

: 14420105H-E-R2 : 1 of 86

SAR TEST REPORT

Test Report No.: 14420105H-E-R2

Customer	Sony Group Corporation
Description of EUT	Digital Wireless Transmitter
Model Number of EUT	DWT-P30
FCC ID	AK8DWTP30
Test Regulation	FCC47CFR 2.1093
Test Result	Complied (Refer to SECTION 4)
Issue Date	November 18, 2022
Remarks	The highest reported SAR (1 g) Standalone Tx (Body-worn) : 0.69 W/kg Simultaneous Tx (Body-worn) : 1.09 W/kg

Representative Test Engineer	Approved By
H. Sito	Tahayuki . L
Hisayoshi Sato Engineer	Takayuki Shimada Leader ACCREDITED
	CERTIFICATE 5107.02
The testing in which "Non-accreditation" is displayed is ou	itside the accreditation scopes in UL Japan, Inc.
There is no testing item of "Non-accreditation".	

Report Cover Page - Form-ULID-003532 (DCS:13-EM-F0429) Issue# 21.0

Test report No. : 14420105H-E-R2 Page : 2 of 86

ANNOUNCEMENT

- This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- The results in this report apply only to the sample tested.
- This sample tested is in compliance with the limits of the above regulation.
- The test results in this test report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- This test report covers SAR technical requirements. It does not cover administrative issues such as Manual or non-SAR test related Requirements. (if applicable)
- The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan, Inc. has been accredited.
- The information provided from the customer for this report is identified in Section 1.
- For test report(s) referred in this report, the latest version (including any revisions) is always referred.

REVISION HISTORY

Original Test Report No.: 14420105H-E

This report is a revised version of 14420105H-E-R1. 14420105H-E-R1 is replaced with this report.

[1/2]

Revision	Test report No.	Date	Page Revised Contents
- (Original)	14420105H-E	October 3, 2022	-
1	14420105H-E-R1	November 14, 2022	Cover page, Section 4.2: Stand-alone SAR result, Section 4.3: Simultaneous transmission SAR result Correction of SAR Value.
			-Cover page: Standalone Tx (Body-worn) 0.74 W/kg→ 0.69 W/kg Simultaneous Tx (Body-worn) 1.14 W/kg→1.09 W/kg -Section 4.2: Standalone Tx 0.738 W/kg→0.694 W/kg -Section 4.3: Simultaneous Tx 1.138 W/kg→1.094 W/kg
1	14420105H-E-R1	November 14, 2022	Section 5: Tune-up tolerance information and software information Correction of Maximum tune-up tolerance limit for 470.125 to 607.875 MHz. 14.39 dBm→14.12 dBm 27.50 mW→25.85 mW
1	14420105H-E-R1	November 14, 2022	Section 6.2: SAR test exclusion considerations according to KDB 447498 D01 Correction of Output Power for 607.875 MHz in table. 14.39 dBm→14.12 dBm 27 mW→26 mW

: 14420105H-E-R2 : 3 of 86 Test report No. Page

[2/2]

Revision	Test report No.	Date	Page Revised Contents
1	14420105H-E-R1	November 14, 2022	Section 8.1: Output Power and SAR test required
			Correction of Tune-up upper Power.
			Section 12.1: Massured and Deported (Seeled) SAD Depute
			Section 12.1: Measured and Reported (Scaled) SAR Results
			Correction of Tune-up upper Power and Reported SAR Value.
			value.
			Tune-up upper Power:
			470.125 MHz: 14.39 dBm→14.12 dBm
			539.000 MHz :14.39 dBm→14.12 dBm
			607.875 MHz :14.39 dBm→14.12 dBm
			Reported SAR Value:
			Listed in order from the top row of the table to the bottom
			row.
			0.042 -> 0.039
			0.065→0.061
			0.076→0.072
			0.069→0.065
			0.738→0.694
			0.306→0.287
			$0.241 \rightarrow 0.226$
			0.015 0.014
			0.135 \rightarrow 0.127
			0.134 \rightarrow 0.126
1	14420105H E D1	N	0.046 → 0.043
1	14420105H-E-R1	November 14, 2022	Section 13: Simultaneous Transmission SAR Analysis
			Correction of SAR Value for Radio microphone.
			SAR Value for Radio microphone:
			Listed in order from the top row of the table to the bottom
			row.
			$0.042 \rightarrow 0.039$
			0.065 \rightarrow 0.061
			0.076 → 0.072
			0.069 \rightarrow 0.065
			$0.738 \rightarrow 0.694$ $0.015 \rightarrow 0.014$
			$0.013 \rightarrow 0.014$ $0.135 \rightarrow 0.127$
			$0.133 \rightarrow 0.127$ $0.134 \rightarrow 0.126$
			$0.046 \rightarrow 0.043$
2	14420105H-E-R2	November 18, 2022	APPENDIX 4: Photographs of test setup
			Addition of below explanatory note.
			*The model printing of the EUT is different from the
			application model since this EUT is an engineering
			prototype.
			This difference has no effect on the Radio specification.

Test report No. : 14420105H-E-R2 Page : 4 of 86

Reference: Abbreviations (Including words undescribed in this report)

AAN	Asymmetric Artificial Network	GPS	Global Pagitianing System
			Global Positioning System
AC AM	Alternating Current	Hori. ICES	Horizontal
	Amplitude Modulation		Interference-Causing Equipment Standard
AMN	Artificial Mains Network	I/O	Input/Output
Amp, AMP	Amplifier	IEC	International Electrotechnical Commission
ANSI	American National Standards Institute	IEEE	Institute of Electrical and Electronics Engineers
Ant, ANT	Antenna	IF	Intermediate Frequency
AP	Access Point	ILAC	International Laboratory Accreditation Conference
ASK	Amplitude Shift Keying	ISED	Innovation, Science and Economic Development Canada
Atten., ATT	Attenuator	ISN	Impedance Stabilization Network
AV	Average	ISO	International Organization for Standardization
BPSK	Binary Phase-Shift Keying	JAB	Japan Accreditation Board
BR	Bluetooth Basic Rate	LAN	Local Area Network
BT	Bluetooth	LCL	Longitudinal Conversion Loss
BT LE	Bluetooth Low Energy	LIMS	Laboratory Information Management System
BW	BandWidth	LISN	Line Impedance Stabilization Network
C.F	Correction Factor	MRA	Mutual Recognition Arrangement
Cal Int	Calibration Interval	N/A	Not Applicable
CAV	CISPR AV	NIST	National Institute of Standards and Technology
CCK	Complementary Code Keying	NS	No signal detect.
CDN	Coupling Decoupling Network	NSA	Normalized Site Attenuation
Ch., CH	Channel	OBW	Occupied BandWidth
CISPR	Comite International Special des Perturbations Radioelectriques	OFDM	Orthogonal Frequency Division Multiplexing
Corr.	Correction	PER	Packet Error Rate
CPE	Customer premise equipment	PK	Peak
CW	Continuous Wave	P_{LT}	long-term flicker severity
DBPSK	Differential BPSK	POHC(A)	Partial Odd Harmonic Current
DC	Direct Current	Pol., Pola.	Polarization
DET	Detector	PR-ASK	Phase Reversal ASK
D-factor	Distance factor	P_{ST}	short-term flicker severity
Dmax	maximum absolute voltage change during an observation period	QAM	Quadrature Amplitude Modulation
DQPSK	Differential QPSK	OP	Quasi-Peak
DSSS	Direct Sequence Spread Spectrum	OPSK	Quadrature Phase Shift Keying
DUT	Device Under Test	r.m.s., RMS	Root Mean Square
EDR	Enhanced Data Rate	RBW	Resolution BandWidth
e.i.r.p., EIRP	Equivalent Isotropically Radiated Power	RE	Radio Equipment
EM clamp	Electromagnetic clamp	REV	Reverse
EMC	ElectroMagnetic Compatibility	RF	Radio Frequency
EMI	ElectroMagnetic Interference	RFID	Radio Frequency Identifier
EMS	ElectroMagnetic Susceptibility	RNSS	Radio Navigation Satellite Service
EN	European Norm	RSS	Radio Standards Specifications
e.r.p., ERP	Effective Radiated Power	Rx	
1 /			Receiving Ratio of (Signal + Noise + Distortion) to (Noise + Distortion)
ETSI	European Telecommunications Standards Institute	SINAD	, , ,
EUT	European Union	S/N	Signal to Noise ratio
EUT	Equipment Under Test	SA, S/A	Spectrum Analyzer
Fac.	Factor	SG	Signal Generator
FCC	Federal Communications Commission	SVSWR	Site-Voltage Standing Wave Ratio
FHSS	Frequency Hopping Spread Spectrum	THC(A)	Total Harmonic Current
FM	Frequency Modulation	THD(%)	Total Harmonic Distortion
Freq.	Frequency	TR, T/R	Test Receiver
FSK	Frequency Shift Keying	Tx	Transmitting
Fund	Fundamental	VBW	Video BandWidth
FWD	Forward	Vert.	Vertical
GFSK	Gaussian Frequency-Shift Keying	WLAN	Wireless LAN
GNSS	Global Navigation Satellite System	xDSL	Generic term for all types of DSL technology
			(DSL: Digital Subscriber Line)

CONTENTS	PAG
SECTION 1: Customer information	6
SECTION 2: Equipment under test (EUT)	
2.1 Identification of EUT	
2.2 Product Description.	
SECTION 3: Test standard information	
3.1 Test Specification	
3.2 Procedure	
3.3 Additions or deviations to standard	
3.4 Exposure limit	
3.5 SAR	
3.6 Test Location.	9
SECTION 4: Test result	10
4.1 Result	
4.2 Stand-alone SAR result	10
4.3 Simultaneous transmission SAR result	10
SECTION 5: Tune-up tolerance information and software information	11
SECTION 6: RF Exposure Conditions (Test Configurations)	12
6.1 Summary of the distance between antenna and surface of EUT	12
6.2 SAR test exclusion considerations according to KDB 447498 D01	
6.3 Estimated SAR for Simultaneous Transmission SAR Analysis	14
SECTION 7: Description of the Body setup	15
7.1 Procedure for SAR test position determination	15
7.2 Test position for Body setup	
SECTION 8: Description of the operating mode	16
8.1 Output Power and SAR test required	16
SECTION 9: Test surrounding	17
9.1 Measurement uncertainty	17
SECTION 10: Parameter Check	18
10.1 For SAR system check	18
10.2 For SAR measurement	18
SECTION 11: System Check confirmation	19
SECTION 12: Measured and Reported (Scaled) SAR Results	20
12.1 Result of Body SAR	21
12.2 Repeated measurement	21
SECTION 13: Simultaneous Transmission SAR Analysis	22
SECTION 14: Test instruments	23
APPENDIX 1: System Check	
APPENDIX 2: SAR Measurement data	
APPENDIX 3: System specifications	
APPENDIX 4: Photographs of test setup	

Test report No. : 14420105H-E-R2 Page : 6 of 86

SECTION 1: Customer information

Company Name	Sony Group Corporation
Address	8-4, Shiomi Kisarazu-shi, Chiba, 292-0834 Japan.
Telephone Number	+81-438-37-4704
Contact Person	Youhei Hisano

*Remarks

Sony Global Manufacturing & Operations Corporation (Subsidiary Company Name) is on behalf of the applicant: Sony Group Corporation.

The information provided from the customer is as follows;

- Customer, Description of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer Information
- SECTION 2: Equipment Under Test (EUT) other than the Receipt Date and Test Date
- SECTION 5: Tune-up tolerance information and software information
- * The laboratory is exempted from liability of any test results affected from the above information in SECTION 2 and 5.

SECTION 2: Equipment under test (EUT)

2.1 Identification of EUT

Description	Digital Wireless Transmitter
Model Number	DWT-P30
Serial Number	910010
Condition	Engineering prototype
	(Not for Sale: This sample is equivalent to mass-produced items.)
Modification	No Modification by the test lab
Receipt Date	July 24, 2022
Test Date	August 3 and 4, 2022

Test report No. : 14420105H-E-R2 Page : 7 of 86

2.2 Product Description

General Specification

Rating	DC 3.0 V (Battery (2 x AA Batteries)), DC 5.0 V (USB)
Option battery	N/A
Body-worn accessory	N/A

Radio Specification

< Radio microphone part>

< Kadio inicrophone part>	
Radio type	Transmitter
Modulation type	$\pi/4$ shift QPSK
Emission designator	192KG1D, 192KG1E
Necessary bandwidth	192 kHz, Manufacturer defined
Channel spacing	25 kHz
Frequency of operation	470.125 MHz to 607.875 MHz, 614.125 MHz to 615.875 MHz
RF power	470.125 MHz to 607.875 MHz: 25 mW, 10 mW, 2 mW
	614.125 MHz to 615.875 MHz: 10 mW, 2 mW
Antenna gain	2.8 dBi max
AF Specification	20 Hz - 22000 Hz, Maximum input: -22 dBu (MIC level, ATT 0 dB)
Operating temperature	0 deg. C to 50 deg. C

<RF remote part>

Ar Temote part	
Radio Type	Transceiver
Modulation type	DSSS
Frequency of Operation	2405 MHz to 2475 MHz
Channel spacing	5 MHz
Method of frequency generation	Synthesizer
Antenna Gain	-3.0 dBi max
Operating temperature	0 deg. C to 50 deg. C

Test report No. : 14420105H-E-R2 Page : 8 of 86

SECTION 3: Test standard information

3.1 Test Specification

Title : FCC47CFR 2.1093

Radiofrequency radiation exposure evaluation: portable devices.

Published RF exposure KDB procedures

☑ KDB 447498 D01(v06)	RF Exposure Procedures and Equipment Authorization Policies for Mobile and Portable Devices
☐ KDB 447498 D02(v02r01)	SAR Measurement Procedures for USB Dongle Transmitters
☐ KDB 648474 D04(v01r03)	SAR Evaluation Considerations for Wireless Handsets
☐ KDB 941225 D01(v03r01)	3G SAR Measurement Procedures
☐ KDB 941225 D05(v02r05)	SAR Evaluation Considerations for LTE Devices
☐ KDB 941225 D06(v02r01)	SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities (Hot Spot SAR)
☐ KDB 941225 D07(v01r02)	SAR Evaluation Procedures for UMPC Mini-Tablet Devices
☐ KDB 616217 D04(v01r02)	SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers
☑ KDB 865664 D01(v01r04)	SAR Measurement Requirements for 100 MHz to 6 GHz
☐ KDB 248227 D01(v02r02)	SAR Guidance for 802.11(Wi-Fi) Transmitters

Reference

- [1] SPEAG uncertainty document
- [2] IEEE Std 1528-2013
- [3] IEC 62209-2:2010 + AMD1:2019 CS

3.2 Procedure

Transmitter Radio microphone and RF remote						
Test Procedure	Published RF exposure KDB procedures					
Category	SAR					
Note: UL Japan, Inc.'s SAR Work Procedures: Work Instructions-ULID-003598 and Work Instructions-ULID-						
003599						

3.3 Additions or deviations to standard

Other than above, no addition, exclusion nor deviation has been made from the standard.

Test report No. : 14420105H-E-R2 Page : 9 of 86

3.4 Exposure limit

(A) Limits for Occupational/Controlled Exposure (W/kg)

	Spatial Average	Spatial Peak	Spatial Peak		
	(averaged over the whole body)	(averaged over any 1 g of tissue)	(hands/wrists/feet/ankles averaged over 10 g)		
ı	0.4	8.0	20.0		

(B) Limits for General population/Uncontrolled Exposure (W/kg)

(B) Ellinis for General population	oneona en Exposure (117 kg)			
Spatial Average	Spatial Peak	Spatial Peak		
(averaged over the whole body	(averaged over any 1 g of tissue)	(hands/wrists/feet/ankles averaged over 10		
0.08	1.6	4.0		

Occupational/Controlled Environments: are defined as locations where there is exposure

that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

General Population/Uncontrolled Environments: are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

NOTE:GENERAL POPULATION/UNCONTROLLED EXPOSURE SPATIAL PEAK(averaged over any 1 g of tissue) LIMIT 1.6 W/kg

3.5 <u>SAR</u>

Specific Absorption Rate (SAR): The time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ), as shown in the following equation:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dV} \right)$$

SAR is expressed in units of watts per kilogram (W/kg) or equivalently milliwatts per gram (mW/g).

SAR is related to the E-field at a point by the following equation:

$$SAR = \frac{\sigma |E|^2}{\rho}$$

where

 σ = conductivity of the tissue (S/m)

 ρ = mass density of the tissue (kg/m3)

E = rms E-field strength (V/m)

3.6 Test Location

UL Japan, Inc. Ise EMC Lab. Shielded room for SAR testing

*A2LA Certificate Number: 5107.02 / FCC Test Firm Registration Number: 884919

ISED Lab Company Number: 2973C / CAB identifier: JP0002 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone: +81 596 24 8999

Test report No. : 14420105H-E-R2 Page : 10 of 86

SECTION 4: Test result

4.1 Result

Complied

Highest values at each band are listed next section.

4.2 Stand-alone SAR result

RF Exposure Co	Equipment Class - Highest Reported SAR (W/kg) Radio microphone	
Standalone Tx (1-g SAR)	Body-worn	0.694

^{*}Details are shown at section 12.

4.3 Simultaneous transmission SAR result

The combinations of modes that can be transmitted simultaneously are as follows. Radio microphone + RF remote

RF Exposure Co	Equipment Class - Highest Reported SAR (W/kg) Radio microphone + RF remote	
Simultaneous Tx (1-g SAR)	Body-worn	1.094

Test report No. : 14420105H-E-R2 Page : 11 of 86

SECTION 5: Tune-up tolerance information and software information

Maximum tune-up tolerance limit

Mode Frequency band		Maximum tune-up tolerance limit	Maximum tune-up tolerance limit
	[MHz]	[dBm]	[mW]
Radio microphone	470.125 to 607.875	14.12	25.85
Radio microphone	614.125 to 615.875	9.44	8.80
RF remote	2440	0.40	1.10
RF remote	2405 and 2475	-2.00	0.63

Software setting

*The power value of the EUT was set for testing as follows (setting value might be different from product specification value);

[Radio microphone]
Power settings: 25 m W

Software: Version: 0.01(220621A) *This setting of software is the worst case.

The test was performed with condition that obtained the maximum average power in pre-check.

Any conditions under the normal use do not exceed the condition of setting.

In addition, end users cannot change the settings of the output power of the product.

Test report No. : 14420105H-E-R2 Page : 12 of 86

SECTION 6: RF Exposure Conditions (Test Configurations)

6.1 Summary of the distance between antenna and surface of EUT

Radio microphone

Test position	Distance
Front	0 mm
Rear	0 mm
Right	0 mm
Left	0 mm
Top	0 mm
Bottom	0 mm
Right tilt	0 mm

RF remote

Test position	Distance
Front	10.15 mm
Rear	27.53 mm
Right	10.48 mm
Left	26.48 mm
Тор	109.50 mm
Bottom	1.90 mm
Right tilt	< 50 mm

^{*}Details are shown in appendix 4

Test report No. : 14420105H-E-R2 Page : 13 of 86

6.2 SAR test exclusion considerations according to KDB 447498 D01

The following is based on KDB 447498 D01.

1) The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $[\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR

- 1. The upper frequency of the frequency band was used in order to calculate standalone SAR test exclusion considerations.
- 2. Power and distance are rounded to the nearest mW and mm before calculation
- 3. The result is rounded to one decimal place for comparison
- 4. The test exclusions are applicable only when the minimum test separation distance is ≤ 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion. When the separation of antenna to EUT's surfaces and edges are ≤ 50 mm, the separation distance used for the SAR exclusion calculations is 5 mm.</p>
- 5. "N/A" displayed on below exclusion calculation means not applicable this formula since distance between antenna and surface is > 50 mm.

When the calculated threshold value by a numerical formula above-mentioned in the following table is 3.0 or less, SAR test is excluded.

The following table lists only the highest frequency and the highest tune up limit in each frequency band.

SAR exclusion calculations for antenna <50mm from the user

Tx Interface	Frequency (MHz)	Output	Power	Calculated Thresh	Calculated Threshold Value					
		dBm	mW	Front	Rear	Right	Left	Тор	Bottom	Right tilt
Radio microphone	607.875	14.12	26	4	4	4	4	4	4	4
				-MEASURE-	-MEASURE-	-MEASURE-	-MEASURE-	-MEASURE-	-MEASURE-	-MEASURE-
Radio microphone	615.875	9.44	9	1.4	1.4	1.4	1.4	1.4	1.4	1.4
				-EXEMPT-	-EXEMPT-	-EXEMPT-	-EXEMPT-	-EXEMPT-	-EXEMPT-	-EXEMPT-
RF remote	2475.000	0.40	1	0.3	0.3	0.3	0.3	N/A	0.3	0.3
				-EXEMPT-	-EXEMPT-	-EXEMPT-	-EXEMPT-		-EXEMPT-	-EXEMPT-

2) At 100 MHz to 6 GHz and for test separation distances > 50 mm, the SAR test exclusion threshold is determined according to the following.

a) $[(3.50)/(\sqrt{f(GHz)})) + (test separation distance - 50 mm) \cdot (f(MHz)/150)] \ mW$ at $> 100 \ MHz$ and $\leq 1500 \ MHz$ b) $[(3.50)/(\sqrt{f(GHz)})) + (test separation distance - 50 mm) \cdot 10] \ mW$ at $> 1500 \ MHz$ and $\leq 6 \ GHz$

- 1. The upper frequency of the frequency band was used in order to calculate standalone SAR test exclusion considerations.
- 2. Power and distance are rounded to the nearest mW and mm before calculation
- 3. "N/A" displayed on below exclusion calculation means not applicable this formula since distance between antenna and surface is < 50 mm.

When output power is less than the calculated threshold value by a numerical formula above-mentioned in the following table, SAR test is excluded.

The following table lists only the highest frequency and the highest tune up limit in each frequency band.

SAR exclusion calculations for antenna >50mm from the user

Tx	Frequency									
Interface	(MHz)	Output	Power	Calculated Thresh	Calculated Threshold Value					
		dBm	mW	Front	Rear	Right	Left	Тор	Bottom	Right tilt
Radio microphone	607.875	14.12	26	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Radio microphone	615.875	9.44	9	N/A	N/A	N/A	N/A	N/A	N/A	N/A
RF remote	2475.000	0.40	1	N/A	N/A	N/A	N/A	690.3 mW -EXEMPT-	N/A	N/A

Test report No. : 14420105H-E-R2 Page : 14 of 86

6.3 Estimated SAR for Simultaneous Transmission SAR Analysis

The following is based on KDB 447498 D01.

When standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[$\sqrt{f(GHz)/x}$] W/kg

for test separation distances ≤ 50 mm; where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is > 50 mm.

- 1. The upper frequency of the frequency band was used in order to calculate estimated SAR.
- 2. Power and distance are rounded to the nearest mW and mm before calculation
- 3. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied. For antennas ≤50 mm from each side the separation distance used for the estimated SAR calculations is 5 mm as conservative.

Tx	Frequency	Output	Power	Estimated 1-g SAR Value (W/kg)						
Interface	(MHz)	dBm	mW	Front	Rear	Right	Left	Тор	Bottom	Right tilt
RF remote	2475	0.40	1	0.042	0.042	0.042	0.042	0.400	0.042	0.042

Estimated SAR of Right with accessory = Estimated SAR of Right = 0.042 W/kg

The test separation distances of Top with accessory is > 50 mm. Estimated SAR of Top with accessory = 0.400 W/kg

Test report No. : 14420105H-E-R2 Page : 15 of 86

SECTION 7: Description of the Body setup

7.1 Procedure for SAR test position determination

-The tested procedure was performed according to the KDB 447498 D01 (Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies).

7.2 <u>Test position for Body setup</u>

No.	Position	Test	Radio microphone	RF remote
		distance	Tested	Tested
1	Front	0 mm	abla	
2	Rear	0 mm		
3	Right	0 mm	\square	
4	Left	0 mm		
5	Тор	0 mm		
6	Bottom	0 mm		
7	Right tilt*1	0 mm	\square	

^{*1:} From the results of pre-test of Front tilt, Rear tilt, Right tilt, and Left tilt, Right tilt was the worst of these positions. Therefore, it was tested in that position.

Test report No. : 14420105H-E-R2 Page : 16 of 86

SECTION 8: Description of the operating mode

8.1 Output Power and SAR test required

Mode	Freq. (MHz)	Tune-up upper Power (dBm) (Burst)	Measured average Power (dBm) (Burst)	Initial test configuration	Note(s)
	470.125	14.12	13.98		
	539.000	14.12	14.09	Yes	1
Radio	607.875	14.12	13.88		
microphone	614.125	9.44	-		
	615.000	9.44	-		
	615.875	9.44	-		

Note(s):

1. SAR test channel was chosen. (shaded blue frame)

: 14420105H-E-R2 Test report No. Page : 17 of 86

SECTION 9: Test surrounding

9.1 Measurement uncertainty

This measurement uncertainty budget is suggested by IEEE Std 1528(2013) and IEC62209-2:2010+AMD1:2019 CSV, and determined by Schmid & Partner Engineering AG (DASY5/6 Uncertainty Budget). Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz Section 2.8.1., when the highest measured SAR(1 g) within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std.1528 (2013) is not required in SAR reports submitted for equipment approval.

/Dodus

·	Uncert.	Prob.	Div.	(ci)	(ci)	Std. Unc.	Std.Unc.
Error Description	value	Dist.		1 g	10 g	(1 g)	(10 g)
Measurement System	<u>'</u>			•			
Probe Calibration	± 6.55 %	N	1	1	1	± 6.55 %	± 6.55 %
Axial Isotropy	± 4.7 %	R	$\sqrt{3}$	0.7	0.7	± 1.9 %	± 1.9 %
Hemispherical Isotropy	± 9.6 %	R	√3	0.7	0.7	± 3.9 %	± 3.9 %
Linearity	± 4.7 %	R	√3	1	1	± 2.7 %	± 2.7 %
Modulation Response	± 2.4 %	R	√3	1	1	± 1.4 %	± 1.4 %
System Detection Limits	± 1.0 %	R	$\sqrt{3}$	1	1	± 0.6 %	± 0.6 %
Boundary Effects	± 2.0 %	R	$\sqrt{3}$	1	1	± 1.2 %	± 1.2 %
Readout Electronics	± 0.3 %	N	1	1	1	± 0.3 %	± 0.3 %
Response Time	± 0.8 %	R	√3	1	1	± 0.5 %	± 0.5 %
Integration Time	± 2.6 %	R	√3	1	1	± 1.5 %	± 1.5 %
RF Ambient Noise	± 3.0 %	R	$\sqrt{3}$	1	1	± 1.7 %	± 1.7 %
RF Ambient Reflections	± 3.0 %	R	√3	1	1	± 1.7 %	± 1.7 %
Probe Positioner	± 0.04 %	R	$\sqrt{3}$	1	1	± 0.0 %	± 0.0 %
Probe Positioning	± 0.8 %	R	$\sqrt{3}$	1	1	± 0.5 %	± 0.5 %
Post-processing	± 4.0 %	R	√3	1	1	± 2.3 %	± 2.3 %
Test Sample Related				-	-		
Device Holder	± 3.6 %	N	1	1	1	± 3.6 %	± 3.6 %
Test sample Positioning	± 2.9 %	N	1	1	1	± 2.9 %	± 2.9 %
Power Scaling	± 0.0 %	R	√3	1	1	± 0.0 %	± 0.0 %
Power Drift	± 5.0 %	R	√3	1	1	± 2.9 %	± 2.9 %
Phantom and Setup						_	_
Phantom Uncertainty	± 7.6 %	R	√3	1	1	± 4.4 %	± 4.4 %
SAR correction	± 1.9 %	N	1	1	0.84	± 1.9 %	± 1.6 %
Liquid Conductivity (mea.)	+ 3.3 %	N	1	0.78	0.71	± 2.6 %	± 2.4 %
Liquid Permittivity (mea.)	- 4.6 %	N	1	0.23	0.26	± 1.1 %	± 1.2 %
Temp. unc Conductivity	± 3.4 %	R	√3	0.78	0.71	± 1.5 %	± 1.4 %
Temp. unc Permittivity	± 0.4 %	R	$\sqrt{3}$	0.23	0.26	± 0.1 %	± 0.1 %
Combined Std. Uncertainty						± 12.2 %	
Expanded STD Uncertainty (_K =2)			_		± 24.5 %	± 24.3 %

Note: This uncertainty budget for validation is worst-case. Table of uncertainties are listed for ISO/IEC 17025.

Test report No. : 14420105H-E-R2 Page : 18 of 86

SECTION 10: Parameter Check

The dielectric parameters were checked prior to assessment using the DAK dielectric probe kit. The dielectric parameters measurement is reported in each correspondent section.

According to KDB 865664 D01, \pm 5 % tolerances are required for ϵ r and σ and then below table which is the target value of the simulated tissue liquid is quoted from KDB 865664 D01.

Target Frequency	Не	ead	Во	ody
(MHz)	ε _τ	σ(S/m)	ε _r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

($\varepsilon_{\rm r}$ = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

The dielectric parameters are linearly interpolated between the closest pair of target frequencies to determine the applicable dielectric parameters corresponding to the device test frequency.

10.1 For SAR system check

DIELECTRIC	DIELECTRIC PARAMETERS MEASUREMENT RESULTS												
Date	Ambient	Relative	Liquid type	Liquid	Measured	Target	Target	Measure	Measure	Deviation σ	Deviation er	Limit	Remark
	Temp.	Humidity		Temp.	Frequency	[σ]	[er]	[σ]	[er]	[%]	[%]	[%]	
	[deg.c]	[%]		[deg.c]	[MHz]								
2022/8/3	21.0	40	HBBL600-10000	20.5	450.000	0.87	43.5	0.86	41.5	-0.7	-4.6	+/- 5	
2022/8/4	21.0	40	HBBL600-10000	20.5	600.000	0.88	42.7	0.91	41.1	3.0	-3.8	+/- 5	

10.2 For SAR measurement

DIELECTRIC	ELECTRIC PARAMETERS MEASUREMENT RESULTS												
Date	Ambient	Relative	Liquid type	Liquid	Measured	Target	Target	Measure	Measure	Deviation σ	Deviation er	Limit	Remark
	Temp.	Humidity		Temp.	Frequency	[σ]	[er]	[σ]	[er]	[%]	[%]	[%]	
	[deg.c]	[%]		[deg.c]	[MHz]								
2022/8/3	21.0	40	HBBL600-10000	20.5	470.125	0.87	43.4	0.87	41.4	-0.4	-4.6	+/- 5	
2022/8/3	21.0	40	HBBL600-10000	20.5	539.000	0.88	43.0	0.89	41.2	1.4	-4.2	+/- 5	
2022/8/4	21.0	40	HBBL600-10000	20.5	607.875	0.88	42.7	0.91	41.1	3.3	-3.8	+/- 5	

Test report No. : 14420105H-E-R2 Page : 19 of 86

SECTION 11: System Check confirmation

The measurements were performed in the flat section of the TWIN SAM or ELI phantom, shell thickness: 2.0 ± 0.2 mm (bottom plate) filled with Body or Head simulating liquid of the following parameters.

The depth of tissue-equivalent liquid in a phantom must be $\geq 15.0~\text{cm} \pm 0.5~\text{cm}$ for SAR measurements $\leq 3~\text{GHz}$ and $\geq 10.0~\text{cm} \pm 0.5~\text{cm}$ for measurements > 3~GHz.

The DASY system with an E-Field Probe was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom).

The standard measuring distance was 10 mm (above 1 GHz to 6 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.

The coarse grid with a grid spacing of 12 mm (1 GHz to 3 GHz) and 15 mm (below 1 GHz) was aligned with the dipole.

For 5 GHz band - The coarse grid with a grid spacing of 10 mm was aligned with the dipole.

Special 7x7x7 (below 3 GHz) and/or 8x8x7 (above 3 GHz) fine cube was chosen for the cube.

Distance between probe sensors and phantom surface was set to 3 mm.

For 5 GHz band - Distance between probe sensors and phantom surface was set to 2.5 mm

The dipole input power (forward power) was 100 mW(For 5 GHz band) or 250 mW(For other band).

The results are normalized to 1 W input power.

Target Value

Freq [MHz]		Model,S/N	Н	ead
			(SPEAG)	(SPEAG)
			1 g [W/kg]	10 g [W/kg]
	450	D450V3,1051	4.56	3.06
	600	D600V3,1003	6.80	4.44

The target(reference) SAR values can be obtained from the calibration certificate of system validation dipoles(Refer to Appendix 3). The target SAR values are SAR measured value in the calibration certificate scaled to 1 W.

			TS	T.S.		ed Results	Target	Delta
Date Tested	Test Freq	M odel,S/N	Liqui		Zoom Scan	Normalize to 1 W	(Ref. Value)	± 10 %
2022/8/3	450	D450V3,1051	Head	1 g	1.14	4.56	4.56	0.0
				10 g	0.76	3.05	3.06	-0.3
2022/8/4	600	D600V3,1003	Head	1 g	1.66	6.64	6.80	-2.4
				10 g	1.09	4.36	4.44	-1.8

Test report No. : 14420105H-E-R2 Page : 20 of 86

SECTION 12: Measured and Reported (Scaled) SAR Results

SAR Test Reduction criteria are as follows

KDB 447498 D01 (General RF Exposure Guidance):

Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:

- \Rightarrow ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
- ♦ ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- \Leftrightarrow \leq 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \geq 200 MHz
- According to Notice 2016-DRS001 based on the IEEE1528 and IEC 62209 requirements, the low, mid and high frequency channels for the configuration with the highest SAR value must be tested regardless of the SAR value measured.
- When reported SAR value is exceed 1.2 W/kg(if any), device holder perturbation verification is required; however, since
 distance between device holder and antenna of EUT is enough, it was not conducted.
- Reported SAR= Measured SAR [W/kg] * Power Scaled factor * Duty Scaled factor Maximum tune-up tolerance limit is by the specification from a customer.
 - * Power Scaled factor = Maximum tune-up tolerance limit [mW] / Measured power [mW]
 - * Duty Scaled factor = 1 / Duty (%) / 100
- Maximum tune-up tolerance limit is by the specification from a customer.

Note: Measured value is rounded round off to three decimal places

Test report No. : 14420105H-E-R2 Page : 21 of 86

12.1 Result of Body SAR

				Power	(dBm)	Power		Duty	1-g SAF	R (W/kg)		
Test Position	Dist. (mm)	Mode	Freq. (MHz)	Tune-up upper Power	M easured average Power	Scaled factor	Duty (%)	Scaled factor	M easured	Reported	Note	Plot No.
		Radio	470.125	14.12	13.98	1.03	100.0	1.00				
Front	0	microphone	539.000	14.12	14.09	1.01	100.0	1.00	0.039	0.039		
		micropnone	607.875	14.12	13.88	1.06	100.0	1.00				
		Radio	470.125	14.12	13.98	1.03	100.0	1.00				
Rear	0	microphone	539.000	14.12	14.09	1.01	100.0	1.00	0.061	0.061		
		microphone	607.875	14.12	13.88	1.06	100.0	1.00				
		Radio	470.125	14.12	13.98	1.03	100.0	1.00				
Right	0	microphone	539.000	14.12	14.09	1.01	100.0	1.00	0.071	0.072		
		interophone	607.875	14.12	13.88	1.06	100.0	1.00				
		Radio	470.125	14.12	13.98	1.03	100.0	1.00				
Left	0	microphone	539.000	14.12	14.09	1.01	100.0	1.00	0.064	0.065		
		microphone	607.875	14.12	13.88	1.06	100.0	1.00				
		Radio	470.125	14.12	13.98	1.03	100.0	1.00	0.671	0.694	2	1
Top	0	microphone	539.000	14.12	14.09	1.01	100.0	1.00	0.285	0.287	1	
		microphone	607.875	14.12	13.88	1.06	100.0	1.00	0.214	0.226	2	
		Radio	470.125	14.12	13.98	1.03	100.0	1.00				
Bottom	0	microp hone	539.000	14.12	14.09	1.01	100.0	1.00	0.014	0.014		
		interophone	607.875	14.12	13.88	1.06	100.0	1.00				
		Radio	470.125	14.12	13.98	1.03	100.0	1.00				
Right tilt	0	microphone	539.000	14.12	14.09	1.01	100.0	1.00	0.126	0.127		
		microphone	607.875	14.12	13.88	1.06	100.0	1.00				
Right with		Radio	470.125	14.12	13.98	1.03	100.0	1.00				
accessory	0	microphone	539.000	14.12	14.09	1.01	100.0	1.00	0.125	0.126		
accessory		micropinone	607.875	14.12	13.88	1.06	100.0	1.00				
Top with		Radio	470.125	14.12	13.98	1.03	100.0	1.00				
accessory	0	microphone	539.000	14.12	14.09	1.01	100.0	1.00	0.043	0.043		
accessory		merophone	607.875	14.12	13.88	1.06	100.0	1.00				

^{*1:} Worst position

12.2 Repeated measurement

According to KDB 865664 D1.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through
- 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurement is \geq 1.20 or when the original or repeated measurement is \geq 1.45 W/kg (\sim 10 % from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is ≥ 1.20 .

Test	Configurat	ion		_	Meas. SA	.R (W/kg)	Largest to	
Exposure	Position	Dist. (mm)	Mode	Freq. (MHz)	Original	Repeated	Smallest SAR Ratio	Plot No.
Body	Тор	0	Radio microphone	470.125	0.671	N/A	N/A	1

Note(s):

N/A: Repeated Measurement is not required since the original highest measured SAR for all band is < 0.80 W/kg.

^{*2:} Frequency change

Test report No. : 14420105H-E-R2 Page : 22 of 86

SECTION 13: Simultaneous Transmission SAR Analysis

The combinations of modes that can be transmitted simultaneously are as follows. Radio microphone + RF remote

	1-g SAF	R (W/kg)	
Test Position	Radio microphone	RF remote	Σ 1-g SAR (W/kg)
Front	0.039	0.042	0.081
Rear	0.061	0.042	0.103
Right	0.072	0.042	0.114
Left	0.065	0.042	0.107
Тор	0.694	0.400	1.094
Bottom	0.014	0.042	0.056
Right tilt	0.127	0.042	0.169
Right with accessory	0.126	0.042	0.168
Top with accessory	0.043	0.400	0.443

Note(s):

1. Values shaded green are estimated SAR.

Conclusion:

Simultaneous transmission SAR measurement(Volume Scan) is not required because sum of the 1-g SAR is \leq 1.6 W/kg.

: 14420105H-E-R2 Test report No. Page : 23 of 86

SECTION 14: Test instruments

Local Id	LIMSID	Description	M anufacturer	Model	Serial	Last Cal Date	Interval
MDAE-03	141484	Data Acquisition Electronics	Schmid & Partner Engineering AG	DAE4	1372	2022/04/11	12
MDA-09	141468	Dipole Antenna	Schmid&Partner Engineering AG	D450V3	1051	2021/09/17	12
MDH-01	142484	Device holder	Schmid&Partner Engineering AG	Mounting device for transmitter	-	2021/11/01	12
MOS-33	88581	Thermo-Hy grometer	CUSTOM. Inc	CTH-201	-	2022/07/03	12
MRBT-02	142247	SAR robot	Schmid & Partner Engineering AG	TX60 Lspeag	F10/5E3LA1/A/01	2022/04/25	12
MHDC-21	142561	Dual Directional Coupler	Keysight Technologies Inc	778D	MY52180243	-	-
MPF-02	142056	2mm Oval Flat Phantom	Schmid & Partner Engineering AG	QDOVA001BB	1045	2022/05/23	12
COTS-M SAR-04	141182	Dielectric assessment software	Schmid&Partner Engineering AG	DAK	-	-	-
COTS-MPSE-02	173900	Software for MA24106A	Anritsu Corporation	Anritsu PowerXpert	-	-	-
MDPK-03	141471	Dielectric assessment kit	Schmid & Partner Engineering AG	DAKS-3.5	0008	2022/04/19	12
MAT-78	142313	Attenuator	Telegrartner	J01156A0011	42294119	-	-
MPM-15	141811	Power Meter	Keysight Technologies Inc	N1914A	MY53060017	2022/06/16	12
MNA-03	141551	Vector Reflectometer	COPPER MOUNTAIN TECHNOLOGIES	PLANAR R140	0030913	2022/04/18	12
MOS-37	141574	Digital thermometer	LKM electronic	DTM3000	-	2022/07/03	12
MPSE-20	141833	Power sensor	Keysight Technologies Inc	N8482H	MY53050001	2022/06/16	12
MPSE-24	141843	Power sensor	Anritsu Corporation	MA24106A	1026164	2022/03/17	12
MPSE-25	141844	Power sensor	Anritsu Corporation	MA24106A	1031504	2022/03/17	12
MRFA-24	141875	Pre Amplifier	R&K	R&K CGA020M 602-2633R	B30550	2022/06/27	12
MHBBL600-10000	176484	Head Simulating Liquid	Schmid & Partner Engineering AG	HBBL600-10000V6	SL AAH U16 BC	-	-
COTS-M SAR-03	141181	Dasy 5	Schmid & Partner Engineering AG	DASY5	_	-	-
M SG-10	141890	Signal Generator	Keysight Technologies Inc	N5181A	MY47421098	2021/11/18	12
MAT-81	141311	Attenuator	Weinschel Associates	WA1-20-33	100131	2022/04/06	12
MDA-21	141481	Dipole Antenna	Schmid&Partner Engineering AG	D600V3	1003	2019/10/18	36
MRENT-S22	221514	Dosimetric E-Field Probe	Schmid & Partner Engineering AG	EX3DV4	3745	2022/04/19	12

^{*1)} This test equipment was used for the tests before the expiration date of the calibration. The expiration date of the calibration is the end of the expired month.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards. As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

SAR room is checked before every testing and ambient noise is <0.012 W/kg

Test report No. : 14420105H-E-R2 Page : 24 of 86

APPENDIX 1: System Check

450 MHz System check

Communication System: UID 0, #CW (0); Communication System Band: D450 (450.0 MHz); ; Duty Cycle: 1:1

Medium parameters used: f = 450 MHz; $\sigma = 0.864$ S/m; $\varepsilon_r = 41.49$; $\rho = 1000$ kg/m³

Phantom section: Flat Section DASY5 Configuration

Probe: EX3DV4 - SN3745; ConvF(9.78, 9.78, 9.78) @ 450 MHz;

Sensor-Surface: 1.4 mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1372;

Phantom: ELI v4.0 (20deg probe tilt); Type: QDOVA001BB;Serial: TP:1045 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7501)

System Performance Check at Frequencies 450 MHz/d = 15 mm, Pin = 250 mW/Area Scan (61x101x1):

Interpolated grid: dx = 1.500 mm, dy = 1.500 mm Maximum value of SAR (interpolated) = 1.52 W/kg

System Performance Check at Frequencies 450 MHz/d = 15 mm, Pin = 250 mW/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx = 5 mm, dy = 5 mm, dz = 5 mm

Reference Value = 44.19 V/m; Power Drift = -0.05 dB

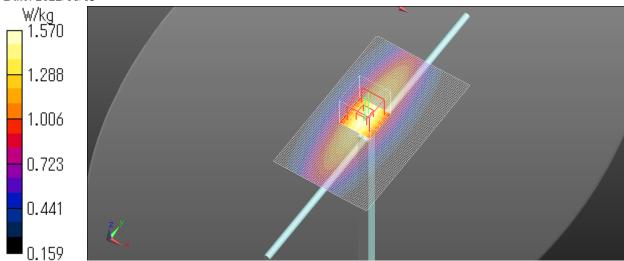
Peak SAR (extrapolated) = 1.82 W/kg

SAR(1 g) = 1.14 W/kg; SAR(10 g) = 0.762 W/kg

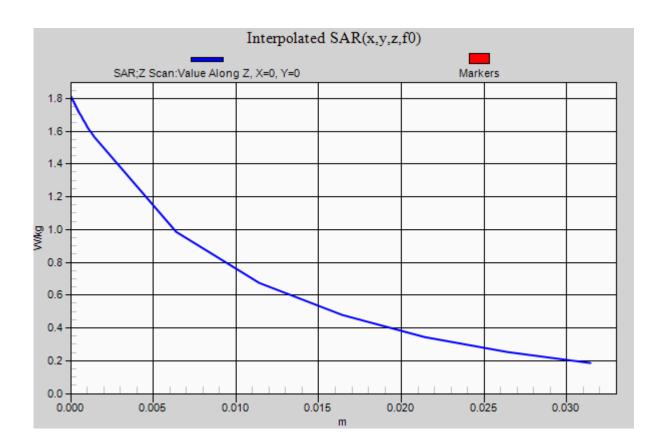
Smallest distance from peaks to all points 3 dB below: Larger than measurement grid (> 15 mm)

Ratio of SAR at M2 to SAR at M1 = 62.6 %Maximum value of SAR (measured) = 1.57 W/kg

System Performance Check at Frequencies 450 MHz/d = 15 mm, Pin = 250 mW/Z Scan (1x1x18): Measurement


grid: dx=20mm, dy=20mm, dz=5mm

Penetration depth = 13.34 (10.80, 14.54) [mm]


Maximum value of SAR (interpolated) = 1.81 W/kg

Ambient Temp.: 21.0 degree.C. Liquid Temp.; 20.5 degree.C. Liquid temp. is kept within the 2 degree.C. during the test.

Date: 2022/08/03

Test report No. : 14420105H-E-R2 Page : 25 of 86

Test report No. : 14420105H-E-R2 Page : 26 of 86

600 MHz System check

Communication System: UID 0, #CW (0); Communication System Band: D600 (600.0MHz); ; Duty Cycle: 1:1

Medium parameters used: f = 600 MHz; $\sigma = 0.908$ S/m; $\varepsilon_r = 41.1$; $\rho = 1000$ kg/m³

Phantom section: Flat Section **DASY5** Configuration

Probe: EX3DV4 - SN3745; ConvF(9.61, 9.61, 9.61) @ 600 MHz;

Sensor-Surface: 1.4 mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1372;

Phantom: ELI v4.0 (20deg probe tilt); Type: QDOVA001BB; Serial: TP:1045 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

System Performance Check at Frequencies 600 MHz/d = 15 mm, Pin = 250 mW/Area Scan (61x101x1):

Interpolated grid: dx = 1.500 mm, dy = 1.500 mm Maximum value of SAR (interpolated) = 2.31 W/kg

System Performance Check at Frequencies 600 MHz/d = 15 mm, Pin = 250 mW/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx = 5 mm, dy = 5 mm, dz = 5 mm Reference Value = 51.42 V/m; Power Drift = 0.01 dB

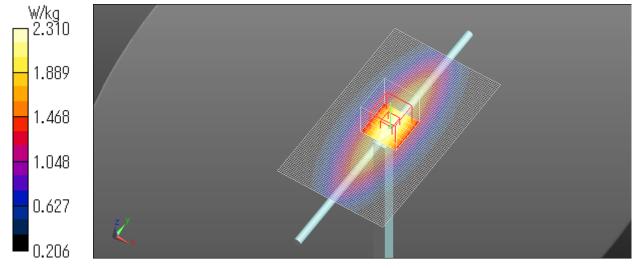
Peak SAR (extrapolated) = 2.72 W/kg

SAR(1 g) = 1.66 W/kg; SAR(10 g) = 1.09 W/kg

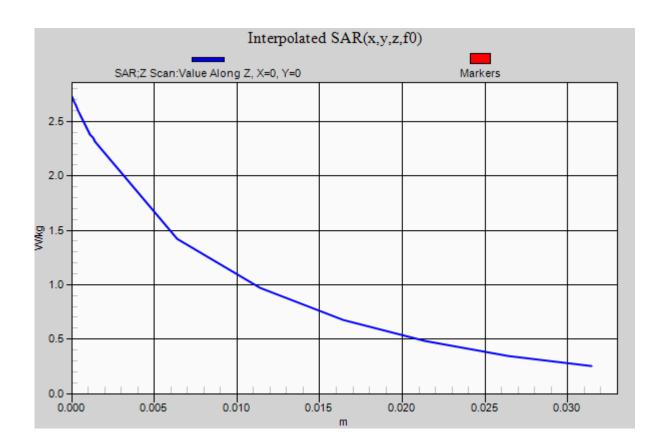
Smallest distance from peaks to all points 3 dB below: Larger than measurement grid (> 15 mm)

Ratio of SAR at M2 to SAR at M1 = 61.4 %Maximum value of SAR (measured) = 2.31 W/kg

System Performance Check at Frequencies 600 MHz/d = 15 mm, Pin = 250 mW/Z Scan (1x1x18): Measurement grid: dx=20mm, dy=20mm, dz=5mm


Penetration depth = 13.11 (10.24, 13.89) [mm]

Maximum value of SAR (interpolated) = 2.73 W/kg


Ambient Temp.: 21.0 degree.C. Liquid Temp.; 20.5 degree.C.

Liquid temp. is kept within the 2 degree.C. during the test.

Date: 2022/08/04

Test report No. : 14420105H-E-R2 Page : 27 of 86

Test report No. : 14420105H-E-R2 Page : 28 of 86

APPENDIX 2: SAR Measurement data

Evaluation procedure

The evaluation was performed with the following procedure:

Step 1: Measurement of the E-field at a fixed location above the ear point or central position of flat phantom was used as a reference value for assessing the power drop.

Step 2: The SAR distribution at the exposed side of head or body position was measured at a distance of each device from the inner surface of the shell. The area covered the entire dimension of the antenna of EUT and the horizontal grid spacing was 15 mm x 15 mm x 12 mm or 10 mm x 10 mm. Based on these data, the area of the maximum absorption was determined by spline interpolation.

Step 3: Around this point found in the Step 2 (area scan), a volume of 30 mm x 30 mm x 30 mm or more was assessed by measuring 7 x 7 x 7 points at least for below 3 GHz and a volume of 28 mm x 28 mm x 22.5 mm or more was assessed by measuring 8 x 8 x 6(ratio step method (*1)) points at least for 5 GHz band.

And for any secondary peaks found in the Step2 which are within 2 dB of maximum peak and not with this Step3 (Zoom scan) is repeated. On the basis of this data set, the spatial peak SAR value was evaluated under the following procedure:

- (1). The data at the surface were extrapolated, since the center of the dipoles is 1 mm(EX3DV4) away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.3 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.
- (2). The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed by the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one-dimensional splines with the "Not a knot"-condition (in x, y and z-directions). The volume was integrated with the trapezoidal-algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the average.
- (3). All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

*1. Ratio step method parameters used;

The first measurement point: 2 mm from the phantom surface, the initial grid separation: 2 mm, subsequent graded grid ratio: 1.5

These parameters comply with the requirement of the KDB 865664 D01.

Step 4: Re-measurement of the E-field at the same location as in Step 1.

Confirmation after SAR testing

It was checked that the power drift [W] is within +/-5 %. The verification of power drift during the SAR test is that DASY5 system calculates the power drift by measuring the e-filed at the same location at beginning and the end of the scan measurement for each test position.

DASY5 system calculation Power drift value[dB] =20log(Ea)/(Eb)

Before SAR testing : Eb [V/m]After SAR testing : Ea [V/m]

Limit of power drift[W] = \pm 5 %

X[dB] = 10log[P] = 10log(1.05/1) = 10log(1.05) -10log(1) = 0.212 dB

from E-filed relations with power.

p=E^2/η

Therefore, The correlation of power and the E-filed

 $X dB = 10log(P) = 10log(E)^2 = 20log(E)$

Therefore,

The calculated power drift of DASY5 System must be the less than +/- 0.212 dB.

Test report No. : 14420105H-E-R2 Page : 29 of 86

Measurement data

Plot No. 1

Communication System: UID 0, Radio microphone (0); Communication System Band: UC; ; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 470.125 MHz; $\sigma = 0.868 \text{ S/m}$; $\epsilon_r = 41.397$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section DASY5 Configuration

Probe: EX3DV4 - SN3745; ConvF(9.78, 9.78, 9.78) @ 470.125 MHz;

Sensor-Surface: 1.4 mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 1.4

mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1372;

Phantom: ELI v4.0 (20deg probe tilt); Type: QDOVA001BB; Serial: TP:1045

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Radio/Top Low ch/Area Scan 2 (41x41x1): Interpolated grid: dx = 1.500 mm, dy = 1.500 mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 1.05 W/kg

Radio/Top Low ch/Zoom Scan finer (11x11x8)/Cube 0: Measurement grid: dx = 3 mm, dy = 3 mm, dz = 1.4 mm

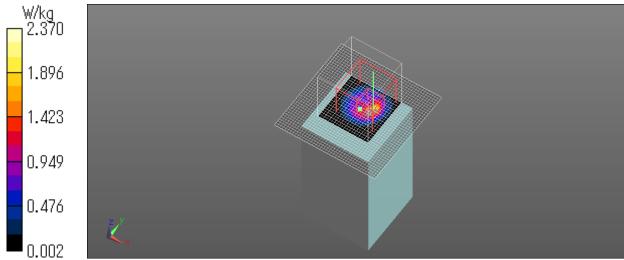
Reference Value = 23.21 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 11.0 W/kg

SAR(1 g) = 0.671 W/kg; SAR(10 g) = 0.187 W/kg

Smallest distance from peaks to all points 3 dB below = 3.2 mm

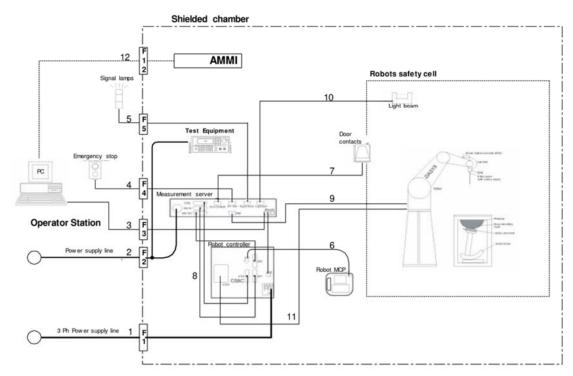
Ratio of SAR at M2 to SAR at M1 = 38.6 %


Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 2.37 W/kg

Ambient Temp.: 21.0 degree.C. Liquid Temp.; 20.5 degree.C.

Liquid temp. is kept within the 2 degree.C. during the test.


Date: 2022/08/03

Test report No. : 14420105H-E-R2 Page : 30 of 86

APPENDIX 3: System specifications

Configuration and peripherals

The DASY5 system for performing compliance tests consist of the following items: Our system is DASY6; however, it behaves as DASY5.

- a) A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).
- b) An isotropic field probe optimized and calibrated for the targeted measurement.
- c) A data acquisition electronic (DAE), which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- d) The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.
- e) The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- f) The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- g) A computer running Windows 10 or 7 and the DASY5/6 software.
- h) Remote control with teaches pendant and additional circuitry for robot safety such as warning lamps, etc.
- i) The phantom, the device holder and other accessories according to the targeted measurement.

Test report No. : 14420105H-E-R2 Page : 31 of 86

Specifications

a) Robot TX60L

Number of Axes 6 2 kg Nominal Load **Maximum Load** 5 kg Reach 920 mm Repeatability +/-0.03 mm **Control Unit** CS8c **Programming Language** VAL3 Weight 52.2 kg Manufacture Stäubli Robotics

b) E-Field Probe

Model : EX3DV4

Construction : Symmetrical design with triangular core

Built-in shielding against static charges

PEEK enclosure material

(resistant to organic solvents, e.g., glycol ether)

Frequency : $10 \text{ MHz to} > 6 \text{ GHz Linearity} : \pm 0.2 \text{ dB } (30 \text{ MHz to} 6 \text{ GHz})$

Directivity : +/-0.3 dB in HSL (rotation around probe axis)

+/-0.5 dB in tissue material (rotation normal probe axis)

Dynamic Range : 10uW/g to > 100 mW/g;Linearity

+/-0.2 dB(noise: typically < 1uW/g)

Dimensions : Overall length: 337 mm (Tip: 20 mm)

Tip diameter: 2.5 mm (Body: 12 mm)

Typical distance from probe tip to dipole centers: 1 mm

Application : Highprecision dosimetric measurement in any exposure scenario

(e.g., very strong gradient fields). Only probe which enables compliance

testing for frequencies up to 6 GHz with precision of better 30 %.

Manufacture : Schmid & Partner Engineering AG

EX3DV4 E-field Probe

Test report No. : 14420105H-E-R2 Page : 32 of 86

c) Data Acquisition Electronic (DAE4)

Features : Signal amplifier, multiplexer, A/D converter and control logic

Serial optical link for communication with DASY5 embedded system (fully remote

controlled)

Two step probe touch detector for mechanical surface detection and emergency robot

stop

Measurement Range : -100 to +300 mV (16 bit resolution and two range settings: 4 mV, 400 mV)

Input Offset voltage : $< 5 \mu V$ (with auto zero)

Battery Power : > 10 h of operation (with two 9.6 V NiMH accus)

Dimension : $60 \times 60 \times 68 \text{ mm}$

Manufacture : Schmid & Partner Engineering AG

d) Electro-Optic Converter (EOC)

Version : EOC 6

Description: for TX60 robot arm, including proximity sensor

Manufacture : Schmid & Partner Engineering AG

e) DASY5 Measurement server

Features : Intel ULV Celeron 400 MHz

128 MB chip disk and 128 MB RAM

16 Bit A/D converter for surface detection system

Vacuum Fluorescent Display

Robot Interface

Serial link to DAE (with watchdog supervision)
Door contact port (Possibility to connect a light curtain)
Emergency stop port (to connect the remote control)

Signal lamps port Light beam port

Three Ethernet connection ports

Two USB 2.0 Ports Two serial links

Expansion port for future applications

Dimensions (L x W x H) : $440 \times 241 \times 89 \text{ mm}$

Manufacture : Schmid & Partner Engineering AG

f) Light Beam Switches

 Version
 :
 LB5

 Dimensions (L x H)
 :
 110 x 80 mm

 Thickness
 :
 12 mm

 Beam-length
 :
 80 mm

Manufacture : Schmid & Partner Engineering AG

g) Software

Item : Dosimetric Assessment System DASY5

Type No. : SD 000 401A, SD 000 402A Software version No. : DASY52, Version 52.6 (1) Manufacture / Origin : Schmid & Partner Engineering AG

h) Robot Control Unit

Weight : 70 Kg
AC Input Voltage : selectable
Manufacturer : Stäubli Robotics

Test report No. : 14420105H-E-R2 Page : 33 of 86

i) Phantom and Device Holder

Phantom

Type : SAM Twin Phantom V4.0

Description: The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin

(SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement

grids by teaching three points with the robot.

Material : Vinylester, glass fiber reinforced (VE-GF)

Shell Material : Fiberglass
Thickness : 2.0 +/- 0.2 mm

Dimensions : Length: 1000 mm Width: 500 mm Height: adjustable feet

Volume : Approx. 25 liters

Manufacture : Schmid & Partner Engineering AG

Type : 2 mm Flat phantom ELI4.0 or 5

Description: Phantom for compliance testing of handheld and body-mounted wireless

devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with the latest draft of the standard IEC 62209 Part II and all known tissue simulating liquids. ELI4 has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is supported by software version DASY4.5 and higher and is compatible with all SPEAG dosimetric probes and dipoles.

Material : Vinylester, glass fiber reinforced (VE-GF)

Shell Thickness : $2.0 \pm 0.2 \text{ mm (sagging: } < 1 \%)$

Filling Volume : Approx. 30 liters

Dimensions : Major ellipse axis: 600 mm Minor axis: 400 mm

Manufacture : Schmid & Partner Engineering AG

Device Holder

In combination with the Twin SAM Phantom V4.0/V4.0c or ELI4, the Mounting Device enables the rotation of the mounted transmitter device in spherical coordinates. Rotation point is the ear opening point. Transmitter devices can be easily and accurately positioned according to IEC, IEEE, FCC or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat).

Material : POM

Laptio Extensions kit

Simple but effective and easy-to-use extension for Mounting Device that facilitates the testing of larger devices according to IEC 62209-2 (e.g., laptops, cameras, etc.). It is lightweight and fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin-SAM, ELI4 Phantoms.

Material : POM, Acrylic glass, Foam

Urethane

For this measurement, the urethane foam was used as device holder.

Test report No. : 14420105H-E-R2 Page : 34 of 86

j) Simulated Tissues (Liquid)
The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Product identifier

Trade name	Broad Band Tissue Simulation Liquid HBBL600-10000V6, MBBL600-6000V6, HU16B, MU16B
Manufacturer/Supplier	Schmid & Partner Engineering AG

Declarable components:

Ethanediol	< 5.2%
STOT RE 2, H373;	
Acute Tox. 4, H302	
Sodium petroleum sulfonate	< 2.9%
Eye Irrit. 2, H319	
Hexylene Glycol / 2-Methyl-pentane-2,4-diol	< 2.9%
Skin Irrit. 2, H315; Eye Irrit. 2, H319	
\$2000 Block 100	
Alkoxylated alcohol, > C ₁₆	< 2.0%
Aquatic Chronic 2, H411;	
Skin Irrit. 2, H315; Eye Irrit. 2, H319	
	STOT RE 2, H373; Acute Tox. 4, H302 Sodium petroleum sulfonate Eye Irrit. 2, H319 Hexylene Glycol / 2-Methyl-pentane-2,4-diol Skin Irrit. 2, H315; Eye Irrit. 2, H319 Alkoxylated alcohol, > C ₁₆ Aquatic Chronic 2, H411;

Test report No. Page

: 14420105H-E-R2 : 35 of 86

System Check Dipole SAR Calibration Certificate -Dipole 450 MHz (D450V3 S/N: 1051)

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D450V3-1051_Sep21

bject salibration procedure(s)	D450V3 - SN:105		
alibration procedure(s)		1	
ano.ano. Proposity	QA CAL-15.v9 Calibration Procedure for SAR Validation Sources below 700 MHz		
Calibration date:	September 17, 20	21	
he measurements and the uncert	ainties with confidence pr	onal standards, which realize the physical unit obability are given on the following pages and y facility: environment temperature (22 \pm 3) $^{\circ}$ C	d are part of the certificate.
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	09-Apr-21 (No. 217-03291/03292)	Apr-22
Power sensor NRP-Z91	SN: 103244	09-Apr-21 (No. 217-03291)	Apr-22
Power sensor NRP-Z91	SN: 103245	09-Apr-21 (No. 217-03292)	Apr-22
Reference 20 dB Attenuator	SN: CC2552 (20x)	09-Apr-21 (No. 217-03343)	Apr-22
Type-N mismatch combination	SN: 310982 / 06327	09-Apr-21 (No. 217-03344)	Apr-22
Reference Probe EX3DV4	SN: 3877	30-Dec-20 (No. EX3-3877_Dec20)	Dec-21
	SN: 654	28-Jun-21 (No. DAE4-654_Jun21)	Jun-22
DAE4	10111001		
DAE4 Secondary Standards	ID#	Check Date (in house)	Scheduled Check
	L	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
Secondary Standards	ID#	06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20)	In house check: Jun-22 In house check: Jun-22
Secondary Standards Power meter E4419B	ID # SN: GB41293874 SN: MY41498087 SN: 000110210	06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20)	In house check: Jun-22 In house check: Jun-22 In house check: Jun-22
Secondary Standards Power meter E4419B Power sensor E4412A	ID # SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700	06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 04-Aug-99 (in house check Jun-20)	In house check: Jun-22 In house check: Jun-22 In house check: Jun-22 In house check: Jun-22
Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A	ID # SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700	06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20)	In house check: Jun-22 In house check: Jun-22 In house check: Jun-22
Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C	ID # SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700	06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 04-Aug-99 (in house check Jun-20)	In house check: Jun-22 In house check: Jun-22 In house check: Jun-22 In house check: Jun-22
Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C	ID # SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US41080477	06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 04-Aug-99 (in house check Jun-20) 31-Mar-14 (in house check Oct-20)	In house check: Jun-22 In house check: Jun-22 In house check: Jun-22 In house check: Jun-22 In house check: Oct-21

Certificate No: D450V3-1051_Sep21

Page 1 of 8

Test report No. Page

: 14420105H-E-R2

: 36 of 86

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

tissue simulating liquid

ConvF N/A

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D450V3-1051_Sep21

Page 2 of 8

: 14420105H-E-R2

: 37 of 86

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	ELI4 Flat Phantom	Shell thickness: 2 ± 0.2 mm
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5$ mm	
Frequency	450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	43.5	0.87 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.8 ± 6 %	0.86 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.14 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	4.59 W/kg ± 18.1 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	0.764 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	3.07 W/kg ± 17.6 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	56.7	0.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.9 ± 6 %	0.95 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	1.18 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	4.67 W/kg ± 18.1 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	0.795 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	3.15 W/kg ± 17.6 % (k=2)

Certificate No: D450V3-1051_Sep21

Page 3 of 8

: 14420105H-E-R2

: 38 of 86

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	56.0 Ω - 6.8 jΩ
Return Loss	- 21.4 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	53.0 Ω - 9.5 jΩ
Return Loss	- 20.3 dB

General Antenna Parameters and Design

Florence Delegation 1	
Electrical Delay (one direction)	1.250 ==
, , , , , , , , , , , , , , , , , , , ,	1.350 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SDEAC
	SPEAG

Certificate No: D450V3-1051_Sep21

Page 4 of 8

Test report No. : 14420105H-E-R2 Page : 39 of 86

DASY5 Validation Report for Head TSL

Date: 17.09.2021

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 450 MHz; Type: D450V3; Serial: D450V3 - SN:1051

Communication System: UID 0 - CW; Frequency: 450 MHz

Medium parameters used: f = 450 MHz; σ = 0.86 S/m; ϵ_r = 42.8; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

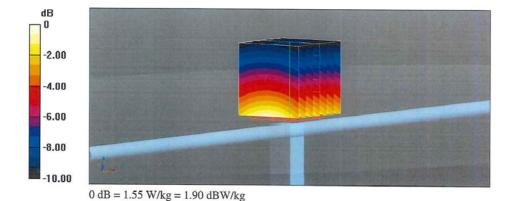
DASY52 Configuration:

- Probe: EX3DV4 SN3877; ConvF(10.64, 10.64, 10.64) @ 450 MHz; Calibrated: 30.12.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn654; Calibrated: 28.06.2021
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 39.24 V/m; Power Drift = -0.00 dB

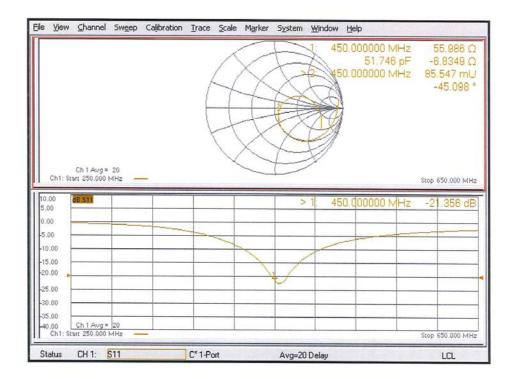

Peak SAR (extrapolated) = 1.78 W/kg

SAR(1 g) = 1.14 W/kg; SAR(10 g) = 0.764 W/kg

Smallest distance from peaks to all points 3 dB below: Larger than measurement grid (> 30 mm)

Ratio of SAR at M2 to SAR at M1 = 64.2%

Maximum value of SAR (measured) = 1.55 W/kg


Certificate No: D450V3-1051_Sep21

Page 5 of 8

: 14420105H-E-R2

: 40 of 86

Impedance Measurement Plot for Head TSL

Certificate No: D450V3-1051_Sep21

Page 6 of 8

: 14420105H-E-R2 : 41 of 86

DASY5 Validation Report for Body TSL

Date: 17.09.2021

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 450 MHz; Type: D450V3; Serial: D450V3 - SN:1051

Communication System: UID 0 - CW; Frequency: 450 MHz

Medium parameters used: f = 450 MHz; $\sigma = 0.95$ S/m; $\epsilon_r = 55.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

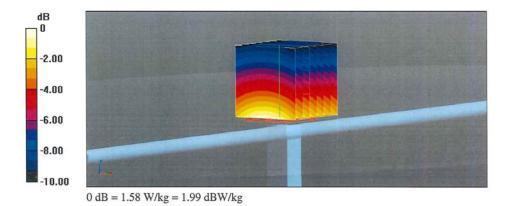
DASY52 Configuration:

- Probe: EX3DV4 SN3877; ConvF(10.64, 10.64, 10.64) @ 450 MHz; Calibrated: 30.12.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn654; Calibrated: 28.06.2021
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Body Tissue/d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

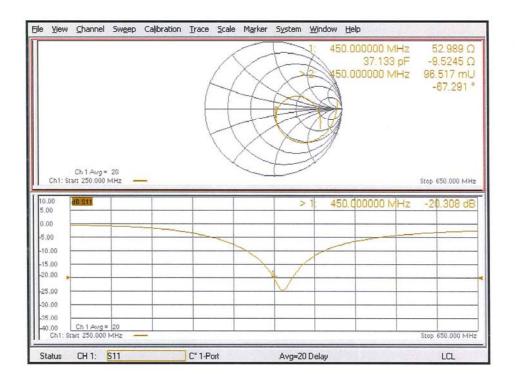
Reference Value = 42.43 V/m; Power Drift = -0.02 dB


Peak SAR (extrapolated) = 1.81 W/kg

SAR(1 g) = 1.18 W/kg; SAR(10 g) = 0.795 W/kg

Smallest distance from peaks to all points 3 dB below: Larger than measurement grid (> 30 mm)

Ratio of SAR at M2 to SAR at M1 = 65.4%


Maximum value of SAR (measured) = 1.58 W/kg

Certificate No: D450V3-1051_Sep21

: 14420105H-E-R2 : 42 of 86

Impedance Measurement Plot for Body TSL

Certificate No: D450V3-1051_Sep21

: 14420105H-E-R2 : 43 of 86

System Check Dipole SAR Calibration Certificate -Dipole 600 MHz (D600V3 S/N: 1003)

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Client UL Japan (KYCOM)

Certificate No: D600V3-1003_Oct19

Object	D600V3 - SN: 10	03	
Calibration procedure(s)	QA CAL-15.v9 Calibration Proce	dure for SAR Validation Sources	below 700 MHz
Calibration date:	October 18, 2019		
		onal standards, which realize the physical uni	
The measurements and the uncer	tainties with confidence p	robability are given on the following pages an	d are part of the certificate.
All calibrations have been conduct	ted in the closed laborato	y facility: environment temperature (22 \pm 3)°C	C and humidity < 70%.
Calibration Equipment used (M&T	E critical for calibration)		
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20
Power sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20
Power sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Apr-20
Reference 20 dB Attenuator	SN: 5277 (20x)	04-Apr-19 (No. 217-02894)	Apr-20
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-19 (No. 217-02895)	Apr-20
Reference Probe EX3DV4	SN: 3877	31-Dec-18 (No. EX3-3877_Dec18)	Dec-19
	SN: 654	27-Jun-19 (No. DAE4-654_Jun19)	Jun-20
DAE4			
	ID#	Check Date (in house)	Scheduled Check
Secondary Standards	ID # SN: GB41293874	Check Date (in house) 06-Apr-16 (in house check Jun-18)	Scheduled Check In house check: Jun-20
Secondary Standards Power meter E4419B			
Secondary Standards Power meter E4419B Power sensor E4412A	SN: GB41293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A	SN: GB41293874 SN: MY41498087	06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18)	In house check: Jun-20 In house check: Jun-20
Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C	SN: GB41293874 SN: MY41498087 SN: 000110210	06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18)	In house check: Jun-20 In house check: Jun-20 In house check: Jun-20
DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer Agilent E8358A	SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700	06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18) 04-Aug-99 (in house check Jun-18)	In house check: Jun-20 In house check: Jun-20 In house check: Jun-20 In house check: Jun-20
Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C	SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US41080477	06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18) 04-Aug-99 (in house check Jun-18) 31-Mar-14 (in house check Oct-18)	In house check: Jun-20 In house check: Jun-20 In house check: Jun-20 In house check: Jun-20 In house check: Oct-19
Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer Agilent E8358A	SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US41080477	06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18) 04-Aug-99 (in house check Jun-18) 31-Mar-14 (in house check Oct-18)	In house check: Jun-20 In house check: Jun-20 In house check: Jun-20 In house check: Jun-20 In house check: Oct-19

Certificate No: D600V3-1003_Oct19

Page 1 of 8

Test report No. : 14420105H-E-R2 Page : 44 of 86

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

Accreditation No.: SCS 0108

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM x,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

: 14420105H-E-R2 : 45 of 86

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.3
Extrapolation	Advanced Extrapolation	
Phantom	ELI4 Flat Phantom	Shell thickness: 2 ± 0.2 mm
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	600 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	42.7	0.88 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	43.4 ± 6 %	0.91 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.70 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.65 W/kg ± 18.1 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.11 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	4.36 W/kg ± 17.6 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	56.1	0.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.7 ± 6 %	0.98 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	1.71 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.67 W/kg ± 18.1 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.13 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	4.43 W/kg ± 17.6 % (k=2)

Certificate No: D600V3-1003_Oct19

Page 3 of 8

Test report No. : 14420105H-E-R2 Page : 46 of 86

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	55.1 Ω - 3.9 jΩ
Return Loss	- 24.3 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	51.9 Ω - 5.8 jΩ
Return Loss	- 24.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.155 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: D600V3-1003_Oct19

Page 4 of 8

Test report No. : 14420105H-E-R2 Page : 47 of 86

DASY5 Validation Report for Head TSL

Date: 18.10.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 600 MHz; Type: D600V3; Serial: D600V3 - SN: 1003

Communication System: UID 0 - CW; Frequency: 600 MHz

Medium parameters used: f = 600 MHz; $\sigma = 0.91$ S/m; $\varepsilon_r = 43.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

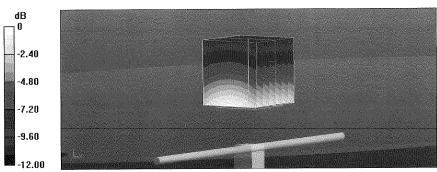
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3877; ConvF(10.01, 10.01, 10.01) @ 600 MHz; Calibrated: 31.12.2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn654; Calibrated: 27.06.2019
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003
- DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

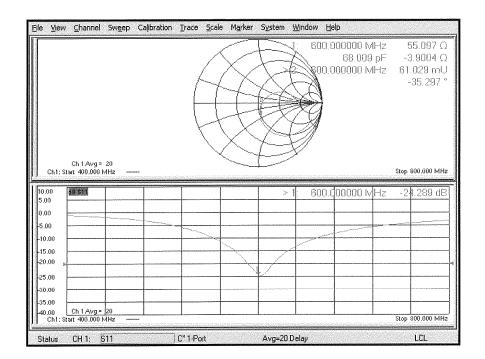
Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 51.71 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 2.75 W/kg

SAR(1 g) = 1.7 W/kg; SAR(10 g) = 1.11 W/kg

Ratio of SAR at M2 to SAR at M1 = 61.8%


Maximum value of SAR (measured) = 2.35 W/kg

0 dB = 2.35 W/kg = 3.71 dBW/kg

Test report No. : 14420105H-E-R2 Page : 48 of 86

Impedance Measurement Plot for Head TSL

Certificate No: D600V3-1003_Oct19

Page 6 of 8

: 14420105H-E-R2

: 49 of 86

DASY5 Validation Report for Body TSL

Date: 18.10.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 600 MHz; Type: D600V3; Serial: D600V3 - SN: 1003

Communication System: UID 0 - CW; Frequency: 600 MHz

Medium parameters used: f = 600 MHz; $\sigma = 0.98 \text{ S/m}$; $\varepsilon_r = 55.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

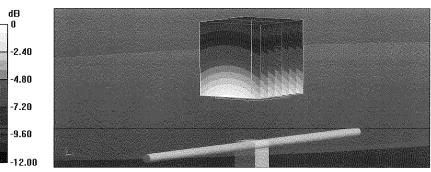
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3877; ConvF(10.2, 10.2, 10.2) @ 600 MHz; Calibrated: 31.12.2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn654; Calibrated: 27.06.2019
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003
- DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

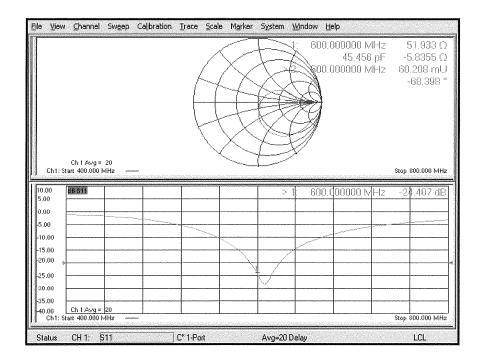

Reference Value = 49.80 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 2.74 W/kg

SAR(1 g) = 1.71 W/kg; SAR(10 g) = 1.13 W/kg

Ratio of SAR at M2 to SAR at M1 = 62.8%

Maximum value of SAR (measured) = 2.35 W/kg


0 dB = 2.35 W/kg = 3.71 dBW/kg

Certificate No: D600V3-1003_Oct19

Page 7 of 8

Test report No. : 14420105H-E-R2 Page : 50 of 86

Impedance Measurement Plot for Body TSL

Certificate No: D600V3-1003_Oct19

Page 8 of 8

: 14420105H-E-R2 Test report No. Page : 51 of 86

D600V3 Calibration for Impedance and Return-loss

Equipment	Dipole Antenna	Model	D600V3
Manufacture	Schmid & Partner Engineering AG	Serial	1003
Tested by	Hisayoshi Sato		

1. Test environment

Date	October 21, 2020		
Ambient Temperature	24.5 deg.C	Relative humidity	50 % RH
Date	October 1, 2021		
Ambient Temperature	23.0 deg.C	Relative humidity	50 % RH

2. Equipment used October 21, 2020

Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date * Interval(month)
EST-30	Network Analyzer	Keysight Technologies Inc	N5230A	MY46400314	SAR	2020/08/17 * 12
EST-62	Calibration Kit	Keysight Technologies Inc	85032F MY41495257		SAR	2020/09/23 * 12
MPF-03	2 mm Oval Flat Phantom	Schmid & Partner Engineering AG	QDOVA001BB	1203	SAR	2020/05/25 * 12
MPSAM-03	SAM Phantom	Schmid & Partner Engineering AG	QD000P40CD	1764	SAR	2020/05/25 * 12
MOS-30	Thermo-Hygrometer	CUSTOM	CTH-201	3001	SAR	2020/07/10 * 12
MHBBL600- 10000	Head Simulating Liquid	Schmid & Partner Engineering AG	HBBL600-10000V6	SL AAH U16 BC		-
MMBBL600- 6000	Body Simulating Liquid	Schmid & Partner Engineering AG	MBBL600-6000	SL AAM U16 BC		-

October 1, 2021

Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date * Interval(month)
EST-63	Network Analyzer	Keysight Technologies Inc	E5071C	MY46523746	SAR	2021/07/02 * 12
EST-57	2.4mm Calibration Kit	Keysight Technologies Inc	85056A	MY44300225	SAR	2021/08/31 * 12
MPSAM-02	SAM Phantom	Schmid & Partner Engineering AG	QD000P40CB	1333	SAR	2021/05/27 * 12
MPF-02	2 mm Oval Flat Phantom	Schmid & Partner Engineering AG	QDOVA001BB	1045	SAR	2021/05/28 * 12
MOS-33	Thermo-Hygrometer	CUSTOM	CTH-201	-	SAR	2021/07/08 * 12
MHBBL600- 10000	Head Simulating Liquid	Schmid & Partner Engineering AG	HBBL600-10000V6	SL AAH U16 BC		-
MMBBL600- 6000	Body Simulating Liquid	Schmid & Partner Engineering AG	MBBL600-6000	SL AAM U16 BC		-

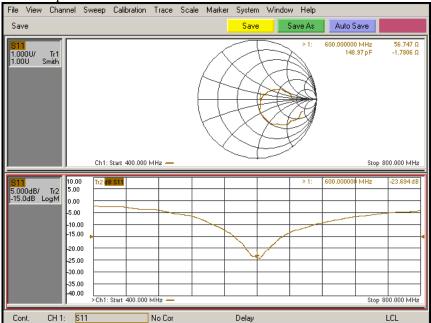
Test report No. : 14420105H-E-R2 Page : 52 of 86

3. Test Result

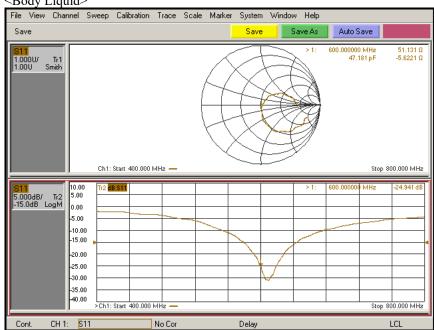
		Head	Head	Deviation	Deviation		
Impeadance,Transformed to feed point	cal day	(real part) [Ω]	$(img part) [j\Omega]$	(real part) [Ω]	(img p art) [jΩ]	Tolerance	Result
Calibration (SPEAG)	2019/10/18	55.10	-3.90	-	-	-	-
Calibration(ULJ)	2020/10/21	56.75	-1.78	1.65	2.12	+/- 5 Ω +/- 5 jΩ	Complied
Calibration(ULJ)	2021/10/1	54.57	-3.51	-0.53	0.39	+/- 5 Ω +/- 5 jΩ	Complied

		Head	Deviation	Tolerance	
Return loss	cal day	[dB]	[dB]	[+/- dB]	Result
Calibration (SPEAG)	2019/10/18	-24.30	-	-	-
Calibration(ULJ)	2020/10/21	-23.69	0.61	4.86	Complied
Calibration(ULJ)	2021/10/1	-25.19	-0.89	4.74	Complied

		Body	Body	Deviation	Deviation		
Impeadance, Transformed to feed point	cal day	(real part) [Ω]	(img part) [jΩ]	(real part) [Ω]	(img p art) [jΩ]	Tolerance	Result
Calibration (SPEAG)	2019/10/18	51.90	-5.80	-	-	-	-
Calibration(ULJ)	2020/10/21	51.13	-5.62	-0.77	0.18	+/- 5 Ω +/- 5 jΩ	Complied
Calibration(ULJ)	2021/10/1	51.71	-5.56	-0.19	0.24	+/- 5 Ω +/- 5 jΩ	Complied

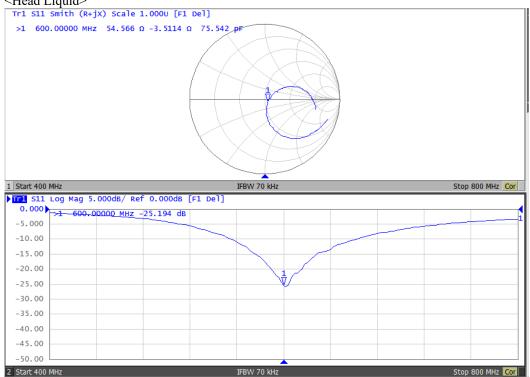

		Body	Deviation	Tolerance	
Return loss	cal day	[dB]	[dB]	[+/- dB]	Result
Calibration (SPEAG)	2019/10/18	-24.40	-	-	-
Calibration(ULJ)	2020/10/21	-24.94	-0.54	4.88	Complied
Calibration(ULJ)	2021/10/1	-24.88	-0.48	4.99	Complied

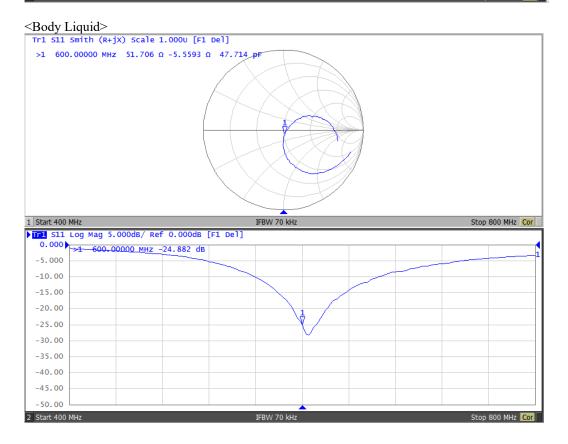
Tolerance: According to the KDB 865664 D1


: 14420105H-E-R2 Test report No. Page : 53 of 86

Measurement Plots October 21, 2020

<Head Liquid>


<Body Liquid>



Test report No. : 14420105H-E-R2 Page : 54 of 86

Measurement Plots October 1, 2021

<Head Liquid>

: 14420105H-E-R2 : 55 of 86

Dosimetric E-Field Probe Calibration Certificate (EX3DV4, S/N: 3745)

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerlscher Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

RCC

Certificate No: EX3-3745_Apr22

Object	EX3DV4 - SN:3745
Calibration procedure(s)	QA CAL-01.v9, QA CAL-14.v6, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes
Calibration date:	April 19, 2022
This calibration certificate doc	uments the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the ur	ncertainties with confidence probability are given on the following pages and are part of the certificate.

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-22 (No. 217-03525/03524)	Apr-23
Power sensor NRP-Z91	SN: 103244	04-Apr-22 (No. 217-03524)	Apr-23
Power sensor NRP-Z91	SN: 103245	04-Apr-22 (No. 217-03525)	Apr-23
Reference 20 dB Attenuator	SN: CC2552 (20x)	04-Apr-22 (No. 217-03527)	Apr-23
DAE4	SN: 660	13-Oct-21 (No. DAE4-660 Oct21)	Oct-22
Reference Probe ES3DV2	SN: 3013	27-Dec-21 (No. ES3-3013_Dec21)	Dec-22
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN GB41293874	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-20)	in house check: Jun-22
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-22

	Name	Function	Signature
Calibrated by:	Aidonia Georgiadou	Laboratory Technician	NE
Approved by:	Sven Kühn	Deputy Manager	54
Three with the same	e shall not be reproduced except in full w		Issued: April 19, 2022

Certificate No: EX3-3745_Apr22

Page 1 of 24

: 14420105H-E-R2 : 56 of 86

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z ConvF

tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z diode compression point

DCP CF A, B, C, D

crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

Polarization φ

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle

information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices -Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no
 uncertainty required).

Certificate No: EX3-3745_Apr22

Page 2 of 24

: 14420105H-E-R2 : 57 of 86

EX3DV4 - SN:3745

April 19, 2022

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3745

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.47	0.43	0.47	± 10.1 %
DCP (mV) ^B	101.1	102.1	98.8	

UID	Communication System Name		A dB	B dB√μV	C	D dB	VR mV	Max dev.	Max Unc ^E (k=2)
0	CW	×	0.00	0.00	1.00	0.00	157.1	± 2.5 %	± 4.7 %
		Y	0.00	0.00	1.00		156.7		1107 000
		Z	0.00	0.00	1.00		158.1		
10352-	Pulse Waveform (200Hz, 10%)	X	20.00	93.26	23.73	10.00	60.0	± 2.6 %	± 9.6 %
AAA		Y	20.00	94.13	23.26		60.0		les services and
		Z	20.00	93.68	25.11		60.0		
10353-	Pulse Waveform (200Hz, 20%)	X	20.00	93.53	22.56	6.99	80.0	± 1.2 %	± 9.6 %
AAA		Y	20.00	95.09	22.77		80.0	- No o-washing	PAGE AND THE
		Z	20.00	93.83	23.66		80.0		
10354-	Pulse Waveform (200Hz, 40%)	X	20.00	95.86	22.10	3.98	95.0	± 2.2 %	± 9.6 %
AAA	5. 7.	Y	20.00	99.74	23.77		95.0		
		Z	20.00	95.66	22.76		95.0		
10355-	Pulse Waveform (200Hz, 60%)	X	20.00	97.10	21.20	2.22	120.0	± 2.6 %	± 9.6 %
AAA		Y	20.00	107.80	26.29		120.0		
		Z	20.00	98.93	22.75		120.0		
10387-	QPSK Waveform, 1 MHz	X	1.88	66.08	15.45	1.00	150.0	± 1.9 %	± 9.6 %
AAA		Y	1.90	67.10	15.92	1100	150.0	135 985,000	
		Z	1.85	64.75	14.89		150.0		
10388-	QPSK Waveform, 10 MHz	X	2.52	69.19	16.14	0.00	150.0	± 0.9 %	± 9.6 %
AAA		Y	2.55	69.73	16.64		150.0		
		Z	2.37	67.74	15.40		150.0		
10396-	64-QAM Waveform, 100 kHz	X	3.92	72.97	19.65	3.01	150.0	± 0.7 %	± 9.6 %
AAA		Y	3.60	73.44	20.21	222 3	150.0	(21/91/) 12/	57070W AV
		Z	3.84	71.19	18.86		150.0		
10399-	64-QAM Waveform, 40 MHz	X	3.72	67.80	16.06	0.00	150.0	± 1.3 %	± 9.6 %
AAA		Y	3,60	67.39	15.98	2132	150.0	- 1.0 /6	
		Z	3.61	66.97	15.63		150.0		
10414-	WLAN CCDF, 64-QAM, 40MHz	X	5.00	65.45	15.41	0.00	150.0	±2.7%	± 9.6 %
AAA		Y	4.97	65.70	15.58	E3437	150.0		- 0,0 10
		Z	5.11	65.44	15.38		150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: EX3-3745_Apr22

^a The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).
^a Numerical linearization parameter; uncertainty not required.
^b Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

: 14420105H-E-R2 : 58 of 86

EX3DV4- SN:3745 April 19, 2022

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3745

Sensor Model Parameters

	C1 fF	C2 fF	α V-1	T1 ms.V ⁻²	T2 ms.V ⁻¹	T3 ms	T4 V-2	T5 V-1	Т6
X	68.7	512.36	35.50	25.69	1.19	5.09	0.62	0.64	1.01
Υ	54.9	403.84	34.71	25.52	0.33	5.10	1.75	0.25	1.01
Z	81.8	615.29	35.95	29.57	2.06	5.10	0.00	0.89	1.01

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-121.8
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

Certificate No: EX3-3745_Apr22

Page 4 of 24

: 14420105H-E-R2 : 59 of 86

EX3DV4- SN:3745 April 19, 2022

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3745

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
450	43.5	0.87	9.78	9.78	9.78	0.16	1.30	± 13.3 %
600	42.7	0.88	9.61	9.61	9.61	0.10	1.25	± 13.3 %
750	41.9	0.89	9.35	9.35	9.35	0.50	0.80	± 12.0 %
835	41.5	0.90	8.97	8.97	8.97	0.53	0.80	± 12.0 %
900	41.5	0.97	8.70	8.70	8.70	0.46	0.80	± 12.0 %
1450	40.5	1.20	7.62	7.62	7.62	0.48	0.80	± 12.0 %
1640	40.2	1.31	7.83	7.83	7.83	0.37	0.86	± 12.0 %
1750	40.1	1.37	7.64	7.64	7.64	0.39	0.86	± 12.0 %
1900	40.0	1.40	7.53	7.53	7.53	0.37	0.86	± 12.0 %
1950	40.0	1.40	7.36	7.36	7.36	0.35	0.86	± 12.0 %
2300	39.5	1,67	7.21	7.21	7.21	0.30	0.90	± 12.0 %
2450	39.2	1.80	6.86	6.86	6.86	0.38	0.90	± 12.0 %
2600	39.0	1.96	6.73	6.73	6.73	0.38	0.90	± 12.0 %
3500	37.9	2.91	6.43	6.43	6.43	0.30	1.35	± 13.1 %
3700	37.7	3.12	6.20	6.20	6.20	0.30	1.35	± 13.1 %
3900	37.5	3.32	5.95	5.95	5.95	0.40	1.60	± 13.1 %
5250	35.9	4.71	4.73	4.73	4.73	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.33	4.33	4.33	0.40	1.80	± 13.1 %
5750	35.4	5.22	4.36	4.36	4.36	0.40	1.80	± 13.1 %
5800	35.3	5.27	4.32	4.32	4.32	0.40	1.80	± 13.1 %
5850	35.2	5.32	4.23	4.23	4.23	0.40	1.80	± 13.1 %

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 8 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

F At frequencies below 3 GHz, the validity of tissue parameters (s and o) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (s and o) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target issue parameters.

^a Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect alter compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: EX3-3745_Apr22

: 14420105H-E-R2 : 60 of 86

EX3DV4-SN:3745

April 19, 2022

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3745

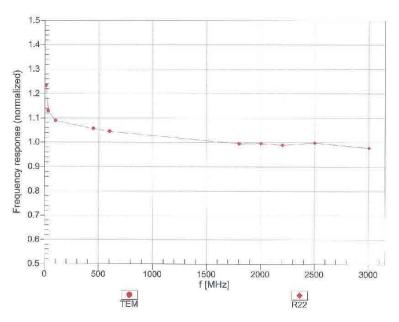
Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
450	56.7	0.94	10.22	10.22	10.22	0.11	1.20	± 13.3 %
600	56.1	0.95	9.63	9.63	9.63	0.10	1.35	± 13.3 %
750	55.5	0.96	9.12	9.12	9.12	0.40	0.80	± 12.0 %
835	55.2	0.97	8.96	8.96	8.96	0.41	0.90	± 12.0 %
900	55.0	1.05	9.00	9.00	9.00	0.47	0.85	± 12.0 %
1640	53.7	1.42	7.88	7.88	7.88	0.47	0.86	± 12.0 %
1750	53.4	1.49	7.50	7.50	7.50	0.46	0.86	± 12.0 %
1900	53.3	1.52	7.26	7.26	7.26	0.46	0.86	± 12.0 %
1950	53.3	1.52	7.49	7.49	7.49	0.41	0.86	± 12.0 %
2300	52.9	1.81	7.06	7.06	7.06	0.45	0.90	± 12.0 %
2450	52.7	1.95	6.92	6.92	6.92	0.43	0.90	± 12.0 %
2600	52.5	2.16	6.77	6.77	6.77	0.32	0.90	± 12.0 %
3500	51.3	3.31	6.05	6.05	6.05	0.40	1.35	± 13.1 %
3700	51.0	3.55	5.82	5.82	5.82	0.40	1.35	± 13.1 %
3900	50.8	3.78	5.47	5.47	5,47	0.40	1.70	± 13.1 %
5250	48.9	5.36	4.02	4.02	4.02	0.50	1.90	± 13.1 %
5600	48.5	5.77	3.65	3.65	3.65	0.50	1.90	± 13.1 %
5750	48.3	5.94	3.84	3.84	3.84	0.50	1.90	± 13.1 %
5800	48.2	6.00	3.80	3.80	3.80	0.50	1.90	± 13.1 %
5850	48.1	6.06	3.76	3.76	3.76	0.50	1.90	± 13.1 %

[©] Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 126, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 5-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

F. At frequencies below 3 GHz, the validity of lissue parameters (is and o) can be relaxed to ± 10% filliquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of lissue parameters (is and o) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target itsue parameters.

G. Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


Certificate No: EX3-3745_Apr22

: 14420105H-E-R2 : 61 of 86

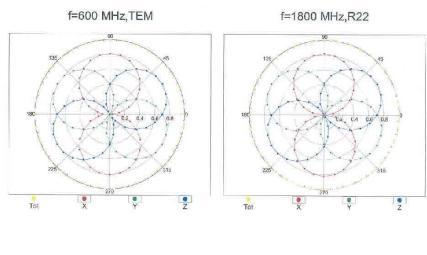
EX3DV4- SN:3745

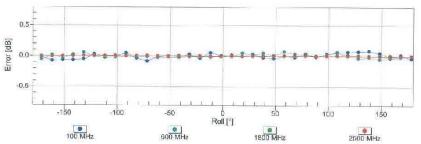
April 19, 2022

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: EX3-3745_Apr22


Page 7 of 24


Test report No. : 14420105H-E-R2 Page : 62 of 86

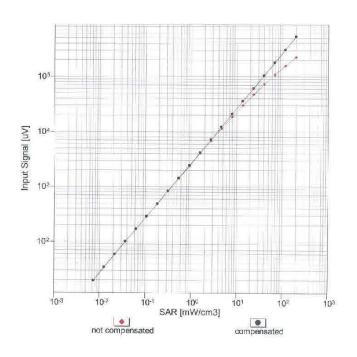
EX3DV4-SN:3745

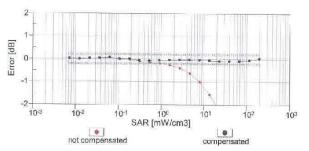
April 19, 2022

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: EX3-3745_Apr22


Page 8 of 24


: 14420105H-E-R2 : 63 of 86

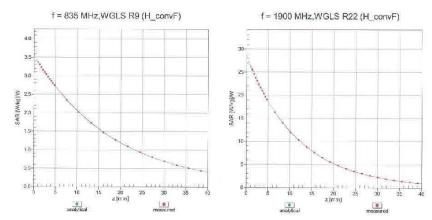
EX3DV4-SN:3745

April 19, 2022

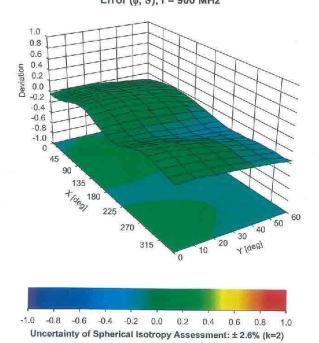
Dynamic Range f(SAR_{head}) (TEM cell , feval= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: EX3-3745_Apr22


Page 9 of 24

: 14420105H-E-R2 : 64 of 86


EX3DV4-SN:3745

April 19, 2022

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (0, 9), f = 900 MHz

Certificate No: EX3-3745_Apr22

Page 10 of 24

: 14420105H-E-R2 : 65 of 86 Test report No. Page

EX3DV4- SN:3745 April 19, 2022

UID Rev		Communication System Name	Group	PAR (dB)	Unc ^E (k=2)
0	17.	CW	CW	0.00	± 4.7
10010	CAA	SAR Validation (Square, 100ms, 10ms)	Test	10.00	± 9.6 %
10011	CAB	UMTS-FDD (WCDMA)	WCDMA	2.91	± 9.6 %
10012	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	WLAN	1.87	± 9.6 %
10013	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps)	WLAN	9.46	± 9.6 9
10021	DAC	GSM-FDD (TDMA, GMSK)	GSM	9.39	± 9.6 9
10023	DAC	GPRS-FDD (TDMA, GMSK, TN 0)	GSM	9.57	± 9.6 %
10024	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	GSM	6.56	± 9.6 9
10025	DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	GSM	12.62	± 9.6 9
10026	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	GSM	9.55	± 9.6 %
10027	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	GSM	4.80	± 9.6 9
10028	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	GSM	3.55	± 9.6 °
10029	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	GSM	7.78	± 9.6 9
10030	CAA	IEEE 802,15.1 Bluetooth (GFSK, DH1)	Bluetooth	5.30	± 9.6 %
10031	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	Bluetooth	1.87	± 9.6 %
10032	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	Bluetooth	1.16	± 9.6 °
10033	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	Bluetooth	7.74	± 9.6
10034	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	Bluetooth	4.53	± 9.6 %
10035	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	Bluetooth	3.83	± 9.6 %
10036	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	Bluetooth		
10037	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	Bluetooth	8.01	± 9.6 %
10038	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)		4.77	± 9.6 %
10039	CAB	CDMA2000 (1xRTT, RC1)	Bluetooth	4.10	± 9.6 %
10042	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Halfrate)	CDMA2000	4.57	± 9.6 %
10044	CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	AMPS	7.78	± 9.6 %
10048	CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	AMPS	0.00	± 9.6 %
10049	CAA	DECT (TDD, TDMA/FDM, GFSK, Pull Slot, 24)	DECT	13.80	± 9.6 %
10056	CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	DECT	10.79	± 9.6 %
10058	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	TD-SCDMA	11.01	± 9.6 %
10059	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	GSM	6.52	± 9.6 %
10060	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	WLAN	2.12	± 9.6 %
10061	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	WLAN	2.83	± 9.6 %
10062	CAD		WLAN	3.60	± 9.6 %
10063	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps) IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	WLAN	8.68	± 9.6 %
10064	CAD		WLAN	8.63	± 9.6 %
10065	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	WLAN	9.09	± 9.6 %
10066	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps) IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps)	WLAN	9.00	± 9.6 %
10067	CAD		WLAN	9.38	± 9.6 %
10068	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	WLAN	10.12	± 9.6 %
10069	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	WLAN	10.24	± 9.6 %
10071	CAB	IEEE 802.11a/h WIFI 5 GHz (OFDM, 54 Mbps)	WLAN	10.56	± 9.6 %
10071	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	WLAN	9.83	± 9.6 %
10072	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	WLAN	9.62	± 9.6 %
10073	CAB	IEEE 802.11g WIFI 2.4 GHz (DSSS/OFDM, 18 Mbps)	WLAN	9.94	± 9.6 %
10074		IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	WLAN	10.30	± 9.6 %
10075	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	WLAN	10.77	±9.6 %
10076	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	WLAN	10.94	± 9.6 %
		IEEE 802.11g WiFl 2.4 GHz (DSSS/OFDM, 54 Mbps)	WLAN	11.00	± 9.6 %
10081	CAB	CDMA2000 (1xRTT, RC3)	CDMA2000	3.97	± 9.6 %
	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fullrate)	AMPS	4.77	± 9.6 %
	DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	GSM	6.56	± 9.6 %
	CAB	UMTS-FDD (HSDPA)	WCDMA	3.98	± 9.6 %
	CAB	UMTS-FDD (HSUPA, Subtest 2)	WCDMA	3.98	± 9.6 %
10099	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-4)	GSM	9.55	± 9.6 %

Certificate No: EX3-3745_Apr22