

RF Exposure / MPE Calculation

No.	:	11240438H
Applicant	:	Sony Interactive Entertainment Inc.
Type of Equipment	:	Wireless communication module
Model No.	:	AW-CB262
		*WLAN (5GHz) part
FCC ID	:	AK8M16DAM2

Sony Interactive Entertainment Inc. declares that Model: AW-CB262 complies with FCC radiation exposure requirement specified in the FCC Rule 2.1091 (for mobile).

RF Exposure Calculations:

The following information provides the minimum separation distance for the highest gain antenna provided with the “AW-CB262“ as calculated from (B) Limits for General Population / Uncontrolled Exposure of TABLE 1- LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE) of §1.1310 Radiofrequency radiation exposure limits.

[WLAN (5 GHz) part]

This calculation is based on the highest EIRP possible from the system, considering maximum power and antenna gain, and considering a 1mW/cm² uncontrolled exposure limit. The Friis formula used was:

$$S = \frac{P \times G}{4 \times \pi \times r^2}$$

Where

P = 16.50 mW (Maximum average output power)

Time average was used for the above value in consideration of 6-minutes time-averaging
 Burst power average was used for the above value in consideration of worst condition.

G = 5.358 Numerical Antenna gain; equal to 7.29dBi

r = 20 cm (Separation distance)

Power Density Result $S = 0.01759 \text{ mW/cm}^2$

UL Japan, Inc.

Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone : +81 596 24 8999

Facsimile : +81 596 24 8124

Reference:

[Bluetooth part]

This calculation is based on the highest EIRP possible from the system, considering maximum power and antenna gain, and considering a 1mW/cm² uncontrolled exposure limit. The Friis formula used was:

$$S = \frac{P \times G}{4 \times \pi \times r^2}$$

Where

P = 1.42 mW (Maximum average output power)

Time average was used for the above value in consideration of 6-minutes time-averaging

Burst power average was used for the above value in consideration of worst condition.

G = 4.365 Numerical Antenna gain; equal to 6.4 dBi

r = 20 cm (Separation distance)

Power Density Result $S = 0.00123 \text{ mW/cm}^2$

Reference:

[Bluetooth Low Energy part]

This calculation is based on the highest EIRP possible from the system, considering maximum power and antenna gain, and considering a 1mW/cm² uncontrolled exposure limit. The Friis formula used was:

$$S = \frac{P \times G}{4 \times \pi \times r^2}$$

Where

P = 0.97 mW (Maximum average output power)

Time average was used for the above value in consideration of 6-minutes time-averaging

Burst power average was used for the above value in consideration of worst condition.

G = 4.365 Numerical Antenna gain; equal to 6.4dBi

r = 20 cm (Separation distance)

Power Density Result $S = 0.00084 \text{ mW/cm}^2$

Therefore, if WLAN 5GHz and Bluetooth transmit simultaneously,

$S = 0.01759 \text{ mW/cm}^2 + 0.00123 \text{ mW/cm}^2$

$= 0.01882 \text{ mW/cm}^2$

Therefore, if Bluetooth Low Energy and WLAN 5GHz transmit simultaneously,

$S = 0.00084 \text{ mW/cm}^2 + 0.01759 \text{ mW/cm}^2$

$= 0.01843 \text{ mW/cm}^2$

Even taking into account the tolerance, this device can be satisfied with the limits.

UL Japan, Inc.

Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone : +81 596 24 8999

Facsimile : +81 596 24 8124