Page : 1 of 54 FCC ID Issued date : AK8UTXB03 : January 22, 2014 : January 24, 2014 Revised date # SAR TEST REPORT Test Report No.: 10068338H-T-R1 Applicant : Sony Corporation Type of Equipment UHF Synthesized Transmitter Model No. : UTX-B03 FCC ID : AK8UTXB03 Test regulation : FCC47CFR 2.1093 **Test Result** : Complied Reported SAR(1g) Value The highest reported SAR(1g): 0.366 W/kg 1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc. 2. The results in this report apply only to the sample tested. 3. This sample tested is in compliance with the limits of the above regulation. 4. The test results in this report are traceable to the national or international standards. 5. This test report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government. 6 This report is a revised version of 10068338H-T. 10068338H-T is replaced with this report. Date of test: November 20, 2013 Representative test engineer: Hisayoshi Sato Engineer of WiSE Japan, UL Verification Service Approved by: Takahiro Hatakeda Leader of WiSE Japan **UL Verification Service** NVLAP LAB CODE: 200572-0 This laboratory is accredited by the NVLAP LAB CODE 200572-0, U.S.A. The tests reported herein have been performed in accordance with its terms of accreditation. *As for the range of Accreditation in NVLAP, you may refer to the WEB address, http://www.ul.com/japan/jpn/pages/services/emc/about/mark1/index.jsp#nvlap Page : 2 of 54 FCC ID : AK8UTXB03 Issued date : January 22, 2014 Revised date : January 24, 2014 # **REVISION HISTORY** Original Test Report No.: 10068338H-T | Revision | Test report No. | Date | Page revised | Contents | |------------|-----------------|---------------------|--------------|--| | - | 10068338H-T | January 22, | - | - | | (Original) | | 2014 | | | | 1 | 10068338H-T-R1 | January 24,
2014 | 8 | The following texts were added to section 4.1. Refer to the "08 (Confidential) Theory of Operation_UTX-B03" for Maximum tune-up tolerance limit. | | 1 | 10068338H-T-R1 | January 24,
2014 | 11 | Left side of the table of 1) is corrected to Right side. Right side of the table of 2) was corrected to Left side. | | 1 | 10068338H-T-R1 | January 24,
2014 | 22 | Notes of System check result (for calibration by manufacture) were corrected. | 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Page : 3 of 54 FCC ID : AK8UTXB03 Issued date : January 22, 2014 Revised date : January 24, 2014 | SECTION 1: | Customer information | 4 | |-------------|---|----| | | Equipment under test (E.U.T.) | | | 2.1 | Identification of E.U.T. | | | 2.2 | Product description | | | SECTION 3: | Test standard information | | | 3.1 | Test Specification | | | 3.2 | Procedure | | | 3.3 | Exposure limit | | | 3.4 | Test Location | | | SECTION 4: | Test result | | | 4.1 | Stand-alone SAR result. | | | SECTION 5: | Description of the operating mode | | | 5.1 | Output power operating modes | 9 | | 5.2 | SAR testing operating modes | 10 | | 5.3 | Confirmation after SAR testing | 10 | | SECTION 6 S | SAR test exclusion considerations | 11 | | 6.1 | Standalone SAR test exclusion considerations | | | | Description of the Body-Worn/Body setup | | | | Test surrounding | | | 8.1 | Measurement uncertainty | | | SECTION 9: | Measurement results | | | 9.1 | Body SAR | | | | Test instruments | | | APPENDIX | | | | | Evaluation procedure | | | ·- | 2. Measurement data | | | APPENDIX | - · ~ J - · · - · | | | | System check result for Body 600MHz | | | | 2. System Check Dipole (D600V3,S/N: 1003) | | | - | System check uncertainty | | | APPENDIX | | | | | Configuration and peripherals. | | | 2 | 2. Specifications | | | - | B. Dosimetric E-Field Probe Calibration (EX3DV4, S/N: 3922) | | | APPENDIX | | | | 1 | Photographs of EUT | | | 2 | 2. Photographs of setup | 51 | Page : 4 of 54 FCC ID : AK8UTXB03 Issued date : January 22, 2014 Revised date : January 24, 2014 #### **SECTION 1:** Customer information Company Name : Sony Corporation Address : 1-7-1 Konan, Minato-ku, Tokyo 108-0075, Japan Telephone Number : +81-53-577-1012 Facsimile Number : +81-53-577-3489 Contact Person : Youhei Hisano # **SECTION 2:** Equipment under test (E.U.T.) # 2.1 Identification of E.U.T. Type of Equipment : UHF Synthesized Transmitter Model No. : UTX-B03 Serial No. : UTX-B03(UC14): 8052 UTX-B03(UC30): 8062 UTX-B03(UC42): 8073 Rating : DC3V (Two alkaline battery) Option Battery : N/A Body-worn accessory : Microphone (Exclusive use of this equipment) Device category : Portable Antenna to : N/A antenna separation distance Simultaneous transmission : N/A Size of EUT : W:63 mm * D:20 mm * H:80 mm Receipt Date of Sample : September 11, 2013 Country of Mass-production : Korea Condition of EUT : Engineer prototype (Not for Sale: This sample is equivalent to mass-produced items.) Modification of EUT : No Modification by the test lab 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Page : 5 of 54 FCC ID : AK8UTXB03 Issued date : January 22, 2014 Revised date : January 24, 2014 #### 2.2 Product description Model: UTX-B03 (referred to as the EUT in this report) is a UHF Synthesized Transmitter. #### **General Specification** Clock frequency(ies) in the system : DSP: 26MHz (TCXO) #### **Radio Specification** Radio type : Transmitter Modulation type : Frequency modulation Emission designator : 116KF3E Necessary bandwidth : 116kHz = 2M + 2D where M: Maximum modulation frequency = 18kHz D: Peak deviation = 40kHz Channel spacing : 125kHz Frequency of operation : 470.125-607.875MHz, 614.125-697.875MHz UC14: 470.125-541.875MHz UC30: 566.125-607.875MHz, 614.125-637.875MHz UC42: 638.125-697.875MHz Clock frequency(ies) : PLL: 19.2MHz (TCXO) RF power : High: 30mW, Low: 5mW Antenna type : 1/4 Lambda Monopole antenna (whip type) Antenna gain : 2.14dBi Power Supply (radio part input) : DC 3.3V, DC5.5V AF Specification : 40Hz – 18000Hz, Maximum input: -24dBV (MIC level, ATT 0dB) 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Page : 6 of 54 FCC ID : AK8UTXB03 Issued date : January 22, 2014 Revised date : January 24, 2014 #### **SECTION 3:** Test standard information #### 3.1 Test Specification Title : FCC47CFR 2.1093 Radiofrequency radiation exposure evaluation: portable devices. **IEEE Std 1528-2003:** IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices. : Published RF exposure KDB procedures | ✓ KDB450824 D01(v01r01) | SAR Prob Cal and Ver Meas | |---|---| | ☑ KDB450824 D02(v01r01) | Dipole SAR Validation Verification | | ☑ KDB447498D01(v05r01) | Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies | | ☐ KDB447498D02(v02) | SAR Measurement Procedures for USB Dongle Transmitters | | ☐ KDB648474D04(v01r01) | SAR Evaluation Considerations for Wireless Handsets | | $\square KDB941225D01(v02)$ | SAR Measurement Procedures for 3G Devices | | \square KDB941225D02(v02r02) | 3GPP R6 HSPA and R7 HSPA+ SAR Guidance | | ☐ KDB941225D03(v01) | Recommended SAR Test Reduction Procedures for GSM/GPRS/EDGE | | ☐ KDB941225D04(v01) | Evaluating SAR for GSM/(E)GPRS Dual Transfer Mode | | $ \square $ | SAR for LTE Devices | | ☐ KDB941225D06(v01r01) | SAR test procedures for devices incorporating SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities (Hot Spot SAR) | | ☐ KDB941225D07(v01r01) | SAR Evaluation Procedures for UMPC Mini-Tablet Devices | | ☐ KDB 616217 D04(v01r01) | SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers | | ☑ KDB865664 D01(v01r02) | SAR Measurement Requirements for 100MHz to 6 GHz | | ☐ KDB248227 D01(v01r02) Reference | SAR Measurement Procedures for 802.11a//b/g Transmitters | [1]ANSI, ANSI/IEEE C95.1-1992: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz, The Institute of Electrical and Electronics Engineers, Inc., New York, NY 10017, 1992. [2]SPEAG uncertainty document (AN 15-7/AN19-17) for DASY 5 System from SPEAG (Schmid & Partner Engineering AG). #### 3.2 Procedure | Transmitter | Frequency modulation | | | | |---|--------------------------------------|--|--|--| | Test Procedure | Published RF exposure KDB procedures | | | | | | SAR | | | | | Category | FCC47CFR 2.1093 | | | | | Note: UL Japan, Inc. 's SAR Work Procedures 13-EM-W0429 and 13-EM-W0430 | | | | | UL Japan, Inc. Head Office EMC Lab. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Page : 7 of 54 FCC ID : AK8UTXB03 Issued date : January 22, 2014 Revised date : January 24, 2014 #### 3.3 Exposure limit (A) Limits for Occupational/Controlled Exposure (W/kg) | Spatial Average (averaged over the whole body) | Spatial Peak (averaged over any 1g of tissue) | Spatial Peak
(hands/wrists/feet/ankles averaged
over 10g) | |--|---|---| | 0.4 | 8.0 | 20.0 | (B) Limits for General population/Uncontrolled Exposure (W/kg) | Spatial Average (averaged over the whole
body | Spatial Peak (averaged over any 1g of tissue) | Spatial Peak
(hands/wrists/feet/ankles averaged
over 10g) | |---|---|---| | 0.08 | 1.6 | 4.0 | **Occupational/Controlled Environments:** are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation). **General Population/Uncontrolled Environments:** are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. # NOTE:GENERAL POPULATION/UNCONTROLLED EXPOSURE SPATIAL PEAK(averaged over any 1g of tissue) LIMIT 1.6 W/kg #### 3.4 Test Location *Shielded room for SAR testings UL Japan, Inc. Head Office EMC Lab. *NVLAP Lab. code: 200572-0 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone: +81 596 24 8999 Facsimile: +81 596 24 8124 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Page : 8 of 54 FCC ID : AK8UTXB03 Issued date : January 22, 2014 Revised date : January 24, 2014 # **SECTION 4:** Test result # 4.1 Stand-alone SAR result #### **Stand-alone SAR Procedure** | No. | Capable Tx configrations | Head SAR | Body-worn or
Body | Product specific | Note | |-----|--------------------------|----------|----------------------|------------------|------| | | | | | (Hotspot etc.) | | | 1 | Frequency modulation | No | Yes | No | - | #### Reported SAR Measured SAR is scaled to the maximum tune-up tolerance limit by the following formulas. Reported SAR= Maximum tune-up tolerance limit [mW] / Measured maximum power [mW] · Measured SAR [W/kg] Maximum tune-up tolerance limit is 36.00 mW(15.56 dBm) by the specification from a customer. Refer to the "08 (Confidential) Theory of Operation UTX-B03" for Maximum tune-up tolerance limit. | Mode | Measured maximum
power [mW]*1 | Maximum tune-up
tolerance limit [mW] | Measured SAR
[W/kg] | Reported SAR
[W/kg] | |----------------------|----------------------------------|---|------------------------|------------------------| | Frequency modulation | 28.44 | 36.00 | 0.289 | 0.366 | #### Note 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN ^{*1} The sample used by the SAR test is within the tune-up tolerance but not more than 2 dB lower than the maximum tune-up tolerance limit. That is, measured maximum power is included the tune-up tolerance range. Page : 9 of 54 FCC ID : AK8UTXB03 Issued date : January 22, 2014 Revised date : January 24, 2014 # **SECTION 5:** Description of the operating mode # 5.1 Output power operating modes | Mode | Duty cycle | Frequency
Band | Test Frequency | Modulation | |------------------------------|------------|---|---|--------------------------| | Transmitting(Tx), High power | 100% | 470.125-
607.875MHz,
614.125-
697.875MHz | 470.125MHz
(Low ch)
607.875MHz
(Mid ch)
697.875MHz
(High ch) | FM(Frequency modulation) | #### WLAN *Power of the EUT was set by the software as follows; Power settings: High (30mW) Software: 130906b *This setting of software is the worst case. Any conditions under the normal use do not exceed the condition of setting. In addition, end users cannot change the settings of the output power of the product without High setting. # Output power measurement for FM | Power | Channel | Freq. | Reading | | Cable | Atten. | Result | | | | |---------------|---------|---------|---------|----------------------------|-------|--------|--------|-------|-------|-------| | Setting | | | Average | e Peak * Loss Loss Average | | rage | Peak * | | | | | | | [MHz] | [dBm] | [dBm] | [dB] | [dB] | [dBm] | [mW] | [dBm] | [mW] | | High | Low | 470.125 | 14.24 | 14.28 | 0.33 | 0.00 | 14.57 | 28.64 | 14.61 | 28.91 | | High
Power | Mid | 607.875 | 14.16 | 14.21 | 0.38 | 0.00 | 14.54 | 28.44 | 14.59 | 28.77 | | | High | 697.875 | 13.79 | 13.84 | 0.41 | 0.00 | 14.20 | 26.30 | 14.25 | 26.61 | Calculation formula: Result = Reading + Cable Loss + Atten. Loss 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN ^{*} Reference data Page : 10 of 54 FCC ID : AK8UTXB03 Issued date : January 22, 2014 Revised date : January 24, 2014 #### 5.2 SAR testing operating modes The operating mode for SAR testing was decided by the output power | Mode | Test Frequency | Modulation | Crest factor | Note | |-------------------|----------------|------------|--------------|------| | Transmitting(Tx), | 607.875MHz | FM | 1 | - | | High power | (Mid ch) | | | | | | *1 | | | | #### **WLAN** *Power of the EUT was set by the software as follows; Power settings: High (30mW) Software: 130906b *This setting of software is the worst case. Any conditions under the normal use do not exceed the condition of setting. In addition, end users cannot change the settings of the output power of the product without High setting. # 5.3 Confirmation after SAR testing It was checked that the power drift [W] is within +/-5%. The verification of power drift during the SAR test is that DASY5 system calculates the power drift by measureing the e-filed at the same location at beginning and the end of the scan measurement for each test position. DASY5 system calucation Power drift value[dB] =20log(Ea)/(Eb) Before SAR testing : Eb[V/m] After SAR testing : Ea[V/m] Limit of power drift[W] =+/-5% X[dB]=10log[P]=10log(1.05/1)=10log(1.05)-10log(1)=0.212dB from E-filed relations with power. $p=E^2/\eta=E^2/$ Therefore, The correlation of power and the E-filed $XdB=10log(P)=10log(E)^2=20log(E)$ Therefore, The calculated power drift of DASY5 System must be the less than +/-0.212dB. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN ^{*1} The other channel was not required since maximum average output power channel SAR value is less than 0.4W/kg in according to KDB447498D01. Page : 11 of 54 FCC ID : AK8UTXB03 Issued date : January 22, 2014 Revised date : January 24, 2014 #### **SECTION 6** SAR test exclusion considerations #### 6.1 Standalone SAR test exclusion considerations 1) The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by: [(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where f(GHz) is the RF channel transmit frequency in GHz Power and distance are rounded to the nearest mW and mm before calculation The result is rounded to one decimal place for comparison The test exclusions are applicable only when the minimum test separation distance is ≤ 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is ≤ 5 mm, a distance of 5 mm is applied to determine SAR test exclusion. | Band | Standalone
SAR tested | Positiom | Mode | Upper frequency
of band *1 | Maximum tune-up
tolerance limit *6 | Min distance *2 | Calculation of exclusion *3 | |------|--------------------------|------------|-----------------------------|-------------------------------|---------------------------------------|-----------------|-----------------------------| | FM | Ø | Тор | Transmitting,
High power | 697.875 [MHz]
(High ch) | 15.56 [dBm]
36.00 [mW] | 5 [mm] | 6.0 | | FM | Ø | Front | Transmitting,
High power | 697.875 [MHz]
(High ch) | 15.56 [dBm]
36.00 [mW] | 5 [mm] | 6.0 | | FM | Ø | Rear | Transmitting,
High power | 697.875 [MHz]
(High ch) | 15.56 [dBm]
36.00 [mW] | 5 [mm] | 6.0 | | FM | Ø | Right side | Transmitting,
High power | 697.875 [MHz]
(High ch) | 15.56 [dBm]
36.00 [mW] | 5 [mm] | 6.0 | - 2) At 100 MHz to 6 GHz and for *test separation distances* > 50 mm, the SAR test exclusion threshold is determined according to the following. - a) [Threshold at 50 mm in step 1) + (test separation distance 50 mm)·(f(MHz)/150)] mW, at 100 MHz to 1500 MHz - b) [Threshold at 50 mm in step 1) + (test separation distance 50 mm) \cdot 10] mW at > 1500 MHz and \leq 6 GHz | Band | Standalone
SAR tested | Positiom | Positiom of band *1 tolerance limit *5 | | Min distance *2 | Calculation of threshold*4 | | |------|--------------------------|-------------|--|---------------------------|-----------------|----------------------------|--| | FM | | Bottom side | 697.875 [MHz]
(High ch) | 15.56 [dBm]
36.00 [mW] | 80 [mm] | 319.1 [mW] | | | FM | | Left side | 697.875 [MHz]
(High ch) | 15.56 [dBm]
36.00 [mW] | 54 [mm] | 198.2 [mW] | | ^{*1} The upper frequency of the frequency band was used in order to calculate standalone SAR test exclusion considerations. UL Japan, Inc. Head Office EMC Lab. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN ^{*2} When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion. Refer to Appendix 4. ^{*3 [(}max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ If it is Calculation of exclusion ≤ 3.0 standalone SAR test is excluded. ^{*4} $[(3.50)/(\sqrt{f_{(GHz)}}))$ + (test separation distance - 50 mm)·(f(MHz)/150)] mW at > 100 MHz and \leq 1500 MHz $[(3.50)/(\sqrt{f_{(GHz)}}))$ + (test separation distance - 50 mm)·10] mW at > 1500 MHz and \leq 6 GHz ^{*5} Maximum tune-up tolerance limit is 36.0mW(15.56 dBm) by the specification from a customer. Page : 12 of 54 FCC ID : AK8UTXB03 Issued date : January 22, 2014 Revised date : January 24, 2014 # **SECTION 7:** Description of the Body-Worn/Body setup # i)Procedure for SAR testing -The tested procedure was performed according to the KDB 447498 D01 (Mobile and Portable Device RF Exposure Procedures and
Equipment Authorization Policies) #### ii)Test mode | FM Transmitting, High power | | |-----------------------------|--| |-----------------------------|--| # ii)Test position | No. | Position*1 | Test | FM | | |-----|-------------|----------|-----------|----------| | | | distance | Tested | Antenna | | 1 | Front side | 0mm | \square | External | | 2 | Rear side | 0mm | \square | External | | 3 | Right side | 0mm | \square | External | | 4 | Left side | - | | External | | 5 | Top side | 0mm | Ø | External | | 6 | Bottom side | - | | External | 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Page : 13 of 54 FCC ID : AK8UTXB03 Issued date : January 22, 2014 Revised date : January 24, 2014 # **SECTION 8:** Test surrounding # 8.1 Measurement uncertainty The uncertainty budget has been determined for the DASY5 measurement system according to the SPEAG documents[2] and is given in the following Table. Table of uncertainties are listed for ISO/IEC 17025 <0.3 - 3GHz range> | | Uncertai | Probability | | (ci) | Standard | vi | |---------------------------------|----------|----------------|------------|-------|----------|----------| | Error Description | value ± | distribution | divisor | 1g | (1g) | or | | | | | | | | veff | | Measurement System | | | | | | | | Probe calibration | ± 6.00 | ▼ ormal | 1 | 1 | ± 6.00 | ∞ | | Axial isotropy of the probe | ± 4.7 | Rectangular | $\sqrt{3}$ | 0.7 | ± 1.9 | ∞ | | Spherical isotropy of the probe | ± 9.6 | Rectangular | $\sqrt{3}$ | 0.7 | ± 3.9 | ∞ | | Boundary effects | ± 2.0 | Rectangular | √3 | 1 | ± 1.2 | ∞ | | Probe linearity | ± 4.7 | Rectangular | $\sqrt{3}$ | 1 | ± 2.7 | ∞ | | Detection limit | ± 1.0 | Rectangular | $\sqrt{3}$ | 1 | ± 0.6 | ∞ | | Modulation response | ± 2.4 | Rectangular | $\sqrt{3}$ | 1 | ± 1.4 | ∞ | | Readout electronics | ± 0.3 | Normal | 1 | 1 | ± 0.3 | ∞ | | Response time | ± 0.8 | Rectangular | $\sqrt{3}$ | 1 | ± 0.5 | ∞ | | Integration time | ± 2.6 | Rectangular | $\sqrt{3}$ | 1 | ± 1.5 | ∞ | | RF ambient Noise | ± 3.0 | Rectangular | $\sqrt{3}$ | 1 | ± 1.7 | ∞ | | RF ambient Reflections | ± 3.0 | Rectangular | $\sqrt{3}$ | 1 | ± 1.7 | ∞ | | Probe Positioner | ± 0.8 | Rectangular | $\sqrt{3}$ | 1 | ± 0.5 | ∞ | | Probe positioning | ± 6.7 | Rectangular | $\sqrt{3}$ | 1 | ± 3.9 | ∞ | | Max.SAR Eval. | ± 4.0 | Rectangular | $\sqrt{3}$ | 1 | ± 2.3 | ∞ | | Test Sample Related | | | | | | | | Device positioning | ± 2.9 | Normal | 1 | 1 | ± 2.9 | 3 | | Device holder uncertainty | ± 3.6 | Normal | 1 | 1 | ± 3.6 | 3 | | Power drift | ± 5.0 | Rectangular | $\sqrt{3}$ | 1 | ± 2.9 | ∞ | | Power Scaling | + 0.0 | Rectangular | $\sqrt{3}$ | 1 | ± 0.0 | ∞ | | Phantom and Setup | | | | | | | | Phantomuncertainty | ± 4.0 | Rectangular | $\sqrt{3}$ | 1 | ± 2.3 | ∞ | | Liquid conductivity (target) | ± 5.0 | Rectangular | $\sqrt{3}$ | 0.64 | ± 1.8 | ∞ | | Liquid conductivity (meas.) | - 3.4 | Rectangular | 1 | 0.64 | + 2.2 | ∞ | | Liquid permittivity (target) | ± 5.0 | Rectangular | $\sqrt{3}$ | 0.6 | ± 1.7 | ∞ | | Liquid permittivity (meas.) | + 3.4 | Rectangular | 1 | 0.6 | - 2.0 | ∞ | | Liquid conductivity | ± 1.7 | Rectangular | $\sqrt{3}$ | 0.78 | ± 0.8 | 00 | | - temp.unc (below 2deg.C.) | _ 1.7 | - Cottainguiui | 1,2 | 10.75 | 0.0 | | | Liquid permittivity | ± 0.3 | Rectangular | $\sqrt{3}$ | 0.23 | ± 0.0 | 00 | | - temp.unc (below 2deg.C.) | - 0.3 | Toctangular | 13 | 0.23 | - 0.0 | | | | | | | | | | | Combined Standard Uncertainty | | | | | ± 11.995 | | | Expanded Uncertainty (k=2) | | | | | ± 24.0 | | 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Page : 14 of 54 FCC ID : AK8UTXB03 Issued date : January 22, 2014 Revised date : January 24, 2014 #### **SECTION 9:** Measurement results #### 9.1 Body SAR #### (1)Method of measurement Step.1 The searching for the worst position The test was performed at the middle channel. #### Note: - 1) The other channel was not required since maximum average output power channel SAR value is less than 0.4W/kg in according to KDB447498D01. - 2) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg in accordance to KDB865664 D01. # (2)Simulated Tissue Liquid Parameter confirmation The dielectric parameters were checked prior to assessment using the HP85070D dielectric probe kit. The dielectric parameters measurement is reported in each correspondent section. | | DIELECTRIC PARAMETERS MEASUREMENT RESULTS | | | | | | | | | | |---------|---|-----------------------------|----------------|----------------------------|--------------------------------|------------|-------------------|----------|---------------|--------------| | Date | Ambient
Temp.
[deg.c] | Relative
Humidity
[%] | Liquid
type | Liquid
Temp.
[deg.c] | Measured
Frequency
[MHz] | Parameters | Target
Value*1 | Measured | Deviation [%] | Limit
[%] | | 20-Nov | 24.0 | 40.0 | MSL | 23.5 | 607.875 | εr | 56.1 | 58.0 | 3.4 | +/-5 | | 20-1NOV | 24.0 | 40.0 | 650 | 23.3 | 007.873 | σ [mho/m] | 0.95 | 0.92 | -3.4 | +/-5 | $[\]epsilon$ r: Relative Permittivity / σ : Coductivity #### (3)Result of Body SAR | | BODY SAR MEASUREMENT RESULTS | | | | | | | | | | | | |----------|------------------------------|------------|-------|----------|--------|----------|---------|----------|-----------------|------------|---------------|---------------| | | | | Max | | Maximu | ım tune- | | | | | Measured | Reported | | | | | | (Meas) | up tol | erance | Phantom | | | | SAR(1g) | SAR(1g) *1 | | Fre | equency | Modulation | power | (IVICUS) | lir | nit | Section | EU | JT Set-up Condi | | [W/kg] | [W/kg] | | | | | | | | | | | | Separation | Maximum | Maximum | | Channel | [MHz] | | [dBm] | [mW] | [dBm] | [mW] | | Antenna | Position | [mm] | of multi-peak | of multi-peak | | Step.1 P | Step.1 Position searching | | | | | | | | | | | | | Mid | 607.875 | FM | 14.54 | 28.44 | 15.56 | 36.00 | Flat | External | Front side | 0 | 0.214 | 0.271 | | Mid | 607.875 | FM | 14.54 | 28.44 | 15.56 | 36.00 | Flat | External | Rear side | 0 | 0.233 | 0.295 | | Mid | 607.875 | FM | 14.54 | 28.44 | 15.56 | 36.00 | Flat | External | Right side | 0 | 0.289 | 0.366 | | Mid | 607.875 | FM | 14.54 | 28.44 | 15.56 | 36.00 | Flat | External | Top side | 0 | 0.027 | 0.034 | ^{*1} Reported SAR= Maximum tune-up tolerance limit [mW] / Measured maximum power [mW] · Measured SAR [W/kg] UL Japan, Inc. Head Office EMC Lab. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN ^{*1} The Target value is a parameter defined in KDB 865664D01. Page : 15 of 54 FCC ID : AK8UTXB03 Issued date : January 22, 2014 Revised date : January 24, 2014 # **SECTION 10** Test instruments | Control No. | | Manufacturer | Model No | Serial No | Test Item | Calibration Date * Interval(month) | |------------------|---------------------------------|----------------------------------|--------------------------|---------------------|---------------------|------------------------------------| | MCC-36 | Microwave Cable | Hirose Electric | U.FL-2LP-066-A-
(200) | | Power | 2013/09/27 * 12 | | MAT-10 | Attenuator(10dB) | Weinschel Corp | 2 | BL1173 | Power | 2012/11/06 * 12*1) | | MPM-13 | Power Meter | Anritsu | ML2495A | 0824014 | Power | 2013/11/15 * 12 | | MPSE-18 | Power sensor | Anritsu | MA2411B | 0738174 | Power | 2013/11/15 * 12 | | MOS-13 | Thermo-Hygrometer | Custom | CTH-180 | - | Power | 2013/02/26 * 12 | | MDAE-03 | Data Acquisition Electronics | Schmid&Partner
Engineering AG | DAE4 | 1372 | SAR | 2013/06/03 * 12 | | MPB-09 | Dosimetric
E-Field Probe | Schmid&Partner
Engineering AG | EX3DV4 | 3922 | SAR | 2013/06/04 * 12 | | MPF-03 | Oval Flat Phantom ERI 5.0 | Schmid&Partner
Engineering AG | QD OVA 002 A
(ELI5.0) | 1203 | SAR | 2013/06/11 * 12 | | MOS-31 | Thermo-Hygrometer | Custom | CTH-201 | _ | SAR | 2013/07/29 * 12 | | MOS-36 | Digital thermometer | HANNA | Checktemp 4 | _ | SAR | 2013/07/29 * 12 | | COTS-MSAR-
03 | Dasy5 | Schmid&Partner
Engineering AG | DASY5 | - | SAR | - | | MRBT-04 | SAR robot | Schmid&Partner
Engineering AG | TX60 Lspeag | F13/5PP1A1/A
/01 | SAR | 2013/06/19 * 12 | | MNA-01 | Network Analyzer | Agilent/HP | E8358A | US41080381 | SAR | 2013/09/09 * 12 | | MOS-37 | Digital thermometer | LKM electronic | DTM3000 | - | SAR | 2013/07/29 * 12 | | MNCK-01 | Type N Calibration Kit | Agilent | 85032F | MY41495257 | SAR | 2013/09/07 * 12 | | MDPK-01 | Dielectric probe kit | Agilent | 85070D | 702 | SAR | 2013/09/09 * 12 | | COTS-MSAR-
02 | S-Parameter Network
Analyzer | Agilent | | _ | SAR | - | | MPM-01 | Power Meter | Agilent | E4417A | GB41290639 | SAR | 2013/04/08 * 12 | | MPSE-01 | Power Sensor | Agilent | E9300B | US40010300 | SAR | 2013/03/28 * 12 | | MPSE-03 | Power sensor | Agilent | E9327A | US40440576 | SAR | 2013/04/17 * 12 | | MHDC-11 | Dual
Directional Coupler | Hewlett Packard | 778D | 16605 | SAR(0.1-
2GHz) | Pre Check | | MRFA-06 | Power Amp | Amplifier Research | 1W1000B | 301528 | SAR | Pre Check | | MSG-10 | Signal Generator | Agilent | N5181A | | SAR | 2013/10/11 * 12 | | MAT-15 | Attenuator(30dB) | Agilent | 8498A | US40010300 | SAR | 2013/04/16 * 12 | | MDA-21 | Dipole Antenna | Schmid&Partner
Engineering AG | D600V3 | 1003 | SAR | 2013/09/06 * 12 | | MSL650 | | | | | Daily check
± 5% | Target value | | SAR room | | | | | Daily check | ise<0.012W/kg | ^{*1)} This test equipment was used for the tests before the expiration date of the calibration. The expiration date of the calibration is the end of the expired month. All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards. As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of
calibrations. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Page : 16 of 54 FCC ID : AK8UTXB03 Issued date : January 22, 2014 Revised date : January 24, 2014 # **APPENDIX 1: SAR Measurement data** #### 1. Evaluation procedure #### The evaluation was performed with the following procedure: **Step 1:** Measurement of the E-field at a fixed location above the ear point or central position of flat phantom was used as a reference value for assessing the power drop. **Step 2:** The SAR distribution at the exposed side of head or body position was measured at a distance of each device from the inner surface of the shell. The area covered the entire dimension of the antenna of EUT and the horizontal grid spacing was 15 mm x 15 mm, 12 mm x 12 mm or 10mm x 10mm. Based on these data, the area of the maximum absorption was determined by spline interpolation. **Step 3:** Around this point found in the Step 2 (area scan), a volume of 30mm x 30mm x 30mm or more was assessed by measuring 7 x 7 x 7 points at least for below 3GHz and a volume of 28 mm x 28mm x 22.5mm or more was assessed by measuring 8 x 8 x 6(ratio step method (*1)) points at least for 5GHz band. And for any secondary peaks found in the Step2 which are within 2dB of maximum peak and not with this Step3 (Zoom scan) is repeated. On the basis of this data set, the spatial peak SAR value was evaluated under the following procedure: - (1). The data at the surface were extrapolated, since the center of the dipoles is 1mm(EX3DV4) away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.3 mm. The extrapolation was based on a least square algorithm [4]. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip. - (2). The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed by the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one-dimensional splines with the "Not a knot"-condition (in x, y and z-directions) [4], [5]. The volume was integrated with the trapezoidal-algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the average. - (3). All neighboring volumes were evaluated until no neighboring volume with a higher average value was found. **Step 4**: Re-measurement of the E-field at the same location as in Step 1. #### *1. Ratio step method parameters used; The first measurement point: 2mm from the phantom surface, the initial grid separation: 2mm, subsequent graded grid ratio: 1.5 These parameters comply with the requirement of the KDB 865664. In the section of SAR Scan Procedures-Zoom Scan, in KDB 865664 D02v01: SAR Measurement Requirements for 100MHz to 6GHz, the graded grids requirement is as follows; "When graded grids are used (z), the first measurement point should be within 3mm of the phantom surface for measurements below 4.5GHz and within 2mm at or above 4.5GHz. The initial grid separation, closest to the phantom, should be 2.0mm. A subsequent graded ration of 1.5 is recommended and less than 2.0 is required." 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Test report No. : 10068338H-T-R1 Page : 17 of 54 FCC ID : AK8UTXB03 FCC ID : AK8UTXB03 Issued date : January 22, 2014 Revised date : January 24, 2014 #### 2. Measurement data #### UTX-B03 FM 607.875MHz(Mid ch) Front side Communication System: UID 0, CW (0); Communication System Band: D600; Frequency: 607.875 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 607.875 MHz; $\sigma = 0.92 \text{ S/m}$; $\varepsilon_r = 57.969$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) **DASY5** Configuration Probe: EX3DV4 - SN3922; ConvF(11.06, 11.06, 11.06); Calibrated: 2013/06/04; Sensor-Surface: 2mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2013/06/03 Phantom: ELI v5.0 TP1207; Type: QDOVA001BB; Serial: TP:1207 Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164) **Area Scan 2 3 (81x161x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 0.282 W/kg Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 17.725 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 0.395 W/kg SAR(1 g) = 0.214 W/kg; SAR(10 g) = 0.133 W/kg Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.293 W/kg Date: 2013/11/20 Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Test report No. : 10068338H-T-R1 Page : 18 of 54 FCC ID : AK8UTXB03 Issued date : January 22, 2014 Revised date : January 24, 2014 #### UTX-B03 FM 607.875MHz(Mid ch) Rear side Communication System: UID 0, CW (0); Communication System Band: D600; Frequency: 607.875 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 607.875 MHz; $\sigma = 0.92 \text{ S/m}$; $\varepsilon_r = 57.969$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) **DASY5** Configuration Probe: EX3DV4 - SN3922; ConvF(11.06, 11.06, 11.06); Calibrated: 2013/06/04; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2013/06/03 Phantom: ELI v5.0 TP1207; Type: QDOVA001BB; Serial: TP:1207 Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164) Area Scan 2 3 (91x131x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm #### Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 0.292 W/kg Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 11.710 V/m; Power Drift = -0.11 dB Peak SAR (extrapolated) = 0.390 W/kg SAR(1 g) = 0.233 W/kg; SAR(10 g) = 0.150 W/kg #### Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.306 W/kg Date: 2013/11/20 Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C. UL Japan, Inc. Head Office EMC Lab. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Test report No.: 10068338H-T-R1 Page: 19 of 54 FCC ID: AK8UTXB03 Issued date: January 22, 2014 Revised date: January 24, 2014 #### UTX-B03 FM 607.875MHz(Mid ch) Right side Communication System: UID 0, CW (0); Communication System Band: D600; Frequency: 607.875 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 607.875 MHz; $\sigma = 0.92 \text{ S/m}$; $\varepsilon_r = 57.969$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) **DASY5** Configuration Probe: EX3DV4 - SN3922; ConvF(11.06, 11.06, 11.06); Calibrated: 2013/06/04; Sensor-Surface: 2mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2013/06/03 Phantom: ELI v5.0 TP1207; Type: QDOVA001BB; Serial: TP:1207 Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164) #### Area Scan 2 2 (61x141x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm #### Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 0.343 W/kg Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 20.377 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 0.638 W/kg SAR(1 g) = 0.289 W/kg; SAR(10 g) = 0.157 W/kg #### Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.425 W/kg Date: 2013/11/20 Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C. UL Japan, Inc. Head Office EMC Lab. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Page : 20 of 54 FCC ID : AK8UTXB03 Issued date : January 22, 2014 Revised date : January 24, 2014 #### Z Scan at Maximum Body SAR position in FM band #### UTX-B03 FM 607.875MHz(Mid ch) Right side Communication System: UID 0, CW (0); Communication System Band: D600; Frequency: 607.875 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 607.875 MHz; $\sigma = 0.92 \text{ S/m}$; $\varepsilon_r = 57.969$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) **DASY5** Configuration Probe: EX3DV4 - SN3922; ConvF(11.06, 11.06, 11.06); Calibrated: 2013/06/04; Sensor-Surface: 0mm (Fix Surface) Electronics: DAE4 Sn1372; Calibrated: 2013/06/03 Phantom: ELI v5.0 TP1207; Type: QDOVA001BB; Serial: TP:1207 Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164) #### Z Scan (1x1x31): Measurement grid: dx=20mm, dy=20mm, dz=5mm # Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.141 W/kg Date: 2013/11/20 Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Test report No.: 10068338H-T-R1 Page : 21 of 54 FCC ID : AK8UTXB03 Issued date : January 22, 2014 Revised date : January 24, 2014 #### UTX-B03 FM 607.875MHz(Mid ch) Top side Communication System: UID 0, CW (0); Communication System Band: D600; Frequency: 607.875 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 607.875 MHz; $\sigma = 0.92 \text{ S/m}$; $\varepsilon_r = 57.969$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) **DASY5** Configuration Probe: EX3DV4 - SN3922; ConvF(11.06, 11.06, 11.06); Calibrated: 2013/06/04; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2013/06/03 Phantom: ELI v5.0 TP1207; Type: QDOVA001BB; Serial: TP:1207 Measurement SW: DASY52, Version 52.8
(7); SEMCAD X Version 14.6.10 (7164) **Area Scan 2 3 (61x61x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm #### Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 0.0260 W/kg Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 5.253 V/m; Power Drift = 0.13 dB Peak SAR (extrapolated) = 0.171 W/kg SAR(1 g) = 0.027 W/kg; SAR(10 g) = 0.00725 W/kg #### Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.0564 W/kg Date: 2013/11/20 Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C. UL Japan, Inc. Head Office EMC Lab. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Page : 22 of 54 FCC ID : AK8UTXB03 Issued date : January 22, 2014 Revised date : January 24, 2014 # **APPENDIX 2:** System check # 1. System check result for Body 600MHz **Simulated Tissue Liquid Parameter confirmation** | | DIELECTRIC PARAMETERS MEASUREMENT RESULTS | | | | | | | | | | |--------|---|-----------------------------|----------------|----------------------------|--------------------------------|------------|-------------------|----------|---------------|--------------| | Date | Ambient
Temp.
[deg.c] | Relative
Humidity
[%] | Liquid
type | Liquid
Temp.
[deg.c] | Measured
Frequency
[MHz] | Parameters | Target
Value*1 | Measured | Deviation [%] | Limit
[%] | | 20-Nov | 24.0 | 42 | MSL | 23.5 | 600 | er | 56.1 | 58.0 | 3.3 | +/-5 | | 20-NOV | 24.0 | 42 | 650 | 43.3 | 000 | σ [mho/m] | 0.95 | 0.91 | -4.2 | +/-5 | $[\]varepsilon$ r: Relative Permittivity / σ : Coductivity ^{*1} The Target value is a parameter defined in KDB 865664D01 . | | DIELECTRIC PARAMETERS MEASUREMENT RESULTS | | | | | | | | | | |--------|---|-----------------------------|----------------|----------------------------|--------------------------------|-------------------|-------------------|----------|---------------|----------------| | Date | Ambient
Temp.
[deg.c] | Relative
Humidity
[%] | Liquid
type | Liquid
Temp.
[deg.c] | Measured
Frequency
[MHz] | Parameters | Target
Value*2 | Measured | Deviation [%] | Limit*3
[%] | | 20-Nov | 24.0 | 40 | MSL | 23.5 | 600 | εr | 54.7 | 58.0 | 6.0 | +/-6 | | 20-NOV | 24.0 | 40 | 650 | 43.3 | 000 | $\sigma [mho/m]$ | 0.94 | 0.91 | -3.0 | +/-6 | $[\]epsilon$ r: Relative Permittivity / σ : Coductivity System check result (for calibration by manufacture) | 2000000 | (| | ** / | | | | | | | | |---------|-------------------|----------------------|---------------|--------------|-----------|-------|--|--|--|--| | | SYSTEM VALIDATION | | | | | | | | | | | | Eraguanov | | SAR 1g [W/kg] | | | | | | | | | Date | Frequency | Forward Power 250mW | Conversion 1W | Target 1W *4 | Deviation | Limit | | | | | | | [MHz] | Measured Calculation | | [%] | [%] | | | | | | | 20-Nov | 600.00 | 1.61 | 6.44 | 6.60 | -2.4 | +/-10 | | | | | ^{*4} The taget value is the parameter defined in SAR mesured \times 4 (1.65 \times 4 = 6.60) in manufacturer calibrated dipole (D600V3 SN:1003). Please refer to "SAR result with Body TSL of Appendix 2 2. System Check Dipole (D600V3,S/N: 1003)". 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN ^{*2} The target value is the calibrated dipole Body TSL parameters. (D600V3 SN:1003, Measured Body TSL parameters) ^{*3} The limit is for deviation provided by manufacture. Test report No.: 10068338H-T-R1 Page: 23 of 54 FCC ID: AK8UTXB03 Issued date: January 22, 2014 Revised date: January 24, 2014 #### Body 600MHz System Check DATA / Dipole 600MHz / Forward Conducted Power: 250mW Communication System: UID 0, CW (0); Communication System Band: D600; Frequency: 600 MHz; Duty Cycle: 1:1 Medium parameters used: f = 600 MHz; $\sigma = 0.912$ S/m; $\varepsilon_r = 57.98$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) **DASY5** Configuration Probe: EX3DV4 - SN3922; ConvF(11.06, 11.06, 11.06); Calibrated: 2013/06/04; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2013/06/03 Phantom: ELI v5.0 TP1207; Type: QDOVA001BB; Serial: TP:1207 Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164) **Area Scan 2 (61x61x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.98 W/kg Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 47.224 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 2.46 W/kg SAR(1 g) = 1.61 W/kg; SAR(10 g) = 1.09 W/kg Maximum value of SAR (measured) = 2.03 W/kg Date: 2013/11/20 Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Page : 24 of 54 : AK8UTXB03 FCC ID Issued date : January 22, 2014 Revised date : January 24, 2014 #### 2. System Check Dipole (D600V3,S/N: 1003) Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura **Swiss Calibration Service** Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108 | DALIBITATION | CERTIFICATE | | | | | | | | |--|---|---|--|--|--|--|--|--| | Object | D600V3 - SN: 10 | 003 | | | | | | | | Calibration procedure(s) | QA CAL-15.v7 | | | | | | | | | | Calibration proce | dure for dipole validation kits bel | ow 700 MHz | Calibration date: | September 06, 2 | 013 | | | | | | | | The measurements and the unce | ertainties with confidence p | ional standards, which realize the physical un
robability are given on the following pages an | nd are part of the certificate. | | | | | | | All calibrations have been condu | cted in the closed laborator | ry facility; environment temperature (22 + 3)°(| C and humidity < 70% | | | | | | | | | ry facility: environment temperature (22 ± 3)°(| C and humidity < 70%. | | | | | | | | | ry facility: environment temperature (22 ± 3)°0 | C and humidity < 70%. | | | | | | | Calibration Equipment used (M& | | | | | | | | | | Calibration Equipment used (M& | TE critical for calibration) | ry facility: environment temperature (22 ± 3)°(Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) | C and humidity < 70%. Scheduled Calibration Apr-14 | | | | | | | Calibration Equipment used (M&
Primary Standards
Power meter E4419B | TE critical for calibration) | Cal Date (Certificate No.) | Scheduled Calibration | | | | | | | Calibration Equipment used (M&
Primary Standards
Power meter E4419B
Power sensor E4412A
Reference 3 dB Attenuator | TE critical for calibration) ID # GB41293874 | Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) | Scheduled Calibration Apr-14 | | | | | | | Calibration Equipment used (M&
Primary Standards
Power meter E4419B
Power sensor E4412A
Reference 3 dB Attenuator
Reference 20 dB Attenuator | ID # GB41293874 MY41498087 | Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) | Scheduled Calibration Apr-14 Apr-14 | | | | | | | Calibration Equipment used (M&
Primary Standards
Power meter E4419B
Power sensor E4412A
Reference 3 dB Attenuator
Reference 20 dB Attenuator
Type-N mismatch combination | ID # GB41293874 MY41498087 SN: S5054 (3c) | Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) | Scheduled Calibration Apr-14 Apr-14 Apr-14 | | | | | | | Calibration Equipment used (M&
Primary Standards
Power meter E4419B
Power sensor E4412A
Reference 3 dB Attenuator
Reference 20 dB Attenuator
Type-N mismatch combination
Reference Probe ET3DV6 | TE critical for calibration) ID # GB41293874 MY41498087 SN: S5054 (3c) SN: 5058 (20k) | Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01736) | Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14 | | | | | | | Calibration Equipment used (M&
Primary Standards
Power meter E4419B
Power sensor E4412A
Reference 3 dB Attenuator
Reference 20 dB Attenuator
Type-N mismatch combination
Reference Probe ET3DV6 | ID # GB41293874 MY41498087 SN: 55054 (3c) SN: 5058 (20k) SN: 5047.3 / 06327 | Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) | Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 | | | | | | | Calibration Equipment used (M&
Primary Standards
Power meter E4419B
Power sensor E4412A
Reference 3 dB Attenuator
Reference 20 dB
Attenuator
Type-N mismatch combination
Reference Probe ET3DV6
DAE4 | ID # GB41293874 MY41498087 SN: S5054 (3c) SN: 5058 (20k) SN: 5047.3 / 06327 SN: 1507 | Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ET3-1507_Dec12) | Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Dec-13 | | | | | | | Calibration Equipment used (M&
Primary Standards
Power meter E4419B
Power sensor E4412A
Reference 3 dB Attenuator
Reference 20 dB Attenuator
Type-N mismatch combination
Reference Probe ET3DV6
DAE4 | TE critical for calibration) ID # GB41293874 MY41498087 SN: S5054 (3c) SN: 5058 (20k) SN: 5047.3 / 06327 SN: 1507 SN: 654 | Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ET3-1507_Dec12) 18-Jul-13 (No. DAE4-654_Jul13) | Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Dec-13 Jul-14 | | | | | | | Calibration Equipment used (M&
Primary Standards
Power meter E4419B
Power sensor E4412A
Reference 3 dB Attenuator
Reference 20 dB Attenuator
Type-N mismatch combination
Reference Probe ET3DV6
DAE4
Secondary Standards
Power sensor HP 8481A
RF generator R&S SMT-06 | ID # GB41293874 MY41498087 SN: S5054 (3c) SN: 5058 (20k) SN: 5047.3 / 06327 SN: 1507 SN: 654 | Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ET3-1507_Dec12) 18-Jul-13 (No. DAE4-654_Jul13) Check Date (in house) | Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Dec-13 Jul-14 Scheduled Check | | | | | | | Calibration Equipment used (M&
Primary Standards
Power meter E4419B
Power sensor E4412A
Reference 3 dB Attenuator
Reference 20 dB Attenuator
Type-N mismatch combination
Reference Probe ET3DV6
DAE4
Secondary Standards
Power sensor HP 8481A
RF generator R&S SMT-06 | TE critical for calibration) ID # GB41293874 MY41498087 SN: S5054 (3c) SN: 5058 (20k) SN: 5047.3 / 06327 SN: 1507 SN: 654 ID # MY41092317 | Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01736) 28-Dec-12 (No. ET3-1507_Dec12) 18-Jul-13 (No. DAE4-654_Jul13) Check Date (in house) | Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Dec-13 Jul-14 Scheduled Check In house check: Oct-13 | | | | | | | Calibration Equipment used (M&
Primary Standards
Power meter E4419B
Power sensor E4412A
Reference 3 dB Attenuator
Reference 20 dB Attenuator
Type-N mismatch combination
Reference Probe ET3DV6
DAE4
Secondary Standards
Power sensor HP 8481A
RF generator R&S SMT-06 | TE critical for calibration) ID # GB41293874 MY41498087 SN: S5054 (3c) SN: 5058 (20k) SN: 5047.3 / 06327 SN: 1507 SN: 654 ID # MY41092317 100005 | Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ET3-1507_Dec12) 18-Jul-13 (No. DAE4-654_Jul13) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) | Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14 Dec-13 Jul-14 Scheduled Check In house check: Oct-13 In house check: Oct-13 | | | | | | | All calibrations have been conducted. Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by: | TE critical for calibration) ID # GB41293874 MY41498087 SN: 55054 (3c) SN: 5058 (20k) SN: 5047.3 / 06327 SN: 1507 SN: 654 ID # MY41092317 100005 US37390585 S4206 | Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ET3-1507_Dec12) 18-Jul-13 (No. DAE4-654_Jul13) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-12) | Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14 Dec-13 Jul-14 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-13 | | | | | | | Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by: | ID # GB41293874 MY41498087 SN: S5054 (3c) SN: 5058 (20k) SN: 5047.3 / 06327 SN: 1507 SN: 654 ID # MY41092317 100005 US37390585 S4206 Name | Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ET3-1507_Dec12) 18-Jul-13 (No. DAE4-654_Jul13) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-12) Function | Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14 Dec-13 Jul-14 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-13 | | | | | | | Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E | ID # GB41293874 MY41498087 SN: S5054 (3c) SN: 5058 (20k) SN: 5047.3 / 06327 SN: 1507 SN: 654 ID # MY41092317 100005 US37390585 S4206 Name | Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ET3-1507_Dec12) 18-Jul-13 (No. DAE4-654_Jul13) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-12) Function | Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14 Dec-13 Jul-14 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-13 | | | | | | Certificate No: D600V3-1003_Sep13 Page 1 of 8 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Page : 25 of 54 FCC ID : AK8UTXB03 Issued date : January 22, 2014 Revised date : January 24, 2014 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL _ tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D600V3-1003_Sep13 Page 2 of 8 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Page : 26 of 54 FCC ID : AK8UTXB03 Issued date : January 22, 2014 Revised date : January 24, 2014 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.7 | |------------------------------|------------------------|-----------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | ELI4 Flat Phantom | Shell thickness: 2 ± 0.2 mm | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 600 MHz ± 1 MHz | | # Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---
-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 42.7 | 0.88 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 42.0 ± 6 % | 0.86 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | # SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.60 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 6.49 W/kg ± 18.1 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.06 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 4.29 W/kg ± 17.6 % (k=2) | # **Body TSL parameters** The following parameters and calculations were applied | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 56.1 | 0.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 54.7 ± 6 % | 0.94 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.65 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 6.62 W/kg ± 18.1 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.08 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 4.33 W/kg ± 17.6 % (k=2) | Certificate No: D600V3-1003_Sep13 Page 3 of 8 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Page : 27 of 54 FCC ID : AK8UTXB03 Issued date : January 22, 2014 Revised date : January 24, 2014 # **Appendix** #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 57.3 Ω - 2.1 jΩ | |--------------------------------------|-----------------| | Return Loss | - 23.1 dB | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 52.4 Ω - 4.7 jΩ | |--------------------------------------|-----------------| | Return Loss | - 25.8 dB | # **General Antenna Parameters and Design** | Electrical Delay (one direction) | | |----------------------------------|-----------| | LEGUICAL Delay (one direction) | 1.155 ns | | | 1. 155 NS | | | | | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------------------| | Manufactured on | February 08, 2013 | Certificate No: D600V3-1003_Sep13 Page 4 of 8 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Page : 28 of 54 FCC ID : AK8UTXB03 Issued date : January 22, 2014 Revised date : January 24, 2014 #### **DASY5 Validation Report for Head TSL** Date: 06.09.2013 Test Laboratory: The name of your organization # DUT: Dipole 600 MHz; Type: D600V3; Serial: D600V3 - SN: 1003 Communication System: SDM - GVD; Frequency: 600 MHz Communication System Frame Length in ms: 100 Medium parameters used: f = 600 MHz; σ = 0.86 S/m; ϵ_r = 42; ρ = 1000 kg/m 3 Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(6.31, 6.31, 6.31); Calibrated: 26.02.2013; • Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn654; Calibrated: 18.07.2013 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003 DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) # Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 43.313 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 2.44 W/kg SAR(1 g) = 1.6 W/kg; SAR(10 g) = 1.06 W/kgMaximum value of SAR (measured) = 1.71 W/kg 0 dB = 1.71 W/kg = 2.33 dBW/kg Certificate No: D600V3-1003_Sep13 Page 5 of 8 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Page : 29 of 54 FCC ID : AK8UTXB03 Issued date : January 22, 2014 Revised date : January 24, 2014 # Impedance Measurement Plot for Head TSL Certificate No: D600V3-1003_Sep13 Page 6 of 8 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Page : 30 of 54 FCC ID : AK8UTXB03 Issued date : January 22, 2014 Revised date : January 24, 2014 # **DASY5 Validation Report for Body TSL** Date: 06.09.2013 Test Laboratory: The name of your organization # DUT: Dipole 600 MHz; Type: D600V3; Serial: D600V3 - SN: 1003 Communication System: SDM - GVD; Frequency: 600 MHz Communication System Frame Length in ms: 100 Medium parameters used: f = 600 MHz; $\sigma = 0.94$ S/m; $\epsilon_r = 54.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: - Probe: ES3DV3 SN3205; ConvF(6.32, 6.32, 6.32); Calibrated: 26.02.2013; - Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn654; Calibrated: 18.07.2013 - Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003 - DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) # Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 43.313 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 2.59 W/kg SAR(1 g) = 1.65 W/kg; SAR(10 g) = 1.08 W/kg Maximum value of SAR (measured) = 1.76 W/kg 0 dB = 1.76 W/kg = 2.46 dBW/kg Certificate No: D600V3-1003_Sep13 Page 7 of 8 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Page : 31 of 54 FCC ID : AK8UTXB03 Issued date : January 22, 2014 Revised date : January 24, 2014 # Impedance Measurement Plot for Body TSL 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Page : 32 of 54 FCC ID : AK8UTXB03 Issued date : January 22, 2014 Revised date : January 24, 2014 # 3. System check uncertainty The uncertainty budget has been determined for the DASY5 measurement system according to the SPEAG documents[2] and is given in the following Table. # Repeatability Budget for System Check for the 0.3 - 3GHz range | | Uncertai | Probability | | (ci) | Standard | vi | |---------------------------------|----------|--------------|------------|------|----------|-------------| | Error Description | value ± | distribution | divisor | 1g | (1g) | or | | | | | | | | veff | | Measurement System | | | • | | | | | Probe calibration | ± 1.8 | Normal | 1 | 1 | ± 1.80 | ∞ | | Axial isotropy of the probe | ± 0.0 | Rectangular | $\sqrt{3}$ | 1 | ± 0.0 | ∞ | | Spherical isotropy of the probe | ± 0.0 | Rectangular | √3 | 0 | ± 0.0 | ∞ | | Boundary effects | ± 0.0 | Rectangular | √3 | 1 | ± 0.0 | ∞ | | Probe linearity | ± 0.0 | Rectangular | $\sqrt{3}$ | 1 | ± 0.0 | ∞ | | Detection limit | ± 0.0 | Rectangular | √3 | 1 | ± 0.0 | ∞ | | Modulation response | ± 0.0 | Rectangular | √3 | 1 | ± 0.0 | ∞ | | Readout electronics | ± 0.0 | Normal | 1 | 1 | ± 0.0 | ∞ | | Response time | ± 0.0 | Rectangular | $\sqrt{3}$ | 1 | ± 0.0 | ∞ | | Integration time | ± 0.0 | Rectangular | $\sqrt{3}$ | 1 | ± 0.0 | ∞ | | RF ambient Noise | ± 0.0 | Rectangular | $\sqrt{3}$ | 1 | ± 0.0 | ∞ | | RF ambient Reflections | ± 0.0 | Rectangular | √3 | 1 | ± 0.0 | ∞ | | Probe Positioner | ± 0.4 | Rectangular | √3 | 1 | ± 0.2 | ∞ | | Probe positioning | ± 2.9 | Rectangular | $\sqrt{3}$ | 1 | ± 1.7 | ∞ | | Max.SAR Eval. | ± 0.0 | Rectangular | √3 | 1 | ± 0.0 | ∞ | | Dipole Related | | | | - | | | | Deviation of exp.dipole | ± 0.0 | Rectangular | $\sqrt{3}$ | 1 | ± 0.0 | ∞ | | Dipole Axis to Liquid Distance | ± 2.0 | Rectangular | √3 | 1 | ± 1.2 | ∞ | | Input power and SAR drift meas. | ± 3.4 | Rectangular | √3 | 1 | ± 2.0 | ∞ | | Phantom and Setup | | | | | | | | Phantomuncertainty | ± 4.0 | Rectangular | $\sqrt{3}$ | 1 | ± 2.3 | ∞ | | Liquid conductivity (target) | ± 5.0 | Rectangular | √3 | 0.78 | ± 2.3 | ∞ | | Liquid conductivity (meas.) | + 5.0 | Normal | 1 | 0.26 | + 1.3 | ∞ | | Liquid permittivity (target) | ± 5.0 | Rectangular | $\sqrt{3}$ | 0.78 | ± 2.3 | ∞ | | Liquid permittivity (meas.) | - 5.0 | Normal | 1 | 0.26 | - 1.3 | ∞ | | Liquid conductivity | ± 1.7 | Rectangular | √3 | 0.78 | ± 0.8 | 8 | | - temp.unc (below 2deg.C.) | 1.7 | Rectangular | ٧٥ | 0.76 | ± 0.6 | | | Liquid permittivity | ± 0.3 | Rectangular | √3 | 0.23 | ± 0.0 | $_{\infty}$ | | - temp.unc (below 2deg.C.) | | Rectangular | 13 | 0.23 | 0.0 | \perp | | Combined Standard Uncertainty | | | | | ± 5.548 | + | | Expanded Uncertainty (k=2) | | | | | ± 11.1 | + | Note: This uncertainty budget for system check is worst-case. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Page : 33 of 54 FCC ID : AK8UTXB03 Issued date : January 22, 2014 Revised date : January 24, 2014 # **APPENDIX 3:** System specifications #### 1. Configuration and peripherals The DASY5 system for performing compliance tests
consist of the following items: - a) A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE). - b) An isotropic field probe optimized and calibrated for the targeted measurement. - c) A data acquisition electronic (DAE), which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC. - d) The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server. - e) The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts. - f) The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning. - g) A computer running WinXP and the DASY5 software. - h) Remote control with teaches pendant and additional circuitry for robot safety such as warning lamps, etc. - i) The phantom, the device holder and other accessories according to the targeted measurement. #### UL Japan, Inc. Head Office EMC Lab. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Page : 34 of 54 FCC ID : AK8UTXB03 Issued date : January 22, 2014 Revised date : January 24, 2014 **EX3DV4 E-field Probe** #### 2. Specifications a)Robot TX60L **Number of Axes** 6 : **Nominal Load** 2 kg : **Maximum Load** 5kg : Reach 920mm : Repeatability +/-0.03mm **Control Unit** CS8c **Programming Language** VAL3 Weight 52.2kg Manufacture : Stäubli Robotics b)E-Field Probe Model : EX3DV4 Serial No. : 3917 **Construction** : Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., glycol ether) Frequency : $10 \text{ MHz to} > 6 \text{ GHz Linearity:} \pm 0.2 \text{ dB } (30 \text{ MHz to } 6 \text{ GHz})$ **Directivity** : +/-0.3 dB in HSL (rotation around probe axis) +/-0.5 dB in tissue material (rotation normal probe axis) **Dynamic Range** : 10uW/g to > 100 mW/g;Linearity +/-0.2 dB(noise: typically < 1uW/g) **Dimensions**: Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm **Application** : Highprecision dosimetric measurement in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6GHz with precision of better 30%. Manufacture : Schmid & Partner Engineering AG UL Japan, Inc. Head Office EMC Lab. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Page : 35 of 54 FCC ID : AK8UTXB03 Issued date : January 22, 2014 Revised date : January 24, 2014 #### c)Data Acquisition Electronic (DAE4) Features : Signal amplifier, multiplexer, A/D converter and control logic Serial optical link for communication with DASY5 embedded system (fully remote controlled) Two step probe touch detector for mechanical surface detection and emergency robot stop Measurement Range : -100 to +300 mV (16 bit resolution and two range settings: 4mV, 400mV) **Input Offset voltage** : $< 5 \mu V$ (with auto zero) **Battery Power** : > 10 h of operation (with two 9.6 V NiMH accus) **Dimension** : 60 x 60 x 68 mm Manufacture : Schmid & Partner Engineering AG #### d)Electro-Optic Converter (EOC) **Version** : EOC 61 **Description**: for TX60 robot arm, including proximity sensor Manufacture : Schmid & Partner Engineering AG # e)DASY5 Measurement server Features : Intel ULV Celeron 400MHz 128MB chip disk and 128MB RAM 16 Bit A/D converter for surface detection system Vacuum Fluorescent Display Robot Interface Serial link to DAE (with watchdog supervision) Door contact port (Possibility to connect a light curtain) Emergency stop port (to connect the remote control) Signal lamps port Light beam port Three Ethernet connection ports Two USB 2.0 Ports Two serial links Expansion port for future applications **Dimensions** (**L x W x H**) : 440 x 241 x 89 mm Manufacture : Schmid & Partner Engineering AG #### f) Light Beam Switches Version : LB5 Dimensions (L x H) : 110 x 80 mm Thickness : 12 mm Beam-length : 80 mm Manufacture : Schmid & Partner Engineering AG #### g)Software Item : Dosimetric Assesment System DASY5 Type No. : SD 000 401A, SD 000 402A Software version No. : DASY52, Version 52.6 (1) Manufacture / Origin : Schmid & Partner Engineering AG #### h)Robot Control Unit Weight : 70 Kg AC Input Voltage : selectable Manufacturer : Stäubli Robotics # UL Japan, Inc. #### **Head Office EMC Lab.** 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Page : 36 of 54 FCC ID : AK8UTXB03 Issued date : January 22, 2014 Revised date : January 24, 2014 #### i)Phantom and Device Holder **Phantom** Type : SAM Twin Phantom V4.0 **Description**: The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot. Material : Vinylester, glass fiber reinforced (VE-GF) Shell Material : Fiberglass Thickness : 2.0 +/-0.2 mm Dimensions : Length: 1000 mm Width: 500 mm Height: adjustable feet **Volume** : Approx. 25 liters Manufacture : Schmid & Partner Engineering AG **Type** : 2mm Flat phantom ERI4.0 **Description**: Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with the latest draft of the standard IEC 62209 Part II and all known tissue simulating liquids. ELI4 has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is supported by software version DASY4.5 and higher and is compatible with all SPEAG dosimetric probes and dipoles. Material : Vinylester, glass fiber reinforced (VE-GF) **Shell Thickness** : $2.0 \pm 0.2 \text{ mm (sagging: } <1\%)$ **Filling Volume** : approx. 30 liters **Dimensions**: Major ellipse axis: 600 mm Minor axis: 400 mm Manufacture : Schmid & Partner Engineering AG # **Device Holder** In combination with the Twin SAM Phantom V4.0/V4.0c or ELI4, the Mounting Device enables the rotation of the mounted transmitter device in spherical coordinates. Rotation point is the ear opening point. Transmitter devices can be easily and accurately positioned according to IEC, IEEE, FCC or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat). Material : POM #### Laptio Extensions kit Simple but effective and easy-to-use extension for Mounting Device that facilitates the testing of larger devices according to IEC 62209-2 (e.g., laptops, cameras, etc.). It is lightweight and fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin-SAM, ELI4 Phantoms. Material : POM, Acrylic glass, Foam #### Urethane For this measurement, the urethane foam was used as device holder. UL Japan, Inc. Head Office EMC Lab. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Page : 37 of 54 FCC ID : AK8UTXB03 Issued date : January 22, 2014 Revised date : January 24, 2014 #### j)Simulated Tissues (Liquid) The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for required for routine SAR evaluation. | M: (0/) | | Frequency (MHz) | | | | | | | | | | |---------------------|-------|-----------------|-------|-------|-------|-------|-------|-------|------|-------|--| | Mixture (%) | 4 | 50 | 9 | 00 | 18 | 800 | 1950 | | 2450 | | | | Tissue Type | Head | Body | | | Water | 38.91 | 46.21 | 40.29 | 50.75 | 55.24 | 70.17 | 55.41 | 69.79 | 55.0 | 68.64 | | | Sugar | 56.93 | 51.17 | 57.90 | 48.21 | - | - | - | - | - | - | | | Cellulose | 0.25 | 0.18 | 0.24 | 0.00 | - | - | | - | - | - | | | Salt (NaCl) | 3.79 | 2.34 | 1.38 | 0.94 | 0.31 | 0.39 | 0.08 | 0.2 | - | - | | | Preventol | 0.12 | 0.08 | 0.18 | 0.10 | - | | | | - | - | | | DGMBE | - | - | - | - | 44.45 | 29.44 | 44.51 | 30.0 | 45.0 | 31.37 | | | Dielectric Constant | 43.42 | 58.0 | 42.54 | 56.1 | 42.0 | 56.8 | 39.9 | 54.0 | 39.8 | 52.5 | | | Conductivity (S/m) | 0.85 | 0.83 | 0.91 | 0.95 | 1.0 | 1.07 | 1.42 | 1.45 | 1.88 | 1.78 | | Note:DGMBE(Diethylenglycol-monobuthyl ether) The simulated tissue (liquid) of 1800MHz was used for the test frequency of 1700MHz to 1800MHz. | Mintuna (0/) | Freque | Frequency(MHz) | | | | | | |--------------|---------------|----------------|--|--|--|--|--| | Mixture (%) | 650&750 | 1450 | | | | | | | Tissue Type | Head and Body | Head and Body | | | | | | | Water | 35-58% | 52-75% | | | | | | | Sugar | 40-60% | - | | | | | | | Cellulose | <0.3% | - | | | | | | | Salt (NaCl) | 0-6% | <1% | | | | | | | Preventol | 0.1-0.7% | - | | | | | | | DGMBE | - | 25-48% | | | | | | | Mintung (0/) | Frequency(MHz) 5800 | | | | | |--------------------|---------------------|------|--|--|--| | Mixture (%) | | | | | | | Tissue Type | Head | Body | | | | | Water | 64.0 | 78.0 | | | | | Mineral Oil | 18.0 | 11.0 | | | | | Emulsifiers |
15.0 | 9.0 | | | | | Additives and salt | 3.0 2.0 | | | | | #### Decision on Simulated Tissues of 650MHz and 750MHz In the current standards (e.g., IEC62209-2, IEEE P1528, KDB 865664D01, the dielectric parameters suggested for head and body tissue simulating liquid are given at 450MHz and 835MHz. As an intermediate solution, dielectric parameters for the frequencies between 450 to 835MHz were obtained using linear interpolation. Therefore the dielectric parameter of 650MHz and 750MHz(The frequency for the system check) was decided as following. | f (MHz) | Head Tissi | Head Tissue | | ie | Reference | |---------|------------|--------------|------|--------------|--------------| | | εr | σ
[mho/m] | εr | σ
[mho/m] | | | 450 | 43.5 | 0.87 | 56.7 | 0.94 | Standard | | 600 | 42.7 | 0.88 | 56.1 | 0.95 | Interpolated | | 750 | 41.9 | 0.89 | 55.5 | 0.96 | Interpolated | | 835 | 41.5 | 0.90 | 55.2 | 0.97 | Standard | Standard and interpolated dielectric parameters for head and body tissue simulating liquid in the frequency range 450 to 835MHz. UL Japan, Inc. Head Office EMC Lab. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Page : 38 of 54 FCC ID : AK8UTXB03 Issued date : January 22, 2014 Revised date : January 24, 2014 #### **Decision on Simulated Tissues of 1750MHz** In the current standards (e.g., IEC62209-2, IEEE P1528, KDB 865664D01, the dielectric parameters suggested for head and body tissue simulating liquid are given at 1610MHz and 1800MHz. As an intermediate solution, dielectric parameters for the frequencies between 1610 to 1800MHz were obtained using linear interpolation. Therefore the dielectric parameter of 1750MHz(The frequency for the system check) was decided as following. | f (MHz) | Head Tissue | | Body Tissu | ie | Reference | |---------|-------------|--------------|------------|--------------|--------------| | | εr | σ
[mho/m] | Er | σ
[mho/m] | | | 1450 | 40.5 | 1.20 | 54.0 | 1.30 | Standard | | 1610 | 40.3 | 1.29 | 53.8 | 1.40 | Standard | | 1750 | 40.1 | 1.37 | 53.4 | 1.49 | Interpolated | | 1800 | 40.0 | 1.40 | 53.3 | 1.52 | Standard | Standard and interpolated dielectric parameters for head and body tissue simulating liquid in the frequency range 1610 to 1800MHz. #### Decision on Simulated Tissues of 5GHz band In the current standards (e.g., IEC62209-2, IEEE P1528, KDB 865664D01, the dielectric parameters suggested for head and body tissue simulating liquid are given at 3000MHz and 5800MHz. As an intermediate solution, dielectric parameters for the frequencies between 5000 to 5800 MHz were obtained using linear interpolation. Therefore the dielectric parameters of 5200MHz, 5300MHz, 5600MHz and 5500MHz(The frequency for the system check) were decided as following. | f (MHz) | Head Tissue | | Body Tissu | ie | Reference | |---------|-------------|---------|------------|---------|--------------| | | εr | σ | εr | σ | | | | | [mho/m] | | [mho/m] | | | 3000 | 38.5 | 2.40 | 52.0 | 2.73 | Standard | | 5800 | 35.3 | 5.27 | 48.2 | 6.00 | Standard | | 5000 | 36.2 | 4.45 | 49.3 | 5.07 | Interpolated | | 5100 | 36.1 | 4.55 | 49.1 | 5.18 | Interpolated | | 5200 | 36.0 | 4.66 | 49.0 | 5.30 | Interpolated | | 5300 | 35.9 | 4.76 | 48.9 | 5.42 | Interpolated | | 5400 | 35.8 | 4.86 | 48.7 | 5.53 | Interpolated | | 5500 | 35.6 | 4.96 | 48.6 | 5.65 | Interpolated | | 5600 | 35.5 | 5.07 | 48.5 | 5.77 | Interpolated | | 5700 | 35.4 | 5.17 | 48.3 | 5.88 | Interpolated | Standard and interpolated dielectric parameters for head and body tissue simulating liquid in the frequency range 3000 to 5800MHz. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Page : 39 of 54 FCC ID : AK8UTXB03 Issued date : January 22, 2014 Revised date : January 24, 2014 #### 3. Dosimetric E-Field Probe Calibration (EX3DV4, S/N: 3922) Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **UL Japan (PTT)** Certificate No: EX3-3922_Jun13 C Accreditation No.: SCS 108 ### CALIBRATION CERTIFICATE Object EX3DV4 - SN:3922 Calibration procedure(s) QA CAL-01.v8, QA CAL-12.v7, QA CAL-14.v3, QA CAL-23.v4, QA CAL-25.v4 Calibration procedure for dosimetric E-field probes Calibration date: June 4, 2013 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|-----------------|-----------------------------------|------------------------| | Power meter E4419B | GB41293874 | 04-Apr-13 (No. 217-01733) | Apr-14 | | Power sensor E4412A | MY41498087 | 04-Apr-13 (No. 217-01733) | Apr-14 | | Reference 3 dB Attenuator | SN: S5054 (3c) | 04-Apr-13 (No. 217-01737) | Apr-14 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 04-Apr-13 (No. 217-01735) | Apr-14 | | Reference 30 dB Attenuator | SN: S5129 (30b) | 04-Apr-13 (No. 217-01738) | Apr-14 | | Reference Probe ES3DV2 | SN: 3013 | 28-Dec-12 (No. ES3-3013_Dec12) | Dec-13 | | DAE4 | SN: 660 | 31-Jan-13 (No. DAE4-660_Jan13) | Jan-14 | | | | | | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | RF generator HP 8648C | US3642U01700 | 4-Aug-99 (in house check Apr-13) | In house check: Apr-15 | | Network Analyzer HP 8753E | US37390585 | 18-Oct-01 (in house check Oct-12) | In house check: Oct-13 | Calibrated by: Name Function Signature Claudio Loubler Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: June 4, 2013 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: EX3-3922_Jun13 Page 1 of 11 Page : 40 of 54 FCC ID : AK8UTXB03 Issued date : January 22, 2014 Revised date : January 24, 2014 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1.'duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters Polarization φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis #### Calibration is Performed According to the Following Standards: - IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - Techniques", December 2003 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. Certificate No: EX3-3922_Jun13 Page 2 of 11 4383-326
Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Page : 41 of 54 FCC ID : AK8UTXB03 Issued date : January 22, 2014 Revised date : January 24, 2014 EX3DV4 - SN:3922 June 4, 2013 # Probe EX3DV4 SN:3922 Manufactured: Calibrated: March 8, 2013 June 4, 2013 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) Certificate No: EX3-3922_Jun13 Page 3 of 11 : 42 of 54 Page FCC ID : AK8UTXB03 Issued date : January 22, 2014 Revised date : January 24, 2014 EX3DV4-SN:3922 June 4, 2013 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3922 ### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--------------------------|----------|----------|----------|-----------| | Norm $(\mu V/(V/m)^2)^A$ | 0.37 | 0.45 | 0.50 | ± 10.1 % | | DCP (mV) ^B | 100.1 | 104.1 | 102.3 | | #### **Modulation Calibration Parameters** | UID | Communication System Name | | Α | В | С | D | VR | Unc | |-----|---------------------------|---|-----|-------|-----|------|-------|--------| | | | | dB | dB√μV | | dB | mV | (k=2) | | 0 | CW | X | 0.0 | 0.0 | 1.0 | 0.00 | 190.5 | ±2.7 % | | | | Y | 0.0 | 0.0 | 1.0 | | 162.6 | | | | | Z | 0.0 | 0.0 | 1.0 | | 167.7 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). Numerical linearization parameter: uncertainty not required. Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the Page : 43 of 54 : AK8UTXB03 FCC ID Issued date : January 22, 2014 Revised date : January 24, 2014 EX3DV4-SN:3922 June 4, 2013 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3922 ### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha | Depth
(mm) | Unct.
(k=2) | |----------------------|----------------------------|-------------------------|---------|---------|---------|-------|---------------|----------------| | 300 | 45.3 | 0.87 | 12.42 | 12.42 | 12.42 | 0.21 | 0.76 | ± 13.4 % | | 450 | 43.5 | 0.87 | 10.99 | 10.99 | 10.99 | 0.15 | 1.20 | ± 13.4 % | | 650 | 42.5 | 0.89 | 10.88 | 10.88 | 10.88 | 0.11 | 1.00 | ± 13.4 % | | 750 | 41.9 | 0.89 | 10.54 | 10.54 | 10.54 | 0.43 | 0.88 | ± 12.0 % | | 835 | 41.5 | 0.90 | 9.94 | 9.94 | 9.94 | 0.50 | 0.78 | ± 12.0 % | | 900 | 41.5 | 0.97 | 9.82 | 9.82 | 9.82 | 0.48 | 0.82 | ± 12.0 % | | 1450 | 40.5 | 1.20 | 8.50 | 8.50 | 8.50 | 0.21 | 1.22 | ± 12.0 % | | 1640 | 40.3 | 1.29 | 8.46 | 8.46 | 8.46 | 0.65 | 0.60 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 8.27 | 8.27 | 8.27 | 0.20 | 1.12 | ± 12.0 % | | 1810 | 40.0 | 1.40 | 8.07 | 8.07 | 8.07 | 0.53 | 0.68 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 8.04 | 8.04 | 8.04 | 0.51 | 0.70 | ± 12.0 % | | 1950 | 40.0 | 1.40 | 7.78 | 7.78 | 7.78 | 0.26 | 1.00 | ± 12.0 % | | 2000 | 40.0 | 1.40 | 7.98 | 7.98 | 7.98 | 0.48 | 0.73 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 7.25 | 7.25 | 7.25 | 0.37 | 0.78 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 7.11 | 7.11 | 7.11 | 0.30 | 0.91 | ± 12.0 % | | 5200 | 36.0 | 4.66 | 5.14 | 5.14 | 5.14 | 0.33 | 1.80 | ± 13.1 % | | 5300 | 35.9 | 4.76 | 4.89 | 4.89 | 4.89 | 0.35 | 1.80 | ± 13.1 % | | 5500 | 35.6 | 4.96 | 4.69 | 4.69 | 4.69 | 0.40 | 1.80 | ± 13.1 % | | 5600 | 35.5 | 5.07 | 4.44 | 4.44 | 4.44 | 0.42 | 1.80 | ± 13.1 % | | 5800 | 35.3 | 5.27 | 4.37 | 4.37 | 4.37 | 0.45 | 1.80 | ± 13.1 % | Certificate No: EX3-3922_Jun13 ^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. : 44 of 54 Page FCC ID : AK8UTXB03 Issued date : January 22, 2014 Revised date : January 24, 2014 EX3DV4-SN:3922 June 4, 2013 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3922 ### Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha | Depth
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|-------------------------|---------|---------|---------|-------|---------------|----------------| | 300 | 58.2 | 0.92 | 12.30 | 12.30 | 12.30 | 0.18 | 1.16 | ± 13.4 % | | 450 | 56.7 | 0.94 | 11.91 | 11.91 | 11.91 | 0.05 | 1.20 | ± 13.4 % | | 650 | 55.9 | 0.96 | 11.06 | 11.06 | 11.06 | 0.02 | 1.10 | ± 13.4 % | | 750 | 55.5 | 0.96 | 10.31 | 10.31 | 10.31 | 0.34 | 0.97 | ± 12.0 % | | 835 | 55.2 | 0.97 | 10.16 | 10.16 | 10.16 | 0.36 | 0.93 | ± 12.0 % | | 900 | 55.0 | 1.05 | 10.02 | 10.02 | 10.02 | 0.65 | 0.67 | ± 12.0 % | | 1450 | 54.0 | 1.30 | 8.89 | 8.89 | 8.89 | 0.61 | 0.66 | ± 12.0 % | | 1640 | 53.8 | 1.40 | 8.80 | 8.80 | 8.80 | 0.56 | 0.66 | ± 12.0 % | | 1750 | 53.4 | 1.49 | 8.04 | 8.04 | 8.04 | 0.44 | 0.79 | ± 12.0 % | | 1810 | 53.3 | 1.52 | 7.94 | 7.94 | 7.94 | 0.25 | 1.11 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 7.76 | 7.76 | 7.76 | 0.26 | 1.06 | ± 12.0 % | | 1950 | 53.3 | 1.52 | 7.98 | 7.98 | 7.98 | 0.36 | 0.86 | ± 12.0 % | | 2000 | 53.3 | 1.52 | 7.91 | 7.91 | 7.91 | 0.30 | 0.94 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 7.37 | 7.37 | 7.37 | 0.80 | 0.53 | ± 12.0 % | | 2600 | 52.5 | 2.16 | 7.04 | 7.04 | 7.04 | 0.80 | 0.50 | ± 12.0 % | | 5200 | 49.0 | 5.30 | 4.28 | 4.28 | 4.28 | 0.45 | 1.90 | ± 13.1 % | | 5300 | 48.9 | 5.42 | 4.16 | 4.16 | 4.16 | 0.45 | 1.90 | ± 13.1 % | | 5500 | 48.6 | 5.65 | 3.93 | 3.93 | 3.93 | 0.45 | 1.90 | ± 13.1 % | | 5600 | 48.5 | 5.77 | 3.74 | 3.74 | 3.74 | 0.45 | 1.90 | ± 13.1 % | | 5800 | 48.2 | €.00 | 3.92 | 3.92 | 3.92 | 0.50 | 1.90 | ± 13.1 % | Certificate No: EX3-3922_Jun13 $^{^{\}rm G}$ Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the CorvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. The At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the CorvF uncertainty for indicated target tissue parameters. : 45 of 54 Page : AK8UTXB03 FCC ID **Issued date** : January 22, 2014 Revised date : January 24, 2014 EX3DV4-SN:3922 June 4, 2013 # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) Certificate No: EX3-3922_Jun13 Page 7 of 11 Page : 46 of 54 FCC ID : AK8UTXB03 Issued date : January 22, 2014 Revised date : January 24, 2014 EX3DV4-SN:3922 June 4, 2013 # Receiving Pattern (\$\phi\$), \$\text{9} = 0° f=1800 MHz,R22 Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) Page : 47 of 54 FCC ID : AK8UTXB03 Issued date : January 22, 2014 Revised date : January 24, 2014 EX3DV4-SN:3922 June 4, 2013 ## Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) Certificate No: EX3-3922_Jun13 Page 9 of 11 Page : 48 of 54 FCC ID : AK8UTXB03 Issued date : January 22, 2014 Revised date : January 24, 2014 EX3DV4- SN:3922 June 4, 2013 ## **Conversion Factor Assessment** # **Deviation from Isotropy in Liquid** Error (φ, θ), f = 900 MHz Certificate No: EX3-3922_Jun13 Page 10 of 11 Page : 49 of 54 FCC ID : AK8UTXB03 Issued date : January 22, 2014 Revised date : January 24, 2014 EX3DV4- SN:3922 June 4, 2013 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3922 #### Other Probe Parameters | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 79.8 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 2 mm | | | | Certificate No: EX3-3922_Jun13 Page 11 of 11