

Test Report No. 7191163605-EEC17/05
dated 28 Jun 2017

PSB Singapore

Choose certainty.
Add value.

FORMAL REPORT ON TESTING IN ACCORDANCE WITH
47 CFR FCC Parts 15B & C
(BLUETOOTH LOW ENERGY)
OF A
WIRELESS NOISE CANCELING STEREO HEADSET
[Model : WH-H900N]
[FCC ID : AK8WHH900N]

TEST FACILITY

TÜV SÜD PSB Pte Ltd
Electrical & Electronics Centre (EEC), Product Services,
No. 1 Science Park Drive, Singapore 118221

FCC REG. NO.

99142 (3m and 10m Semi-Anechoic Chamber, Science Park)

IND. CANADA REG. NO.

2932I-1 (3m and 10m Semi-Anechoic Chamber, Science Park)

PREPARED FOR

Sony EMCS (Malaysia) Sdn. Bhd.
Prai Free Industrial Zone
Prai Industrial Estate
13600 Prai, Penang, Malaysia

Tel : +60 4 383 6649

Fax : +60 4 399 0703

QUOTATION NUMBER

2191062012

JOB NUMBER

7191163605

TEST PERIOD

18 May 2017 – 22 Jun 2017

PREPARED BY

Quek Keng Huat
Higher Associate Engineer

APPROVED BY

Foo Kai Maun
Executive Engineer

LA-2007-0380-A LA-2007-0384-G
LA-2007-0381-F LA-2007-0385-E
LA-2007-0382-B LA-2007-0386-C
LA-2007-0383-G LA-2010-0464-D

The results reported herein have been performed in accordance with the terms of accreditation under the Singapore Accreditation Council. Inspections/Calibrations/Tests marked "Not SAC-SINGLAS Accredited" in this Report are not included in the SAC-SINGLAS Accreditation Schedule for our inspection body/laboratory.

Laboratory:
TÜV SÜD PSB Pte. Ltd.
No.1 Science Park Drive
Singapore 118221

Phone : +65-6885 1333
Fax : +65-6776 8670
E-mail: enquiries@tuv-sud-psb.sg
www.tuv-sud-psb.sg
Co. Reg : 199002667R

Regional Head Office:
TÜV SÜD Asia Pacific Pte. Ltd.
1 Science Park Drive, #02-01
Singapore 118221
TÜV

TABLE OF CONTENTS

TEST SUMMARY	3
PRODUCT DESCRIPTION	5
SUPPORTING EQUIPMENT DESCRIPTION.....	6
EUT OPERATING CONDITIONS.....	7
CONDUCTED EMISSION TEST	8
RADIATED EMISSION TEST.....	11
SPECTRUM BANDWIDTH (6dB BANDWIDTH MEASUREMENT) TEST	17
MAXIMUM PEAK POWER TEST	21
RF CONDUCTED SPURIOUS EMISSIONS (NON-RESTRICTED BANDS) TEST.....	23
RF CONDUCTED SPURIOUS EMISSIONS (RESTRICTED BANDS) TEST.....	28
BAND EDGE COMPLIANCE (CONDUCTED) TEST	40
BAND EDGE COMPLIANCE (RADIATED) TEST.....	43
PEAK POWER SPECTRAL DENSITY TEST.....	48
RF PERMISSIBLE EVALUATION	52
ANNEX A TEST SETUP / EUT PHOTOGRAPHS / DIAGRAMS	54
ANNEX B USER MANUALTECHNICAL DESCRIPTION BLOCK & CIRCUIT DIAGRAMS.....	66
ANNEX C FCC LABEL & POSITION.....	67

TEST SUMMARY

The product was tested in accordance with the customer's specifications.

Test Results Summary

Test Standard	Description	Pass / Fail
47 CFR FCC Part 15		
15.107(a), 15.207	Conducted Emissions	Pass
15.109(a), 15.205, 15.209	Radiated Emissions (Spurious Emissions inclusive Restricted Bands Requirement)	Pass
15.247(a)(2)	Spectrum Bandwidth (6dB Bandwidth Measurement)	Pass
15.247(b)(3)	Maximum Peak Power	Pass
15.247(d)	RF Conducted Spurious Emissions (Non-Restricted Bands)	Pass
15.247(d)	RF Conducted Spurious Emissions (Restricted Bands)	Pass
15.247(d)	Band Edge Compliance (Conducted)	Pass
15.247(d)	Band Edge Compliance (Radiated)	Pass
15.247(e)	Peak Power Spectral Density	Pass
2.1093	RF Exposure Evaluation	Pass

PSB Singapore

TEST SUMMARY

Notes

- Three channels as listed below, which respectively represent the lower, middle and upper channels of the Equipment Under Test (EUT) were chosen and tested. For each channel, the EUT was configured to operate in the test mode.

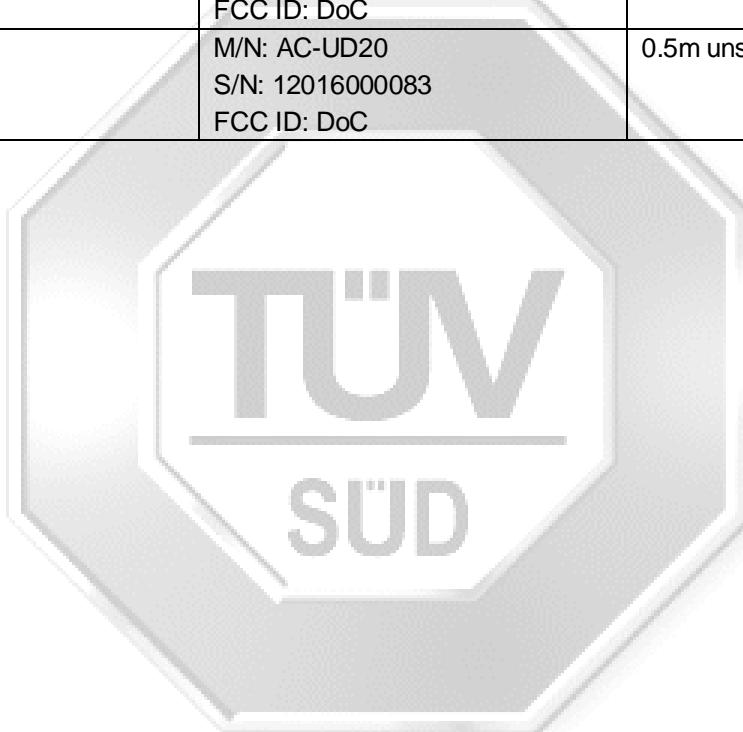
<u>Transmit Channel</u>	<u>Frequency (GHz)</u>
Channel 0 (Lower Channel)	2.402
Channel 19 (Middle Channel)	2.440
Channel 39 (Upper Channel)	2.480

- The EUT is a Class B device when in non-transmitting state and meets the 47 CFR FCC Part15B Class B requirements.
- All test measurement procedures are according to ANSI C63.4: 2014, ANSI C63.10: 2013 and KDB 558074 D01 DTS Measurement Guidance V04.
- The maximum measured RF power of the Equipment Under Test is 0.79dBm.
- The Equipment Under Test (EUT) does not allow Bluetooth transmission during charging mode. It will enter charging mode when it is connected to a 5Vdc USB charger.
- The EUT was tested using fully charged batteries with DC voltage of 3.7V.

Modifications

No modifications were made.

PRODUCT DESCRIPTION


Description	: The Equipment Under Test (EUT) is a Wireless Noise Canceling Stereo Headset .
Applicant	: Sony EMCS (Malaysia) Sdn. Bhd. Prai Free Industrial Zone Prai Industrial Estate 13600 Prai, Penang, Malaysia
Manufacturer	: Sony Corporation 1-7-1 Konan Minato-ku Tokyo, 108-0075, Japan
Factory (ies)	: Sony EMCS (Malaysia) Sdn. Bhd. Prai Free Industrial Zone Prai Industrial Estate 13600 Prai, Penang, Malaysia
Model Number(s)	: WH-H900N
FCC ID	: AK8WHH900N
Serial Number(s)	: Nil
Microprocessor(s)	: CSR8675 (Bluetooth) RC-S967 (NFC)
Operating Frequency	: i. 2402MHz-2480MHz (Bluetooth) ii. 13.56MHz (Passive NFC tag)
Clock / Oscillator Frequency	: 122.88MHz
Modulation	: <u>Bluetooth</u> i. Gaussian Frequency Shift Keying (GFSK) ii. $\pi/4$ -Differential Quadrature Phase-Shift Keying (DQPSK) iii. 8 Differential Phase Shift Keying (DPSK)
	<u>NFC (Passive NFC tag, receiver only)</u> i. Amplitude Shift Keying (ASK)
Antenna Gain	: 1.60 dBi
Port / Connectors	: i. USB ii. NFC Reader iii. Bluetooth V4.1
Rated Input Power	: 3.7Vdc (Built-in lithium-ion rechargeable battery) 5Vdc (Charging via USB)
Accessories	: i. 1 x 0.5m micro-USB cable ii. 1 x 1.2m headphone cable

PSB Singapore

SUPPORTING EQUIPMENT DESCRIPTION

Equipment Description (Including Brand Name)	Model, Serial & FCC ID Number	Cable Description (List Length, Type & Purpose)
Fujitsu S Series Lifebook Laptop	M/N: S6410 S/N: R7Y00054 FCC ID: DoC	0.8m unshielded USB cable
Fujitsu AC Adapter	M/N: CP311808-01 S/N: 08903690B FCC ID: DoC	1.80m unshielded power cable
Sony Digital Media Player	M/N: NW-ZX2 S/N: 2000643 FCC ID: DoC	Nil
Sony AC Adapter	M/N: AC-UD20 S/N: 12016000083 FCC ID: DoC	0.5m unshielded USB cable

EUT OPERATING CONDITIONS

47 CFR FCC Part 15

1. Conducted Emissions
2. Radiated Emissions (Spurious Emissions inclusive Restricted Bands Requirement)
3. Spectrum Bandwidth (6dB Bandwidth Measurement)
4. Maximum Peak Power
5. RF Conducted Spurious Emissions (Non-Restricted Bands)
6. RF Conducted Spurious Emissions (Restricted Bands)
7. Band Edge Compliance (Conducted)
8. Band Edge Compliance (Radiated)
9. Peak Power Spectral Density
10. RF Exposure Evaluation

The EUT was exercised by operating in maximum continuous transmission in test mode, i.e transmitting at lower, middle and upper channels respectively at one time.

PSB Singapore

CONDUCTED EMISSION TEST

47 CFR FCC Parts 15.107(a) and 15.207 Conducted Emission Limits

Frequency Range (MHz)	Limit Values (dB μ V)	
	Quasi-peak (Q-P)	Average (AV)
0.15 - 0.5	66 – 56 *	56 – 46 *
0.5 - 5.0	56	46
5.0 - 30.0	60	50

* Decreasing linearly with the logarithm of the frequency

47 CFR FCC Parts 15.107(a) and 15.207 Conducted Emission Test Instrumentation

Instrument	Model	S/No	Cal Due Date
Schaffner EMI Receiver	SMR4503	040	22 Mar 2018
Agilent EMC Analyzer-SA7	E7403A	US41160167	24 Aug 2017
Schaffner LISN – LISN7 (Ref)	NNB42	00008	11 Jan 2018
EMCO LISN (for supporting) – LISN6	3825/2	9309-2127	04 Oct 2017

CONDUCTED EMISSION TEST

47 CFR FCC Parts 15.107(a) and 15.207 Conducted Emission Test Setup

1. The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m x 1m x 0.8m high, non-metallic table.
2. The power supply for the EUT was fed through a $50\Omega/50\mu\text{H}$ EUT LISN, connected to filtered mains.
3. The RF OUT of the EUT LISN was connected to the EMI test receiver via a low-loss coaxial cable.
4. All other supporting equipment were powered separately from another LISN.

47 CFR FCC Parts 15.107(a) and 15.207 Conducted Emission Test Method

1. The EUT was switched on and allowed to warm up to its normal operating condition.
2. A scan was made on the NEUTRAL line over the required frequency range using an EMI test receiver.
3. High peaks, relative to the limit line, were then selected.
4. The EMI test receiver was then tuned to the selected frequencies and the necessary measurements made with a receiver bandwidth setting of 9kHz. Both Quasi-peak and Average measurements were made.
5. Steps 2 to 4 were then repeated for the LIVE line.

Sample Calculation Example

At 20 MHz

Q-P limit = 60.0 dB μ V

Transducer factor of LISN, pulse limiter & cable loss at 20 MHz = 11.2 dB

Q-P reading obtained directly from EMI Receiver = 40.0 dB μ V
(Calibrated for system losses)

Therefore, Q-P margin = $60.0 - 40.0 = 20.0$

i.e. 20.0 dB below Q-P limit

CONDUCTED EMISSION TEST

47 CFR FCC Parts 15.107(a) and 15.207 Conducted Emission Results

Operating Mode	Charging Mode	Temperature	22°C
Test Input Power	120V 60Hz	Relative Humidity	55%
Line Under Test	AC Mains	Atmospheric Pressure	1030mbar
		Tested By	Dylan Lin

Frequency (MHz)	Q-P Value (dB μ V)	Q-P Limit (dB μ V)	Q-P Margin (dB)	AV Value (dB μ V)	AV Limit (dB μ V)	AV Margin (dB)	Line	Channel
0.1936	30.7	63.9	33.2	9.7	53.9	44.2	Live	-
0.2081	33.1	63.3	30.2	11.2	53.3	42.1	Neutral	-
0.2206	31.5	62.8	31.3	11.3	52.8	41.5	Neutral	-
0.3016	26.3	60.2	33.9	4.5	50.2	45.7	Neutral	-
0.4055	21.2	57.7	36.5	0.8	47.7	46.9	Neutral	-
0.4209	21.8	57.4	35.6	-2.0	47.4	49.4	Live	-

Notes

1. All possible modes of operation were investigated from 150kHz to 30MHz. Only the worst case emissions measured, using the correct CISPR detectors, are reported. All other emissions were relatively insignificant.
2. A "positive" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency. Conversely, a "negative" margin indicates a FAIL.
3. EMI receiver Resolution Bandwidth (RBW) and Video Bandwidth (VBW) settings:
9kHz - 30MHz
RBW: 9kHz VBW: 30kHz
4. Conducted Emissions Measurement Uncertainty
All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95%, with a coverage factor of 2, in the range 9kHz – 30MHz is ± 2.2 dB.

RADIATED EMISSION TEST

47 CFR FCC Part 15.205 Restricted Bands

MHz	MHz	MHz	GHz
0.090	- 0.110	16.42	- 410
0.495	- 0.505	16.69475	4.5 - 5.15
2.1735	- 2.1905	16.80425	5.35 - 5.46
4.125	- 4.128	25.5	7.25 - 7.75
4.17725	- 4.17775	37.5	8.025 - 8.5
4.20725	- 4.20775	73	9.0 - 9.2
6.215	- 6.218	74.8	9.3 - 9.5
6.26775	- 6.26825	108	10.6 - 12.7
6.31175	- 6.31225	123	13.25 - 13.4
8.291	- 8.294	149.9	14.47 - 14.5
8.362	- 8.366	156.52475	15.35 - 16.2
8.37625	- 8.38675	156.7	17.7 - 21.4
8.41425	- 8.41475	162.0125	22.01 - 23.12
12.29	- 12.293	167.72	23.6 - 24.0
12.51975	- 12.52025	240	31.2 - 31.8
12.57675	- 12.57725	322	36.43 - 36.5
13.36	- 13.41	335.4	Above 38.6

47 CFR FCC Parts 15.109(a) and 15.209 Radiated Emission Limits

Frequency Range (MHz)	Quasi-Peak Limit Values (dBμV/m)
0.009 - 0.490	20 log [2400 / F (kHz)] @ 300m
0.490 - 1.705	20 log [24000 / F (kHz)] @ 30m
1.705 - 30.0	30.0 @ 30m
30 - 88	40.0 @ 3m
88 - 216	43.5 @ 3m
216 - 960	46.0 @ 3m
Above 960	54.0* @ 3m

* For frequency bands 9kHz – 90kHz, 110kHz – 490kHz and above 1GHz, average detector was used. A peak limit of 20dB above the average limit does apply.

47 CFR FCC Parts 15.109(a) and 15.209 Radiated Emission Test Instrumentation

Instrument	Model	S/No	Cal Due Date
R&S Test Receiver – ESI1	ESI40	100010	11 Oct 2017
Schaffner Bilog Antenna -(30MHz-2GHz) BL4	CBL6112B	2593	18 Jan 2018
Com-Power Preamplifier (1MHz-1GHz)	PAM-103	441056	22 Jul 2017
TDK-RF Horn Antenna	HRN-0118	130256	18 Oct 2017
R&S Preamplifier (1GHz -18GHz)	SCU18	102191	10 Mar 2018
Agilent Preamplifier(1GHz-26.5GHz) (PA18)	8449D	3008A02305	12 Oct 2017
ETS Horn Antenna(18GHz-40GHz) (Ref)	3116	0004-2474	18 Oct 2017
EMCO Loop Ant (ext) _red_00134413	6502	134413	28 Oct 2017
Micro-Tronics Bandstop Filter (2.4-2.5 GHz)	BRM50701	17	27 Nov 2017

RADIATED EMISSION TEST**47 CFR FCC Parts 15.109(a) and 15.209 Radiated Emission Test Setup**

1. The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m X 1.0m X 0.8m high, non-metallic table for measurement up to 1GHz. For measurement above 1GHz, 1.5m height table was used.
2. The filtered power supply for the EUT and supporting equipment were tapped from the appropriate power sockets located on the turntable.
3. The relevant broadband antenna was set at the required test distance away from the EUT and supporting equipment boundary.

47 CFR FCC Parts 15.109(a) and 15.209 Radiated Emission Test Method

1. The EUT was switched on and allowed to warm up to its normal operating condition.
2. A prescan was carried out to pick the worst emission frequencies from the EUT. For EUT which is a portable device, the prescan was carried out by rotating the EUT through three orthogonal axes to determine which altitude and equipment arrangement produces such emissions.
3. The test was carried out at the selected frequency points obtained from the prescan in step 2. Maximization of the emissions, was carried out by rotating the EUT, changing the antenna polarization, and adjusting the antenna height in the following manner:
 - a. Vertical or horizontal polarisation (whichever gave the higher emission level over a full rotation of the EUT) was chosen.
 - b. The EUT was then rotated to the direction that gave the maximum emission.
 - c. Finally, the antenna height was adjusted to the height that gave the maximum emission.
4. A Quasi-peak measurement was made for that frequency point if it was less than or equal to 1GHz. For frequency point in the range of 9kHz – 90kHz, 110kHz – 490kHz and above 1GHz, both Peak and Average measurements were carried out.
5. Steps 3 and 4 were repeated for the next frequency point, until all selected frequency points were measured.
6. The frequency range covered was from the lowest radio frequency signal generated from the EUT, without going below 9kHz to 10th harmonics of the EUT fundamental frequency, using the loop antenna for frequency below 30MHz, Bi-log antenna for frequencies from 30MHz up to 1GHz, and the Horn antenna above 1GHz.

Sample Calculation Example

At 300 MHz

Q-P limit = 46.0 dB μ V/m

Log-periodic antenna factor & cable loss at 300 MHz = 18.5 dB

Q-P reading obtained directly from EMI Receiver = 40.0 dB μ V/m
(Calibrated level including antenna factors & cable losses)

Therefore, Q-P margin = 46.0 - 40.0 = 6.0

i.e. 6.0 dB below Q-P limit

PSB Singapore

RADIATED EMISSION TEST

47 CFR FCC Parts 15.109(a), 15.205 and 15.209 Radiated Emission Results

Operating Mode	Bluetooth LE Transmit	Temperature	27°C
Test Input Power	Battery Powered	Relative Humidity	59%
Test Distance	3m (9kHz – 25GHz)	Atmospheric Pressure	1030mbar
		Tested By	Dylan Lin Lim Kay Tak

Spurious Emissions ranging from 9kHz – 30MHz (for 9kHz – 90kHz, 110kHz – 490kHz) *See Note 5

Freq (GHz)	Peak Value (dB μ V/m)	Peak Limit (dB μ V/m)	Peak Margin (dB)	AV Value (dB μ V/m)	AV Limit (dB μ V/m)	AV Margin (dB)	Height (cm)	Azimuth (Degrees)	Pol (H/V)	Ch
--	--	--	--	--	--	--	--	--	--	--
--	--	--	--	--	--	--	--	--	--	--
--	--	--	--	--	--	--	--	--	--	--
--	--	--	--	--	--	--	--	--	--	--
--	--	--	--	--	--	--	--	--	--	--
--	--	--	--	--	--	--	--	--	--	--

Spurious Emissions ranging from 9kHz – 30MHz *See Note 5

Frequency (MHz)	Q-P Value (dB μ V/m)	Q-P Limit (dB μ V/m)	Q-P Margin (dB)	Height (cm)	Azimuth (Degrees)	Pol (H/V)	Channel
--	--	--	--	--	--	--	--
--	--	--	--	--	--	--	--
--	--	--	--	--	--	--	--
--	--	--	--	--	--	--	--
--	--	--	--	--	--	--	--
--	--	--	--	--	--	--	--

Spurious Emissions ranging from 30MHz – 1GHz

Frequency (MHz)	Q-P Value (dB μ V/m)	Q-P Limit (dB μ V/m)	Q-P Margin (dB)	Height (cm)	Azimuth (Degrees)	Pol (H/V)	Channel (Worst)
88.9000	22.0	43.5	21.5	400	292	H	19
300.9390	24.1	46.0	21.9	199	344	V	19
348.0590	23.8	46.0	22.2	199	260	V	19
436.4090	26.1	46.0	19.9	202	181	H	19
585.6210	23.8	46.0	22.2	100	156	V	19
632.7410	22.6	46.0	23.4	100	356	H	19

RADIATED EMISSION TEST

47 CFR FCC Parts 15.109(a), 15.205 and 15.209 Radiated Emission Results

Spurious Emissions above 1GHz – 25GHz

Freq (GHz)	Peak Value (dB μ V/m)	Peak Limit (dB μ V/m)	Peak Margin (dB)	AV Value (dB μ V/m) *See Note 2	AV Limit (dB μ V/m)	AV Margin (dB) *See Note 3	Height (cm)	Azimuth (Degrees)	Pol (H/V)	Ch
4.8963	41.9	74.0	32.1	--	54.0	12.0	200	51	V	0
5.9184	46.8	74.0	27.2	--	54.0	7.2	400	292	H	0
9.4733	46.2	74.0	27.8	--	54.0	7.8	100	349	H	0
10.3841	47.4	74.0	26.6	--	54.0	6.6	100	0	V	0
13.8338	51.1	74.0	22.9	--	54.0	2.9	100	82	V	0
17.7807	51.5	74.0	22.5	--	54.0	2.5	100	355	H	0

Spurious Emissions above 1GHz – 25GHz

Freq (GHz)	Peak Value (dB μ V/m)	Peak Limit (dB μ V/m)	Peak Margin (dB)	AV Value (dB μ V/m) *See Note 2	AV Limit (dB μ V/m)	AV Margin (dB) *See Note 3	Height (cm)	Azimuth (Degrees)	Pol (H/V)	Ch
1.7067	36.4	74.0	37.6	--	54.0	17.5	200	34	V	19
4.8457	50.2	74.0	23.8	--	54.0	3.8	200	232	H	19
9.0482	46.4	74.0	27.6	--	54.0	7.6	300	303	H	19
11.3313	48.6	74.0	25.4	--	54.0	5.4	300	154	V	19
14.1860	52.3	74.0	21.7	--	54.0	1.7	300	347	V	19
17.3921	50.5	74.0	23.5	--	54.0	3.5	400	275	H	19

Spurious Emissions above 1GHz – 25GHz

Freq (GHz)	Peak Value (dB μ V/m)	Peak Limit (dB μ V/m)	Peak Margin (dB)	AV Value (dB μ V/m) *See Note 2	AV Limit (dB μ V/m)	AV Margin (dB) *See Note 3	Height (cm)	Azimuth (Degrees)	Pol (H/V)	Ch
1.7590	36.1	74.0	37.9	--	54.0	17.8	300	90	V	39
3.6313	48.9	74.0	25.1	--	54.0	5.1	200	107	H	39
9.8012	45.4	74.0	28.6	--	54.0	8.6	300	104	V	39
12.0486	49.5	74.0	24.5	--	54.0	4.5	400	55	V	39
14.7932	48.7	74.0	25.3	--	54.0	5.3	200	185	V	39
16.1291	49.1	74.0	24.9	--	54.0	4.9	400	75	H	39

PSB Singapore

RADIATED EMISSION TEST

47 CFR FCC Parts 15.109(a), 15.205 and 15.209 Radiated Emission Results

Test Input Power	120V 60Hz	Temperature	27°C
Test Distance	3m (\geq 30MHz – 13GHz)	Relative Humidity	59%
Operating Mode	Charging Mode	Atmospheric Pressure	1030mbar
		Tested By	Dylan Lin Lim Kay Tak

Spurious Emissions ranging from 30MHz – 1GHz

Frequency (MHz)	Q-P Value (dB μ V/m)	Q-P Limit (dB μ V/m)	Q-P Margin (dB)	Height (cm)	Azimuth (Degrees)	Pol (H/V)
30.0000	21.1	40.0	18.9	299	23	V
45.7070	19.4	40.0	20.6	301	185	H
53.5600	18.5	40.0	21.5	100	326	V
291.1220	23.6	46.0	22.4	199	303	V
497.2720	26.6	46.0	19.4	400	349	H
509.0520	27.4	46.0	18.6	301	185	H

Spurious Emissions above 1GHz – 13GHz


Freq (GHz)	Peak Value (dB μ V/m)	Peak Limit (dB μ V/m)	Peak Margin (dB)	AV Value (dB μ V/m) *See Note 2	AV Limit (dB μ V/m)	AV Margin (dB) *See Note 3	Height (cm)	Azimuth (Degrees)	Pol (H/V)
1.2024	33.7	74.0	40.3	--	54.0	20.2	100	56	V
1.2125	35.3	74.0	38.7	--	54.0	18.7	200	339	H
2.2245	35.1	74.0	38.9	--	54.0	18.9	300	25	H
3.0949	37.0	74.0	37.0	--	54.0	17.0	400	148	V
4.4814	40.5	74.0	33.5	--	54.0	13.5	300	208	V
9.4733	46.2	74.0	27.8	--	54.0	7.8	100	349	H

RADIATED EMISSION TEST

Notes

1. All possible modes of operation were investigated. Only the worst case emissions measured, using the correct CISPR detectors, are reported. All other emissions were relatively insignificant.
2. As the measured peak shows compliance to the average limit, as such no average measurement was required.
3. The average margin indicates the margin of the measured peak value below the average limit.
4. "--" indicates no emissions were found and shows compliance to the limits.
5. The measurement was done at 3m. The measured results were extrapolated to the specified test limits as specified in § 15.209 (a) based on 40dB/decade.
6. Quasi-peak measurement was used for frequency measurement up to 1GHz. Average and peak measurements were used for emissions above 1GHz. The average measurement was done by averaging over a complete cycle of the pulse train, including the blanking interval as the pulse train duration does not exceed 0.1 second.
7. A "positive" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency. Conversely, a "negative" margin indicates a FAIL.
8. EMI receiver Resolution Bandwidth (RBW) and Video Bandwidth (VBW) settings:

<u>30MHz - 1GHz</u>	
RBW: 120kHz	VBW: 1MHz
<u>>1GHz</u>	
RBW: 1MHz	VBW: 3MHz
9. The upper frequency of radiated emission investigations was according to requirements stated in Section 15.33(a) for intentional radiators & Section 15.33(b) for unintentional radiators.
10. The channel in the table refers to the transmit channel of the EUT.
11. Radiated Emissions Measurement Uncertainty
All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95%, with a coverage factor of 2, in the range 30MHz – 25GHz is $\pm 4.0\text{dB}$.

SPECTRUM BANDWIDTH (6dB BANDWIDTH MEASUREMENT) TEST

47 CFR FCC Part 15.247(a)(2) Spectrum Bandwidth (6dB Bandwidth Measurement) Limits

The EUT shows compliance to the requirements of this section, which states that the minimum bandwidth of the EUT employing digital modulation techniques shall be at least 500kHz.

47 CFR FCC Part 15.247(a)(2) Spectrum Bandwidth (6dB Bandwidth Measurement) Test Instrumentation

Instrument	Model	S/No	Cal Due Date
Agilent Spectrum Analyzer	E4440A	MY45304764	4 Jan 2018

47 CFR FCC Part 15.247(a)(2) Spectrum Bandwidth (6dB Bandwidth Measurement) Test Setup

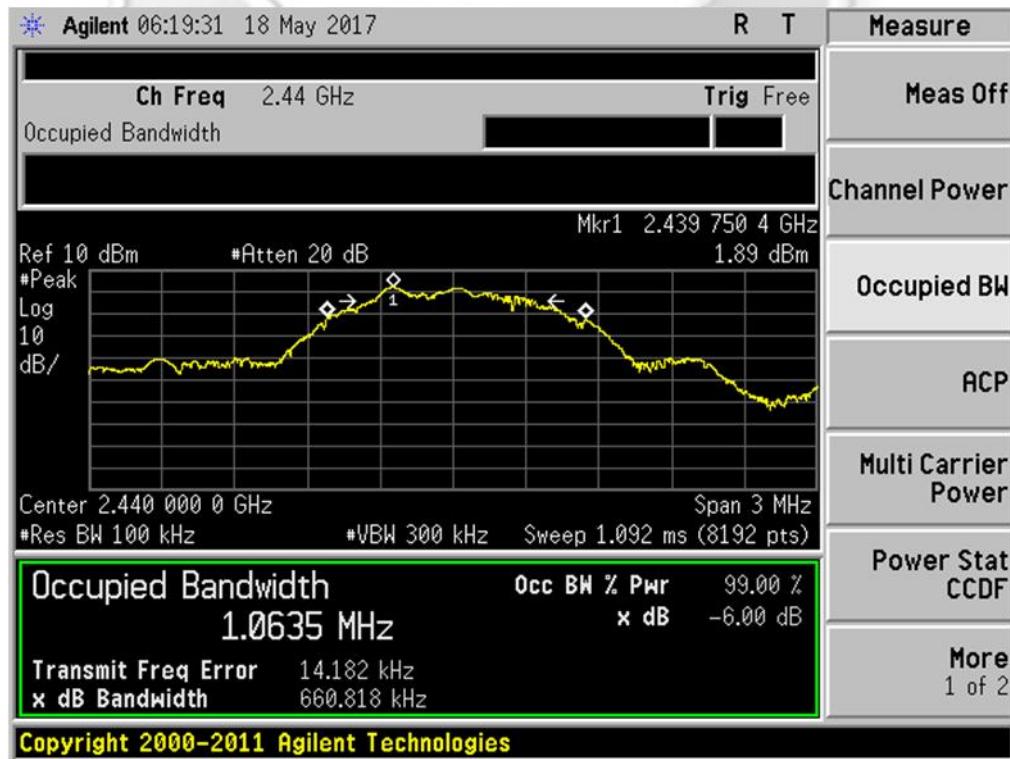
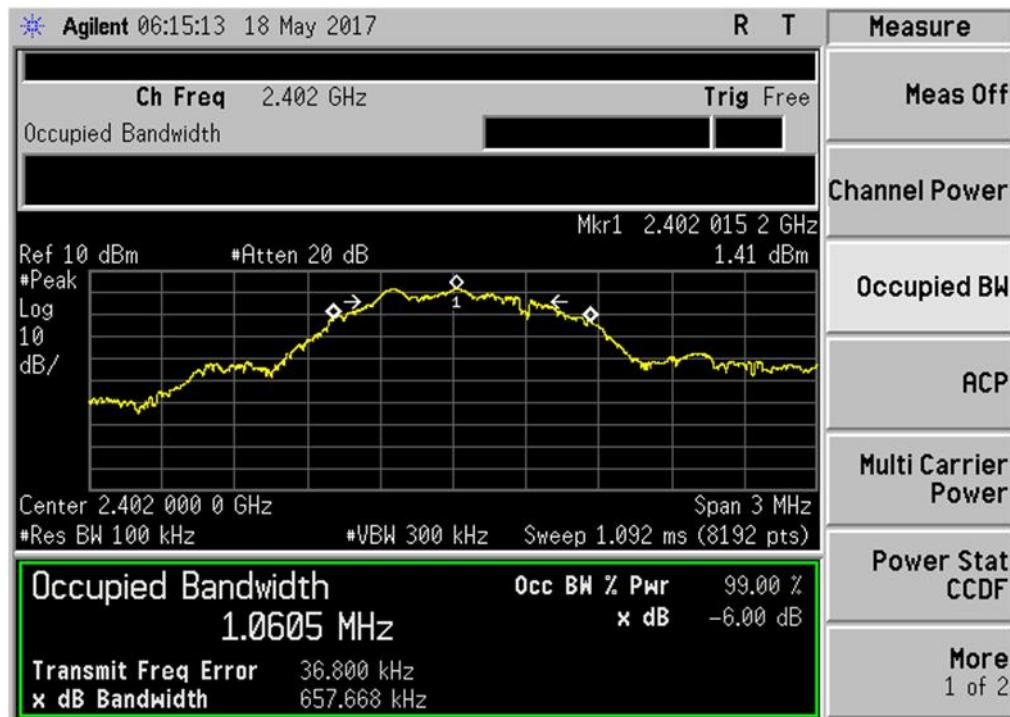
1. The EUT and supporting equipment were set up as shown in the setup photo.
2. The power supply for the EUT was connected to a filtered mains.
3. The RF antenna connector was connected to the spectrum analyser via a low-loss coaxial cable.
4. The resolution bandwidth (RBW) and the video bandwidth (VBW) of the spectrum analyser were respectively set to the following:
RBW = 100kHz
VBW = 3 times RBW
5. All other supporting equipment were powered separately from another filtered mains.

47 CFR FCC Part 15.247(a)(2) Spectrum Bandwidth (6dB Bandwidth Measurement) Test Method

1. The EUT was switched on and allowed to warm up to its normal operating condition. The EUT was then configured to operate in the test mode at lower channel.
2. The center frequency of the spectrum analyser was set to the transmitting frequency with the frequency span wide enough to capture the 6dB bandwidth of the transmitting frequency.
3. The spectrum analyser was set to max hold to capture the transmitting frequency. The signal capturing was continuous until no further changes were observed.
4. The peak of the transmitting frequency was detected with the marker peak function of the spectrum analyser. The frequencies below the 6dB peak frequency at lower (f_L) and upper (f_H) sides of the transmitting frequency were marked and measured by using the marker-delta function of the spectrum analyser.
5. The 6dB bandwidth of the transmitting frequency is the frequency difference between the marked lower and upper frequencies, $| f_H - f_L |$.
6. The steps 2 to 5 were repeated with the transmitting frequency was set to middle and upper channel respectively.

SPECTRUM BANDWIDTH (6dB BANDWIDTH MEASUREMENT) TEST

47 CFR FCC Part 15.247(a)(2) Spectrum Bandwidth (6dB Bandwidth Measurement) Results



Test Input Power	3.7Vdc	Temperature	24°C
Attached Plots	1 – 3	Relative Humidity	60%
		Atmospheric Pressure	1030mbar
		Tested By	Liau Lee Yin

Channel	Channel Frequency (GHz)	6dB Bandwidth (MHz)	Limit (MHz)
0	2.402	0.658	≥ 500
19	2.440	0.661	≥ 500
39	2.480	0.644	≥ 500

SPECTRUM BANDWIDTH (6dB BANDWIDTH MEASUREMENT) TEST

Spectrum Bandwidth (6dB Bandwidth Measurement) Plots

SPECTRUM BANDWIDTH (6dB BANDWIDTH MEASUREMENT) TEST

Spectrum Bandwidth (6dB Bandwidth Measurement) Plots

PSB Singapore

MAXIMUM PEAK POWER TEST

47 CFR FCC Part 15.247(b)(3) Maximum Peak Power Limits

The EUT shows compliance to the requirements of this section, which states the maximum peak power of the EUT employing digital modulation shall not exceed 1W (30dBm).

47 CFR FCC Part 15.247(b)(3) Maximum Peak Power Test Instrumentation

Instrument	Model	S/No	Cal Due Date
Boonton Electronics RF Power Meter	4532	72901	26 Aug 2017
Boonton Electronics Peak Power Sensor	56218-S/1	1417	26 Aug 2017

47 CFR FCC Part 15.247(b)(3) Maximum Peak Power Test Setup

1. The EUT and supporting equipment were set up as shown in the setup photo.
2. The power supply for the EUT was connected to a filtered mains.
3. The RF antenna connector was connected to the power meter.
4. All other supporting equipment were powered separately from another filtered mains.

47 CFR FCC Part 15.247(b)(3) Maximum Peak Power Test Method

1. The EUT was switched on and allowed to warm up to its normal operating condition. The EUT was then configured to operate in the test mode at lower channel.
2. The maximum peak power of the transmitting frequency was detected and recorded.
3. The step 2 was repeated with the transmitting frequency was set to middle and upper channel respectively.

SÜD

PSB Singapore

MAXIMUM PEAK POWER TEST

47 CFR FCC Part 15.247(b)(3) Maximum Peak Power Results

Test Input Power	3.7Vdc	Temperature	24°C
Antenna Gain	1.6 dBi	Relative Humidity	60%
		Atmospheric Pressure	1030mbar
		Tested By	Liau Lee Yin

Channel	Channel Frequency (GHz)	Maximum Peak Power (W)	Limit (W)
0	2.402	0.0010	1.0
19	2.440	0.0012	1.0
39	2.480	0.0006	1.0

Notes

1. Nil.

RF CONDUCTED SPURIOUS EMISSIONS (NON-RESTRICTED BANDS) TEST

47 CFR FCC Part 15.247(d) RF Conducted Spurious Emissions (Non-Restricted Bands) Limits

The EUT shows compliance to the requirements of this section, which states in any 100kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator (EUT) is operating, the radio frequency power that is produced by the EUT shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power.

47 CFR FCC Part 15.247(d) RF Conducted Spurious Emissions (Non-Restricted Bands) Test Instrumentation

Instrument	Model	S/No	Cal Due Date
Agilent Spectrum Analyzer	E4440A	MY45304764	4 Jan 2018

47 CFR FCC Part 15.247(d) RF Conducted Spurious Emissions (Non-Restricted Bands) Test Setup

1. The EUT and supporting equipment were set up as shown in the setup photo.
2. The power supply for the EUT was connected to a filtered mains.
3. The RF antenna connector was connected to the spectrum analyser via a low-loss coaxial cable.
4. The resolution bandwidth (RBW) and the video bandwidth (VBW) of the spectrum analyser were respectively set to 100kHz and 3 times of RBW.
5. All other supporting equipment were powered separately from another filtered mains.

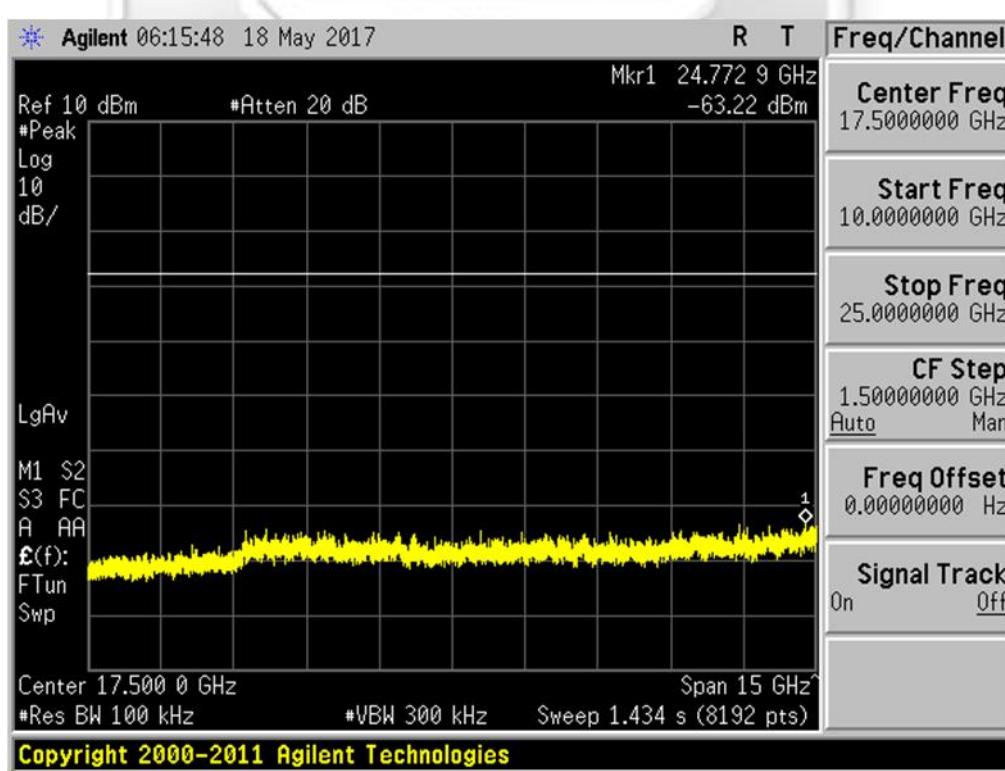
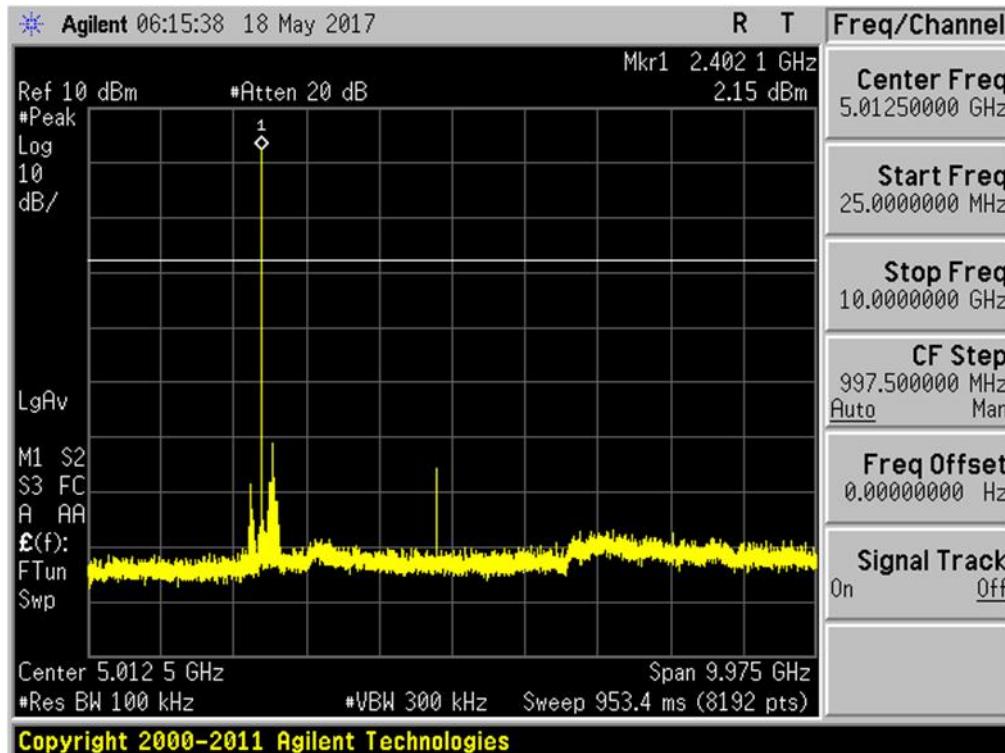
47 CFR FCC Part 15.247(d) RF Conducted Spurious Emissions (Non-Restricted Bands) Test Method

1. The EUT was switched on and allowed to warm up to its normal operating condition. The EUT was then configured to operate in the test mode, with the transmitting frequency was set to lower channel.
2. The start and stop frequencies of the spectrum analyser were set to 30MHz and 10GHz.
3. The spectrum analyser was set to max hold to capture any spurious emissions within the span. The signal capturing was continuous until no further spurious emissions were detected.
4. The steps 2 to 3 were repeated with frequency span was set from 10GHz to 25GHz.
5. The steps 2 to 4 were repeated with the transmitting frequency was set to middle and upper channel respectively.

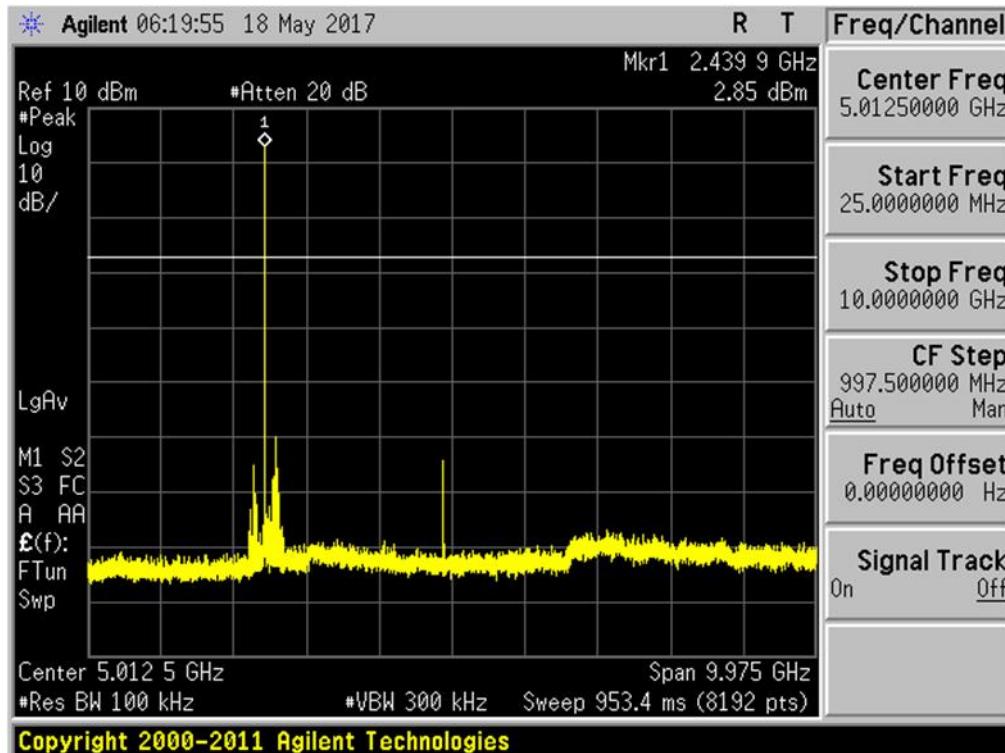
PSB Singapore

RF CONDUCTED SPURIOUS EMISSIONS (NON-RESTRICTED BANDS) TEST

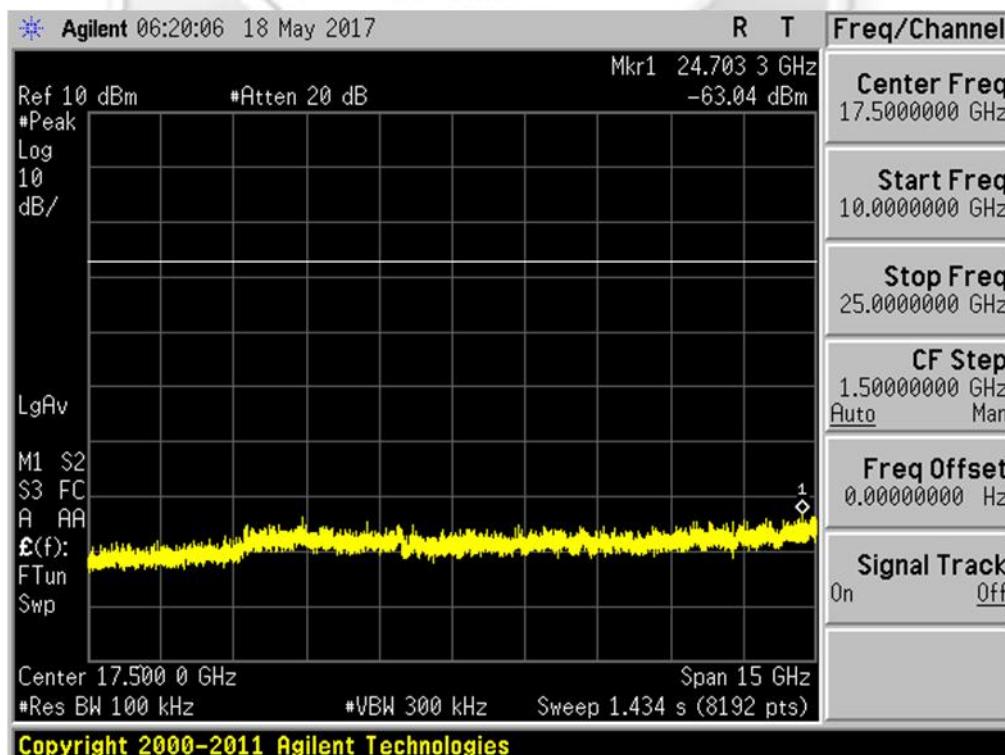
47 CFR FCC Part 15.247(d) RF Conducted Spurious Emissions (Non-Restricted Bands) Results



Test Input Power	3.7Vdc	Temperature	24°C
Attached Plots	4 – 9	Relative Humidity	60%
		Atmospheric Pressure	1030mbar
		Tested By	Liau Lee Yin

All spurious signals found were below the specified limit. Please refer to the attached plots.

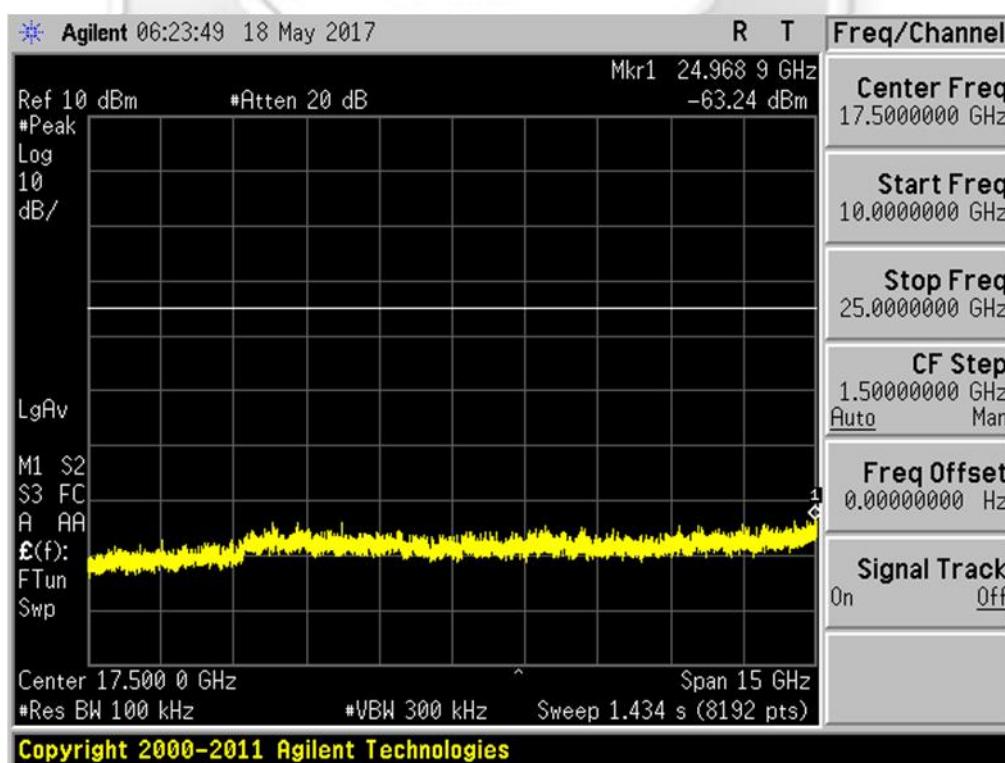
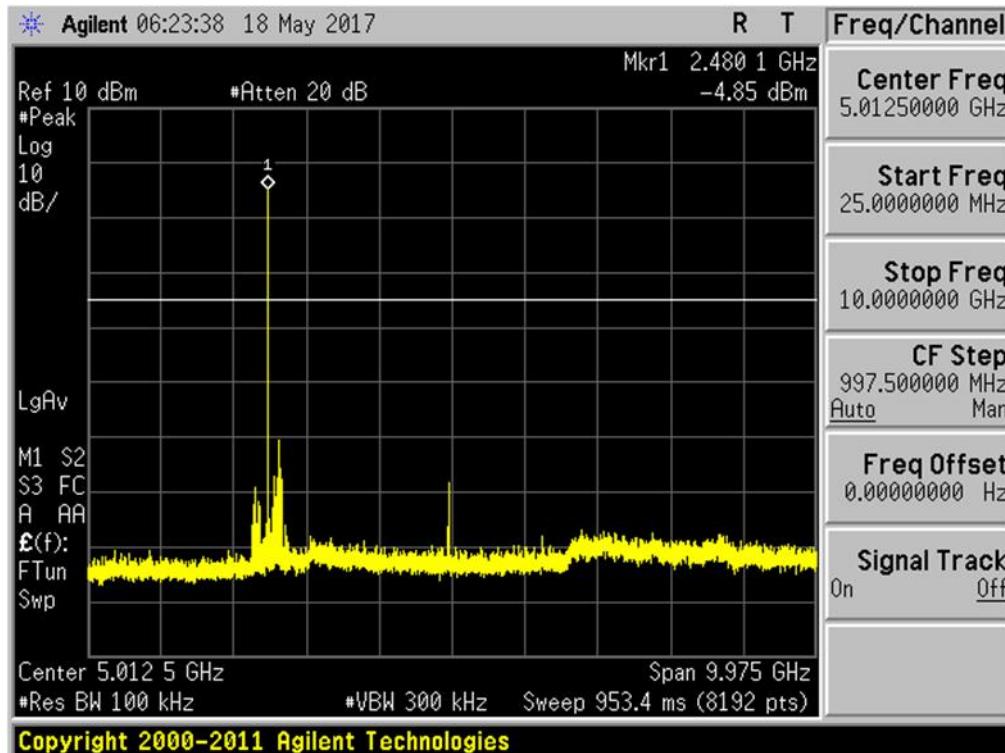

RF CONDUCTED SPURIOUS EMISSIONS (NON-RESTRICTED BANDS) TEST

RF Conducted Spurious Emissions (Non-Restricted Bands) Plots



RF CONDUCTED SPURIOUS EMISSIONS (NON-RESTRICTED BANDS) TEST

RF Conducted Spurious Emissions (Non-Restricted Bands) Plots



Plot 6 – Channel 19 (middle ch)

Plot 7 – Channel 19 (middle ch)

RF CONDUCTED SPURIOUS EMISSIONS (NON-RESTRICTED BANDS) TEST

RF Conducted Spurious Emissions (Non-Restricted Bands) Plots

RF CONDUCTED SPURIOUS EMISSIONS (RESTRICTED BANDS) TEST

47 CFR FCC Part 15.205 Restricted Bands

MHz	MHz	MHz	GHz
0.090	- 0.110	16.42	- 410
0.495	- 0.505	16.69475	5.35
2.1735	- 2.1905	16.80425	7.25
4.125	- 4.128	25.5	8.025
4.17725	- 4.17775	37.5	9.0
4.20725	- 4.20775	73	9.3
6.215	- 6.218	74.8	10.6
6.26775	- 6.26825	108	13.25
6.31175	- 6.31225	123	14.47
8.291	- 8.294	149.9	15.35
8.362	- 8.366	156.52475	17.7
8.37625	- 8.38675	156.7	22.01
8.41425	- 8.41475	162.0125	23.6
12.29	- 12.293	167.72	31.2
12.51975	- 12.52025	240	36.43
12.57675	- 12.57725	322	Above 38.6
13.36	- 13.41		

47 CFR FCC Part 15.247(d) RF Conducted Spurious Emissions (Restricted Bands) Limits

The EUT shows compliance to the requirements of this section, which states that emissions which fall in the restricted bands must comply with the radiated emission limits specified in the table below:

Frequency Range (MHz)	EIRP (dBm)	Radiated Emissions (dB μ V/m)
0.009 – 0.490	-6.7 – (-41.4) **	67.6 – 20logF* @ 300m **
0.490 – 1.705	-41.4 – (-52.3) **	87.6 – 20logF* @ 30m **
1.705 – 30	-45.7	29.5 @ 30m
30 - 88	-55.2	40.0 @ 3m
88 - 216	-51.7	43.5 @ 3m
216 - 960	-49.2	46.0 @ 3m
>960	-41.2 ***	54.0 @ 3m ***

* F is frequency in kHz.
** Decreasing linearly with the logarithm of the frequency.
*** Above 1GHz, a peak limit of 20dB above the average limit does apply.

47 CFR FCC Part 15.247(d) RF Conducted Spurious Emissions (Restricted Bands) Test Instrumentation

Instrument	Model	S/No	Cal Due Date
Agilent Spectrum Analyzer	E4440A	MY45304764	04 Jan 2018
Micro-tronics Bandstop Filter (2.4GHz)	BRM50701-02	007	13 Aug 2017

RF CONDUCTED SPURIOUS EMISSIONS (RESTRICTED BANDS) TEST**47 CFR FCC Part 15.247(d) RF Conducted Spurious Emissions (Restricted Bands) Test Setup**

1. The EUT and supporting equipment were set up as shown in the setup photo.
2. The power supply for the EUT was connected to a filtered mains.
3. The RF antenna connector was connected to the spectrum analyser via a low-loss coaxial cable.
4. The resolution bandwidth (RBW) of the spectrum analyser was set to the following settings. The video bandwidth (VBW) was set to at least three times of the RBW.

Frequency (MHz)	RBW (kHz)
0.009 – 0.150	0.2
0.150 – 30.0	9.0
30.0 - 1000	100.0
> 1000	1000.0

5. The detector of the spectrum analyser was set to peak detection mode.
6. All other supporting equipment were powered separately from another filtered mains.

47 CFR FCC Part 15.247(d) RF Conducted Spurious Emissions (Restricted Bands) Test Method**1. Measurement in the range 9kHz – 1000MHz**

- 1.1 The EUT was switched on and allowed to warm up to its normal operating condition. The EUT was then configured to operate in the test mode, with the transmitting frequency was set to lower channel.
- 1.2 The start and stop frequencies of the spectrum analyser were set according to the supported RBW.
- 1.3 The spectrum analyser was set to max hold to capture any spurious emissions within the span. The signal capturing was continuous until no further spurious emissions were detected. The antenna gain of the EUT was added to the captured spurious emissions.
- 1.4 No further measurement was required if all the captured emissions complied to the limits. Else, the spectrum analyser was set to zoom to the captured emission with the detector of the spectrum analyser was set to quasi-peak. The emission level of the captured frequency was measured.
- 1.5 The step 1.4 was repeated until all the captured emissions which exceeding the limits were measured.
- 1.6 The steps 1.2 to 1.5 were repeated with the transmitting frequency was set to middle and upper channel respectively.

2. Measurement above 1000MHz

- 2.1 The EUT was switched on and allowed to warm up to its normal operating condition. The EUT was then configured to operate in the test mode, with the transmitting frequency was set to lower channel.
- 2.2 The start and stop frequencies of the spectrum analyser were set according to the supported frequency band of the set RBW with the number of points in a sweep was set to equal or greater than 2 times of the ratio of span over RBW.
- 2.3 The detector of the spectrum analyser was set to power average (RMS) mode with the sweep time was set to equal or greater than 10 times of the product of number of measurement points in a sweep and transmission symbol time.
- 2.4 The spectrum analyser was then allowed to capture any spurious emissions within a single sweep. The peak marker function of the spectrum analyser was used to locate the highest power level. The antenna gain of the EUT was added to the captured spurious emissions.
- 2.5 The steps 2.2 to 2.4 were repeated until all the required frequency bands were measured.
- 2.6 The steps 2.2 to 2.5 were repeated with the transmitting frequency was set to middle and upper channel respectively.
- 2.7 The measurements were repeated with the detector of the spectrum analyser was set to peak detecting mode. The sweep time was set to auto coupler.

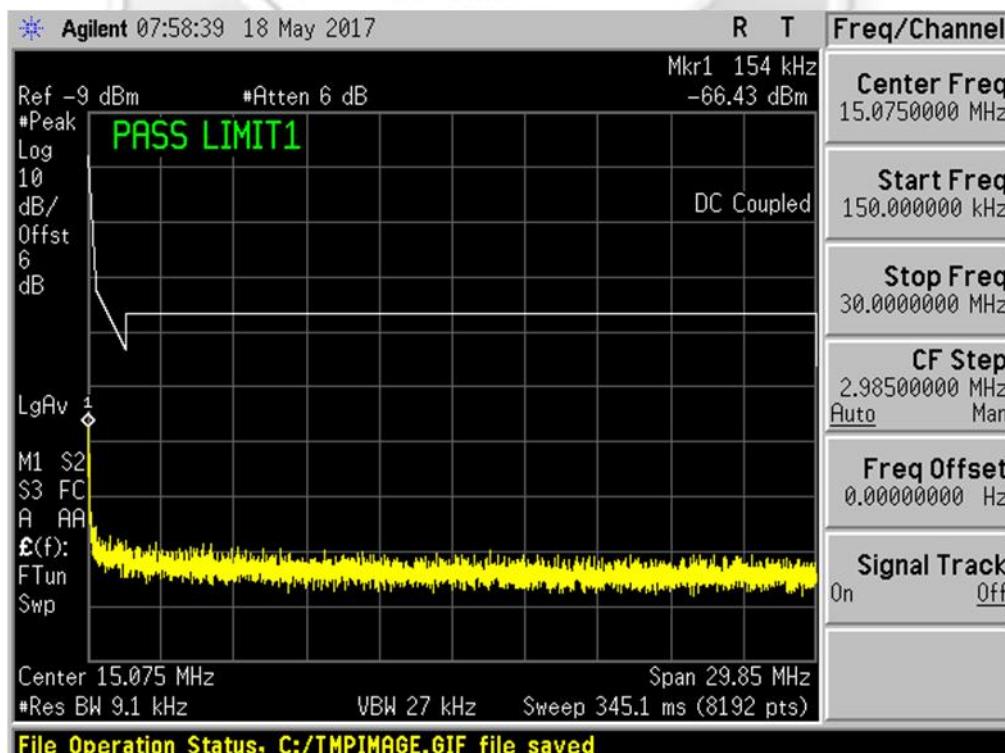
PSB Singapore

RF CONDUCTED SPURIOUS EMISSIONS (RESTRICTED BANDS) TEST

47 CFR FCC Part 15.247(d) RF Conducted Spurious Emissions (Restricted Bands) Results

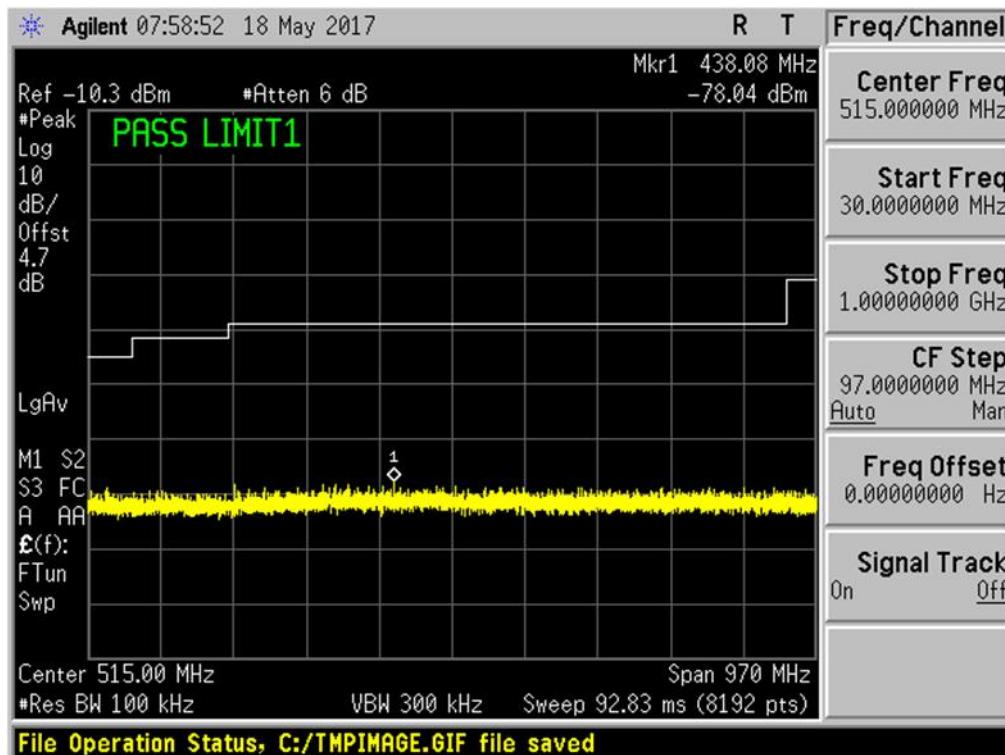
Test Input Power	3.7Vdc	Temperature	24°C
Attached Plots	10 – 27 (Peak)	Relative Humidity	60%
		Atmospheric Pressure	1030mbar
		Tested By	Liau Lee Yin

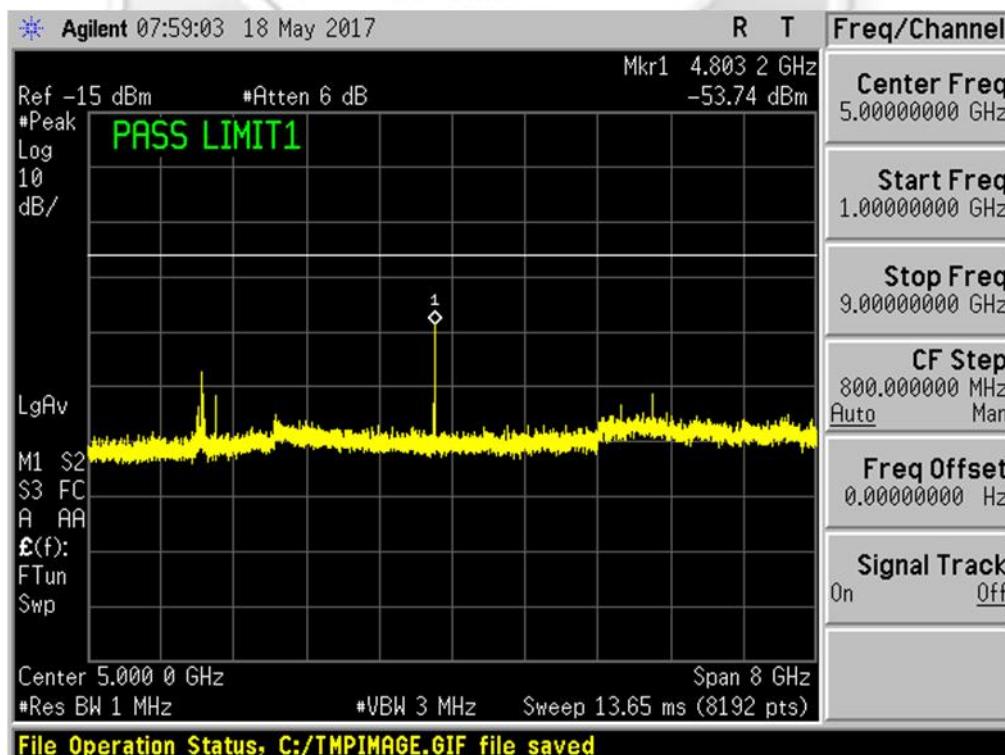
All spurious signals found were below the specified limit. Please refer to the attached plots.



RF CONDUCTED SPURIOUS EMISSIONS (RESTRICTED BANDS) TEST

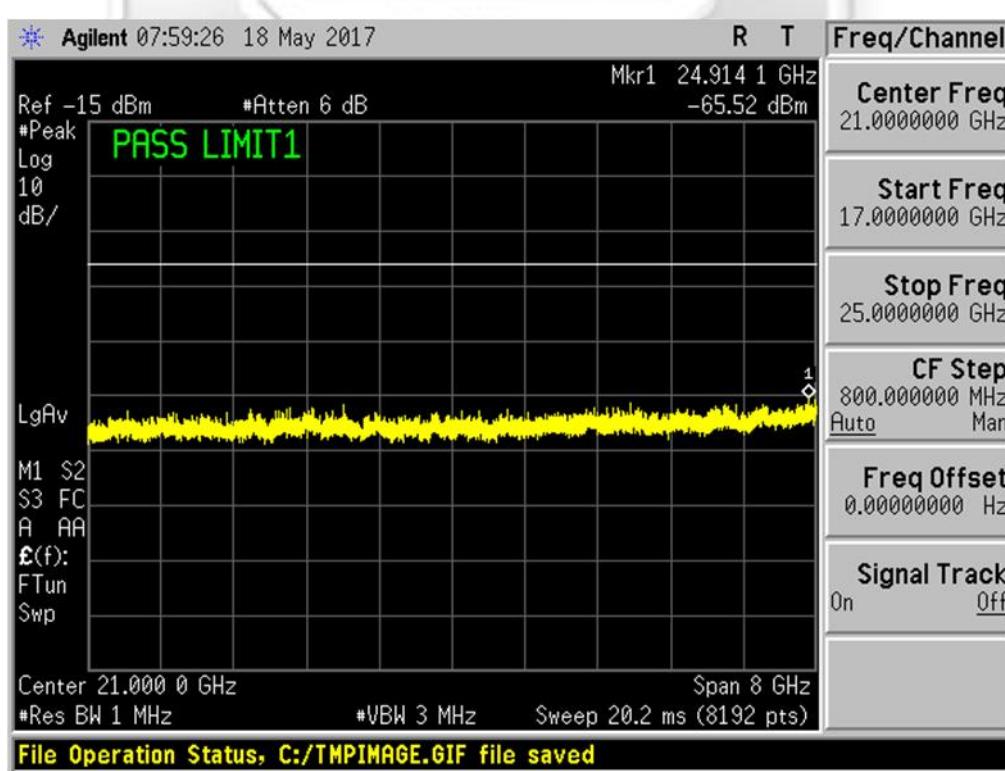
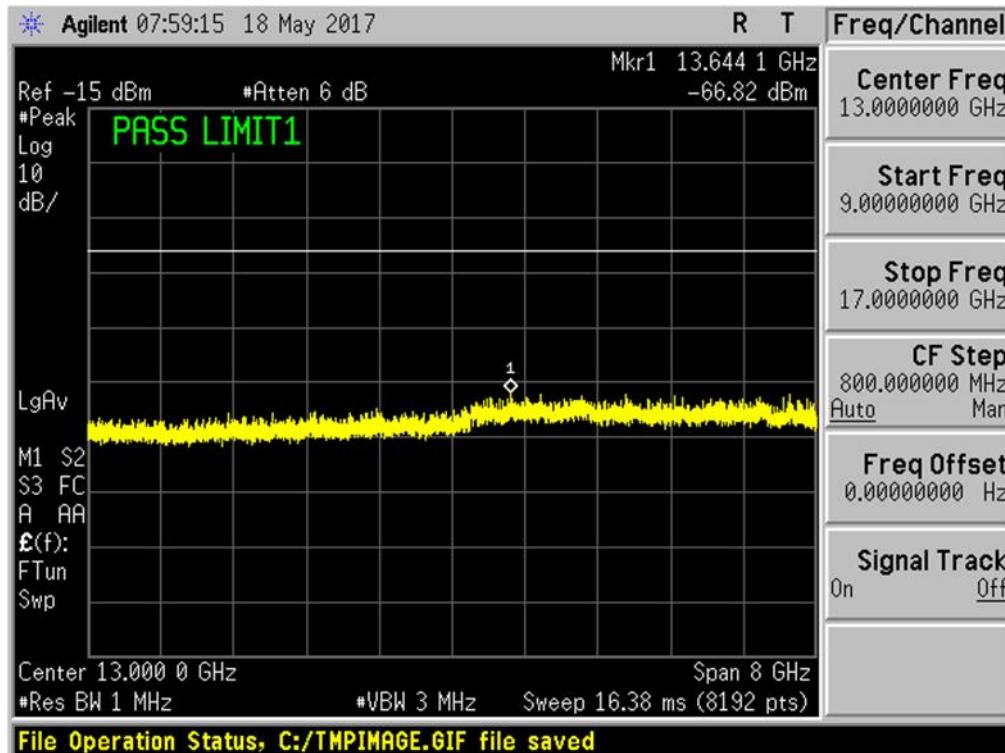
RF Conducted Spurious Emissions (Restricted Bands) Plots – Peak


Plot 10 – Channel 0 (lower ch)

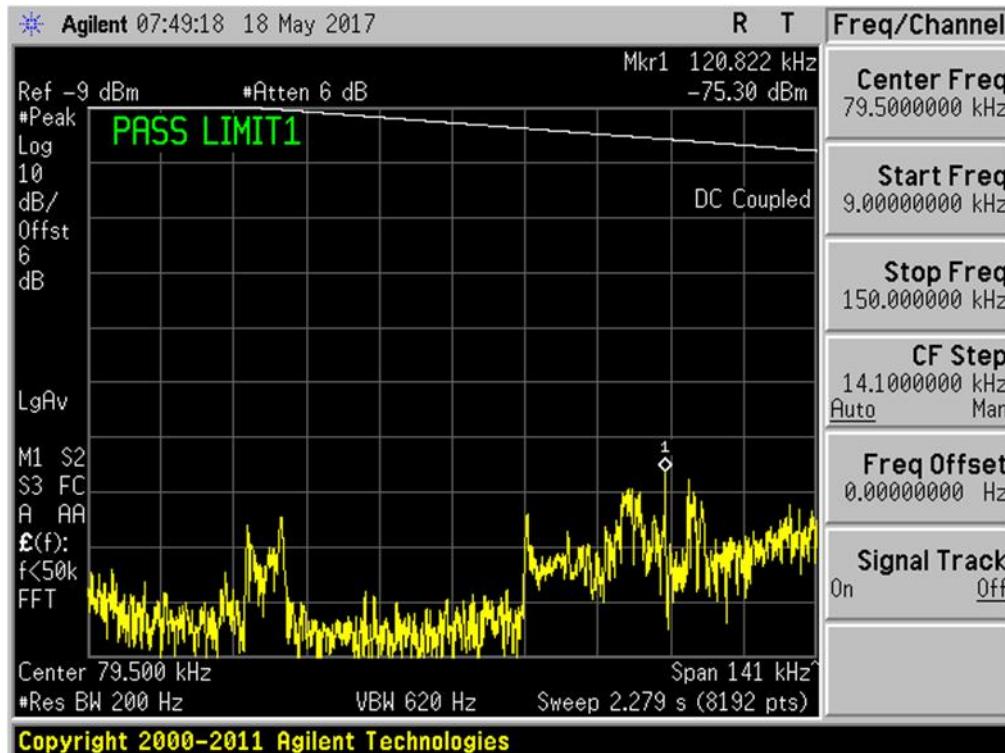

Plot 11 – Channel 0 (lower ch)

RF CONDUCTED SPURIOUS EMISSIONS (RESTRICTED BANDS) TEST

RF Conducted Spurious Emissions (Restricted Bands) Plots – Peak



Plot 12 – Channel 0 (lower ch)

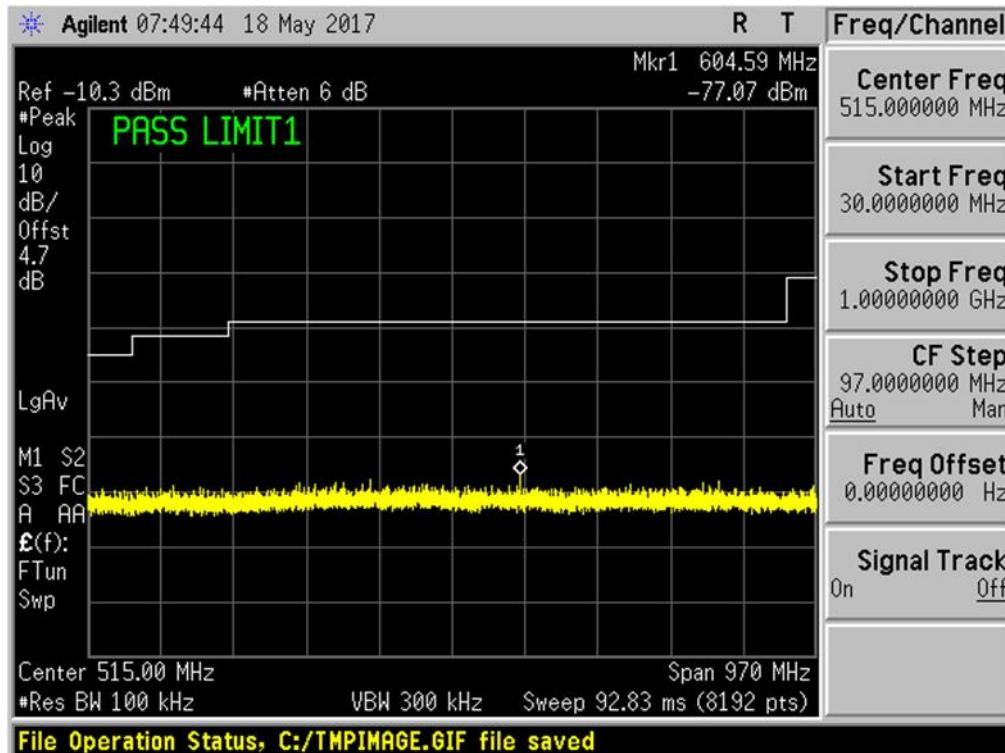
Plot 13 – Channel 0 (lower ch)

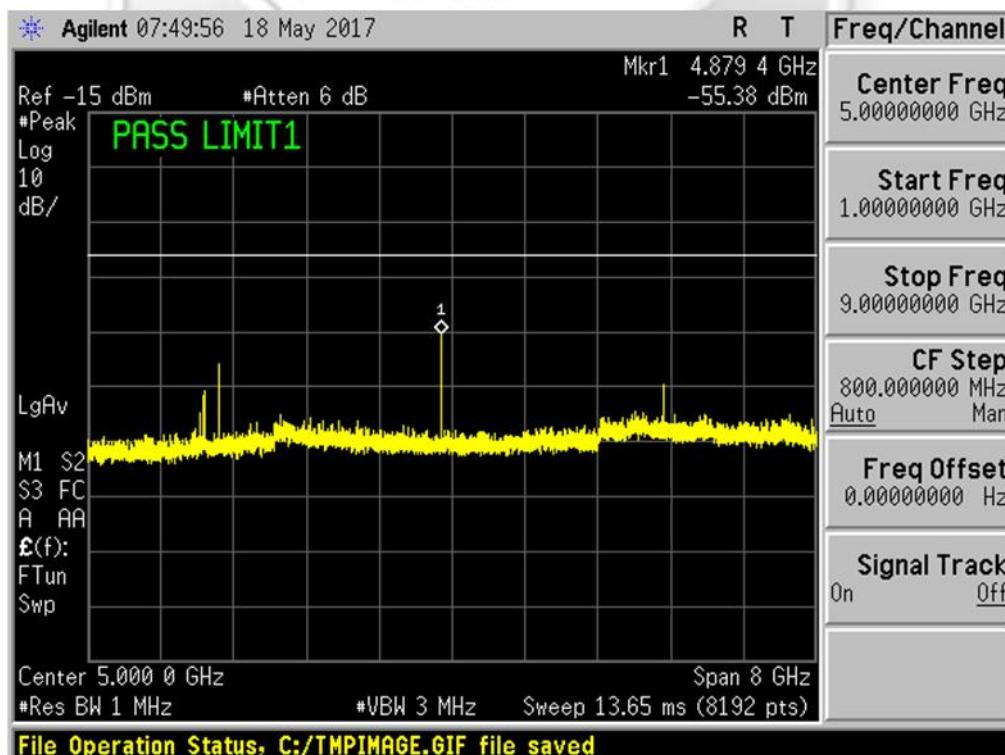

RF CONDUCTED SPURIOUS EMISSIONS (RESTRICTED BANDS) TEST

RF Conducted Spurious Emissions (Restricted Bands) Plots – Peak

RF CONDUCTED SPURIOUS EMISSIONS (RESTRICTED BANDS) TEST

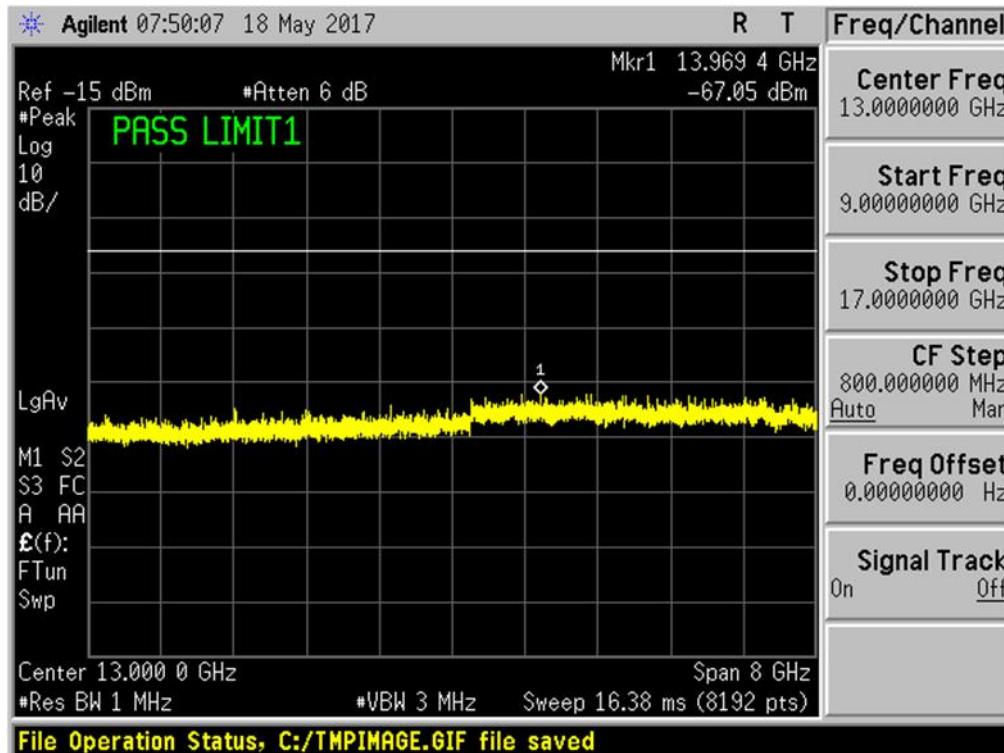
RF Conducted Spurious Emissions (Restricted Bands) Plots – Peak

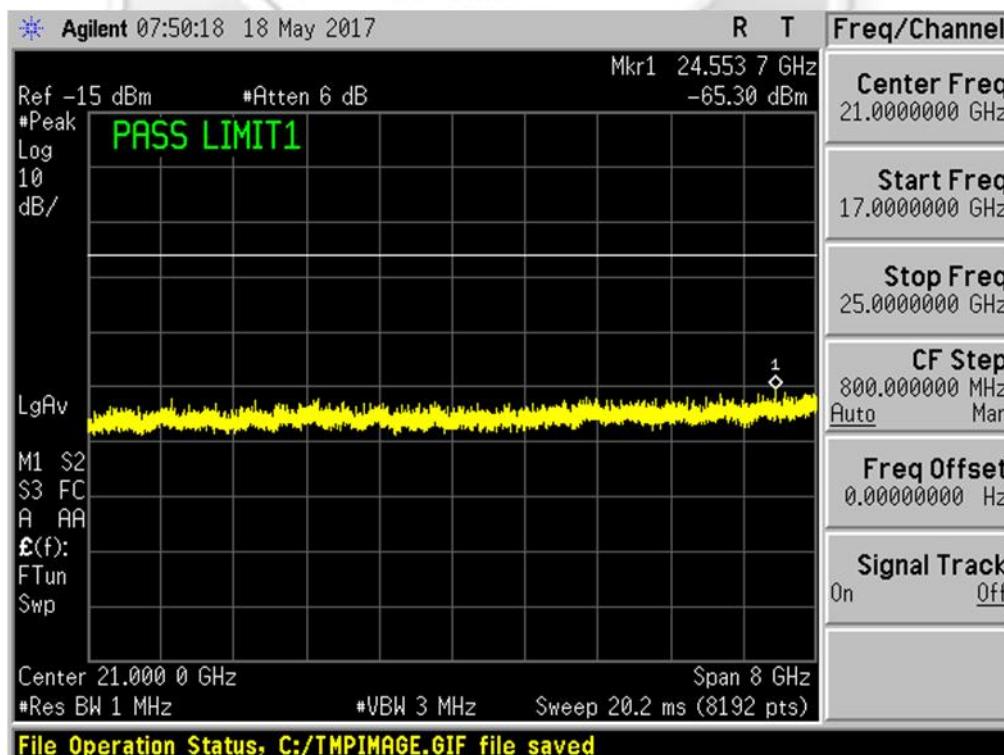

Plot 16 – Channel 19 (middle ch)


Plot 17 – Channel 19 (middle ch)

RF CONDUCTED SPURIOUS EMISSIONS (RESTRICTED BANDS) TEST

RF Conducted Spurious Emissions (Restricted Bands) Plots – Peak

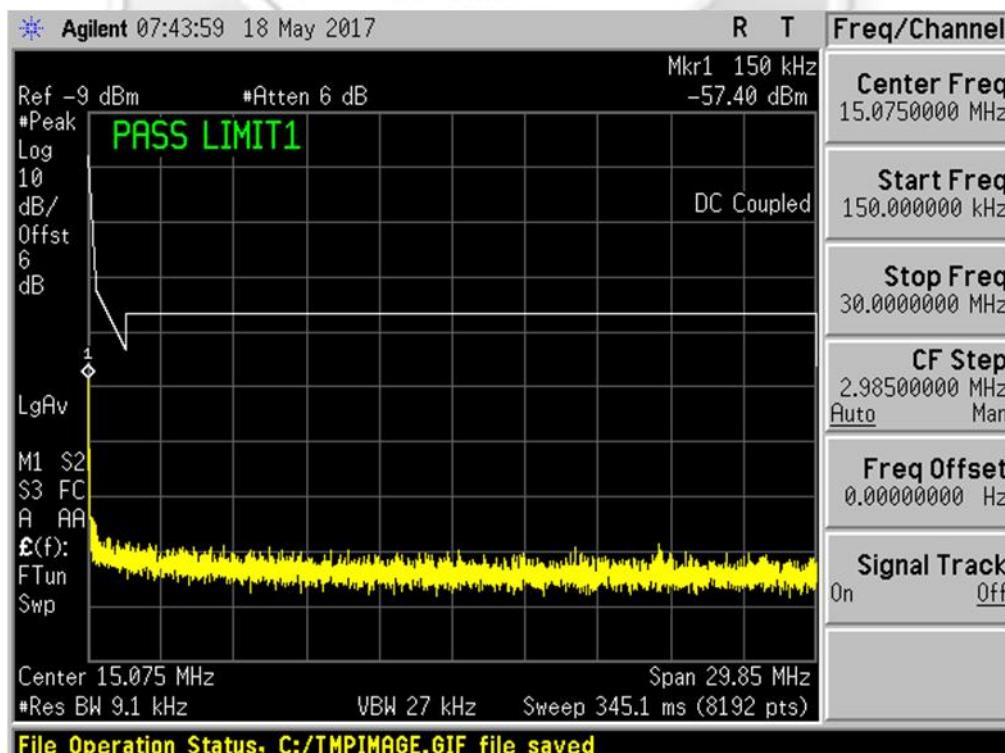

Plot 18 – Channel 19 (middle ch)


Plot 19 – Channel 19 (middle ch)

RF CONDUCTED SPURIOUS EMISSIONS (RESTRICTED BANDS) TEST

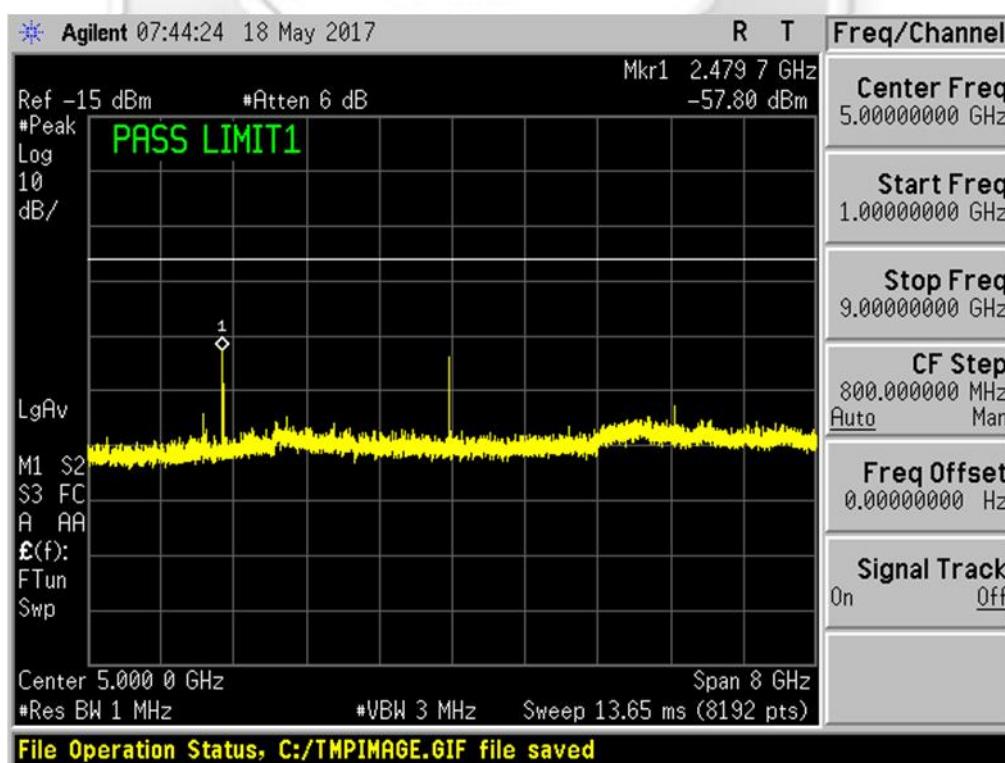
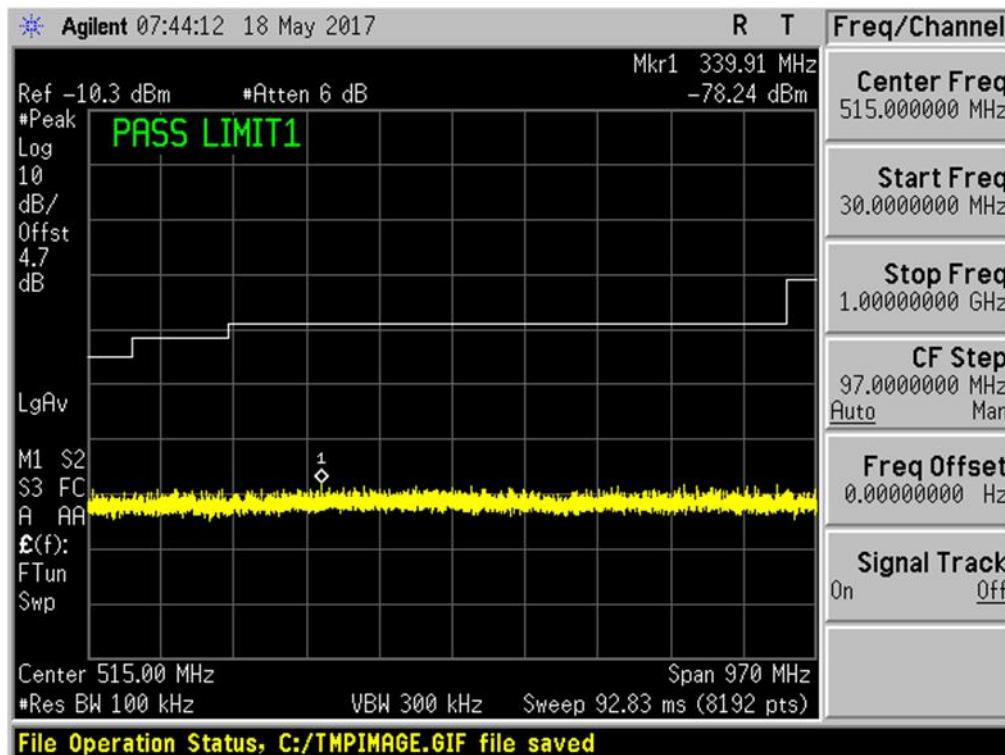
RF Conducted Spurious Emissions (Restricted Bands) Plots – Peak

Plot 20 – Channel 19 (middle ch)

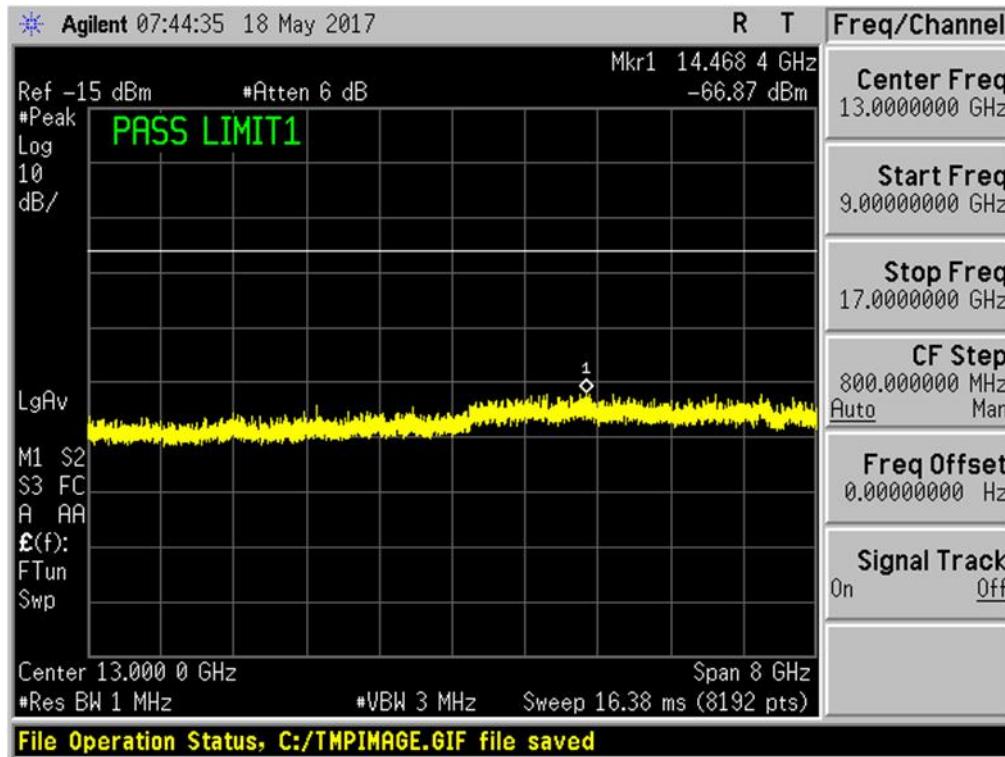

Plot 21 – Channel 19 (middle ch)

RF CONDUCTED SPURIOUS EMISSIONS (RESTRICTED BANDS) TEST

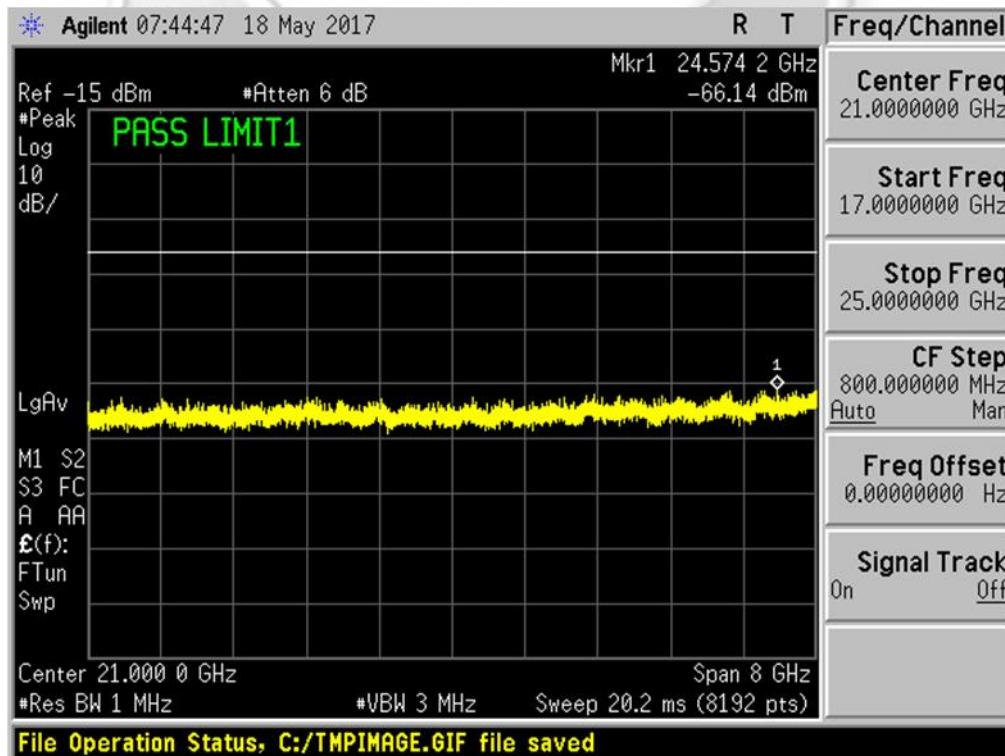
RF Conducted Spurious Emissions (Restricted Bands) Plots – Peak



Plot 22 – Channel 39 (upper ch)

Plot 23 – Channel 39 (upper ch)


RF CONDUCTED SPURIOUS EMISSIONS (RESTRICTED BANDS) TEST

RF Conducted Spurious Emissions (Restricted Bands) Plots – Peak



RF CONDUCTED SPURIOUS EMISSIONS (RESTRICTED BANDS) TEST

RF Conducted Spurious Emissions (Restricted Bands) Plots – Peak

Plot 26 – Channel 39 (upper ch)

Plot 27 – Channel 39 (upper ch)

PSB Singapore

BAND EDGE COMPLIANCE (CONDUCTED) TEST

47 CFR FCC Part 15.247(d) Band Edge Compliance (Conducted) Limits

The EUT shows compliance to the requirements of this section, which states in any 100kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator (EUT) is operating, the radio frequency power that is produced by the EUT shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of desired power.

47 CFR FCC Part 15.247(d) Band Edge Compliance (Conducted) Test Instrumentation

Instrument	Model	S/No	Cal Due Date
Agilent Spectrum Analyzer	E4440A	MY45304764	4 Jan 2018

47 CFR FCC Part 15.247(d) Band Edge Compliance (Conducted) Test Setup

1. The EUT and supporting equipment were set up as shown in the setup photo.
2. The power supply for the EUT was connected to a filtered mains.
3. The RF antenna connector was connected to the spectrum analyser via a low-loss coaxial cable.
4. The resolution bandwidth (RBW) and the video bandwidth (VBW) of the spectrum analyser were respectively set to 100kHz and 300kHz.
5. All other supporting equipment were powered separately from another filtered mains.

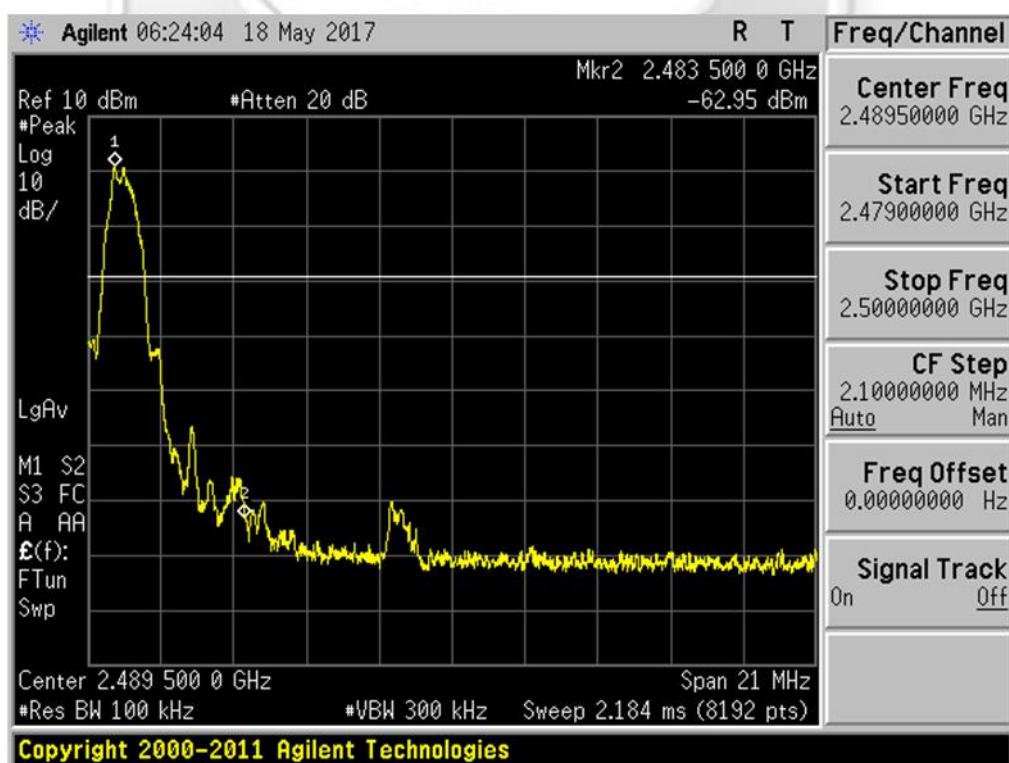
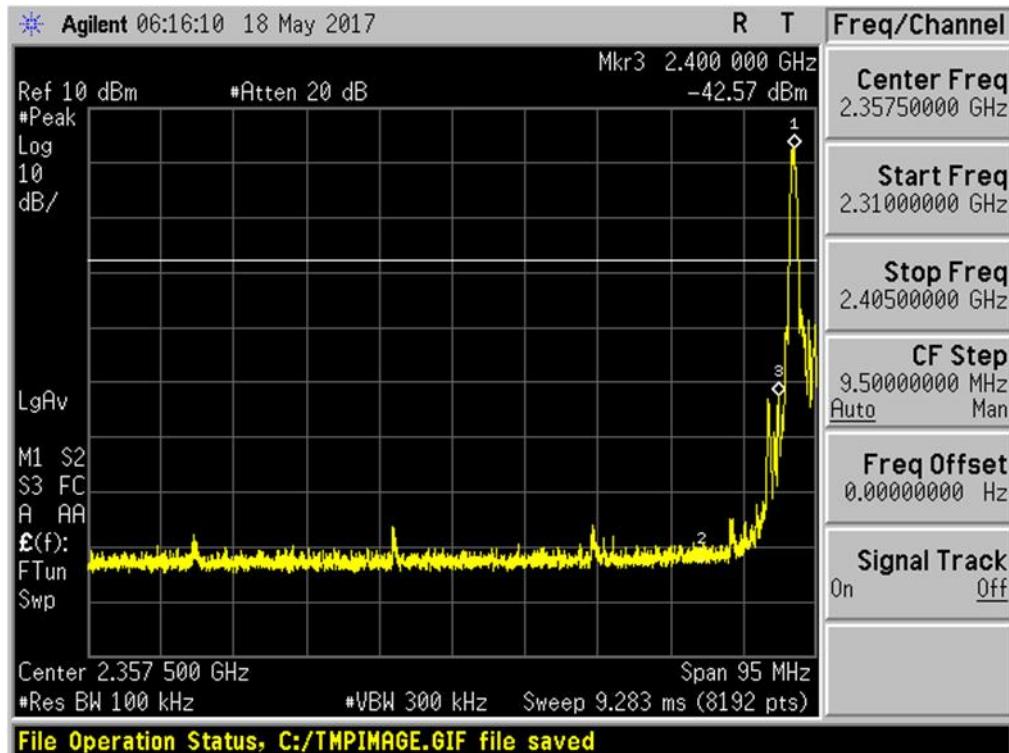
47 CFR FCC Part 15.247(d) Band Edge Compliance (Conducted) Test Method

1. The EUT was switched on and allowed to warm up to its normal operating condition. The EUT was then configured to operate in the test mode.
2. The frequency span of the spectrum analyser was set to wide enough to capture the lower band edge of the transmission band, 2.400GHz and any spurious emissions at the band edge (within 2MHz of the band edge).
3. The spectrum analyser was set to max hold to capture any spurious emissions within the span. The signal capturing was continuous until no further spurious emissions were detected.
4. The steps 2 to 3 were repeated with the frequency span of the spectrum analyser was set to wide enough to capture the upper band edge frequency of the transmission band, 2.4835GHz and the any spurious emissions at the band-edge.

PSB Singapore

BAND EDGE COMPLIANCE (CONDUCTED) TEST

47 CFR FCC Part 15.247(d) Band Edge Compliance (Conducted) Results



Test Input Power	3.7Vdc	Temperature	24°C
Attached Plots	28 – 29	Relative Humidity	60%
		Atmospheric Pressure	1030mbar
		Tested By	Liau Lee Yin

No significant signal was found and they were below the specified limit.

BAND EDGE COMPLIANCE (CONDUCTED) TEST

Band Edge Compliance (Conducted) Plots

BAND EDGE COMPLIANCE (RADIATED) TEST

47 CFR FCC Part 15.247(d) Band Edge Compliance (Radiated) Limits

The EUT shows compliance to the requirements of this section, which states in any 100kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator (EUT) is operating, the radio frequency power that is produced by the EUT shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power. In addition, radiated emissions which fall in the restricted bands shall comply to the radiated emission limits specified in 15.209.

47 CFR FCC Part 15.247(d) Band Edge Compliance (Radiated) Test Instrumentation

Instrument	Model	S/No	Cal Due Date
R&S Test Receiver – ESI1	ESI40	100010	11 Oct 2017
TDK-RF Horn Antenna	HRN-0118	130256	18 Oct 2017
R&S Preamplifier (1GHz -18GHz)	SCU18	102191	10 Mar 2018

47 CFR FCC Part 15.247(d) Band Edge Compliance (Radiated) Test Setup

1. The EUT and supporting equipment were set up as shown in the setup photo.
2. The power supply for the EUT was connected to a filtered mains.
3. The resolution bandwidth (RBW) and the video bandwidth (VBW) of the spectrum analyser were respectively set to 100kHz and 300kHz to show compliance of spurious at band edges are at least 20dB below the carriers. For restricted band spurious at band edges, peak and average measurement plots were taken using the following setting:
 - a. Peak Plot:
RBW = 1MHz, VBW = 3RBW
 - b. Average Plot
RBW = 1MHz, VBW = 10Hz
4. All other supporting equipment were powered separately from another filtered mains.

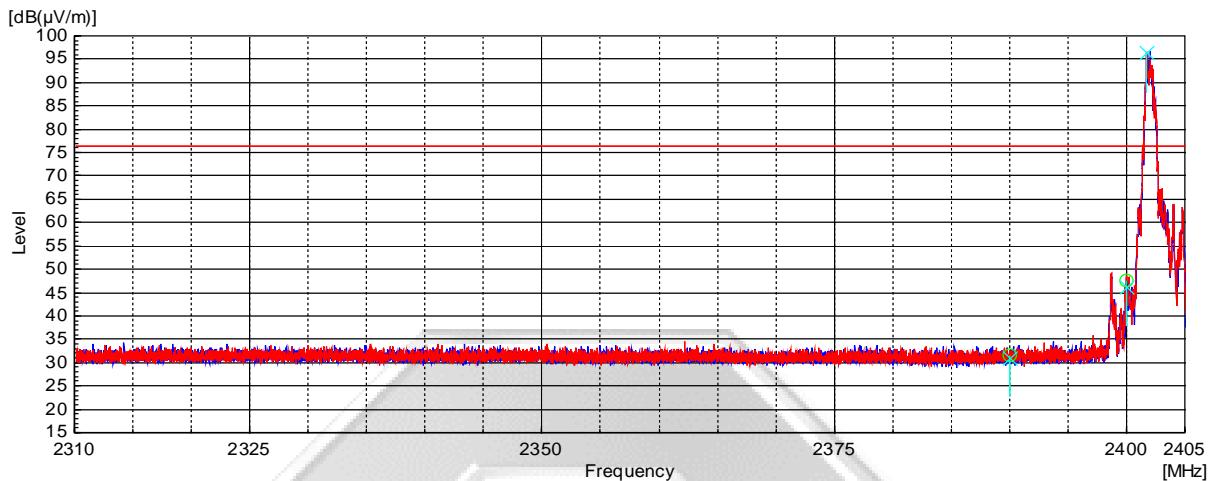
47 CFR FCC Part 15.247(d) Band Edge Compliance (Radiated) Test Method

1. The EUT was switched on and allowed to warm up to its normal operating condition. The EUT was then configured to operate in the test mode.
2. The frequency span of the spectrum analyser was set to wide enough to capture the lower band edge of the transmission band, 2.400GHz and any spurious emissions at the band edge.
3. The spectrum analyser was set to max hold to capture any spurious emissions within the span. The signal capturing was continuous until no further spurious emissions were detected.
4. The steps 2 to 3 were repeated with the frequency span of the spectrum analyser was set to wide enough to capture the upper band edge frequency of the transmission band, 2.4835GHz and the any spurious emissions at the band-edge.

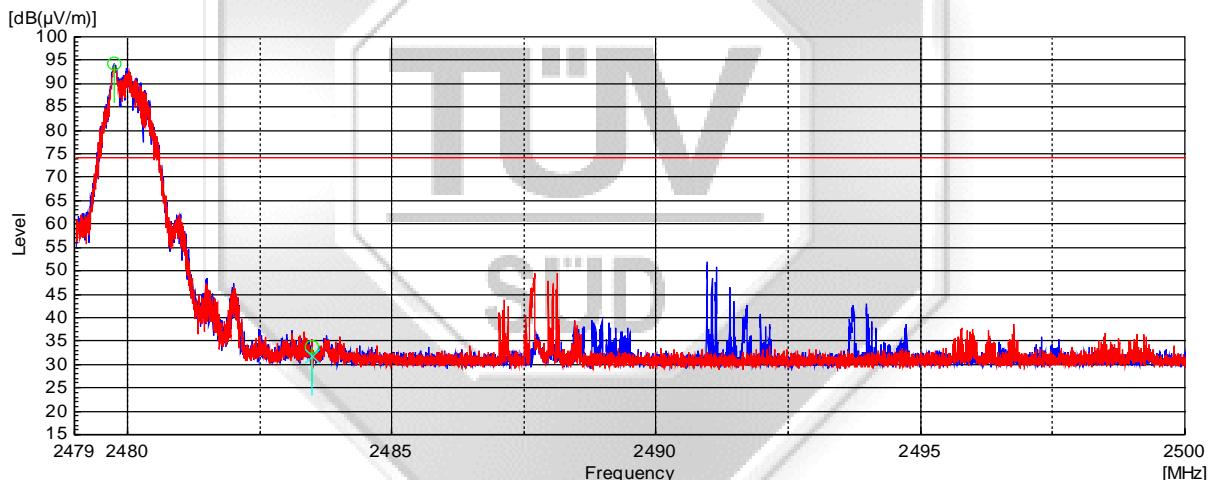
PSB Singapore

BAND EDGE COMPLIANCE (RADIATED) TEST

47 CFR FCC Part 15.247(d) Band Edge Compliance (Radiated) Results

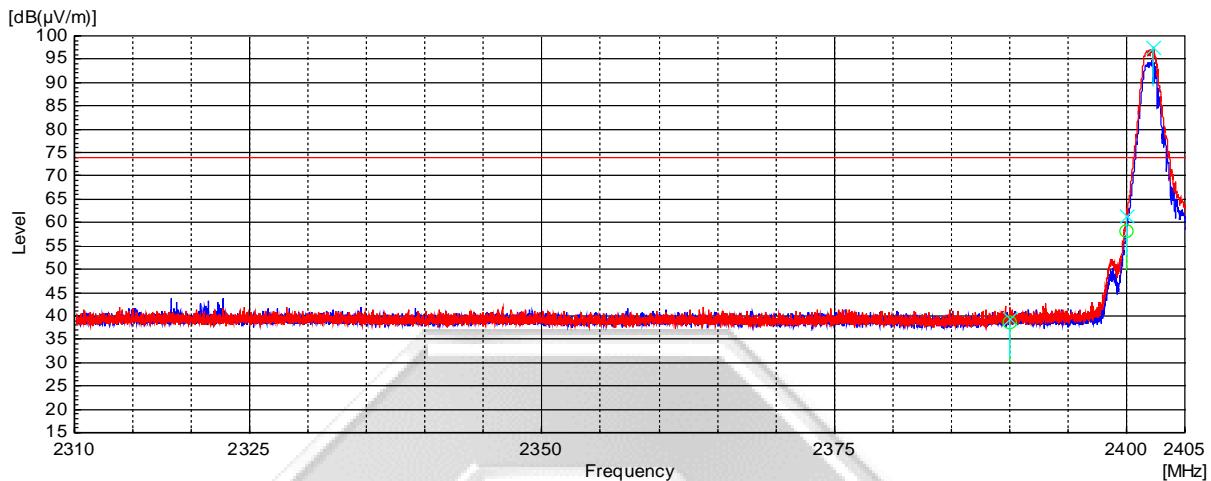

Test Input Power	3.7Vdc	Temperature	24°C
Attached Plots	30 – 35	Relative Humidity	60%
		Atmospheric Pressure	1030mbar
		Tested By	Chang Wai Kit

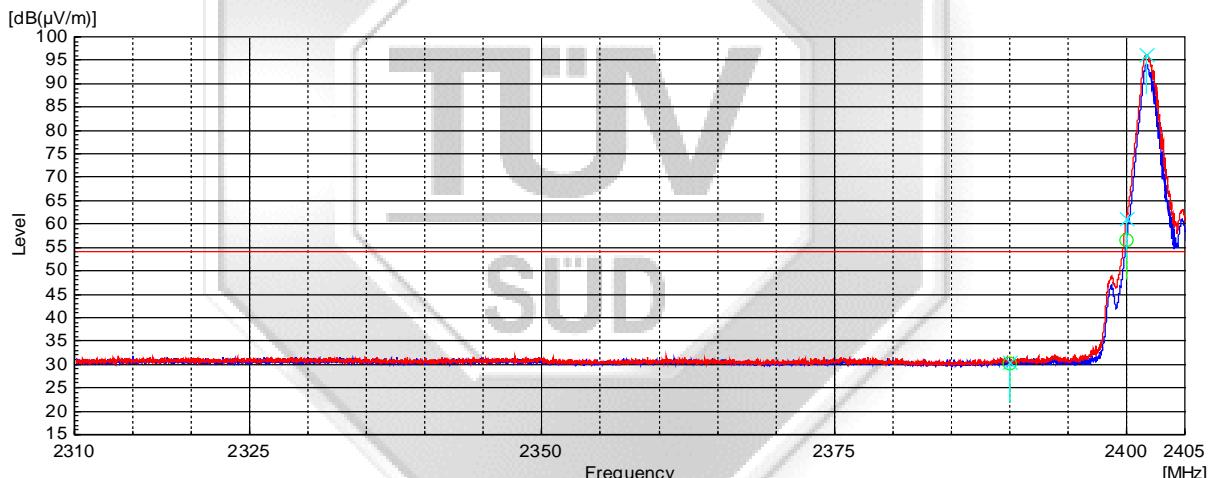
No significant signal was found and they were below the specified limit.



BAND EDGE COMPLIANCE (RADIATED) TEST

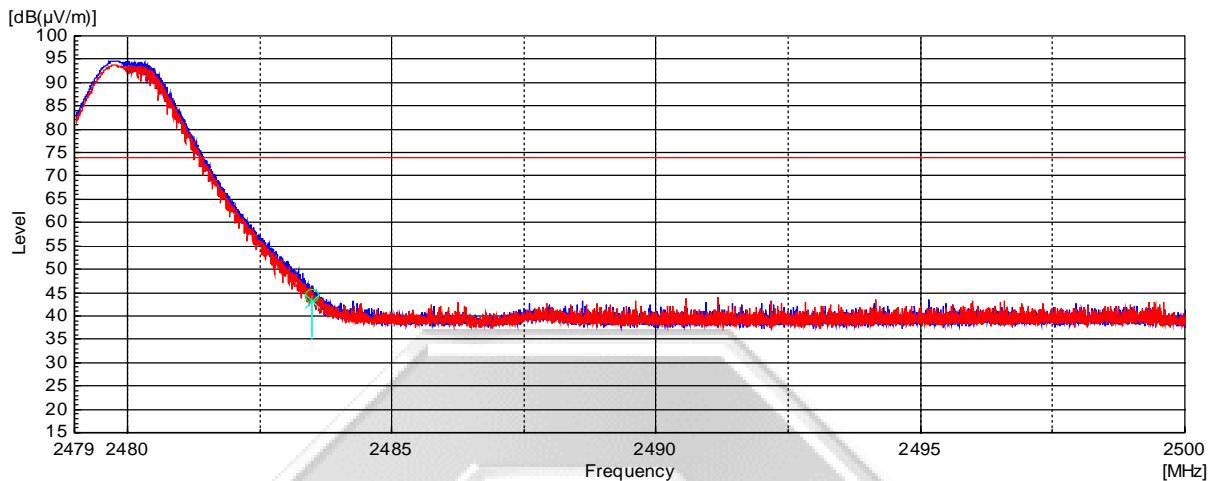
Band Edge Compliance (Radiated) Plots (20dB Delta from Carrier at Band Edge)

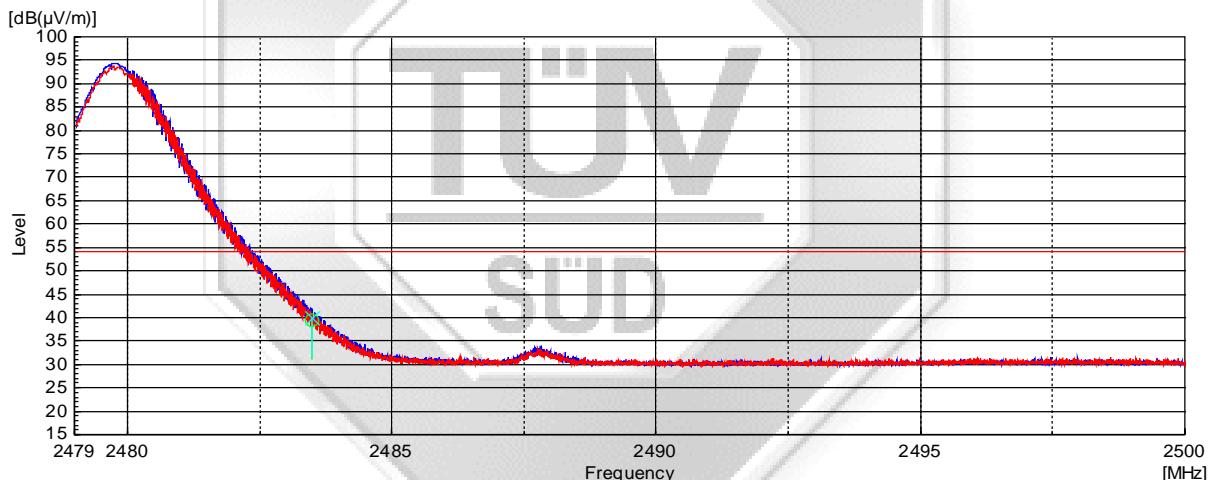

Plot 30 – Lower Band Edge at 2.4000GHz


Plot 31 – Upper Band Edge at 2.4835GHz

BAND EDGE COMPLIANCE (RADIATED) TEST

Band Edge Compliance (Radiated) Plots (Restricted Band)


Plot 32 – Peak Plot at Lower Band Edge at 2.4000GHz


Plot 33 – Average Plot at Lower Band Edge at 2.4000GHz

BAND EDGE COMPLIANCE (RADIATED) TEST

Band Edge Compliance (Radiated) Plots (Restricted Band)

Plot 34 – Peak Plot at Upper Band Edge at 2.4835GHz

Plot 35 – Average Plot at Upper Band Edge at 2.4835GHz

PEAK POWER SPECTRAL DENSITY TEST

47 CFR FCC Part 15.247(e) Peak Power Spectral Density Limits

The EUT shows compliance to the requirements of this section, which states the peak power spectral density conducted from the intentional radiator (EUT) to the antenna shall not be greater than 8dBm (6.3mW) in any 3kHz band during any time interval of continuous transmission.

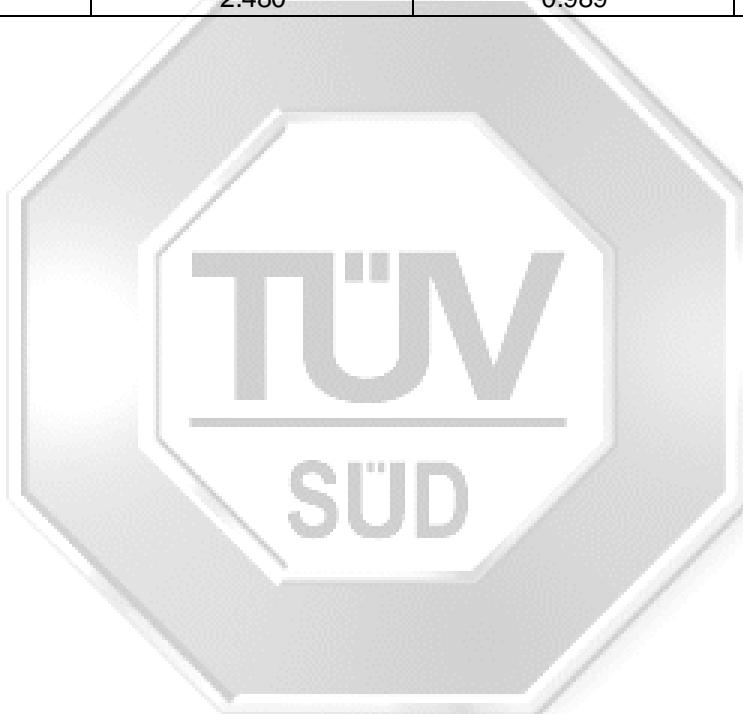
47 CFR FCC Part 15.247(e) Peak Power Spectral Density Test Instrumentation

Instrument	Model	S/No	Cal Due Date
Agilent Spectrum Analyzer	E4440A	MY45304764	4 Jan 2018

47 CFR FCC Part 15.247(e) Peak Power Spectral Density Test Setup

1. The EUT and supporting equipment were set up as shown in the setup photo.
2. The power supply for the EUT was connected to a filtered mains.
3. The RF antenna connector was connected to the spectrum via a low-loss coaxial cable.
4. The resolution bandwidth (RBW), video bandwidth (VBW) and span of the spectrum analyser were set to the following:
RBW = 3kHz
VBW = 3RBW
Span = 1.5 times the channel bandwidth (6dB Bandwidth)
Sweep time = auto couple
5. All other supporting equipment were powered separately from another filtered mains.

47 CFR FCC Part 15.247(e) Peak Power Spectral Density Test Method


1. The EUT was switched on and allowed to warm up to its normal operating condition. The EUT was then configured to operate in the test mode at lower channel.
2. The peak of the transmitting frequency was detected with the marker peak function of the spectrum analyser.
3. The peak power density of the transmitting frequency was plotted and recorded.
4. The steps 2 to 3 were repeated with the transmitting frequency was set to middle and upper channel respectively.

PEAK POWER SPECTRAL DENSITY TEST

47 CFR FCC Part 15.247(e) Peak Power Spectral Density Results

Test Input Power	3.7Vdc	Temperature	24°C
Attached Plots	36 – 38	Relative Humidity	60%
		Atmospheric Pressure	1030mbar
		Tested By	Liau Lee Yin

Channel	Channel Frequency (GHz)	Peak Power Spectral Density (mW)	Limit (mW)
0	2.402	1.410	6.3
19	2.440	1.670	6.3
39	2.480	0.989	6.3

PEAK POWER SPECTRAL DENSITY TEST

Peak Power Spectral Density Plots

Plot 36 – Channel 0 (lower ch)

Plot 37 – Channel 19 (middle ch)

PEAK POWER SPECTRAL DENSITY TEST

Peak Power Spectral Density Plots

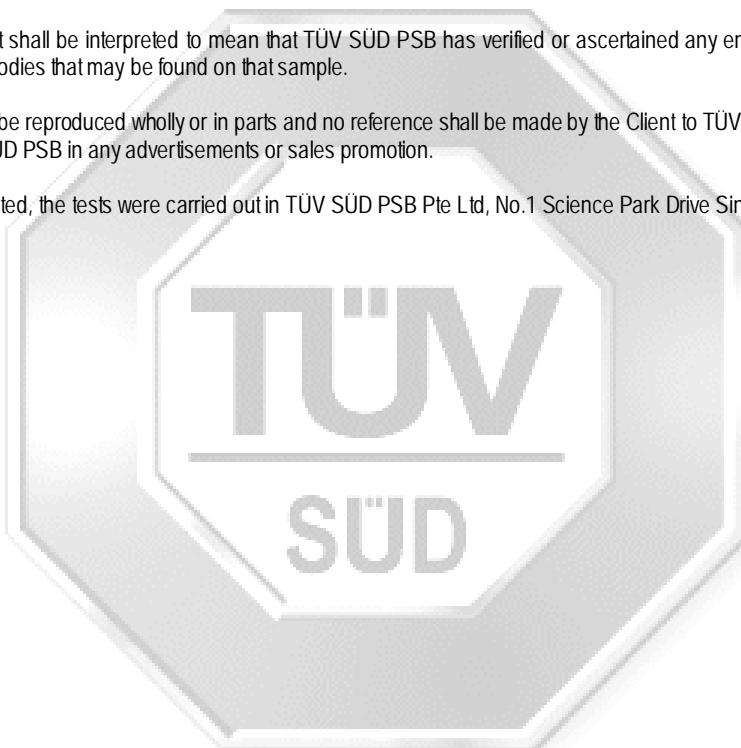
Plot 38 – Channel 39 (upper ch)

RF PERMISSIBLE EVALUATION

47 CFR FCC Part 2.1093 RF Exposure Evaluation Results

The EUT is exempted for RF Exposure Evaluation requirement as it is below the SAR test exclusion thresholds as stated in FCC's KDB 447498 D01 General RF Exposure Guidance V06. See below the computation of the SAR test exclusion threshold:

$$\begin{aligned}\text{SAR Test Exclusion} &= [\text{Maximum RF Power of the EUT (mW)} / \text{Minimum test separation (mm)}] \times \\ \text{Threshold} &\quad \text{RF channel frequency (GHz)} \\ &= [1.2 / 5] \times 2.402 \\ &= 0.57648 \text{ (worst result)} \\ &\leq 3.0 \text{ (SAR exclusion threshold for 1-g head)}\end{aligned}$$



PSB Singapore

Please note that this Report is issued under the following terms :

1. This report applies to the sample of the specific product/equipment given at the time of its testing/calibration. The results are not used to indicate or imply that they are applicable to other similar items. In addition, such results must not be used to indicate or imply that TÜV SÜD PSB approves, recommends or endorses the manufacturer, supplier or user of such product/equipment, or that TÜV SÜD PSB in any way "guarantees" the later performance of the product/equipment. Unless otherwise stated in this report, no tests were conducted to determine long term effects of using the specific product/equipment.
2. The sample/s mentioned in this report is/are submitted/supplied/manufactured by the Client. TÜV SÜD PSB therefore assumes no responsibility for the accuracy of information on the brand name, model number, origin of manufacture, consignment or any information supplied.
3. Nothing in this report shall be interpreted to mean that TÜV SÜD PSB has verified or ascertained any endorsement or marks from any other testing authority or bodies that may be found on that sample.
4. This report shall not be reproduced wholly or in parts and no reference shall be made by the Client to TÜV SÜD PSB or to the report or results furnished by TÜV SÜD PSB in any advertisements or sales promotion.
5. Unless otherwise stated, the tests were carried out in TÜV SÜD PSB Pte Ltd, No.1 Science Park Drive Singapore 118221.

July 2011

