RF Exposure / MPE Calculation

No.	$:$	12219844H-B
Applicant	$:$	Sony Interactive Entertainment Inc.
Type of Equipment	$:$	Wireless communication module
Model No.	$:$	AW-CB319
		*WLAN (2.4 GHz) and Bluetooth Low Energy parts
FCC ID	$:$	AK8M18DAQ1

Sony Interactive Entertainment Inc. declares that Model: AW-CB319 complies with FCC radiation exposure requirement specified in the FCC Rule 2.1091 (for mobile).

RF Exposure Calculations:

The following information provides the minimum separation distance for the highest gain antenna provided with the "AW-CB319" as calculated from (B) Limits for General Population / Uncontrolled Exposure of TABLE 1- LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE) of §1.1310 Radiofrequency radiation exposure limits.

[WLAN (2.4 GHz) part]

This calculation is based on the highest EIRP possible from the system, considering maximum power and antenna gain, and considering a $1 \mathrm{~mW} / \mathrm{cm}^{\wedge} 2$ uncontrolled exposure limit. The Friis formula used was:

```
        \(S=\frac{P \times G}{4 \times \pi \times r^{2}}\)
    \(P=\quad 12.80 \mathrm{~mW}\) (Maximum average output power)
    〕 Time average was used for the above value in consideration of 6-minutes time-averaging
        Burst power average was used for the above value in consideration of worst condition.
    \(G=\quad\) 7.261 Numerical Antenna gain; equal to 8.61 dBi
    \(r=\quad 20 \mathrm{~cm}\) (Separation distance)
```

 Power Density Result S \(=0.01849 \mathrm{~mW} / \mathrm{cm}^{2}\)

[Bluetooth Low Energy part]

This calculation is based on the highest EIRP possible from the system, considering maximum power and antenna gain, and considering a $1 \mathrm{~mW} / \mathrm{cm}^{\wedge} 2$ uncontrolled exposure limit. The Friis formula used was:

Where

$$
S=\frac{P \times G}{4 \times \pi \times r^{2}}
$$

$P=\quad 0.84 \mathrm{~mW}$ (Maximum average output power)
\square average was used for the above value in consideration of 6-minutes time-averaging power average was used for the above value in consideration of worst condition.
$G=\quad$ 5.012 Numerical Antenna gain; equal to 7.0 dBi
$r=\quad 20 \mathrm{~cm}$ (Separation distance)

Power Density Result $S=0.00084 \mathrm{~mW} / \mathrm{cm}^{2}$

Reference:

[Bluetooth part]
This calculation is based on the highest EIRP possible from the system, considering maximum power and antenna gain, and considering a $1 \mathrm{~mW} / \mathrm{cm}^{\wedge} 2$ uncontrolled exposure limit. The Friis formula used was:

Where

$$
S=\frac{P \times G}{4 \times \pi \times r^{2}}
$$

$P=\quad 1.08 \mathrm{~mW}$ (Maximum average output power)
\square Time average was used for the above value in consideration of 6-minutes time-averagingBurst power average was used for the above value in consideration of worst condition.
$G=$ 5.012 Numerical Antenna gain; equal to 7.0 dBi
$r=\quad 20 \mathrm{~cm}$ (Separation distance)

Power Density Result $S=0.00108 \mathrm{~mW} / \mathrm{cm}^{2}$

Reference:
 [WLAN (5 GHz) part]

This calculation is based on the highest EIRP possible from the system, considering maximum power and antenna gain, and considering a $1 \mathrm{~mW} / \mathrm{cm}^{\wedge} 2$ uncontrolled exposure limit. The Friis formula used was:

$P=\quad 15.13 \mathrm{~mW}$ (Maximum average output power)
$\begin{array}{cc}\text { Time average was used for the above value in consideration of 6-minutes time-averaging } \\ G & \text { Burst power average was used for the above value in consideration of worst condition. } \\ r= & 6.792 \text { Numerical Antenna gain; equal to } 8.32 \mathrm{dBi} \\ r & \quad 20 \mathrm{~cm} \text { (Separation distance) }\end{array}$

Power Density Result $S=0.02044 \mathbf{m W} / \mathrm{cm}^{2}$

Therefore, if WLAN 2.4 GHz and Bluetooth Low Energy transmit simultaneously, $\mathbf{S}=\mathbf{0 . 0 1 8 4 9} \mathbf{~ m W} / \mathrm{cm}^{2}+\mathbf{0 . 0 0 0 8 4} \mathbf{~ m W} / \mathrm{cm}^{2}$ $=0.01933 \mathrm{~mW} / \mathrm{cm}^{2}$

Therefore, if WLAN 2.4 GHz and Bluetooth transmit simultaneously, $\mathrm{S}=0.01849 \mathrm{~mW} / \mathrm{cm}^{2}+0.00108 \mathrm{~mW} / \mathrm{cm}^{2}$ $=0.01957 \mathrm{~mW} / \mathrm{cm}^{2}$

Therefore, if Bluetooth Low Energy and WLAN 5GHz transmit simultaneously, $\mathrm{S}=\mathbf{0 . 0 0 0 8 4 \mathrm { mW } / \mathrm { cm } ^ { 2 } + 0 . 0 2 0 4 4 \mathrm { mW } / \mathrm { cm } ^ { 2 }}$ $=0.02128 \mathrm{~mW} / \mathrm{cm}^{2}$

Even taking into account the tolerance, this device can be satisfied with the limits.

