAIA monitored	Y	Y	TSL Correction	No correction	No correction
Surface Detection	VMS+6p	VMS+6p	M2/M1 [%]	N/A	40.1
Scan Method	Measured	Measured	Dist 3dB Peak [mm]	N/A	3.8

*. Date tested: 2024-05-13; Tested by: Hiroshi Naka; Tested place: No.7 shielded room; Ambient: 24 deg.C. / 78 %RH; Liquid depth: 150 mm; Remarks: *. Liquid temperature: 22.5 deg.C. ± 0.5 deg.C. (22.5 deg.C., in check); *. Red cubic: big=SAR(10g) / small=SAR(1g) *. Project file name-Measurement Group: 240509-_15260493_YY2975.d8sar-5/13-2,R,dh5,2402,front,2nd

Appendix 2-3: SAR Plot for Device holder (D/H) perturbation verification


(No D/H) SAR1g) Left unit; Front & touch (d=0mm), BR (DH5), 2402 MHz Plot 5:

EUT: Wireless Noise Canceling Stereo Headset; Model: YY2975; Serial: 1201078

Mode: BR(DH5) (UID: 0 (CW)) ; Frequency: 2402 MHz ; Test Distance: 0.00 mm TSL parameters used: Head(v6) ; f= 2402 MHz; Conductivity: 1.798 S/m; Permittivity: 39.05

DASY8 Configuration: - Electronics: DAE4 - SN626 (Calibrated: 2024-01-09) / - Phantom: ELI V8.0 (20deg probe tilt); Serial: 2161; Phantom section: Flat - Probe: EX3DV4 - SN3907(Calibrated: 2024-01-15); ConvF: (6.83, 7.07, 6.68) / - Software: 16.2.4.2524 (Measurement); 16.2.4.2524 (Evaluation)

	Scan Setup		Measu	rement Res	ults							
Setup items	Area Scan	Zoom Scan	Meas. Items	Area Scan	Zoom Scan							
Grid Extents [mm]	40.0×40.0	30.0× 30.0 ×30.0	psSAR 1g [W/kg]	0.723	0.840							
Grid Steps [mm]	10.0×10.0	3.0×3.0×1.5	psSAR 10g [W/kg]	0.235	0.200							
Sensor Surface [mm]	3.0	1.4	Power Drift [dB]	-0.01	0.03							
Graded Grid	N/A	Yes	Power Scaling	Disabled	Disabled							
Grading Ratio	N/A	1.5	Scaling Factor [dB]	N/A	N/A							
MAIA monitored	Y	Y	TSL Correction	No correction	No correction							
Surface Detection	VMS+6p	VMS+6p	M2/M1 [%]	N/A	40.2							
Scan Method Measur		Measured	Dist 3dB Peak [mm]	N/A	3.6							

Remarks: *. Date tested: 2024-05-13;Tested by: Hiroshi Naka; Tested place:No.7 shielded room; Ambient: 23 deg.C. / 64 %RH; Liquid depth: 150 mm;

Liquid temperature: 22.5 deg.C. ± 0.5 deg.C. (22.5 deg.C., in check); *. Red cubic: big=SAR(10g)/small=SAR(1g) *. Project file name-Measurement Group: 240509-_15260493_YY2975.d8sar- 5/13-21,L,dh5,2402,front,noDH

(No D/H) SAR1g) Right unit; Front & touch (d=0mm), BR (DH5), 2402 MHz Plot 6:

EUT: Wireless Noise Canceling Stereo Headset; Model: YY2975; Serial: 1201078

Mode: BR(DH5) (UID: 0 (CW)); Frequency: 2402 MHz; Test Distance: 0.00 mm

TSL parameters used: Head(v6); f= 2402 MHz; Conductivity: 1.798 S/m; Permittivity: 39.05

DASY8 Configuration: - Electronics: DAE4 - SN626 (Calibrated: 2024-01-09) / - Phantom: ELI V8.0 (20deg probe tilt); Serial: 2161; Phantom section: Flat

5	ican Setup		Measu	rement Res	ults	Interpolated SAR [W/kg]
Setup items	Area Scan	Zoom Scan	Meas. Items	Area Scan	Zoom Scan	8.1
Grid Extents [mm]	40.0×40.0	30.0× 30.0 ×30.0	psSAR 1g [W/kg]	0.779	0.814	
Grid Steps [mm]	10.0×10.0	3.0×3.0×1.5	psSAR 10g [W/kg]	0.240	0.193	
nsor Surface [mm]	3.0	1.4	Power Drift [dB]	0.03	0.05	
Graded Grid	N/A	Yes	Power Scaling	Disabled	Disabled	
Grading Ratio	N/A	1.5	Scaling Factor [dB]	N/A	N/A	
VIAIA monitored	N/A	N/A	TSL Correction	No correction	No correction	
Surface Detection	VMS+6p	VMS+6p	M2/M1 [%]	N/A	37.6	
Scan Method	Measured	Measured	Dist 3dB Peak [mm]	N/A	3.1	

*. Date tested: 2024-05-13;Tested by: Hiroshi Naka; Tested place:No.7 shielded room; Ambient: (22–24) deg.C. / (60–75) %RH; Liquid depth: 150 mm; *. Liquid temperature: 22.5 deg.C. ± 0.5 deg.C. (22.5 deg.C., in check); *. Red cubic: big=SAR(10g) / small=SAR(1g) *. Project file name-Measurement Group: 240509-_15260493_YY2975.d8sar- 5/13-22,R,dh5,2402,front,noDH Remarks:

APPENDIX 3: Test instruments

Appendix 3-1: Equipment used

Test Name	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Calibration Interval (Month)
AT	191844	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	-	2023/08/03	12
AT	169910	Power Meter	Keysight Technologies Inc	8990B	MY51000448	2023/09/28	12
AT	169911	Power sensor	Keysight Technologies Inc	N1923A	MY57270004	2023/09/28	12
AT	236500	Attenuator	To-Conne Co., Ltd.	SA-PJ-10	-	2023/12/04	12
AT	145800	Spectrum Analyzer	Keysight Technologies Inc	E4448A	MY48250106	2024/03/25	12
AT	145175	Coaxial Cable	Suhner	SUCOFLEX 102	31600/2	2023/12/08	12
*. AT	was me	asured 2024-04-22. (Refer to Section 5	in this report.)				

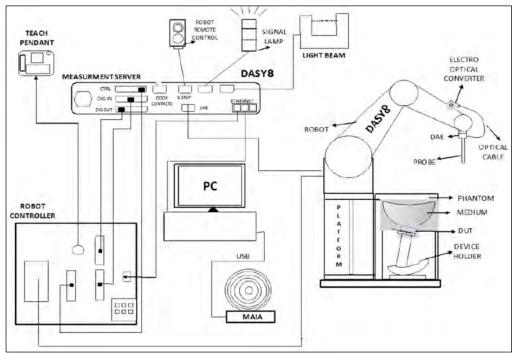
Test Name	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Calibration Interval (Month)
SAR	224031	DASY8 Module SAR/APD soft	Schmid & Partner Engineering AG	ver.16.2.4.2524	9-2506F07D	-	-
SAR	144886	Dielectric assessment kit soft	Schmid & Partner Engineering AG	DAK ver.3.0.6.14	9-0EE103A4	-	-
SAR	224020	DASY8 PC	Hewlett Packard	HP Z4 G4 Workstation	CZC1198G21	-	-
SAR	225155	Mounting Platform	Schmid & Partner Engineering AG	MP8E-TX2-60L Basic	-	-	-
SAR	224032	6-axis Robot	Schmid & Partner Engineering AG	TX2-60L spe	F/22/0033789/A/001	2023/08/29	12
SAR	224023	Robot Controller	Schmid & Partner Engineering AG	CS9spe-TX2-60	F/22/0033789/C/001	-	-
SAR	224025	Measurement Server	Schmid & Partner Engineering AG	DASY8 Measurement Server	10042	2024/02/01	12
SAR	224026	Electro-Optical Converter	Schmid & Partner Engineering AG	EOC8-60	1027	-	-
SAR		Light Beam Unit	Schmid & Partner Engineering AG	LIGHTBEAM-85	2069	-	-
SAR	227155	SP2 Manual Control Pendant	Schmid & Partner Engineering AG	D21144507 C	22066839	-	-
SAR	144944	Data Acquisition Electronics	Schmid & Partner Engineering AG	DAE4	626	2024/01/09	12
SAR	146235	Dosimetric E-Field Probe	Schmid & Partner Engineering AG	EX3DV4	3907	2024/01/15	12
SAR	224034	Flat Phantom	Schmid & Partner Engineering AG	ELI V8.0	2161	2023/08/21	12
SAR		Device holder	Schmid & Partner Engineering AG	Mounting device for transmitter	-	2023/08/29	12
SAR	224028	Modulation & Audio Interference Analyzer	Schmid & Partner Engineering AG	MAIA	1582	-	-
SAR	145090	Dipole Antenna	Schmid & Partner Engineering AG	D2450V2	822	2024/01/05	12
SAR	230872	RF Power Source	Schmid & Partner Engineering AG	POWERSOURCE1	4300	2024/01/03	12
SAR	145500	Dielectric probe	Schmid & Partner Engineering AG	DAK3.5	1129	2024/01/16	12
SAR	146258	Network Analyzer	Keysight Technologies Inc	8753ES	US39171777	2023/10/05	12
SAR	145086	Ruler(300mm)	SHINWA	13134	-	2024/02/26	12
SAR	145087	Ruler(100x50mm,L)	SHINWA	12101	-	2024/02/26	12
SAR	144986	Thermo-Hygrometer data logger	SATO KEIRYOKI	SK-L200THIIa/SK-LTHIIa-2	015246/08169	2023/08/04	12
SAR	201967	Digital thermometer	HANNA	Checktemp-4	A01440226111	2023/08/04	12
SAR	201968	Digital thermometer	HANNA	Checktemp-4	A01310946111	2023/08/04	12
SAR	191844	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	-	2023/08/03	12
SAR	146176	Spectrum Analyzer	ADVANTEST	R3272	101100994	-	-
SAR	146185	DI water	MonotaRo	34557433	-	-	-
SAR		Primepure Ethanol	Kanto Chemical Co., Inc.	14032-79	-	-	-
SAR	207714	Head Tissue Simulating Liquid	Schmid & Partner Engineering AG	HBBL600-10000V6	SL AAH U16 BC	-	-

*. SAR test was performed 2024-05-13.

The expiration date of calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chain of calibrations. All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

*. Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.


[Test Item] AT: Antenna terminal conducted power, SAR: Specific Absorption Rate

LINS ID: 146112, the parameters of primepure Ethanol (as reference liquid) used for the simulated tissue parameter confirmation was defined the NPL Report MAT23 (http://www.npl.co.uk/content/conpublication/4295)

Appendix 3-2: Measurement System

Appendix 3-2-1: SAR Measurement System

These measurements were performed with the automated near-field scanning system DASY8 from Schmid & Partner Engineering AG (SPEAG). The system is based on a high precision robot), which positions the probes with a positional repeatability of better than \pm 0.03 mm. Special E- and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines to the data acquisition unit. The SAR measurements were conducted with the dosimetry probes EX3DV4 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

The DASY8 SAR/APD system for performing compliance tests consist of the following items:

- 6-axis robotic arm (Stäubli TX2-60L) for positioning the probe
- Mounting Platform for keeping the phantoms at a fixed location relative to the robot
- Measurement Server for handling all time-critical tasks, such as measurement data acquisition and supervision of safety features
- EOC (Electrical to Optical Converter) for converting the optical signal from the DAE to electrical before being transmitted to the measurement server
- LB (Light-Beam unit) for probe alignment (measurement of the exact probe length and eccentricity)
- SAR probe (EX3DV4 probes) for measuring the E-field distribution in the phantom. The SAR distribution and the psSAR (peak spatial averaged SAR) are derived from the E-field measurement.
- SAR phantom that represents a physical model with an equivalent human anatomy. A Specific Anthropomorphic Mannequin (SAM) head is usually used for handheld devices, and a Flat phantom is used for body-worn devices.
- TSL (Tissue Simulating Liquid) representing the dielectric properties of used tissue, e.g. Head Simulating Liquid, HSL.
- DAE (Data Acquisition Electronics) for reading the probe voltages and transmitting it to the DASY8 PC.
- Device Holder for positioning the DUT beneath the phantom.
- MAIA (Modulation and Interference Analyzer) for confirming the accuracy of the probe linearization parameters
- Operator PC for running the DASY8 software to define/execute the measurements
- System validation kits for system check/validation purposes.

Material : Polyoxymethylene (POM), PET-G, Foam
 Manufacture: Schmid & Partner Engineering AG
 Support form: Urethane foam

Data storage and evaluation (post processing)

The uplink signal transmitted by the DUT is measured inside the TSL by the probe, which is accurately positioned at a precisely known distance and with a normal orientation with respect to the phantom surface. The dipole / loop sensors at the probe tips pick up the signal and generate a voltage, which is measured by the voltmeter inside the DAE. The DAE returns digital values, which are converted to an optical signal and transmitted via the EOC to the measurement server. The data is finally transferred to the DASY8 software for further post processing. In addition, the DASY8 software periodically requests a measurement with short-circuited inputs from the DAE to compensate the amplifier offset and drift. This procedure is called DAE zeroing.

The operator has access to the following low level measurement settings:

• the integration time is the voltage acquisition time at each measurement point. It is typically 0.5 s.

• the zeroing period indicates how often the DAE zeroing is performed.

In parallel, the MAIA measures the characteristics of the uplink signal via the air interface and sends this information to the DASY8 software, which compares them to the communication system defined by the operator. A warning is issued if any difference is detected.

d

The measurement data is now acquired and can be post processed to compute the psSAR1g /8g /10g. The measured voltages are not directly proportional to SAR and must be linearized. The formulas below are based on [1] (*1). The measured voltage is first linearized using the (a, b, c, d) set of parameters specific to the communication system and sensor:

$$\begin{split} V_{compl} = U_i + U_i^2 \cdot \frac{1010}{d_{cp_i}} \\ & \text{with } V_{compli} = \text{compensated voltage of channel } i(\mu V) & (i = x,y,z) \\ & U_i = \text{input voltage of channel } i(\mu V) & (i = x,y,z) \\ & d = \text{PMR factor } d(\text{dB}) & (\text{Probe parameter}) \\ & dcp_i = \text{diode compression point of channel } i(\mu V) & (\text{Probe parameter}, i = x,y,z) \\ & V_{compl} _{dB,\sqrt{\mu V}} = 10 \cdot \log_{10}(V_{compl}) \\ & V_{comple_{A/\mu V}} = compensated voltage of channel i (dB/\mu V) & (i = x,y,z) \\ & vith corri = correction factor of channel i (dB/\mu V) & (i = x,y,z) \\ & vith corri = correction factor of channel i (dB/\mu V) & (i = x,y,z) \\ & vith corri = correction factor of channel i (dB/\mu V) & (i = x,y,z) \\ & vith corri = correction factor of channel i (dB/\mu V) & (i = x,y,z) \\ & vith corri = correction factor of channel i (dB/\mu V) & (i = x,y,z) \\ & vith corri = correction factor of channel i (dB/\mu V) & (i = x,y,z) \\ & vith corri = correction factor of channel i (dB/\mu V) & (i = x,y,z) \\ & vith voltage V_{kE_{i}/\mu V}) & sithe linearized voltage of channel i (dB/\mu V) & (i = x,y,z) \\ & vith voltage V_{kE_{i}/\mu V}) & = linearized voltage of channel i (dB/\mu V) & (i = x,y,z) \\ & vith V_{iE_{i}/\mu V}) & = compensated voltage of channel i (dB/\mu V) & (i = x,y,z) \\ & vith V_{i} & = linearized voltage of channel i (dB/\mu V) & (i = x,y,z) \\ & vith V_{i} & = linearized voltage of channel i (dB/\mu V) & (i = x,y,z) \\ & vith V_{i} & = linearized voltage of channel i (dB/\mu V) & (i = x,y,z) \\ & vith V_{i} & = linearized voltage of channel i (dB/\mu V) & (i = x,y,z) \\ & vith V_{i} & = linearized voltage of channel i (dB/\mu V) & (i = x,y,z) \\ & vith V_{i} & = linearized voltage of channel i (dB/\mu V) & (i = x,y,z) \\ & vith V_{i} & = linearized voltage of channel i (dB/\mu V) & (i = x,y,z) \\ & vith V_{i} & = linearized voltage of channel i (dB/\mu V) & (i = x,y,z) \\ & vith V_{i} & = linearized voltage of channel i (m V) & (i = x,y,z) \\ & vith V_{i} & = linearized voltage of channel i (m V) & (i = x,y,z) \\ & vith V_{i} & = linearized voltage of channel i (m V) & (i = x,y,z) \\$$

The E-field data value is used to calculate SAR :

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

withSAR= local specific absorption rate in mW/gEtot= total field strength in V/m σ = conductivity in [Ω /m] or [S/m] ρ = equivalent tissue density in g/cm3

Note: The resulting linearized voltage is only approximated because the probe UID is used 0 (CW) for the test signal in this test report.

(*1) [1] Jagadish Nadakuduti, Sven Kuehn, Marcel Fehr, Mark Douglas Katja Pokovic and Niels Kuster, "The Effect of Diode Response of electromagnetic Field Probes for the Measurements of Complex Signals." IEEE Transactions on Electromagnetic Compatibility, vol. 54, pp. 1195–1204, Dec. 2012.

Appendix 3-2-2: SAR system check results

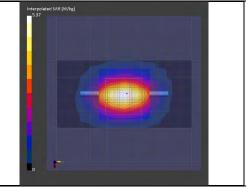
Prior to the SAR assessment of EUT, the Daily check was performed to test whether the SAR system was operating within its target of ±10%. The Daily check results are in the table below.

		Da	aily d	check	resi	ults (*.	Abbre	viatior	ns: F:	Frequ	uency	, Meas.	: Mea	surec	d, Cal.: C	alibra	ation valu	Je, STE): Stand	ard valu	ue, Dev	v.: De	viation)			
Liquid type:		ΔS	AR			SAR	(1g) [\	N/kg]	(*b)			SAR (1	10g) [W/kg](*b)											Dev.
Head	F	10	10a	Pin	Meas.	1W	Ta	rget	Devi	ation	Meas	. 1W	Tar	rget	Deviation	n										Limit
Date	[MHz]	[%]	[%]	[dBm]	(*a)	scaled	Cal.	STD	Cal.	STD	(*C)	scaled	Cal.	STD	Cal. ST	D										[%]
		• •	• •		• •		(*C)	(*d)	%	%	. ,		(*C)	(*d)	%	b										
2024-05-13	2450	1.1	0.6	17.01	2.61	51.38	53.4	52.4	-3.8	-1.9	1.21	23.95	25	24	-4.2 -0.	.2										≤ 10
*a. (2.45 G	Hz) T	he N	leasu	ured S/	AR/va	alue is	obtair	ned at	17 d	Bm (50 m	W) set	ting o	f PO	WERSC	UR	CE1 (LI	MS ID	#23087	2, S/N	: 4300) calil	orated	oy Schr	nid &	

The measured SAR value of Daily check was compensated for tissue dielectric deviations (Δ SAR) and scaled to 1W of output power in order to compare with the *b.

manufacture's calibration target value which was normalized. △SAR corrected SAR (1g) (Ŵ/kg) = (Measured SAR(1g) (W/kg)) × (100 - (△SAR1g(%)) / 100

ASAR corrected SAR (10,8g) (W/kg) = (Measured SAR(10,8g) (W/kg)) × (100 - (\alpha SAR10g(%)) / 100 The target value is a parameter defined in the calibration data sheet of D2450V2 (sn:822) dipole calibrated by Schmid & Partner Engineering AG, the data sheet *с. was filed in this report.


*d. The target value (normalized to 1W) is defined in IEEE Std.1528.

Appendix 3-2-3: SAR system check measurement data

Dipole: D2450V2 - SN822 ; Mode: CW (0) ; Frequency: 2450 MHz ; Test Distance: 10 mm (dipole to liquid); Power setting: 17.0 dBm TSL parameters used: Head(v6) ; f= 2450 MHz; Conductivity: 1.835 S/m; Permittivity: 38.94 DASY8 Configuration: - Electronics: DAE4 - SN626 (Calibrated: 2024-01-09) - Phantom: ELI V8.0 (20deg probe tilt) ; Serial: 2161 ; Phantom section: Flat - Probe: EX3DV4 - SN3907(Calibrated: 2024-01-15); ConvF: (6.83, 7.07, 6.68) / - Software: 16.2.4.2524 (Measurement); 16.2.4.2524 (Evaluation)

	Scan Setup	1	Measure	ement Result	S						
Setup Items	Area Scan	Zoom Scan	Meas. Items	Area Scan	Zoom Scan						
Grid Extents [mm]	40.0×80.0	30.0× 30.0 ×30.0	psSAR1g [W/kg]	2.62	2.61						
Grid Steps [mm]	10.0×10.0	5.0× 5.0 ×1.5	psSAR10g [W/kg]	1.21	1.21						
Sensor Surface [mm]	3.0	1.4	Power Drift [dB]	0.02	0.01						
Graded Grid	N/A	Yes	Power Scaling	Disabled	Disabled						
Grading Ratio	N/A	1.5	Scaling Factor [dB]	N/A	N/A						
MAIA monitored	Y	Y	TSL Correction	No correction	No correction						
Surface Detection	VMS+6p	VMS+6p	M2/M1 [%]	N/A	80.7						
Scan Method	Measured	Measured	Dist 3dB Peak [mm]	N/A	9.0						

*. Date tested:2024-05-13 ; Tested by: Hiroshi Naka; Tested place:No.7 shielded room; Ambient: 23 deg.C. / 78 %RH; Liquid depth: 150 mm; *. Liquid temperature: 22.5 deg.C. ± 0.5 deg.C. (22.5 deg.C., in check); *. Red cubic: big=SAR(10g) / small=SAR(1g) *. Project file name-Measurement Group: 240509-_15260493_YY2975.d8sar- SPC Measurement Group Remarks:

Appendix 3-3: **Measurement Uncertainty**

l	Jncertainty of SAR measurement (2.4 G	Hz ~ 6 GHz) (*. lic	quid: head(v6), DAK-3.5	5, Wi-Fi(B1	r)) (v11r05	5)	1g SAR	10g SAR			
Symbol	Error Description	Uncertainty (Unc.)	Probability distribution	Divisor	ci (1g)	ci (10g)	ui (1g) (Std. Unc.)	ui (10g) (Std. Unc.)			
Meas	urement System (DASY8)										
CF	Probe Calibration (EX3DV4) (HSL: 10%)	± 14.0 %	Normal	2	1	1	±7.0%	±7.0%			
CFdfift	Probe Calibration Drift	±1.7%	Rectangular	√3	1	1	± 1.0 %	± 1.0 %			
LIN	Probe Linearity	±4.7%	Rectangular	√3	1	1	±2.7%	±2.7%			
BBS	Broadband Signal	±2.6%	Rectangular	√3	1	1	±1.5%	± 1.5 %			
ISO1	Probe Isotropy	±7.6%	Rectangular	√3	1	1	±4.4%	±4.4%			
DAE	Data Acquisition	±1.2%	Normal	1	1	1	±1.2%	±1.2%			
AMB	RF Ambient (noise&refrection) (< 12µW/g)	±1.0%	Normal	1	1	1	±1.0%	± 1.0 %			
∆sys	Probe Positioning	±0.5%	Normal	1	0.33	0.33	±0.2%	±0.2%			
DAT	Data Processing	±2.3%	Normal	1	1	1	±2.3%	±2.3%			
Phan	Phantom and Device Error										
LIQ(o)	Conductivity (measured) (DAK-3.5)	±5.0%	Normal	2	0.78	0.71	±2.0%	± 1.8 %			
.IQ(Tσ)	Conductivity (temperature) ($\leq 2 \deg.C.$)	±2.4%	Rectangular	√3	0.78	0.71	±1.1%	±1.0%			
EPS	Phantom Permittivity (liquid to antenna: ≥5 mm)	± 14.0 %	Rectangular	√3	0.25	0.25	±2.0%	±2.0%			
DIS	Distance EUT-TSL	±2.7%	Normal	1	2	2	± 5.4 %	± 5.4 %			
Dxyz	Test Sample positioning	±1.8%	Normal	1	1	1	±5.0%	± 5.0 %			
Н	Device holder uncertainty	±3.6%	Normal	1	1	1	± 3.6 %	± 3.6 %			
MOD	EUT Modulation	±2.4%	Rectangular	√3	1	1	±1.4%	±1.4%			
TAS	Time-average SAR	±0.0%	Rectangular	√3	1	1	±0.0%	±0.0%			
RFdrift	Drift of output power (measured, < 0.2 dB)	±4.7%	Normal	2	1	1	±2.4%	±2.4%			
Corre	ction to the SAR results										
C(e,\sigma)	Deviation to Target (e', σ : \leq 10 %, IEC head)	±1.9%	Normal	1	1	0.84	±1.9%	± 1.6 %			
C(R)	SAR Scaling	±0%	Rectangular	√3	1	1	±0.0%	±0.0%			
(∆SAR)	(SAR: 2.4 GHz~6 GHz) Combined Standard Uno	certainty				RSS	± 12.3 %	±12.3%			
U	(SAR: 2.4 GHz~6 GHz) Expanded Uncertainty					k=2	±24.6 %	± 24.6 %			
This	uncertainty budget is suggested by IEC/IEEE 62209-152	28 and determined l	ov SPEAG. DASY8 Mo	dule SAR	Manual.	2022-08 (Chapter 6.3. DASY8 L	Jncertainty Budget f			

Hand-held/Body-worn Devices, Frequency band: 300 MHz - 3 GHz range and 3 GHz – 6 GHz range). All listed error components have veff equal to ∞ .

	Uncertainty of SAR daily check (2.4						1g SAR	10g SAR			
Symbol	Error Description	Uncertainty (Unc.)	Probability distribution	Divisor	ci (1g)	ci (10g)	ui (1g) (Std. Unc.)	ui (10g) (Std. Unc.)			
	urement System (DASY8)										
CF	Probe Calibration (EX3DV4) (HSL: 10%)	± 14.0 %	Normal	2	1	1	±7.0%	±7.0%			
CFdfift	Probe Calibration Drift	±1.7%	Rectangular	√3	1	1	± 1.0 %	±1.0%			
LIN	Probe Linearity	±4.7%	Rectangular	√3	1	1	±2.7%	±2.7%			
ISO2	Probe Isotropy	±4.7%	Rectangular	√3	1	1	±2.7%	±2.7%			
DAE	Data Acquisition	±1.2%	Normal	1	1	1	±1.2%	±1.2%			
AMB	RF Ambient (noise&refrection) (<12uW/g)	±1.0%	Normal	1	1	1	±1.0%	±1.0%			
∆sys	Probe Positioning	±0.5%	Normal	1	0.33	0.33	±0.2%	±0.2%			
DAT	Data Processing	±2.3%	Normal	1	1	1	±2.3%	±2.3%			
Phantom and Device Error											
LIQ(σ)	Conductivity (measured) (DAK-3.5)	±5.0%	Normal	2	0.78	0.71	±2.0%	±1.8%			
LIQ(Tσ)	Conductivity (temperature) ($\leq 2 \deg.C.$)	±2.4%	Rectangular	√3	0.78	0.71	±1.1%	±1.0%			
EPS	Phantom Permittivity (liquid to antenna: \geq 5 mm)	± 14.0 %	Rectangular	√3	0.25	0.25	±2.0%	± 2.0 %			
VAL	Validation antenna uncertainty	±5.5%	Rectangular	√3	1	1	± 3.2 %	± 3.2 %			
Pin	Uncertainty in accepted power	±2.5%	Normal	2	1	1	±1.3%	±1.3%			
DIS	Distance EUT-TSL	±2.0%	Normal	1	2	2	±4.0%	±4.0%			
Dxyz	Test Sample positioning	±1.0%	Normal	1	1	1	±1.0%	±1.0%			
RFdrift	Drift of output power (measured, < 0.1 dB)	±2.3%	Rectangular	√3	1	1	±1.3%	±1.3%			
Corre	ction to the SAR results										
C(e,\sigma)	Deviation to Target (e', σ : \leq 10 %. IEC head)	±1.9%	Normal	1	1	0.84	±1.9%	±1.6%			
u(∆SAR)	(SAR daily check: 2.4 GHz~6 GHz) Combined S	tandard Uncerta	inty			RSS	± 10.7 %	±10.7%			
U	(SAR daily check: 2.4 GHz~6 GHz) Expanded U					k=2	± 21.4 %	± 21.4 %			
	uncertainty budget is suggested by IEC/IEEE 62209-152				R Manual,	2022-08 (Chapter 6.2, DASY8	Uncertainty Budget for			
Syst	em Verification, Frequency band: 300 MHz - 6 GHz rang	e). All listed error oc	omponents have veff eq	ual to ∞.							

*. *.

Table of uncertainties are listed for ISO/IEC 17025. Although this standard determines only the limit value of uncertainty, there is no applicable rule of uncertainty in this. Therefore, the results are derived depending on whether or not laboratory uncertainty is applied.

Appendix 3-4: Calibration certificates

LIMS ID	Description	Type/Model	Serial Number	Manufacture	Calibration Certificate	Note
146235	Dosimetric E-Field Probe	EX3DV4	3907	SPEAG	K	-
145090	Dipole Antenna (2.45 GHz)	D2450V2	822	SPEAG		*1
230872	RF Power Source	POWERSORCE1	4300	SPEAG	R	-

*1: As stated on page 2 of the certificate, the calibration was performed in accordance with the latest standard IEC/IEEE 62209-1528. Therefore, the reported SAR values are valid for any system that complies with IEC/IEEE 62209-1528 including all new versions of DASY such as DASY6 and DASY8.

-End of report-