TEST REPORT

FCC BT Test for DSX-GS80
Certification

APPLICANT
SONY CORPORATION

REPORT NO.
HCT-RF-1906-FC029-R1

DATE OF ISSUE
19 June 2019

HCT Co., Ltd.

74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383 KOREA
Tel. +82316346300 Fax. +82316456401

Applicant	SONY CORPORATION $1-7-1 ~ K o n a n, ~ M i n a t o-k u ~ T o k v o, ~ 108-0075 ~ J a p a n ~$
Eut Type	FM/AM Bluetooth ${ }^{\circledR}$ CAR AUDIO Model Name DSX-GS80
Date of Receipt	June 03, 2019
RF Peak Output Power	$1.945 \mathrm{dBm}(1.565 \mathrm{~mW})$
FCC Rule Part(s):	Part 15 subpart C 15.247
FCC	FCC Part 15 Spread Spectrum Transmitter
Frequency range	2 402 MHz - 2 480 MHz (Bluetooth)
Modulation type	GFSK(Normal), $\pi / 4 D Q P S K$ and 8DPSK(EDR)

REVISION HISTORY

The revision history for this test report is shown in table.

Revision No.	Date of Issue	Description
0	June 14, 2019	Initial Release
1	June 19, 2019	Revised the Eut Type

The result shown in this test report refer only to the sample(s) tested unless otherwise stated.

Engineering Statement:
The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of the FCC Rules under normal use and maintenance.

CONTENTS

1. EUT DESCRIPTION 5
2. Requirements for Bluetooth transmitter(15.247) 6
3. TEST METHODOLOGY 7
EUT CONFIGURATION 7
EUT EXERCISE 7
GENERAL TEST PROCEDURES 7
DESCRIPTION OF TEST MODES 8
4. INSTRUMENT CALIBRATION 8
5. FACILITIES AND ACCREDITATIONS 9
FACILITIES 9
EQUIPMENT 9
6. ANTENNA REQUIREMENTS 10
7. MEASUREMENT UNCERTAINTY 11
8. DESCRIPTION OF TESTS 12
9. SUMMARY OF TEST RESULTS 30
10. TEST RESULT 31
10.1 PEAK POWER 31
10.2 BAND EDGES 37
10.3 FREQUENCY SEPARATION / OCCUPIED BANDWIDTH (99\% BW) 44
10.4 NUMBER OF HOPPING FREQUENCY 52
10.5 TIME OF OCCUPANCY (DWELL TIME) 56
10.6 SPURIOUS EMISSIONS 62
10.6.1 CONDUCTED SPURIOUS EMISSIONS 62
10.6.2 RADIATED SPURIOUS EMISSIONS 70
10.6.3 RADIATED RESTRICTED BAND EDGES 75
11. LIST OF TEST EQUIPMENT 78
12. ANNEX A_TEST SETUP PHOTO 80

1. EUT DESCRIPTION

Manufacturer	SONY CORPORATION
Assembly Plant	SONY TECHNOLOGY(THAILAND) CO., LTD.
Assembly Plant Address	Head Office 700/402 Moo 7, Amata City Chonburi Industrial Estate, Don Hua Roh, Muang Chonburi, Chonburi 20000, Thailand
Model	DSX-GS80
EUT Type	FM/AM Bluetooth ${ }^{\circledR}$ CAR AUDIO
Power Supply	DC 12.0 V
Frequency Range	$2402 \mathrm{MHz}-2480 \mathrm{MHz}$
Max. RF Output Power	$1.945 \mathrm{dBm}(1.565 \mathrm{~mW})$
BT Operating Mode	Normal, EDR, AFH
Modulation Type	GFSK(Normal), $\pi / 4 \mathrm{DQPSK}$ and 8DPSK(EDR)
Modulation Technique	FHSS
Bluetooth Version	3.0
Temperature range	$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Number of Channels	79Channels, Minimum 20 Channels(AFH)
Antenna Specification	Antenna type: Meander Monopole Antenna Peak Gain : 0.929 dBi
Date(s) of Tests	June 04, 2019 ~ June 07, 2019

2. Requirements for Bluetooth transmitter(15.247)

This Bluetooth module has been tested by a Bluetooth Qualification Lab, and we confirm the following:

1) This system is hopping pseudo-randomly.
2) Each frequency is used equally on the average by each transmitter.
3) The receiver input bandwidths that match the hopping channel bandwidths of their corresponding transmitters
4) The receiver shifts frequencies in synchronization with the transmitted signals.

- 15.247 (g): The system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this Section 15.247 should the transmitter be presented with a continuous data (or information) stream.
- 15.247 (h): The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

3. TEST METHODOLOGY

The measurement procedure described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Device (ANSI C63.10-2013, KDB 558074) is used in the measurement of the test device.

EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

EUT EXERCISE

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2 of ANSI C63.10. (Version :2013) Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane below 1 GHz . Above 1 GHz with 1.5 m using absorbers between the EUT and receive antenna. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3.75 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes according to the requirements in Section 6.6.5 of ANSI C63.10. (Version: 2013). To record the final measurements, the analyzer detector function was set to CISPR quasi-peak mode and the bandwidth of the spectrum analyzer was set to 120 kHz for frequencies below 1 GHz or 1 MHz for frequencies above 1 GHz . For average measurements above 1 GHz , the analyzer was set to peak detector with a reduced VBW setting(RBW $=1 \mathrm{MHz}$, VBW $=1 / \mathrm{THz}$, where $\mathrm{T}=$ Pulse width).

DESCRIPTION OF TEST MODES

The EUT has been tested under operating condition. Test program used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

4. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipments, which is traceable to recognized national standards.

Espectially, all antenna for measurement is calibrated in accordance with the requirements of C63.5 (Version : 2017).

5. FACILITIES AND ACCREDITATIONS

FACILITIES

The SAC(Semi-Anechoic Chamber) and conducted measurement facility used to collect the radiated data are located at the 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA. The site is constructed in conformance with the requirements of ANSI C63.4. (Version :2014) and CISPR Publication 22.
Detailed description of test facility was submitted to the Commission and accepted dated April 02, 2018 (Registration Number: KR0032).

EQUIPMENT

Radiated emissions are measured with one or more of the following types of Linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements. Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers. Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

6. ANTENNA REQUIREMENTS

According to FCC 47 CFR § 15.203:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

* The antennas of this E.U.T are permanently attached.
* The E.U.T Complies with the requirement of $\S 15.203$

7. MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of

ANSI C63.10-2013.
All measurement uncertainty values are shown with a coverage factor of $k=2$ to indicate a 95% level of confidence.

The measurement data shown herein meets or exceeds the $U_{\text {CISPR }}$ measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Parameter	E
Conducted Disturbance $(150 \mathrm{kHz} \sim 30 \mathrm{MHz})$	1.82
Radiated Disturbance $(9 \mathrm{kHz} \sim 30 \mathrm{MHz})$	3.40
Radiated Disturbance $(30 \mathrm{MHz} \sim 1 \mathrm{GHz})$	4.80
Radiated Disturbance $(1 \mathrm{GHz} \sim 18 \mathrm{GHz})$	5.70
Radiated Disturbance $(18 \mathrm{GHz} \sim 40 \mathrm{GHz})$	5.05

8. DESCRIPTION OF TESTS

8.1. Conducted Maximum Peak Output Power

Limit

The maximum peak output power of the intentional radiator shall not exceed the following:

1. For frequency hopping systems operating in the $2400-2483.5 \mathrm{MHz}$ band employing at least 75 nonoverlapping hopping channels, and all frequency hopping systems in the $5725-5850 \mathrm{MHz}$ band: 1 W . For all other frequency hopping systems in the $2400-2483.5 \mathrm{MHz}$ band: 0.125 W .
2. The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi .

Test Configuration

Test Procedure

The transmitter output is connected to the Spectrum Analyzer. The Spectrum Analyzer is set to the peak detector mode. This test is performed with hopping off.

The Spectrum Analyzer is set to (7.8.5 in ANSI 63.10-2013 \& Procedure 10(b)(6)(i) in KDB 558074 v05r02)

1) Span: approximately 5 times the 20 dB bandwidth, centered on a hopping channel
2) $R B W>$ the 20 dB bandwidth of the emission being measured
3) $V B W \geq R B W$
4) Sweep = Auto
5) Detector $=$ Peak
6) Trace $=$ Max hold

Sample Calculation
 Output Power $=$ Spectrum Reading Power + Power Splitter loss + Cable loss(2 ea) $=10 \mathrm{dBm}+6 \mathrm{~dB}+1.5 \mathrm{~dB}=17.5 \mathrm{dBm}$

8.2. Conducted Band Edge(Out of Band Emissions)

Limit

According to $\S 15.247$ (d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

Test Configuration

Test Procedure

This test is performed with hopping off and hopping on.

The Spectrum Analyzer is set to (6.10.4 in ANSI 63.10-2013 \& Procedure 8.5 and 8.6 in KDB 558074 v05r02)

1) Span: Wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products which fall outside of the authorized band of operation
2) Reference level: As required to keep the signal from exceeding the maximum instrument input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than $[10 \log (O B W / R B W)]$ below the reference level.
3) Attenuation: Auto (at least 10 dB preferred).
4) Sweep time: Coupled.
5) RBW: 100 kHz
6) VBW: 300 kHz
7) Detector: Peak
8) Trace: Max hold

8.3. Frequency Separation \& 20 dB Bandwidth

Limit

According to $\S 15.247$ (a)(1), Frequency hopping systems operating in the $2400-2483.5 \mathrm{MHz}$ band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

Test Configuration

Test Procedure (Frequency Seperation)

The Channel Separation test is performed with hopping on.

The Spectrum Analyzer is set to (7.8.2 in ANSI 63.10-2013 \& Procedure 10(b)(6)(iii) in KDB 558074 v05r02)

1) Span: Wide enough to capture the peaks of two adjacent channels
2) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.
3) $V B W \geq R B W$
4) Sweep: Auto
5) Detector: Peak
6) Trace: Max hold
7) All the trace to stabilize.
8) Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Compliance of an EUT with the appropriate regulatory limit shall be determined. A plot of the data shall be included in the test report.

Test Procedure (20 dB Bandwidth)

And the 20 dB Bandwidth test is performed with hopping off.

The Spectrum Analyzer is set to (6.9.2 in ANSI 63.10-2013)

1) Span: Set between two times and five times the OBW
2) RBW: 1% to 5% of the OBW.
3) VBW $\geq 3^{*} \mathrm{RBW}$
4) Sweep: Auto
5) Detector: Peak
6) Trace: Max hold
7) All the trace to stabilize.

8.4. Number of Hopping Frequencies

Limit

According to $\S 15.247$ (a)(1)(iii), Frequency hopping systems operating in the $2400 \mathrm{MHz} \sim 2483.5 \mathrm{MHz}$ bands shall use at least 15 hopping frequencies.

Test Configuration

Test Procedure

The Bluetooth frequency hopping function of the EUT was enabled.

The Spectrum Analyzer is set to (7.8.3 in ANSI 63.10-2013 \& Procedure 10(b)(4) in KDB 558074 v05r02)

1) Span: the frequency band of operation
2) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.
3) VBW \geq RBW
4) Sweep: Auto
5) Detector: Peak
6) Trace: Max hold
7) Allow the trace to stabilize.

8.5. Time of Occupancy

Limit

According to $\S 15.247$ (a)(1)(iii), Frequency hopping systems operating in the $2400 \mathrm{MHz} \sim 2483.5$ MHz bands. The average time of occupancy on any channels shall not greater than 0.4 s within a period 0.4 s multiplied by the number of hopping channels employed.

Test Configuration

Test Procedure

This test is performed with hopping off.

The Spectrum Analyzer is set to (7.8.4 in ANSI 63.10-2013 \& Procedure 10(b)(6)(iv) in KDB 558074 v05r02)

1) Span: Zero span, centered on a hopping channel
2) RBW shall be \leq channel spacing and where possible RBW should be set >> $1 / T$, where T is the expected dwell time per channel.
3) Sweep = as necessary to capture the entire dwell time per hopping channel
4) Detector: Peak
5) Trace: Max hold

The marker-delta function was used to determine the dwell time.

Sample Calculation

The following calculation process is not relevant to our measurement results. It is just an example.

* Non-AFH Mode
- DH 5 (GFSK) : 2.890 * ($1600 / 6$)/79 * $31.6=308.27$ (ms)
- $2-\mathrm{DH} 5(\pi / 4 \mathrm{DQPSK}): 2.890$ * $(1600 / 6) / 79$ * $31.6=308.27$ (ms)
- $3-$ DH 5 (8DPSK) : 2.890 * (1600/6)/79 * $31.6=308.27$ (ms)
* AFH Mode
- DH 5 (GFSK) : 2.890 * ($800 / 6$)/20 * $8.0=154.13$ (ms)
- 2-DH $5(\pi / 4 D Q P S K) ~: ~ 2.890 *(800 / 6) / 20 * 8.0=154.13(\mathrm{~ms})$
- 3-DH 5 (8DPSK) : 2.890 * ($800 / 6$)/20 * $8.0=154.13$ (ms)

Note:
DH5 Packet need 5 time slot for transmitting and 1 time slot for receiving.
Then the system makes worst case 1600/6 hops per second with 79 channels. So the system have each channel 3.3755 times per second and so for 31.6 seconds the system have 106.667 times of appearance.
Each tx-time per appearance of DH5 is 2.890 ms .
Dwell time $=$ Tx-time * $106.667=308.27$ (ms)

8.6. Conducted Spurious Emissions

Limit

Conducted $>20 \mathrm{dBc}$

Test Configuration

Test Procedure

Conducted RF measurements of the transmitter output were made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

The transmitter output is connected to the spectrum analyzer.
The Spectrum Analyzer is set to (7.8.8 in ANSI 63.10-2013 \& Procedure 8.5 and 8.6 in KDB 558074
v05r02)

1) Span: 30 MHz to 10 times the operating frequency in GHz .
2) RBW: 100 kHz
3) VBW: 300 kHz
4) Sweep: Coupled
5) Detector: Peak

Measurements are made over the 30 MHz to 25 GHz range with the transmitter set to the lowest, middle, and highest channels.

This test is performed with hopping off.

Factors for frequency

Freq(MHz)	Factor(dB)
30	7.22
100	6.39
200	7.08
300	6.62
400	6.30
500	5.99
600	6.21
700	6.38
800	6.76
900	7.12
1000	7.42
2000	7.25
2400*	7.37
2500*	7.40
3000	7.92
4000	8.99
5000	9.61
6000	6.72
7000	10.03
8000	8.38
9000	9.65
10000	10.51
11000	9.00
12000	9.77
13000	8.88
14000	9.54
15000	11.58
16000	8.18
17000	11.77
18000	9.75
19000	10.44
20000	11.73
21000	10.76
22000	12.35
23000	9.89
24000	12.56
25000	11.11
26000	10.54

Note : 1. '*’ is fundamental frequency range.
2. Factor $=$ Cable loss + Splitter loss

8.7. Radiated Test

Limit

Frequency (MHz)	Field Strength $(\mathrm{uV} / \mathrm{m})$	Measurement Distance (m)
$0.009-0.490$	$2400 / \mathrm{F}(\mathrm{kHz})$	300
$0.490-1.705$	$24000 / \mathrm{F}(\mathrm{kHz})$	30
$1.705-30$	30	30
$30-88$	100	3
$88-216$	150	3
$216-960$	200	3
Above 960		300

Test Configuration

Below 30 MHz

Above 1 GHz

Test Procedure of Radiated spurious emissions(Below 30 MHz)

1. The EUT was placed on a non-conductive table located on semi-anechoic chamber.
2. The loop antenna was placed at a location 3 m from the EUT
3. The EUT is placed on a turntable, which is 0.8 m above ground plane.
4. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
5. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
6. Distance Correction Factor $(0.009 \mathrm{MHz}-0.490 \mathrm{MHz})=40^{\star} \log (3 \mathrm{~m} / 300 \mathrm{~m})=-80 \mathrm{~dB}$

Measurement Distance : 3 m
7. Distance Correction Factor $(0.490 \mathrm{MHz}-30 \mathrm{MHz})=40^{\star} \log (3 \mathrm{~m} / 30 \mathrm{~m})=-40 \mathrm{~dB}$ Measurement Distance : 3 m
8. Spectrum Setting

- Frequency Range $=9 \mathrm{kHz} \sim 30 \mathrm{MHz}$
- Detector $=$ Peak
- Trace = Maxhold
- RBW $=9 \mathrm{kHz}$
- VBW $\geq 3^{*}$ RBW

9. Total $=$ Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) + Distance Factor(D.F)

KDB 414788 OFS and Chamber Correlation Justification

Base on FCC 15.31 (f) (2): measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field.

OFS and chamber correlation testing had been performed and chamber measured test result is the worst case test result.
(Worst case: semi-anechoic chamber(10 m chamber))

Test Procedure of Radiated spurious emissions(Below 1GHz)

1. The EUT was placed on a non-conductive table located on semi-anechoic chamber.
2. The EUT is placed on a turntable, which is 0.8 m above ground plane.
3. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
4. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
5. Spectrum Setting
(1) Measurement Type(Peak):

- Measured Frequency Range : $30 \mathrm{MHz}-1 \mathrm{GHz}$
- Detector = Peak
- Trace $=$ Maxhold
- RBW $=100 \mathrm{kHz}$
- VBW $\geq 3^{*}$ RBW
(2) Measurement Type(Quasi-peak):
- Measured Frequency Range : $30 \mathrm{MHz}-1 \mathrm{GHz}$
- Detector = Quasi-Peak
- RBW $=120 \mathrm{kHz}$
*In general, (1) is used mainly

6. Total $=$ Reading Value + Antenna Factor(A.F) + Cable Loss(C.L)

Test Procedure of Radiated spurious emissions (Above 1 GHz)

1. Radiated test is performed with hopping off.
2. The EUT is placed on a turntable, which is 1.5 m above ground plane.
3. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
4. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
5. EUT is set 3.75 m away from the receiving antenna, which is varied from 1 m to 4 m to find out the highest emissions.
6. According to SVSWR requirement in ANSI 63.4-2014, We performed the radiated test at 3.75 m distance from center of turn table. So, we applied the distance factor(reference distance : 3 m). *Distance extrapolation factor $=20^{*} \log$ (test distance $/$ specific distance) (dB)
7. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
8. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
9. The unit was tested with its standard battery.
10. Spectrum Setting
(1) Measurement Type(Peak):

- Measured Frequency Range : 1 GHz - 25 GHz
- Detector = Peak
- Trace = Maxhold
- RBW = 1 MHz
-VBW \geq 3*RBW
(2) Measurement Type(Average):
- We performed using a reduced video BW method was done with the analyzer in linear mode
- Measured Frequency Range : 1 GHz - 25 GHz
- Detector = Peak
- Trace = Maxhold
- RBW $=1 \mathrm{MHz}$
- VBW $\geq 1 / \tau \mathrm{Hz}$, where $\tau=$ pulse width in seconds

The actual setting value of VBW $=1 \mathrm{kHz}$
11. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
12. Total = Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) - Amp Gain(G) + Distance

Factor(D.F)

Test Procedure of Radiated Restricted Band Edge

1. Radiated test is performed with hopping off.
2. The EUT is placed on a turntable, which is 1.5 m above ground plane.
3. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
4. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
5. EUT is set 3.75 m away from the receiving antenna, which is varied from 1 m to 4 m to find out the highest emissions.
6. According to SVSWR requirement in ANSI 63.4-2014, We performed the radiated test at 3.75 m distance from center of turn table. So, we applied the distance factor(reference distance :3m). *Distance extrapolation factor $=20^{*} \log$ (test distance $/$ specific distance) (dB)
7. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
8. The unit was tested with its standard battery.
9. Spectrum Setting
(1) Measurement Type(Peak):
(i) - Detector = Peak

- Trace = Maxhold
- RBW $=1 \mathrm{MHz}$
- VBW $\geq 3^{*}$ RBW
(2) Measurement Type(Average):
(i) - We performed using a reduced video BW method was done with the analyzer in linear mode
- Detector $=$ Peak
- Trace = Maxhold
- RBW = 1 MHz
- VBW $\geq 1 / \tau \mathrm{Hz}$, where $\tau=$ pulse width in seconds

The actual setting value of VBW $=1 \mathrm{kHz}$
10. Total
= Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) + Distance Factor(D.F)

8.8. AC Power line Conducted Emissions

Limit

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz , shall not exceed the limits in the following table, as measured using a $50 \mu \mathrm{H} / 50$ ohms line impedance stabilization network (LISN).

Frequency Range (MHz)	Limits (dB $\mu \mathrm{V})$	
	Quasi-peak	Average
0.15 to 0.50	66 to 56^{*}	56 to 46*
0.50 to 5	56	46
5 to 30	60	50

*Decreases with the logarithm of the frequency.

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

Test Configuration

See test photographs attached in Annex A for the actual connections between EUT and support equipment.

Test Procedure

1. The EUT is placed on a wooden table 80 cm above the reference ground plane.
2. The EUT is connected via LISN to a test power supply.
3. The measurement results are obtained as described below:
4. Detectors: Quasi Peak and Average Detector.
5. The EUT is the device operating below 30 MHz .

- For unterminated the Antenna, the AC line conducted tests are performed with the antenna connected
- For terminated the Antenna, the AC line conducted tests are performed with a dummy load connected to the EUT antenna output terminal.

Sample Calculation

Quasi-peak(Final Result) = Reading Value + Correction Factor

8.9. Worst case configuration and mode

Radiated test

1. EUT Axis

- Radiated Spurious Emissions: X
- Radiated Restricted Band Edge : X

2. All data rate of operation were investigated and the test results are worst case in highest datarate of each mode.

- GFSK : DH5
- $\pi / 4 D Q P S K: 2-D H 5$
- 8DPSK: 3-DH5

AC Power line Conducted Emissions

1. We don't perform AC powerline conducted emission test. Because this EUT is used with vehicle.

Conducted test

1. The EUT was configured with data rate of highest power.

- GFSK: DH5
- $\pi / 4$ DQPSK: 2-DH5
-8DPSK: 3-DH5

2. AFH \& Non-AFH were tested and the worst case results are reported.
(Worst case : Non-AFH)

9. SUMMARY OF TEST RESULTS

Test Description	FCC Part Section(s)	Test Limit	Test Condition	Test Result
20 dB Bandwidth	§15.247(a)(1)	N/A	Conducted	PASS
Occupied Bandwidth	N/A	N/A		N/A
Conducted Maximum Peak Output Power	§15.247(b)(1)	<0.125 W		PASS
Carrier Frequency Separation	§15.247(a)(1)	$>25 \mathrm{kHz}$ or $>2 / 3$ of the 20 dB BW		PASS
Number of Hopping Frequencies	§15.247(a)(1)(iii)	≥ 15		PASS
Time of Occupancy	§15.247(a)(1)(iii)	$<400 \mathrm{~ms}$		PASS
Conducted Spurious Emissions	§15.247(d)	$>20 \mathrm{~dB}$ for all out-of band emissions		PASS
Band Edge (Out of Band Emissions)	§15.247(d)	$>20 \mathrm{~dB}$ for all out-of band emissions		PASS
AC Power line Conducted Emissions	§15.207(a)	cf. Section 8.8		N/T
Radiated Spurious Emissions	$\begin{gathered} \S 15.247(\mathrm{~d}), \\ 15.205, \\ 15.209 \end{gathered}$	cf. Section 8.7	Radiated	PASS
Radiated Restricted Band Edge	$\begin{gathered} \S 15.247(\mathrm{~d}), \\ 15.205, \\ 15.209 \end{gathered}$	cf. Section 8.7		PASS

Note:

1. We don't perform AC powerline conducted emission test. Because this EUT is used with vehicle.

10. TEST RESULT

10.1 PEAK POWER

Channel	Frequency (MHz)	Output Power (GFSK)		Limit (mW)
	2402	(dBm)	(mW)	
Low	2441	-0.631	0.865	125
Mid	2480	-0.325	1.078	
High	-0.614	0.868		

Channel	Frequency $(M H z)$	Output Power (8DPSK)		Limit (mW)
	2402	(dBm)	(mW)	
Low	2441	1.229	1.327	125
Mid	2480	1.075	1.565	
High				

Channel	Frequency $(M H z)$	Output Power $(\pi / 4 D Q P S K)$		Limit (mW)
	2402	(dBm)	(mW)	
Low	2441	1.430	1.181	1.390
Mid	2480	0.568	1.140	
High				

Note:

1. Spectrum reading values are not plot data.

The power results in plot is already including the actual values of loss for the splitter and cable combination.
2. We apply to the offset in the 2.4 GHz range that was rounded off to the closest tenth dB .

Actual value of loss for the splitter and cable combination is 7.37 dB at 2402 MHz and is 7.40 dB at 2480 MHz .

So, 7.40 dB is offset. And the offset gap in the 2.4 GHz range do not affect the conducted peak power final result.

Test Plots (GFSK)
Peak Power (CH.O)

Test Plots (GFSK)
Peak Power (CH.39)

Test Plots (GFSK)
Peak Power (CH.78)

Test Plots (8DPSK)
Peak Power (CH.0)

Test Plots (8DPSK)
Peak Power (CH.39)

Test Plots (8DPSK)
Peak Power (CH.78)

Test Plots ($\pi / 4 \mathrm{DQPSK}$)
Peak Power (CH.O)

Test Plots ($\pi / 4 \mathrm{DQPSK}$)
Peak Power (CH.39)

Test Plots ($\pi / 4 \mathrm{DQPSK}$)
Peak Power (CH.78)

10.2 BAND EDGES

Without hopping

Outside Frequency Band	GFSK (dB)	$8 D P S K$ $(\mathrm{~dB})$	$\pi / 4 \mathrm{DQPSK}$ (dB)	Limit (dBC)
Lower	49.002	39.962	40.100	20
Upper	56.054	56.060	56.518	

With hopping

Outside Frequency Band	GFSK (dB)	$8 D P S K$ $(\mathrm{~dB})$	$\pi / 4 \mathrm{DQPSK}$ (dB)	Limit (dBc)
Lower	54.779	45.100	46.755	20
Upper	52.662	54.263	53.754	

Note :

1. Spectrum reading values are not plot data.

The power results in plot is already including the actual values of loss for the splitter and cable combination.
2. We apply to the offset in the 2.4 GHz range that was rounded off to the closest tenth dB .

Actual value of loss for the splitter and cable combination is 7.37 dB at 2402 MHz and is 7.40 dB at 2480 MHz .

So, 7.40 dB is offset. And the offset gap in the 2.4 GHz range do not affect the conducted peak power final result.

Test Plots without hopping (GFSK)
Band Edges (CH.O)

Test Plots without hopping (GFSK)
Band Edges (CH.78)

Test Plots without hopping (8DPSK)
Band Edges (CH.O)

Test Plots without hopping (8DPSK)
Band Edges (CH.78)

Test Plots without hopping ($\pi / 4 \mathrm{DQPSK}$)
Band Edges (CH.O)

Test Plots without hopping ($\pi / 4 \mathrm{DQPSK}$)
Band Edges (CH.78)

Test Plots with hopping (GFSK)
Band Edges (CH.O)

Test Plots with hopping (GFSK)
Band Edges (CH.78)

Test Plots with hopping (8DPSK)
Band Edges (CH.O)

Test Plots with hopping (8DPSK)
Band Edges (CH.78)

Test Plots with hopping ($\pi / 4 \mathrm{DQPSK}$)
Band Edges (CH.O)

Test Plots with hopping ($\pi / 4 \mathrm{DQPSK}$)
Band Edges (CH.78)

10.3 FREQUENCY SEPARATION / OCCUPIED BANDWIDTH (99\% BW)

99% BW (kHz)			
Channel	GFSK	8DPSK	$\pi / 4 D Q P S K$
CH.0	877.13	1175.2	1165.7
CH.39	871.39	1173.6	1166.9
CH.78	873.25	1174.4	1166.1

20dB BW (kHz)			
Channel	GFSK	8DPSK	$\pi / 4 D Q P S K$
CH.0	963	1302	1313
CH.39	1023	1301	1312
CH.78	963	1303	1312

Channel Separation(kHz)		Limit $(k H z)$	
GFSK	8DPSK		$>25 \mathrm{kHz}$
961	1001	998	or
			$>2 / 3$ of the 20 dB BW

Test Plots (GFSK)
Channel Separation

Test Plots (8DPSK)
Channel Separation

Test Plots ($\pi / 4 \mathrm{DQPSK}$)
Channel Separation

Test Plots (GFSK)
20 dB Bandwidth \& Occupied Bandwidth (CH.0)

Test Plots (GFSK)
20 dB Bandwidth \& Occupied Bandwidth (CH.39)

Test Plots (GFSK)
20 dB Bandwidth \& Occupied Bandwidth (CH.78)

Test Plots (8DPSK)
20 dB Bandwidth \& Occupied Bandwidth (CH.0)

Test Plots (8DPSK)
20 dB Bandwidth \& Occupied Bandwidth (CH.39)

Test Plots (8DPSK)
20 dB Bandwidth \& Occupied Bandwidth (CH.78)

Test Plots ($\pi / 4 \mathrm{DQPSK}$)
20 dB Bandwidth \& Occupied Bandwidth (CH.O)

Test Plots ($\pi / 4 \mathrm{DQPSK}$)
20 dB Bandwidth \& Occupied Bandwidth (CH.39)

Test Plots ($\pi / 4 \mathrm{DQPSK}$)
20 dB Bandwidth \& Occupied Bandwidth (CH.78)

10.4 NUMBER OF HOPPING FREQUENCY

Result (No. of CH)			Limit
GFSK	8DPSK	$\pi / 4 \mathrm{DQPSK}$	
79	79	79	>15

Note :

In case of AFH mode, minimum number of hopping channels is 20.

