

TEST REPORT

REPORT NUMBER	:	ANKK-101475
APPLICANT	:	Sony Corporation
MODEL NUMBER	:	PCWA-C500
FCC ID	:	AK8PCWAC500
REGULATION	:	FCC Part15B Class B Canada ICES–003 Class B

Conducted Emission Test Radiated Emission Test

NVLAP accreditation is valid for FCC Part15 (Digital Devices), CISPR22 and AS/NZS 3548. NVLAP accreditation does not cover ICES-003.

Akzo Nobel K. K. EMC Division Kashima Site

1, Oaza Sunayama, Hasaki-machi, Kashima-gun Ibaraki-ken, 314–0255 Japan Tel.: +81 479 40 1097 Fax.: +81 479 46 1788

TABLE OF CONTENTS

	Page
ABBREVIAT	ONS
SECTION 1	TEST CERTIFICATION 4
SECTION 2	CONCLUSION
SECTION 3	EQUIPMENT UNDER TEST 6
SECTION 4	SUPPORT EQUIPMENT USED
SECTION 5	CABLE (S) USED
SECTION 6	CONSTRUCTION OF EQUIPMENT9
SECTION 7	OPERATING CONDITIONS 10
SECTION 8	TEST PROCEDURE(S) 11
SECTION 9	EVALUATION OF TEST RESULTS 16
SECTION 10.	PHOTOGRAPHS OF MAXIMUM EMISSION SET-UP 19
SECTION 11.	INSTRUMENTS USED FOR FINAL TEST 20
SECTION 12.	MEASUREMENT UNCERTAINTY 21
SECTION 13.	VALIDITY OF TEST REPORT
SECTION 14.	DESCRIPTION OF TEST LABORATORY 23

Page 3 of 23

ABBREVIATIONS

- LISN = Line Impedance Stabilization Network
- AMN = Artificial Mains Network
- ISN = Impedance Stabilization Network
- **CDN** = **Coupling Decoupling Network**
- ANT = Antenna
- BBA = Broadband Antenna
- DIP = Dipole Antenna
- AMP = Amplifier
- ATT = Attenuator
- EUT = Equipment Under Test
- AE = Associated Equipment
- Q–P = Quasi–peak
- AVG = Average

SECTION 1. TEST CERTIFICATION

APPLICANT INFORMATION				
Company	:	Sony Corporation		
Address	:	6-7-35, Kitashinagawa, Shinagawa-ku, Tokyo, 141-0001 Japan		
Telephone number	:	+81 3 5795 8712		
Fax number	:	+81 3 5795 8981		

DESCRIPTION OF TEST ITEM

Kind of equipment	:	Wireless LAN PC Card
Condition of equipment	:	Pre-Production
Туре	:	Tabletop
Trademark	:	SONY
FCC ID	:	AK8PCWAC500
Model number	:	PCWA-C500
Serial number	:	DVT#1001

TEST PERFORMED

Location	:	Kashima No. 3 Test Site (FCC File No. : 31040/SIT)
EUT received	:	December 12, 2001
Test started	:	December 12, 2001
Test completed	:	December 12, 2001
Purpose of test	:	FCC Docket 87–389
		and Canadian Interference Causing Equipment Regulations
Regulation	:	FCC Part15B Class B and Canada ICES-003 Class B
		Unintentional Radiators
Test setup	:	ANSI C63.4–1992

Report number :		ANKK-101475	
-----------------	--	-------------	--

Report issue date	: December 26, 2001
-------------------	---------------------

- **Test engineer** : Kazuhiro Ando
- Report approved by : Junichi Okada [Site Manager]

<u>K. Ando</u> Junichi Okada

SECTION 2. CONCLUSION

This test report clearly shows that the EUT is in compliance with the <u>FCC Part 15B Class B</u> and <u>Canada ICES-003 Class B</u> specification.

Traceability to national standards of test result is achieved by means of calibration traceability to national standards.

The minimum margins to the limits are as follows:

Conducted Voltages on Mains Port			
RX mode	10.2 dB	at	0.5272 MHz
Radiated Electric Field			
RX mode	4.8 dB	at	960.00 MHz

Note : See Section 9 for details.

SECTION 3. EQUIPMENT UNDER TEST

The equipment under test (EUT) consisted of the following equipment. Indication in the following left side column corresponds to Section 6.

Symbol Item	Model No.	Serial No.	FCC ID / DoC	Manufacturer	Remarks
A) Wireless LAN PC Card	PCWA-C500	DVT#1001	AK8PCWAC500	Sony Corporation	

Power ratings of EUT: DC 3.3V, Max. 560mW

DoC : Device for Declaration of Conformity

3.1 Port(s)/Connector(s) :

Port name	Connector type	Connector pin	Remarks
Card Bus Port	PC Card Card Bus	68 pin	

3.2 Oscillator(s)/Crystal(s) :

32 MHz 40 MHz IFX-186	
32 MHz IFX-186	
4.144 GHz IFX-186	
5.18-5.32 GHz IFX-186 Highest frequence	cy

SECTION 4. SUPPORT EQUIPMENT USED

Symbol Item	Model No.	Serial No.	FCC ID / DoC	Manufacturer Remarks
B) Computer	PVC-MXS20	10000060	DoC	Sony Corporation
C) CRT Display	CPD-G200	2700815	DoC	Sony Corporation
D) Keyboard	PCVA-KB2P/JC	100000058	DoC	Sony Corporation
E) Mouse	1-796-183-31	100000060	DoC	Sony Corporation
F) Serial Mouse	M-CAB48A	LZA12104734	DoC	Logitech
G) Printer	P12PB	0E11397879	BKM9A8P12PB	EPSON

The EUT was supported by the following equipment during the test. Indication in the following left side column corresponds to Section 6.

DoC : Device was tested and authorized under a Declaration of Conformity to the applicable FCC rules.

SECTION 5. CABLE (S) USED

The following cable(s) was used for the test. Indication number in the following left side column corresponds to Section 6.

Number Name	Length	Shield	Connector	Core
1) Video cable	1.70 m	Yes	Metal	Fixed ×1
2) Keyboard cable	1.80	Yes	Metal	
3) Mouse cable	1.80 m	Yes	Metal	
4) Serial Mouse cable	1.80 m	Yes	Metal	
5) Centronics cable	2.40 m	Yes	Metal	
6) Power cable for Computer	1.80 m	None		
7) Power cable for CRT Display	2.40 m	None		
8) Power cable for Printer	1.90 m	None		

SECTION 6. CONSTRUCTION OF EQUIPMENT

The construction of EUT during the test was as follows.

System configuration

Symbols or numbers assigned to equipment or cables on this diagram are corresponded to the symbols or numbers assigned to equipment or cables on tables in Sections 3 to 5.

SECTION 7. OPERATING CONDITIONS

The EUT was operated under the following conditions during the test.

7.1 Operating condition

The test was carried out under RX mode. EUT was examined in the operating conditions that had maximum emissions.

7.2 Operating flow [RX mode]

Following operations were performed continuously.

EUT is on RX mode (5.32 GHz)

Printer prints "H" characters

CRT Display displays "H" characters

Serial Mouse is on Standby mode

SECTION 8. TEST PROCEDURE(S)

Test was carried out under the following conditions. Test was carried out with no deviations from standards and test methods.

Subject	Test procedure	Scanned frequency
Conducted Voltages on Mains Port	Akzo Nobel Document number : 03–10–004	0.45 – 30 MHz
Radiated Electric Field	Akzo Nobel Document number : 03–10–003	30 – 27000 MHz

Schema for the conducted voltages on mains port measurement

Schema for the radiated electric field measurement

Summary ;

8.1 Conducted Voltages on Mains Port

- 8.1.1 Equipment Setup System configuration and Equipment setup are shown on Section 6 and Section 10.
- 8.1.1.1 Tabletop Equipment EUT is placed on the wooden table, the top of which is 0.8meter above the metal ground plane.
- 8.1.1.2 Interconnecting Cables Excess part of the interconnecting cables longer than 1 meter are bundled in the center. Cables that hang closer than 40 cm to the ground plane is folded back and forth forming bundle 30 to 40 cm long, hanging approx, in the middle between ground plane and table.

8.1.1.3 AC Power Cable

AC power cable for EUT is connected to one LISN which is placed on the ground plane. The LISN is placed in 80 cm from the nearest part of EUT chassis. The excess power cable is bundled in the center, or shortened to appropriate length. AC cables except from the EUT are connected second LISN.

8.1.1.4 Companion Equipment Equipments which are not participate in compliance test, however which are indispensable for operation of equipment under test (such as companion facsimile) are placed in the room under the ground plane or other secluded room.

8.1.2 Measuring Instruments

Measuring instruments list and their calibration schedule are shown on Section 11. The brief description are as follows;

8.1.2.1 Spectrum Analyzer

The Spectrum analyzer is used for preliminary measurement.

8.1.2.2 EMI Test Receiver

The Quasi-peak detector (IF bandwidth : 10 kHz) and average detector (IF bandwidth : 10 kHz) built in test receiver is used for final measurement. The test receiver is complied with the specification of the CISPR publication 16.

8.1.2.3 LISN

Two $50 \mu H/\!/50 \Omega$ LISN are used. The chassis of the LISN is bonded to the ground plane by the copper blade.

One LISN is connected to the EUT. Other LISN (2nd LISN) is connected to the support equipment. The signal output of the 2nd LISN is terminated with a 50Ω termination.

8.1.3 Test Procedure

8.1.3.1 Preliminary Measurement

EUT is tested on all operating conditions.

The spectrum analyzer is controlled by the computer program to sweep the frequency range to be measured, then spectrum chart are plotted out to find the worst emission conditions in operating mode and/or configuration decision for the final test.

All leads other than safety ground are tested.

8.1.3.2 Final Measurement

The EUT is operated in the worst emission condition found by the preliminary test. The equipment and cables are arranged or manipulated within the range of the test standard in the above condition.

At least six highest spectrum are measured in quasi-peak using the test receiver. When the value in the quasi-peak mode is higher than the limit in the standard, the measurement in the average mode is done to compare to the value in the quasi-peak mode. If the value in the quasi-peak mode exceeds the value in the average mode by more than 6 dB, the value reducing 13 dB from the value in the quasi-peak mode is used to compare to the limit.

8.2 Radiated Electric Field

- 8.2.1 Equipment Setup System configuration and Equipment setup are shown on Section 6 and Section 10.
- 8.2.1.1 Tabletop Equipment EUT is placed on the wooden table, the top of which is 0.8meter above the metal ground plane (turntable).
- 8.2.1.2 Interconnecting Cables

Excess part of the interconnecting cables longer than 1 meter are bundled in the center. Cables that hang closer than 40 cm to the ground plane is folded back and forth forming bundle 30 to 40 cm long, hanging approx, in the middle between ground plane and table.

8.2.1.3 Companion Equipment

Equipments which are not participate in compliance test, however which are indispensable for operation of equipment under test (such as companion facsimile) are placed in the room under the ground plane or other secluded room.

8.2.2 Measuring Instruments

Measuring instruments list and calibration schedule are shown on Section 11. The brief description are as follows;

8.2.2.1 Antennas

The broadband Tri–log antenna is used for measurement on the frequency range 30 - 1000 MHz.

The Double ridged guide antenna is used for frequency higher than 1000 MHz. If uncertain result was obtained, the broadband antenna is replaced by the half wave length dipole, then measurement is carried out over again.

8.2.2.2 Pre-amplifier

The broadband pre–amplifier is used for Radiated Electric Field measurement. The signal to noise ratio is improved by using pre–amplifier.

8.2.2.3 Spectrum Analyzer

The spectrum analyzer is used for preliminary measurement of frequency range 30 – 1000 MHz, and also used for final measurement of higher than 1000 MHz (Resolution bandwidth : 1 MHz).

8.2.2.4 EMI Test Receiver

The Quasi-peak detector (IF bandwidth : 120 kHz) built in test receiver is used for final measurement of the frequency 30 - 1000 MHz. The test receiver is complied with the specification of the CISPR publication 16.

8.2.2.5 Turntable

The turntable is capable for EUT weight and rotatable 0 to 360 degree horizontally by remote control in the test room.

8.2.2.6 Antenna Mast

The antenna mast is attachable to all antennas described on clause 8.2.2.1 and antenna height is adjustable 1 to 4 meters continuously by remote control at the test room, and antenna polarization is also changed by the remote control.

8.2.3 Test Procedure

8.2.3.1 Preliminary Measurement

EUT is tested on all operating conditions.

The spectrum analyzer is set max-hold mode and swept during turntable was rotated 0 to 360 degree. Then spectrum chart are plotted out to find the worst emission conditions in configuration, operating mode, or ambient noise notation.

8.2.3.2 Final Measurement

The EUT operated in the worst emission condition found by the preliminary test. The turntable azimuth (EUT direction) and antenna height are adjusted the position so that maximum field strength is obtained for each frequency spectrum to be measured. The equipment and cables are arranged or manipulated within the range of the test standard in the above condition.

When the uncertain result was obtained, the measurement is retried by using the half wave dipole antenna instead of the broadband antenna.

SECTION 9. EVALUATION OF TEST RESULTS

9.1 Conducted Voltages on Mains Port

Higher six points are underlined.
Other frequencies : Below the FCC Part15B Class B limit
Emisson Level = Read + Factor(LISN, Pad, Cable)

23.6

20.6

26.0

18.7

23.8

2<u>4.6</u>

2<u>6.9</u>

22.8

6.8

7.0

7.1

7.2

6.9

7.0

7.3

7.4

30.4

27.6

33.1

25.9

30.7

3<u>1.6</u>

3<u>4.2</u>

30.2

48.0

48.0

48.0

48.0

17.6

20.4

14.9

22.1

17.3

1<u>6.4</u>

1<u>3.8</u>

17.8

- -

7

8

9

10

5.0385

8.8465

14.6719

19.9635

Copyright (c) 1998- Akzo Nobel K. K.

9.2 Radiated Electric Field

Akzo Nobel Kashima No.3 Radiated Electric	K. K. Test Site Field	70_ 60_	0 X	: BBA : DIP							:	FCC	Part ⁻	158	CLASS	B(BBA)	
APPLICANT : EUT NAME : MODEL NO. : SERIAL NO. : TEST MODE :	SONY Corporation Wireless LAN PC Card PCWA-C500 DVT#1001 RX mode (5.32GHz)	50_												 			-
POWER SOURCE : DATE TESTED : FILE NO. : REGULATION : TEST METHOD : DISTANCE : TEMPERATURE :	DC 3.3V (Computer AC120V/60Hz) Dec 12 2001 ANKK-101475 FCC Part15B CLASS B ANSI C63.4:1992 3.0 [m] 21.0 [degC]	- 30_ - 30_ 	0	, P	о	0	р (þ	<u>Ş</u>		0						-
HUMIDITY :	40.0 [%]	10_															-
		0_ -10_															
ENGINEER :	Kazuhiro Ando	301	VI	TU	JUIVI	300	лvi	Free	Juen	ı icy [⊦	טנ lz]	1		10	G	4	UG

FR	EQUENCY	ANT.	READING		FACTOR		EMISSION		LIMIT	MARC	IN
110	[[11112]		Hori	Vert	Hori	Vert	Hori	Vert	[ubu v/m]	Hori	Vert
1	41.91	BBA		43.0	-8.5	-8.5		34.5	40.0		5.5
2	68.47	BBA	39.9		-9.1	-9.1	30.8		40.0	9.2	
3	83.79	BBA	-	44.7	-12.4	-12.4	-	32.3	40.0	-	7.7
4	108.93	BBA	45.1	44.0	-9.4	-9.4	35.7	34.6	43.5	7.8	8.9
5	242.99	BBA	41.6	-	-7.0	-7.0	34.6	-	46.0	11.4	-
6	331.94	BBA	38.3	-	-3.2	-3.2	35.1	-	46.0	10.9	-
7	497.91	BBA	-	37.0	0.0	0.0	-	37.0	46.0	-	9.0
8	560.00	BBA	-	35.4	1.3	1.3	-	36.7	46.0	-	9.3
9	661.64	BBA	-	32.8	3.4	3.4	-	36.2	46.0	-	9.8
10	760.53	BBA	-	31.0	5.8	5.8	-	36.8	46.0	-	9.2
11	800.00	BBA	31.8	31.1	5.4	5.4	37.2	36.5	46.0	8.8	9.5
12	800.56	BBA	-	3 <u>3.0</u>	5.4	5.4	-	3 <u>8.4</u>	46.0	-	<u>7.6</u>
13	840.58	BBA	-	3 <u>3.0</u>	6.8	6.8	-	<u>39.8</u>	46.0	-	<u>6.2</u>
14	933.57	BBA	-	29.3	8.6	8.6	-	37.9	46.0	-	8.1
15	960.00	BBA	28.3	3 <u>2.0</u>	9.2	9.2	37.5	4 <u>1</u> .2	46.0	8.5	4.8
16	1040.04	BBA	-	41.0	0.3	0.3	-	41.3	54.0	-	12.7
17	1161.82	BBA	39.6	-	0.6	0.6	40.2	-	54.0	13.8	-
18	1460.33	BBA	33.2	-	1.3	1.3	34.5	-	54.0	19.5	-
19	2239.96	BBA	-	29.9	5.3	5.3	-	35.2	54.0	-	18.8
20	8512.08	BBA	19.5	-	22.6	22.6	42.1	-	54.0	11.9	-

- - - -Higher six points are underlined. Other frequencies : Below the FCC Part15B CLASS B limit Emisson Level = Read + Factor(Antenna, Antenna Pad, Cable, Preamp)

ANT. : Used antenna(BBA = Broadband antenna, DIP = Dipole antenna)

emiT 1, 5, 0, 2

Copyright (c) 1998- Akzo Nobel K. K.

9.3 Sample Calculations

9.3.1 Conducted Voltages on Mains Port

Exampl	e @	0.5272	MHz
Launp		0.0~1~	111112

Emission Level	= +	Meter Reading Factor	+	31.3 6.5	dBuV dB
			=	37.8	dBuV
Margin	=	Limit Emission Loval		48.0 37 8	dBuV dBuV
	_	Emission Level	=	10.2	dB

Factor = LISN Factor + Cable Loss + Pad Loss

9.3.2 Radiated Electric Field

Examp	le	@	960.	.00	MHz
-------	----	---	------	-----	-----

Emission Level	= +	Meter Reading Factor	+	32.0 9.2	dBuV dB/m
			=	41.2	dBuV/m
Margin	=	Limit		46.0	dBuV/m
	_	Emission Level	-	41.2	dBuV/m
			=	4.8	dB

Factor = Antenna Factor + Cable Loss - Amplifier Gain + Pad Loss

SECTION 10. PHOTOGRAPHS OF MAXIMUM EMISSION SET-UP

10.1 Conducted Voltages on Mains Port

Test setup in accordance with ANSI C63.4–1992

Front view

Side view

10.2 Radiated Electric Field

Test setup in accordance with ANSI C63.4–1992

Front view

Rear view

Note: Maintaining 10cm spacing between all the equipment cabinets.

SECTION 11. INSTRUMENTS USED FOR FINAL TEST

Instrument	Model No.	Serial No.	Manufacturer	Last cal. date	Period
LISN (EUT)	ESH2-Z5	882395/022	ROHDE & SCHWARZ	Jul. 6, 01	1 Year
6dB Attenuator	CFA-01	None	ТМЕ	Oct. 9, 01	1 Year
LISN (Peripheral)	KNW-407	8-532-11	KYORITSU	Mar. 1, 01	1 Year
50 Ω Termination	CT-01	A030CON50	TME	Jun. 1, 01	1 Year
Coaxial cable	RG-5A/U(7.2 m)	C1	AKZO	Oct. 9, 01	1 Year
	RG-5A/U(4.0 m)	C2	AKZO	Oct. 9, 01	1 Year
	RG-5A/U(1.1 m)	R11	AKZO	Oct. 9, 01	1 Year
	RG-5A/U(1.0 m)	R12	AKZO	Oct. 9, 01	1 Year
Broad Band antenna	VULB9168	107	Schwarzbeck	Jul. 31, 01	1 Year
Double Ridged antenna	3115	5044	ЕМСО	Jul. 16, 01	1 Year
6dB Attenuator	MP721B	M56993	ANRITSU	Jul. 19, 01	1 Year
3dB Attenuator	6803.17.B	None	SUHNER	Mar. 18, 01	1 Year
Step Attenuator	8494B	2406A09036	HEWLETT PACKARD	Oct. 9, 01	1 Year
Spectrum Analyzer	8564E	3643A00665	HEWLETT PACKARD	Jul. 19, 01	1 Year
Amplifier	8447D	2727A05368	HEWLETT PACKARD	Oct. 9, 01	1 Year
	83051A	3332A00329	HEWLETT PACKARD	Aug. 21, 01	1 Year
Coaxial cable	RG-5A/U(12.3 m)	R1	AKZO	Oct. 9, 01	1 Year
	23D 4AF(10.0 m)	R2	AKZO	Oct. 9, 01	1 Year
	RG-5A/U(1.8 m)	R3	AKZO	Oct. 9, 01	1 Year
	RG-5A/U(0.2 m)	R9	AKZO	Oct. 9, 01	1 Year
	RG-5A/U(0.4 m)	R10	AKZO	Oct. 9, 01	1 Year
	RG-5A/U(1.1 m)	R11	AKZO	Oct. 9, 01	1 Year
	RG-5A/U(1.0 m)	R12	AKZO	Oct. 9, 01	1 Year
	SUCOFLEX 102(1.0 m)	R14 712/2	SUHNER	Mar. 18, 01	1 Year
	SUCOFLEX 102(5.0 m)	R15 713/2	SUHNER	Mar. 18, 01	1 Year
Test receiver	ESS	842886/011	ROHDE & SCHWARZ	Mar. 9, 01	1 Year
RF Switch	ACX-150	None	AKZO	Oct. 9, 01	1 Year
Site Attenuation				May 28, 01	1 Year

Note : Test instruments are calibrated according to Quality Manual and Calibration Rules of EMC division.

SECTION 12. MEASUREMENT UNCERTAINTY

The uncertainty of the measurements performed Radiated Electric Field at 3m 30 MHz – 1000 MHz	for this report lies: +/- 3.6 dB
Conducted Voltages on Mains Port 9 kHz – 30 MHz	+/- 1.8 dB
Note on Radiated Electric Field measurement un The following items are not included in the c uncertainty components because it is imprac It is our problem awaiting solution in future	ncertainty calculations in spite of their own cticable to find the value.
(1)Repeatability of measurement It is not possible to calculate repeatability out only one time.	y since the measurement was carried
(2)Antenna factor variation The definition of measured (radiated elect on the referred standard(s).	tric field strength) is not completed

(3)Loss of EUT radiation propagation It is certainly one of the uncertainty components, however is not able to calculate.

Please note that these uncertainties are not reflected to the compliance judgement of the test results in this report.

SECTION 13. VALIDITY OF TEST REPORT

- **13.1** The test result of this report is effective for equipment under test itself and under the test configuration described on the report.
- **13.2** This test report does not assure that whether the test result taken in other testing laboratory is compatible or reproducible to the test result on this report or not.
- 13.3 This test report shall not be reproduced except in full, without issuer's permission.

SECTION 14. DESCRIPTION OF TEST LABORATORY

14.1 Outline of Akzo Nobel K. K. (formerly Akzo Kashima Limited), EMC Division

Akzo Nobel K. K., the country organization in Japan for Akzo Nobel NV, was established in 1968. The shares are owned by Akzo Nobel NV (100%). Akzo Nobel NV, headquartered in the Netherlands, is one of the world's leading companies in selected areas of chemicals, coatings, healthcare products and fibers with work force of approximately 70,000 people in over 50 countries.

In 1984, in order to respond to the growing testing demand, in particular, for FCC filing, Akzo Nobel K. K. started EMI testing business, installing the first open air test site in Kashima, Ibaraki prefecture. Further the business has been expanded by installing additional testing facilities not only in Ibaraki but also in other areas such as Shizuoka, Nagano, Kanagawa and Tochigi. As results, Akzo Nobel K. K. has now 16 open air test sites and 4 anechoic chambers for EMI/EMC testing. As the largest EMC testing laboratory in number of testing facilities and staffs, EMC Division has been organized separately in the company and independently operated in conformity with the requirements of ISO Guide 25 (EN 45000) for its competency as a testing laboratory.

Akzo Nobel K. K. EMC Division is the first foreign private laboratory accredited by NVLAP, National Voluntary Laboratory Accreditation Program-NIST, USA. The division has been certified, authorized and/or filed as a competent testing laboratory by various testing organizations/authorities as described below.

14.2 Filing, certification, authorization and accreditation list

EMI/EMC te	<u>sting</u>	Telecommunications terminal testing				
FCC	(USA)	FCC	(USA)			
NVLAP	(USA)	NVLAP	(USA)			
NEMKO	(Norway)	NATA	(Australia)			
VCCI	(Japan)	IC	(Canada)			
ETL SEMKC	Japan (Sweden)					
TÜV PRODU	UCT SERVICE (Germany)					

Note 1 : NVLAP accreditation does not constitute any product endorsement by NVLAP or any agent of the U.S. Government.