

PCTEST ENGINEERING LABORATORY, INC.

6660 - B Dobbin Road . Columbia, MD 21045 . USA

Telephone 410.290.6652 / Fax 410.290.6654

<http://www.pctestlab.com> (email: randy@pctestlab.com)

CERTIFICATE OF COMPLIANCE (SAR EVALUATION)

APPLICANT NAME & ADDRESS:

SONY Corporation
6-7-35 Kitashinagawa Shinagawa-ku
Tokyo, 141-0001 JAPAN

DATE & LOCATION OF TESTING:

Dates of Tests: December 9-10, 2003
Test Report S/N: SAR.231205609.AK8
Test Site: PCTEST Lab, Columbia MD

FCC ID: AK8CSK002

APPLICANT: SONY Corporation

EUT Type:

Personal Entertainment Organizer w/ WLAN

Tx Frequency:

2412 - 2462 MHz (DSSS)

Rx Frequency Range:

2412 - 2462 MHz (DSSS)

Max. RF Output Power:

22 mW (13.42 dBm)

Max. SAR Measurement:

0.039 W/kg Front Side SAR; 0.227 W/kg Back Side SAR;

0.114 W/kg Top Side SAR

Trade Name/Model(s):

CSK-002/u

FCC Classification:

Part 15 Digital Transmission System (DTS)

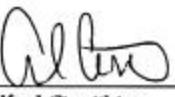
FCC Rule Part(s):

§2.1093; FCC/OET Bulletin 65 Supplement C [July 2001]

Application Type:

Certification

Test Device Serial No.:


identical prototype [S/N: 063]

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE Std. C95.1-1992 and had been tested in accordance with the measurement procedures specified in FCC/OET Bulletin 65 Supplement C (2001) and IEEE Std. P1528 D1.2 (April 2003).

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Grant Conditions: Power output is conducted. This device has been tested for SAR compliance for portable configurations. This device must not be co-located or operating with any other antenna or transmitter. End-users must be provided with transmitter operating conditions for satisfying RF exposure compliance.

PCTEST certifies that no party to this application has been denied the FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 862.

Alfred Cirwitzian
Vice President Engineering

PCTEST® SAR REPORT	FCC CERTIFICATION			Reviewed by: Quality Manager
SAR Filename: SAR-231205609.AK8	Test Dates: Dec. 9-10, 2003	Phone Type: Personal Entertainment Organizer w/ WLAN	FCC ID: AK8CSK002	Page 1 of 20

TABLE OF CONTENTS

1. INTRODUCTION / SAR DEFINITION	3
2. SAR MEASUREMENT SETUP.....	4
3. DASY4 E-FIELD PROBE SYSTEM.....	5
4. Probe Calibration Process	6
5. PHANTOM & EQUIVALENT TISSUES.....	7
6. TEST SYSTEM SPECIFICATIONS.....	8
7. DOSIMETRIC ASSESSMENT & PHANTOM SPECS.....	9
8. TEST CONFIGURATION POSITION	10
9. ANSI/IEEE C95.1 - 1992 RF EXPOSURE LIMITS.....	10
10. MEASUREMENT UNCERTAINTIES	12
11. SYSTEM VERIFICATION	13
12. SAR TEST DATA SUMMARY.....	14
13. SAR DATA SUMMARY.....	15-18
14. SAR TEST EQUIPMENT	18
15. CONCLUSION.....	19
16. REFERENCES.....	20

PCTEST [®] SAR REPORT		FCC CERTIFICATION		Reviewed by: Quality Manager
SAR Filename: SAR-231205609.AK8	Test Dates: Dec. 9-10, 2003	Phone Type: Personal Entertainment Organizer w/ WLAN	FCC ID: AK8CSK002	Page 2 of 20

1. INTRODUCTION / SAR DEFINITION

The FCC has adopted the guidelines for evaluating the environmental effects of radiofrequency radiation in ET Docket 93-62 on Aug. 6, 1996 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices.[1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in *IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz*. (c) 1992 by the Institute of Electrical and Electronics Engineers, Inc., New York, New York 10017.[2] The measurement procedure described in *IEEE/ANSI C95.3-1992 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave*[3] is used for guidance in measuring SAR due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the National Council on Radiation Protection and Measurements (NCRP) in *Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields*, NCRP Report No. 86 (c) NCRP, 1986, Bethesda, MD 20814.[6] SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

SAR Definition

Specific Absorption Rate (SAR) is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (r). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Fig. 1.1).

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{r \cdot dV} \right)$$

Figure 1.1
SAR Mathematical Equation

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = SE^2 / r$$

where:

- S** = conductivity of the tissue-simulant material (S/m)
- r** = mass density of the tissue-simulant material (kg/m³)
- E** = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relations to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

PCTEST® SAR REPORT		FCC CERTIFICATION			Reviewed by: Quality Manager
SAR Filename: SAR-231205609.AK8	Test Dates: Dec. 9-10, 2003	Phone Type: Personal Entertainment Organizer w/ WLAN	FCC ID: AK8CSK002	Page 3 of 20	

2. SAR MEASUREMENT SETUP

Robotic System

Measurements are performed using the DASY4 automated dosimetric assessment system. The DASY4 is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland and consists of high precision robotics system (Staubli), robot controller, Pentium III computer, near-field probe, probe alignment sensor, and the generic twin phantom containing the brain equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF) (see Fig. 2.1).

System Hardware

A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and a remote control used to drive the robot motors. The PC consists of the Gateway Pentium 4 2.53 GHz computer with Windows XP system and SAR Measurement Software DASY4, A/D interface card, monitor, mouse, and keyboard. The Staubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit that performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.

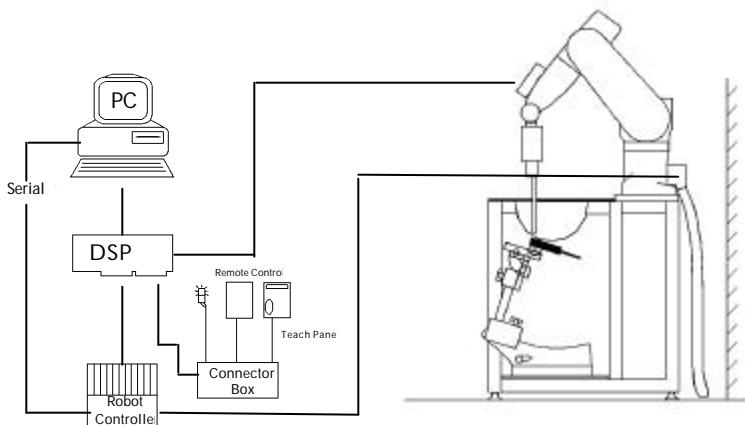


Figure 2.1 SAR Measurement System Setup

System Electronics

The DAE3 consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer. The system is described in detail in [7].

PCTEST® SAR REPORT		FCC CERTIFICATION			Reviewed by: Quality Manager
SAR Filename: SAR-231205609.AK8	Test Date: Dec. 9-10, 2003	Phone Type: Personal Entertainment Organizer w/ WLAN	FCC ID: AK8CSK002	Page 4 of 20	

3. DASY4 E-FIELD PROBE SYSTEM

Probe Measurement System

Figure 3.1 DAE System

Probe Specifications

Calibration:	In air from 10 MHz to 6 GHz In brain and muscle simulating tissue at Frequencies of 150 MHz, 450 MHz, 835 MHz, 900 MHz, 1900MHz, 2450MHz, 5300MHz, & 5800MHz
Frequency:	10 MHz to > 6 GHz; Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity:	± 0.2 dB in HSL (rotation around probe axis) ± 0.4 dB in HSL (rotation normal probe axis)
Dynamic:	5 :W/g to > 100 mW/g;
Range:	Linearity: ± 0.2 dB
Dimensions:	Overall length: 330 mm Tip length: 16 mm Body diameter: 12 mm Tip diameter: 3 mm Distance from probe tip to dipole centers: 2 mm
Application:	General dosimetry up to 6 GHz Compliance tests of mobile phones Fast automatic scanning in arbitrary phantoms

Figure 3.1 Triangular Probe Configuration

Figure 3.2 Probe Thick-Film Technique

PCTEST® SAR REPORT		FCC CERTIFICATION			Reviewed by: Quality Manager
SAR Filename: SAR-231205609.AK8	Test Dates: Dec. 9-10, 2003	Phone Type: Personal Entertainment Organizer w/ WLAN	FCC ID: AK8CSK002	Page 5 of 20	

4. Probe Calibration Process

Dosimetric Assessment Procedure

Each probe is calibrated according to a dosimetric assessment procedure described in [8] with accuracy better than +/- 10%. The spherical isotropy was evaluated with the procedure described in [9] and found to be better than +/-0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe is tested.

Free Space Assessment

The free space Efield from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies below 1 GHz (see Fig. 4.1), and in a waveguide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity at the proper orientation with the field. The probe is then rotated 360 degrees.

Temperature Assessment *

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe (see Fig. 4.2).

$$\text{SAR} = C \frac{\Delta T}{\Delta t}$$

where:

Δt = exposure time (30 seconds),

C = heat capacity of tissue (brain or muscle),

ΔT = temperature increase due to RF exposure.

SAR is proportional to $\Delta T / \Delta t$, the initial rate of tissue heating, before thermal diffusion takes place. Now it's possible to quantify the electric field in the simulated tissue by equating the thermally derived SAR to the E- field;

$$\text{SAR} = \frac{|E|^2 \cdot \sigma}{\rho}$$

where:

σ = simulated tissue conductivity,

ρ = Tissue density (1.25 g/cm³ for brain tissue)

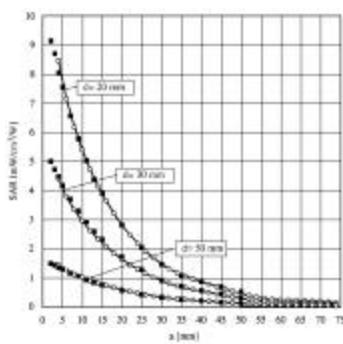


Figure 4.1 E-Field and Temperature measurements at 900MHz [7]

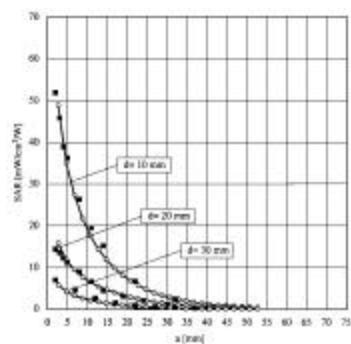


Figure 4.2 E-Field and temperature measurements at 1.9GHz [7]

* NOTE: The temperature calibration was not performed by PCTEST. For information use only.

PCTEST® SAR REPORT		FCC CERTIFICATION			Reviewed by: Quality Manager
SAR Filename: SAR-231205609.AK8	Test Dates: Dec. 9-10, 2003	Phone Type: Personal Entertainment Organizer w/ WLAN	FCC ID: AK8CSK002	Page 6 of 20	

5. PHANTOM & EQUIVALENT TISSUES

SAM Phantom

Figure 5.1 SAM Twin Phantom

The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users [11][12]. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. (see Fig. 5.1)

Brain & Muscle Simulating Mixture Characterization

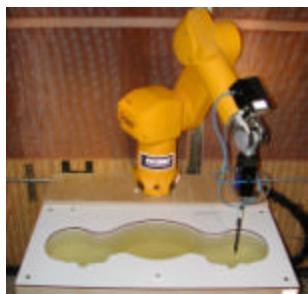


Figure 5.2 Simulated Tissue

The brain and muscle mixtures consist of a viscous gel using hydroxethylcellulose (HEC) gelling agent and saline solution (see Table 6.1). Preservation with a bactericide is added and visual inspection is made to make sure air bubbles are not trapped during the mixing process. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the desired tissue. The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 have been incorporated in the following table. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations. The mixture characterizations used for the brain and muscle tissue simulating liquids are according to the data by C. Gabriel and G. Hartsgrove [13].(see Fig. 5.2)

Table 5.1 Composition of the Brain & Muscle Tissue Equivalent Matter

(% by weight)	Frequency (MHz)									
	450		835		915		1900		2450	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	58.55	73.2
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.11	0.4
Sugar	56.32	46.78	56.0	45.0	56.0	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.27	0.0	0.1	0.0	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	35.38	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	6.96	26.7

Device Holder for Transmitters

In combination with the SAM Twin Phantom V4.0, the Mounting Device (see Fig. 5.2) enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation point is the ear opening. The devices can be easily, accurately, and repeatably be positioned according to the FCC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

* Note: A simulating human hand is not used due to the complex anatomical and geometrical structure of the hand that may produce infinite number of configurations [12]. To produce the worst-case condition (the hand absorbs antenna output power), the hand is omitted during the tests.

Figure 5.2 Mounting Device

PCTEST® SAR REPORT	FCC CERTIFICATION			Reviewed by:
SAR Filename:	Test Dates:	Phone Type:	SONY	Quality Manager
SAR-231205609.AK8	Dec. 9-10, 2003	Personal Entertainment Organizer w/ WLAN	FCC ID: AK8CSK002	Page 7 of 20

6. TEST SYSTEM SPECIFICATIONS

Automated Test System Specifications

Positioner

Robot: Stäubli Unimation Corp. Robot Model: RX60L
Repeatability: 0.02 mm
No. of axis: 6

Data Acquisition Electronic (DAE) System

Cell Controller

Processor: Pentium 4
Clock Speed: 2.53 GHz
Operating System: Windows XP Professional

Data Converter

Features: Signal Amplifier, multiplexer, A/D converter, & control logic
Software: DASY4 software
Connecting Lines: Optical downlink for data and status info.
 Optical uplink for commands and clock

Figure 6.1 DASY4 Test System

PC Interface Card

Function: 24 bit (64 MHz) DSP for real time processing
 Link to DAE3
 16 bit A/D converter for surface detection system
 serial link to robot
 direct emergency stop output for robot

E-Field Probes

Model: ES3DV2 S/N: 3022
Construction: Triangular core
Frequency: 10 MHz to 6 GHz
Linearity: ± 0.2 dB (30 MHz to 6 GHz)

Phantom

Phantom: SAM Twin Phantom (V4.0)
Shell Material: VIVAC Composite
Thickness: 2.0 \pm 0.2 mm

PCTEST® SAR REPORT		FCC CERTIFICATION			Reviewed by: Quality Manager
SAR Filename:	Test Dates:	Phone Type: Personal Entertainment Organizer w/ WLAN	FCC ID: AK8CSK002	Page 8 of 20	
SAR-231205609.AK8	Dec. 9-10, 2003				

7. DOSIMETRIC ASSESSMENT & PHANTOM SPECS

Measurement Procedure

The evaluation was performed using the following procedure:

1. The SAR measurement was taken at a selected spatial reference point to monitor power variations during testing. This fixed location point was measured and used as a reference value.
2. The SAR distribution at the exposed side of the head was measured at a distance of 3.9mm from the inner surface of the shell. The area covered the entire dimension of the head and the horizontal grid spacing was 15mm x 15mm.
3. Based on the area scan data, the area of the maximum absorption was determined by spline interpolation. Around this point, a volume of 32mm x 32mm x 34mm (fine resolution volume scan, zoom scan) was assessed by measuring 7 x 7 x 7 points. On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see Fig. 7.1):
 - a. The data at the surface was extrapolated, since the center of the dipoles is 2.7mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.2mm. The extrapolation was based on a least square algorithm [15]. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.
 - b. The maximum interpolated value was searched with a straight-forward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1g or 10g) were computed using the 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions) [15][16]. The volume was integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the average.
 - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
4. The SAR reference value, at the same location as procedure #1, was re-measured. If the value changed by more than 5%, the evaluation is repeated.

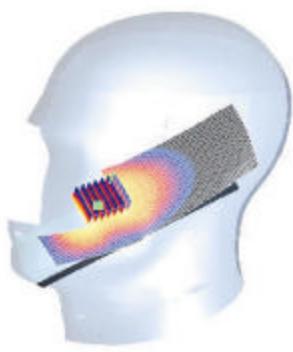


Figure 7.1 Sample SAR Area Scan

Specific Anthropomorphic Mannequin (SAM) Specifications

The phantom for handset SAR assessment testing is a low-loss dielectric shell, with shape and dimensions derived from the anthropometric data of the 90th percentile adult male head dimensions as tabulated by the US Army. The SAM Twin Phantom shell is bisected along the mid-sagittal plane into right and left halves (see Fig. 7.2). The perimeter sidewalls of each phantom halves are extended to allow filling with liquid to a depth that is sufficient to minimize reflections from the upper surface. The liquid depth is maintained at a minimum depth of 15cm to minimize reflections from the upper surface.

Figure 7.2 SAM Twin Phantom shell

PCTEST® SAR REPORT		FCC CERTIFICATION			Reviewed by: Quality Manager
SAR Filename: SAR-231205609.AK8	Test Dates: Dec. 9-10, 2003	Phone Type: Personal Entertainment Organizer w/ WLAN	FCC ID: AK8CSK002	Page 9 of 20	

8. TEST CONFIGURATION POSITION

Body-Worn Configurations

Body-worn operating configurations are tested with the notebook positioned touching against a flat phantom (lap) in a normal use configuration (see Figure 9.1). Body dielectric parameters are used.

In addition to the typical lap position test configuration, a bystander position (See Figure 9.2) is also evaluated for RF safety. The antenna is placed 1.5 cm from the flat phantom from the antenna side of the. This ensures that any other part of the body or other bodies touching the transmitting antenna on the notebook meets RF exposure compliance.

In all cases SAR measurements are performed to investigate the worst-case positioning. Worst-case positioning is then documented and used to perform Body SAR testing.

In order for users to be aware of the body-worn operating requirements for meeting RF exposure compliance, operating instructions and a caution statement must be included in the user's manual.

Figure 8.1 Body SAR Laptop and Bystander Configurations

PCTEST® SAR REPORT		FCC CERTIFICATION			Reviewed by: Quality Manager
SAR Filename: SAR-231205609.AK8	Test Dates: Dec. 9-10, 2003	Phone Type: Personal Entertainment Organizer w/ WLAN	FCC ID: AK8CSK002	Page 10 of 20	

9. ANSI/IEEE C95.1 - 1992 RF EXPOSURE LIMITS

Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Controlled Environment

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 10.1. Safety Limits for Partial Body Exposure [2]

HUMAN EXPOSURE LIMITS		
	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)
SPATIAL PEAK SAR ¹ Brain	1.60	8.00
SPATIAL AVERAGE SAR ² Whole Body	0.08	0.40
SPATIAL PEAK SAR ³ Hands, Feet, Ankles, Wrists	4.00	20.00

1 The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

2 The Spatial Average value of the SAR averaged over the whole body.

3 The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

PCTEST® SAR REPORT	FCC CERTIFICATION			Reviewed by: Quality Manager
SAR Filename: SAR-231205609.AK8	Test Dates: Dec. 9-10, 2003	Phone Type: Personal Entertainment Organizer w/ WLAN	FCC ID: AK8CSK002	Page 11 of 20

10. MEASUREMENT UNCERTAINTIES

a	b	c	d	e = f(d,k)	f	g	h = cxf/e	i = cxg/e	k
Uncertainty Component	Sec.	Tol. (± %)	Prob. Dist.	Div.	c_i (1 - g)	c_i (10 - g)	1 - g u_i (± %)	10 - g u_i (± %)	v_i
Measurement System									
Probe Calibration	E1.1	4.8	N	1	1	1	4.8	4.8	∞
Axial Isotropy	E1.2	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
Hemispherical Isotropy	E1.2	9.6	R	$\sqrt{3}$	0.7	0.7	3.9	3.9	∞
Boundary Effect	E1.3	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
Linearity	E1.4	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
System Detection Limits	E1.5	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
Readout Electronics	E1.6	1.0	N	1	1	1	1.0	1.0	∞
Response Time	E1.7	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
Integration Time	E1.8	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
RF Ambient Conditions	E5.1	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	∞
Probe Positioner Mechanical Tolerance	E5.2	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	∞
Probe Positioning w/ respect to Phantom	E5.3	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	∞
Extrapolation, Interpolation & Integration Algorithms for Max. SAR Evaluation	E4.2	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
Test Sample Related									
Test Sample Positioning	E3.2.1	2.9	N	1	1	1	2.9	2.9	145
Device Holder Uncertainty	E3.1.1	3.6	N	1	1	1	3.6	3.6	5
Output Power Variation - SAR drift measurement	5.6.2	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
Phantom & Tissue Parameters									
Phantom Uncertainty (Shape & Thickness tolerances)	E2.1	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
Liquid Conductivity - deviation from target values	E2.2	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞
Liquid Conductivity - measurement uncertainty	E2.2	2.5	N	1	0.64	0.43	1.6	1.1	∞
Liquid Permittivity - deviation from target values	E2.2	5.0	R	$\sqrt{3}$	0.6	0.5	1.7	1.4	∞
Liquid Permittivity - measurement uncertainty	E2.2	2.5	N	1	0.6	0.5	1.5	1.2	∞
Combined Standard Uncertainty (k=1)			RSS				10.3	10.0	
Expanded Uncertainty (k=2) (95% CONFIDENCE LEVEL)							20.6	20.1	

The above measurement uncertainties are according to IEEE STd. P1528-D1.2 (April 2003)

PCTEST® SAR REPORT	FCC CERTIFICATION			Reviewed by: Quality Manager
SAR Filename: SAR-231205609.AK8	Test Dates: Dec. 9-10, 2003	Phone Type: Personal Entertainment Organizer w/ WLAN	FCC ID: AK8CSK002	Page 12 of 20

11. SYSTEM VERIFICATION

Tissue Verification

Table 12.1 Simulated Tissue Verification [5]

MEASURED TISSUE PARAMETERS					
Date(s)	12/09/2003	2450MHz Brain		2450MHz Muscle	
Liquid Temperature (°C)	20.1	Target	Measured	Target	Measured
Dielectric Constant: ϵ		39.20	39.45	52.70	53.40
Conductivity: σ		1.800	1.820	1.950	1.970

Prior to assessment, the system is verified to the $\pm 10\%$ of the specifications at 2450MHz and 1900MHz by using the system validation kit(s). (Graphic Plots Attached)

Table 12.2 System Validation [5]

SYSTEM DIPOLE VALIDATION TARGET & MEASURED				
System Validation Kit: D-2450V2, S/N: 719	2450MHz Brain	Targeted SAR _{1g} (mW/g) 13.10	Measured SAR _{1g} (mW/g) 13.10	Deviation (%) 0.0

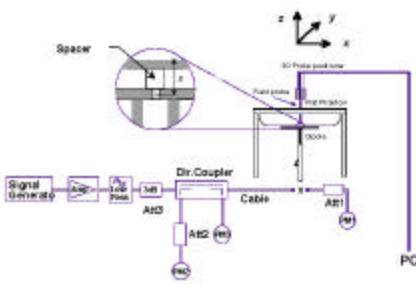


Figure 12.1 Dipole Validation Test Setup

PCTEST® SAR REPORT	FCC CERTIFICATION			Reviewed by: Quality Manager
SAR Filename: SAR-231205609.AK8	Test Dates: Dec. 9-10, 2003	Phone Type: Personal Entertainment Organizer w/ WLAN	FCC ID: AK8CSK002	Page 13 of 20

12. SAR TEST DATA SUMMARY

Measurement Result Data Pages

Procedures Used To Establish Test Signal

The EUT was placed into continuous transmit mode using the manufacturer's software. Such test signals offer a consistent means for testing SAR and are recommended for evaluating SAR [4].

Device Test Conditions

The EUT is powered through the internal battery. In order to verify that the device was tested at full power, the conducted power was measured before and after each SAR measurement to confirm the maximum output power. If a power deviation of more than 5% occurred, the test was repeated.

PCTEST® SAR REPORT		FCC CERTIFICATION			Reviewed by: Quality Manager
SAR Filename: SAR-231205609.AK8	Test Dates: Dec. 9-10, 2003	Phone Type: Personal Entertainment Organizer w/ WLAN	FCC ID: AK8CSK002	Page 14 of 20	

13. SAR DATA SUMMARY

Mixture Type: 2450MHz Muscle

13.1 MEASUREMENT RESULTS (Front Side)									
FREQUENCY		Modulation	Begin / End POWER [†]		Test Position	Data Rate (Mbps)	Antenna Position	Separation Distance (cm)	SAR (W/kg)
MHz	Ch.		(dBm)	(dBm)					
2412	01	DSSS	13.33	13.35	Front	11	Fixed	0.0	0.026
2437	06	DSSS	13.21	13.25	Front	11	Fixed	0.0	0.035
2462	11	DSSS	12.98	12.99	Front	11	Fixed	0.0	0.039
ANSI / IEEE C95.1 1992 - SAFETY LIMIT						Muscle 1.6 W/kg (mW/g) averaged over 1 gram			
Spatial Peak									
Uncontrolled Exposure/General Population									

NOTES:

1. The test data reported are the worst-case SAR value with the body position set in a typical configuration. Test procedures used are according to FCC/OET Bulletin 65, Supp.C [July 2001].
2. All modes of operation were investigated, and worst-case results are reported.
3. Battery is fully charged for all readings. Standard Batteries are the only options.

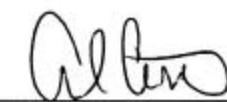
- [†]Power Measured Conducted ERP EIRP
- | | | |
|--|--|--|
| 4. SAR Measurement System | <input checked="" type="checkbox"/> DASY4 | <input type="checkbox"/> IDX |
| Phantom Configuration | <input type="checkbox"/> Left Head | <input checked="" type="checkbox"/> Flat Phantom |
| 5. SAR Configuration | <input type="checkbox"/> Head | <input checked="" type="checkbox"/> Body |
| 6. Test Signal Call Mode | <input checked="" type="checkbox"/> Manu. Test Codes | <input type="checkbox"/> Base Station Simulator |
| 7. Tissue parameters and temperatures are listed on the SAR plots. | | |
| 8. Liquid tissue depth is 15.1 cm. \pm 0.1 | | |

Alfred Cirwithian
Vice President Engineering

Figure 13.1 Body SAR Test Setup
-- Front Side Position --

PCTEST SAR REPORT		FCC CERTIFICATION			Reviewed by:
		SONY			Quality Manager
SAR Filename: SAR-231205609.AK8	Test Dates: Dec. 9-10, 2003	Phone Type: Personal Entertainment Organizer w/ WLAN	FCC ID: AK8CSK002		Page 15 of 20

13. SAR DATA SUMMARY (Continued)


Mixture Type: 2450MHz Muscle

13.2 MEASUREMENT RESULTS (Back Side)									
FREQUENCY		Modulation	Begin / End POWER [†]		Test Position	Data Rate (Mbps)	Antenna Position	Separation Distance (cm)	SAR (W/kg)
MHz	Ch.		(dBm)	(dBm)					
2437	06	DSSS	13.29	13.31	Back	1	Fixed	0.0	0.207
2437	06	DSSS	13.27	13.30	Back	2	Fixed	0.0	0.214
2437	06	DSSS	13.30	13.32	Back	5.5	Fixed	0.0	0.219
2437	06	DSSS	13.31	13.34	Back	11	Fixed	0.0	0.227
2412	01	DSSS	13.38	13.42	Back	11	Fixed	0.0	0.211
2462	11	DSSS	12.97	12.99	Back	11	Fixed	0.0	0.220
ANSI / IEEE C95.1 1992 - SAFETY LIMIT						Muscle 1.6 W/kg (mW/g) averaged over 1 gram			
Spatial Peak									
Uncontrolled Exposure/General Population									

NOTES:

1. The test data reported are the worst-case SAR value with the body position set in a typical configuration. Test procedures used are according to FCC/OET Bulletin 65, Supp.C [July 2001].
2. All modes of operation were investigated, and worst-case results are reported.
3. Battery is fully charged for all readings. Standard Batteries are the only options.

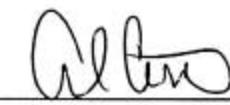
- [†]Power Measured
- | | | | |
|--|--|--|-------------------------------------|
| 4. SAR Measurement System | <input checked="" type="checkbox"/> Conducted | <input type="checkbox"/> ERP | <input type="checkbox"/> EIRP |
| Phantom Configuration | <input checked="" type="checkbox"/> DASY4 | <input type="checkbox"/> IDX | |
| 5. SAR Configuration | <input type="checkbox"/> Left Head | <input checked="" type="checkbox"/> Flat Phantom | <input type="checkbox"/> Right Head |
| 6. Test Signal Call Mode | <input type="checkbox"/> Head | <input checked="" type="checkbox"/> Body | <input type="checkbox"/> Hand |
| 7. Tissue parameters and temperatures are listed on the SAR plots. | <input checked="" type="checkbox"/> Manu. Test Codes | <input type="checkbox"/> Base Station Simulator | |
| 8. Liquid tissue depth is 15.1 cm. \pm 0.1 | | | |

Alfred Cirwithian
Vice President Engineering

Figure 13.2 Body SAR Test Setup
-- Back Side Position --

PCTEST® SAR REPORT	FCC CERTIFICATION			Reviewed by: Quality Manager
SAR Filename: SAR-231205609.AK8	Test Dates: Dec. 9-10, 2003	Phone Type: Personal Entertainment Organizer w/ WLAN	FCC ID: AK8CSK002	Page 16 of 20

13. SAR DATA SUMMARY (Continued)


Mixture Type: 2450MHz Muscle

13.3 MEASUREMENT RESULTS (Top Side)									
FREQUENCY		Modulation	Begin / End POWER [†]		Test Position	Data Rate (Mbps)	Antenna Position	Separation Distance (cm)	SAR (W/kg)
MHz	Ch.		(dBm)	(dBm)					
2412	01	DSSS	13.37	13.35	Top	11	Fixed	0.0	0.082
2437	06	DSSS	13.32	13.29	Top	11	Fixed	0.0	0.078
2462	11	DSSS	13.00	12.98	Top	11	Fixed	0.0	0.114
ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population						Muscle 1.6 W/kg (mW/g) averaged over 1 gram			

NOTES:

1. The test data reported are the worst-case SAR value with the body position set in a typical configuration. Test procedures used are according to FCC/OET Bulletin 65, Supp.C [July 2001].
2. All modes of operation were investigated, and worst-case results are reported.
3. Battery is fully charged for all readings. Standard Batteries are the only options.

- [†]Power Measured
- | | | | |
|--|--|--|-------------------------------------|
| 4. SAR Measurement System | <input checked="" type="checkbox"/> Conducted | <input type="checkbox"/> ERP | <input type="checkbox"/> EIRP |
| Phantom Configuration | <input checked="" type="checkbox"/> DASY4 | <input type="checkbox"/> IDX | |
| 5. SAR Configuration | <input type="checkbox"/> Left Head | <input checked="" type="checkbox"/> Flat Phantom | <input type="checkbox"/> Right Head |
| 6. Test Signal Call Mode | <input type="checkbox"/> Head | <input checked="" type="checkbox"/> Body | <input type="checkbox"/> Hand |
| 7. Tissue parameters and temperatures are listed on the SAR plots. | <input checked="" type="checkbox"/> Manu. Test Codes | <input type="checkbox"/> Base Station Simulator | |
| 8. Liquid tissue depth is 15.1 cm. ± 0.1 | | | |

Alfred Cirwithian
Vice President Engineering

Figure 13.3 Body SAR Test Setup
-- Top Side Position --

PCTEST® SAR REPORT		FCC CERTIFICATION			Reviewed by: Quality Manager
SAR Filename: SAR-231205609.AK8	Test Dates: Dec. 9-10, 2003	Phone Type: Personal Entertainment Organizer w/ WLAN	FCC ID: AK8CSK002	SONY	Page 17 of 20

14. SAR TEST EQUIPMENT

Equipment Calibration

Table 14.1 Test Equipment Calibration

EQUIPMENT SPECIFICATIONS		
Type	Calibration Date	Serial Number
Stäubli Robot RX60L	February 2003	599131-01
Stäubli Robot Controller	February 2003	PCT592
Stäubli Teach Pendant (Joystick)	February 2003	3323-00161
Micron Computer, 450 MHz Pentium III, Windows NT	February 2003	PCT577
SPEAG EDC3	February 2003	321
SPEAG DAE3	February 2003	330
SPEAG E-Field Probe ES3DV2	September 2003	3022
SPEAG Dummy Probe	February 2003	PCT583
SPEAG SAM Twin Phantom V4.0	February 2003	PCT666
SPEAG Light Alignment Sensor	February 2003	205
PCTEST Validation Dipole D300V2	September 2003	PCT301
SPEAG Validation Dipole D835V2	February 2003	PCT512
SPEAG Validation Dipole D1900V2	February 2003	PCT613
Brain Equivalent Matter (835MHz)	December 2003	PCTBEM101
Brain Equivalent Matter (1900MHz)	December 2003	PCTBEM301
Brain Equivalent Matter (2450MHz)	December 2003	PCTBEM501
Muscle Equivalent Matter (2450MHz)	December 2003	PCTMEM601
Muscle Equivalent Matter (835MHz)	December 2003	PCTMEM201
Muscle Equivalent Matter (1900MHz)	December 2003	PCTMEM401
Microwave Amp. Model: 5S1G4, (800MHz - 4.2GHz)	January 2003	22332
Gigatronics 8651A Power Meter	January 2003	1835299
HP-8648D (9kHz ~ 4GHz) Signal Generator	January 2003	PCT530
Amplifier Research 5S1G4 Power Amp	January 2003	PCT540
HP-8753E (30kHz ~ 3GHz) Network Analyzer	January 2003	PCT552
HP85070B Dielectric Probe Kit	January 2003	PCT501
Ambient Noise/Reflection, etc.	<12mW/kg/<3%of SAR	January 2003
		Anechoic Room PCT01

NOTE:

The E-field probe was calibrated by SPEAG, by waveguide technique procedure. Dipole Validation measurement is performed by PCTEST Lab. before each test. The brain simulating material is calibrated by PCTEST using the dielectric probe system and network analyzer to determine the conductivity and permittivity (dielectric constant) of the brain-equivalent material.

PCTEST® SAR REPORT	FCC CERTIFICATION			Reviewed by: Quality Manager
SAR Filename: SAR-231205609.AK8	Test Dates: Dec. 9-10, 2003	Phone Type: Personal Entertainment Organizer w/ WLAN	FCC ID: AK8CSK002	Page 18 of 20

15. CONCLUSION

Measurement Conclusion

The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the FCC. These measurements are taken to simulate the RF effects exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The tested device complies with the requirements in respect to all parameters subject to the test. The test results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because innumerable factors may interact to determine the specific biological outcome of an exposure to electromagnetic fields, any protection guide shall consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables.[3]

PCTEST® SAR REPORT		FCC CERTIFICATION			Reviewed by: Quality Manager
SAR Filename:	Test Dates:	Phone Type: Personal Entertainment Organizer w/ WLAN	FCC ID: AK8CSK002	Page 19 of 20	
SAR-231205609.AK8	Dec. 9-10, 2003				

16. REFERENCES

- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- [2] ANSI/IEEE C95.1 - 1991, *American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 300kHz to 100GHz*, New York: IEEE, Aug. 1992.
- [3] ANSI/IEEE C95.3 - 1991, *IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave*, New York: IEEE, 1992.
- [4] Federal Communications Commission, OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01), *Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields*, July 2001.
- [5] IEEE Standards Coordinating Committee 34 – IEEE Std. P1528 D1.2 (April 2003), *Draft Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques*.
- [6] NCRP, National Council on Radiation Protection and Measurements, *Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields*, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [7] T. Schmid, O. Egger, N. Kuster, *Automated E-field scanning system for dosimetric assessments*, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [8] K. Pokovic, T. Schmid, N. Kuster, *Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies*, ICECOM97, Oct. 1997, pp. 120-124.
- [9] K. Poković, T. Schmid, and N. Kuster, *E-field Probe with improved isotropy in brain simulating liquids*, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, *The Dependence of EM Energy Absorption upon Human Head Modeling at 900 MHz*, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, *Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz*, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, *Simulated Biological Materials for Electromagnetic Radiation Absorption Studies*, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., *Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones*, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, *Computermathematick*, Birkhaeuser, Basel, 1992.
- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, *Numerical Recepies in C*, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] Federal Communications Commission, OET Bulletin 65, Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields. Supplement C, Dec. 1997.
- [18] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.
- [19] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995.
- [20] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hochschule Zürich, Dosimetric Evaluation of the Cellular Phone.

PCTEST® SAR REPORT		FCC CERTIFICATION			Reviewed by: Quality Manager
SAR Filename: SAR-231205609.AK8	Test Dates: Dec. 9-10, 2003	Phone Type: Personal Entertainment Organizer w/ WLAN	FCC ID: AK8CSK002	Page 20 of 20	

APPENDIX A: SAR TEST DATA

PCTEST ENGINEERING LABORATORY, INC.

DUT: CSK-002/U; Type: SONY PDA with WLAN; Serial: 063

Communication System: 2.4GHz WLAN; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium: 2450 Muscle ($\sigma = 1.97 \text{ mho/m}$, $\epsilon_r = 53.4$, $\rho = 1000 \text{ kg/m}^3$)

Phantom section: Flat Section; Front Side; Space: 0.0 cm

Test Date: 12-09-2003; Ambient Temp: 22.3°C; Tissue Temp: 20.1°C

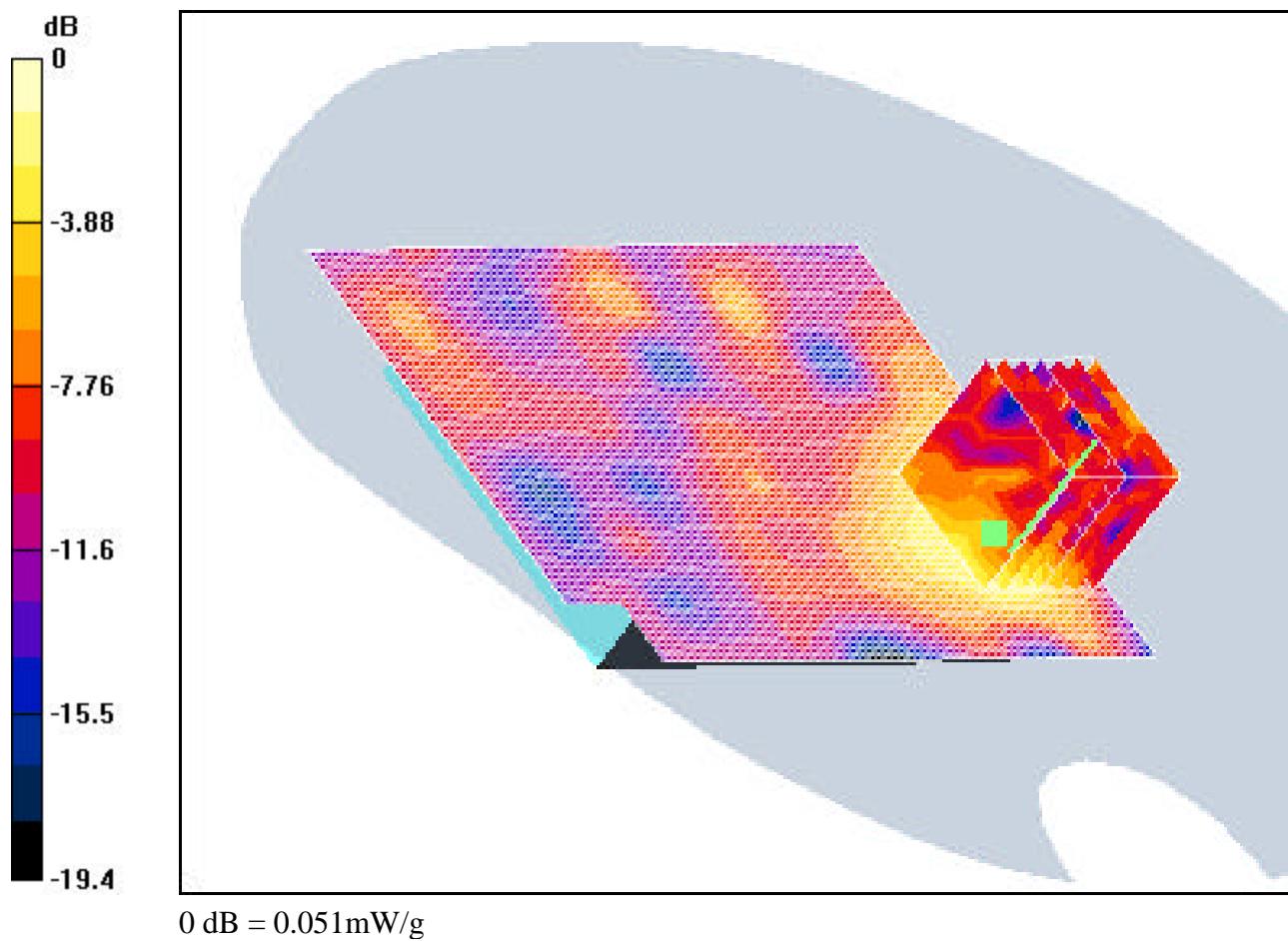
Probe: ES3DV2 - SN3022; ConvF(4.2, 4.2, 4.2); Calibrated: 9/23/2003

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE3 Sn445; Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1197

Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.8 Build 62

ch.11, 11Mbps


Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 0.111 W/kg

SAR(1 g) = 0.039 mW/g; SAR(10 g) = 0.019 mW/g

Reference Value = 1.7 V/m

PCTEST ENGINEERING LABORATORY, INC.

DUT: CSK-002/U; Type: SONY PDA with WLAN; Serial: 063

Communication System: 2.4GHz WLAN; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: 2450 Muscle ($\sigma = 1.97 \text{ mho/m}$, $\epsilon_r = 53.4$, $\rho = 1000 \text{ kg/m}^3$)

Phantom section: Flat Section; Back Side; Space: 0.0 cm

Test Date: 12-09-2003; Ambient Temp: 22.3°C; Tissue Temp: 20.1°C

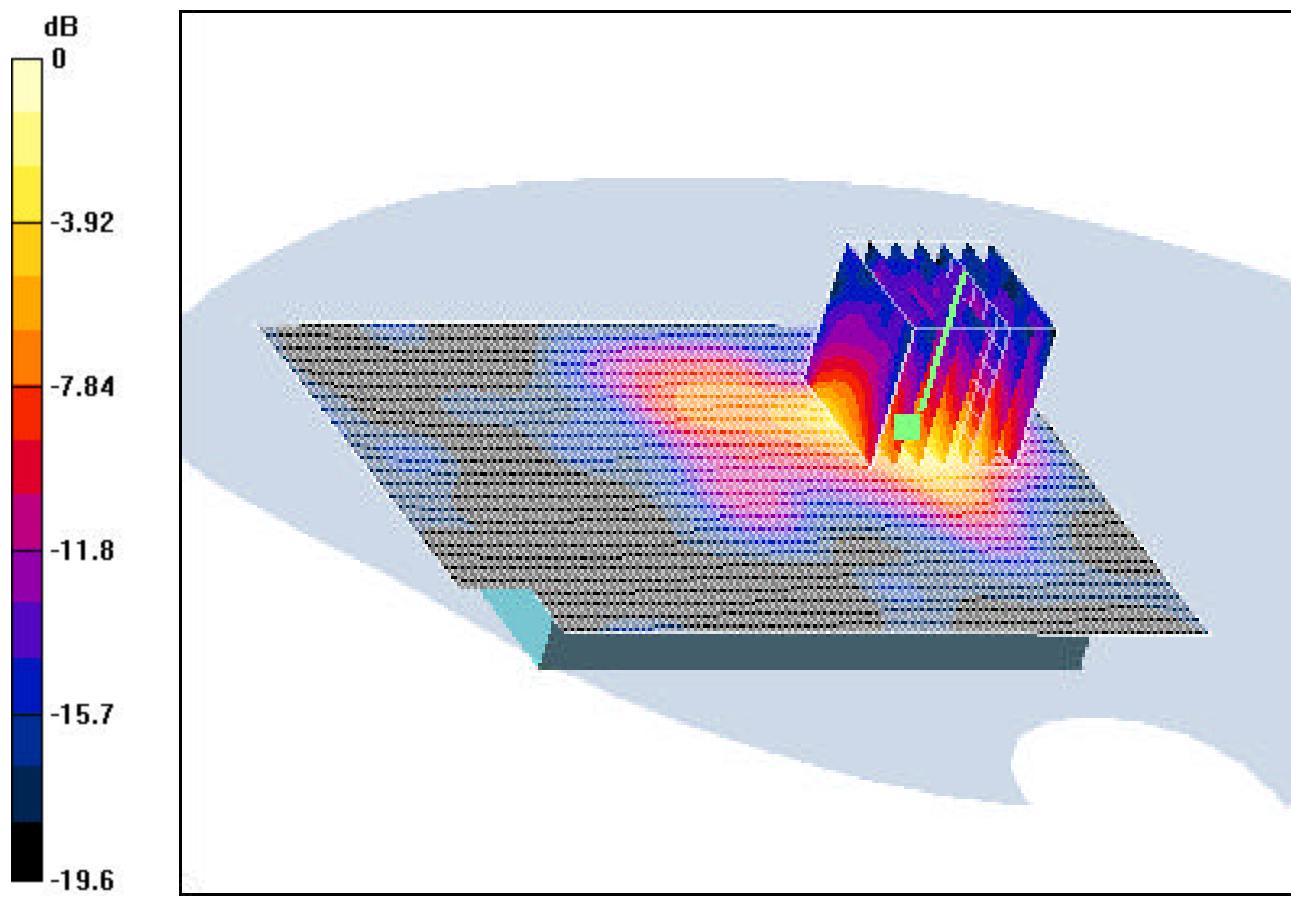
Probe: ES3DV2 - SN3022; ConvF(4.2, 4.2, 4.2); Calibrated: 9/23/2003

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE3 Sn445; Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1197

Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.8 Build 62

ch.06, 11Mbps


Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 0.755 W/kg

SAR(1 g) = 0.227 mW/g; SAR(10 g) = 0.106 mW/g

Reference Value = 6.8 V/m

PCTEST ENGINEERING LABORATORY, INC.

DUT: CSK-002/U; Type: SONY PDA with WLAN; Serial: 063

Communication System: 2.4GHz WLAN; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium: 2450 Muscle ($\sigma = 1.97 \text{ mho/m}$, $\epsilon_r = 53.4$, $\rho = 1000 \text{ kg/m}^3$)

Phantom section: Flat Section; Top Side; Space: 0.0 cm

Test Date: 12-09-2003; Ambient Temp: 22.3°C; Tissue Temp: 20.1°C

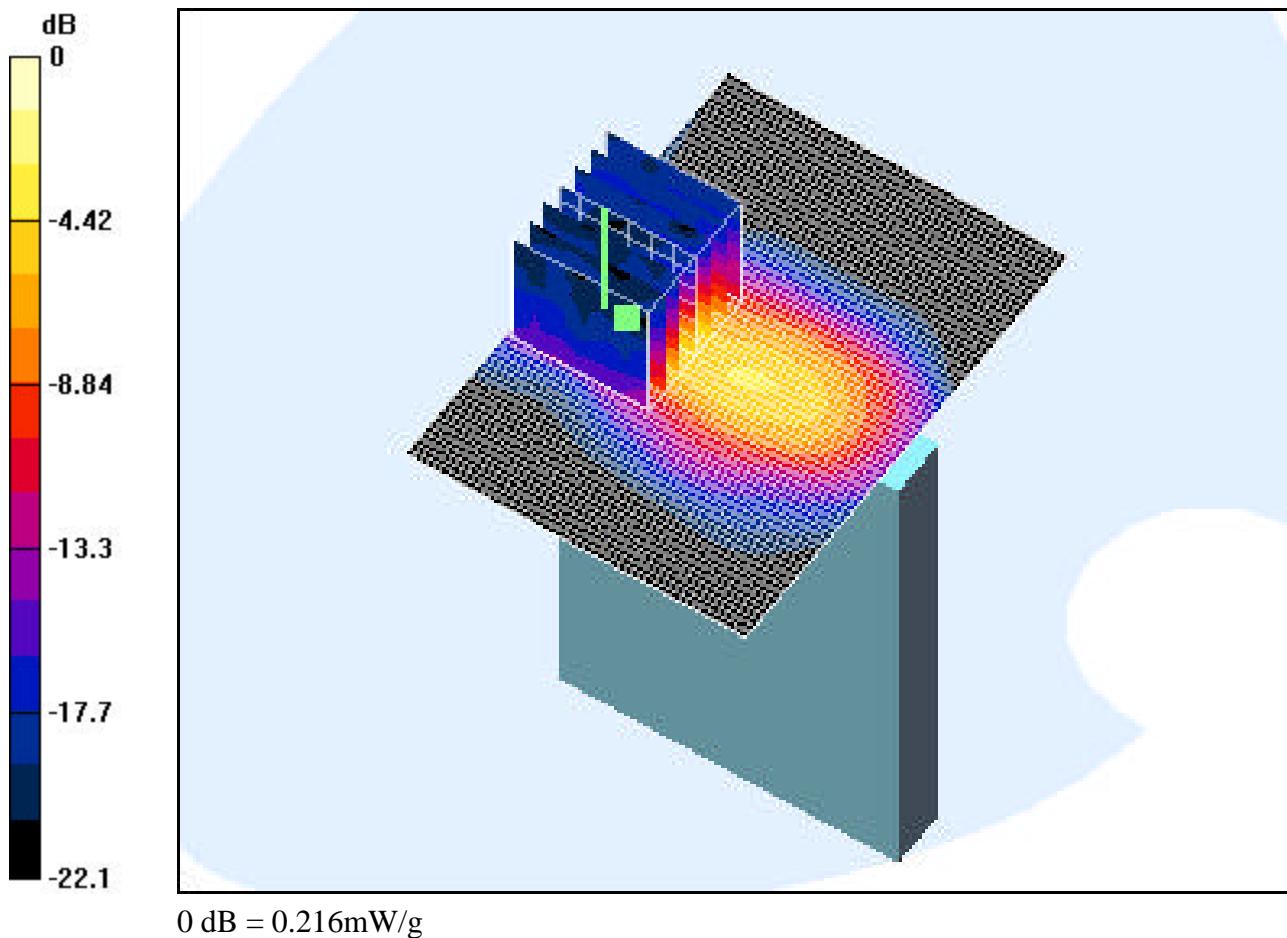
Probe: ES3DV2 - SN3022; ConvF(4.2, 4.2, 4.2); Calibrated: 9/23/2003

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE3 Sn445; Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1197

Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.8 Build 62

ch.11, 11Mbps


Area Scan (51x71x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 0.591 W/kg

SAR(1 g) = 0.114 mW/g; SAR(10 g) = 0.039 mW/g

Reference Value = 7.06 V/m

PCTEST ENGINEERING LABORATORY, INC.

DUT: CSK-002/U; Type: SONY PDA with WLAN; Serial: 063

Communication System: 2.4GHz WLAN; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: 2450 Muscle ($\sigma = 1.97 \text{ mho/m}$, $\epsilon_r = 53.4$, $\rho = 1000 \text{ kg/m}^3$)

Phantom section: Flat Section; Back Side; Space: 0.0 cm

Test Date: 12-09-2003; Ambient Temp: 22.3°C; Tissue Temp: 20.1°C

Probe: ES3DV2 - SN3022; ConvF(4.2, 4.2, 4.2); Calibrated: 9/23/2003

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE3 Sn445; Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1197

Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.8 Build 62

ch.06, 11Mbps

Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 0.755 W/kg

SAR(1 g) = 0.227 mW/g; SAR(10 g) = 0.106 mW/g

Reference Value = 6.8 V/m

APPENDIX B: DIPOLE VALIDATION

PCTEST ENGINEERING LABORATORY, INC.

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:719

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: 2450 Brain ($\sigma = 1.82 \text{ mho/m}$, $\epsilon_r = 39.45$, $\rho = 1000 \text{ kg/m}^3$)

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 12-09-2003; Ambient Temp: 22.5°C; Tissue Temp: 20.6°C

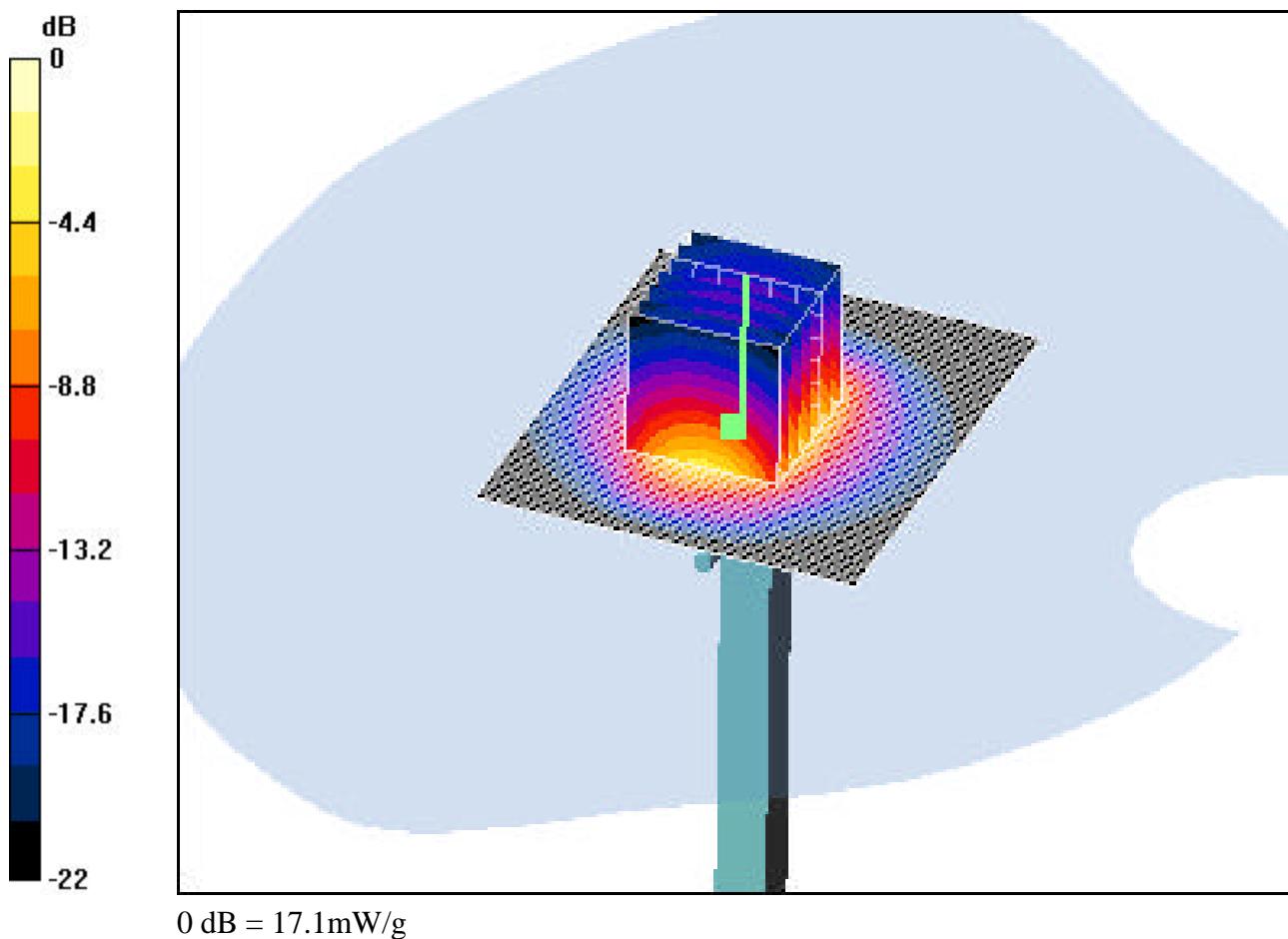
Probe: ES3DV2 - SN3022; ConvF(4.5, 4.5, 4.5); Calibrated: 9/23/2003

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE3 Sn445; Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1197

Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.8 Build 62

2450 MHz Dipole Validation

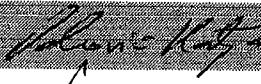

Area Scan (51x61x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Input Power = 24.0 dBm (250 mW)

SAR(1 g) = 13.1 mW/g; SAR(10 g) = 6.05 mW/g

Target SAR(1g) = 13.1 mW/g; Deviation = 0.0 %



APPENDIX C: PROBE CALIBRATION

Client

PC Test

CALIBRATION CERTIFICATE

Object(s)	ES3DV2 - SN:3022		
Calibration procedure(s)	QA CAL-01 v2 Calibration procedure for dosimetric E-field probes		
Calibration date:	September 23, 2003		
Condition of the calibrated item	In Tolerance (according to the specific calibration document)		
<p>This calibration statement documents traceability of M&TE used in the calibration procedures and conformity of the procedures with the ISO/IEC 17025 international standard.</p> <p>All calibrations have been conducted in the closed laboratory facility: environment temperature 22 +/- 2 degrees Celsius and humidity < 75%.</p>			
Calibration Equipment used (M&TE critical for calibration)			
Model Type	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter EPM E4419B	GB41293874	2-Apr-03 (METAS, No 252-0250)	Apr-04
Power sensor E4412A	MY41495277	2-Apr-03 (METAS, No 252-0250)	Apr-04
Reference 20 dB Attenuator	SN: 5086 (20b)	3-Apr-03 (METAS No. 251-0340)	Apr-04
Fluke Process Calibrator Type 702	SN: 6295803	8-Sep-03 (Sintrel SCS No. E-030020)	Sep-04
Power sensor HP 8481A	MY41092180	18-Sep-02 (Agilent, No. 20020918)	In house check: Oct 03
RF generator HP 8684C	US3642U01700	4-Aug-99 (SPEAG, in house check Aug-02)	In house check: Aug-05
Network Analyzer HP 8753E	US37390585	18-Oct-01 (Agilent, No. 24BR1033101)	In house check: Oct 03
Calibrated by:	Name Katja Pokovic	Function Laboratory Director	Signature
Approved by:	Name Niels Kuster	Function Quality Manager	Signature
Date issued: October 5, 2003			
<p>This calibration certificate is issued as an intermediate solution until the accreditation process (based on ISO/IEC 17025 International Standard) for Calibration Laboratory of Schmid & Partner Engineering AG is completed.</p>			

Zeughausstrasse 43, 8004 Zurich, Switzerland
Phone +41 1 245 9700, Fax +41 1 245 9779
info@speag.com, http://www.speag.com

Probe ES3DV2

SN:3022

Manufactured: April 15, 2003
Last calibration: September 23, 2003

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

DASY - Parameters of Probe: ES3DV2 SN:3022

Sensitivity in Free Space

NormX	1.00 $\mu\text{V}/(\text{V}/\text{m})^2$
NormY	1.04 $\mu\text{V}/(\text{V}/\text{m})^2$
NormZ	0.98 $\mu\text{V}/(\text{V}/\text{m})^2$

Diode Compression

DCP X	95	mV
DCP Y	95	mV
DCP Z	95	mV

Sensitivity in Tissue Simulating Liquid

Head 900 MHz $\epsilon_r = 41.5 \pm 5\%$ $\sigma = 0.97 \pm 5\% \text{ mho/m}$

Valid for f=800-1000 MHz with Head Tissue Simulating Liquid according to EN 50361, P1528-200X

ConvF X	6.1 $\pm 9.5\%$ (k=2)	Boundary effect:
ConvF Y	6.1 $\pm 9.5\%$ (k=2)	Alpha 0.32
ConvF Z	6.1 $\pm 9.5\%$ (k=2)	Depth 1.65

Head 1800 MHz $\epsilon_r = 40.0 \pm 5\%$ $\sigma = 1.40 \pm 5\% \text{ mho/m}$

Valid for f=1710-1910 MHz with Head Tissue Simulating Liquid according to EN 50361, P1528-200X

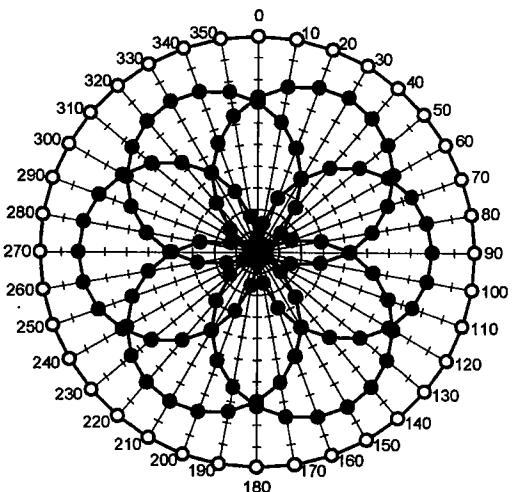
ConvF X	5.0 $\pm 9.5\%$ (k=2)	Boundary effect:
ConvF Y	5.0 $\pm 9.5\%$ (k=2)	Alpha 0.25
ConvF Z	5.0 $\pm 9.5\%$ (k=2)	Depth 2.30

Boundary Effect

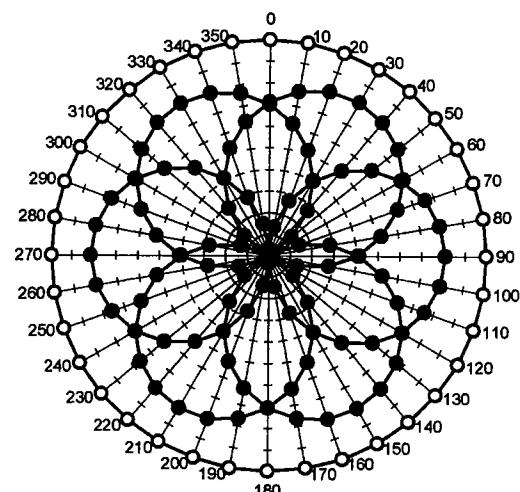
Head 900 MHz Typical SAR gradient: 5 % per mm

Probe Tip to Boundary	1 mm	2 mm
SAR _{be} [%] Without Correction Algorithm	5.5	2.5
SAR _{be} [%] With Correction Algorithm	0.1	0.4

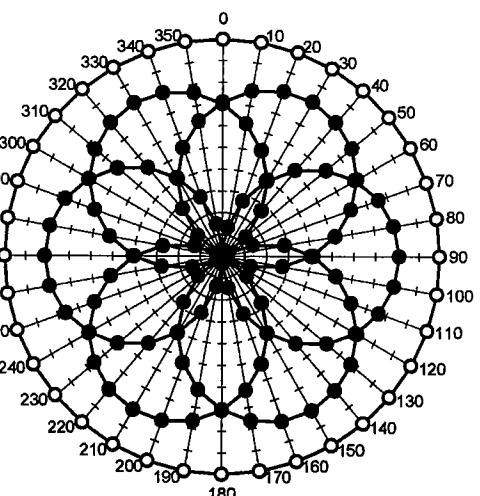
Head 1800 MHz Typical SAR gradient: 10 % per mm

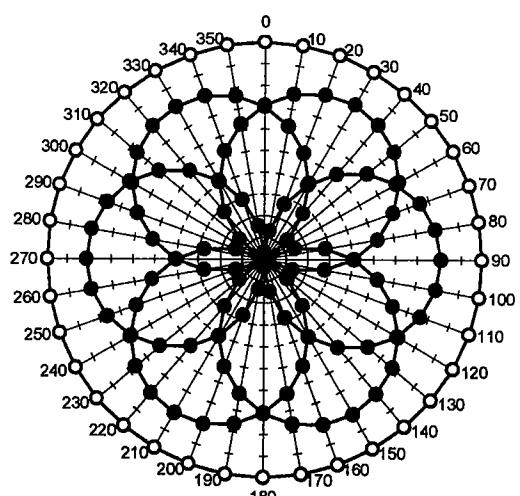

Probe Tip to Boundary	1 mm	2 mm
SAR _{be} [%] Without Correction Algorithm	7.1	4.4
SAR _{be} [%] With Correction Algorithm	0.0	0.1

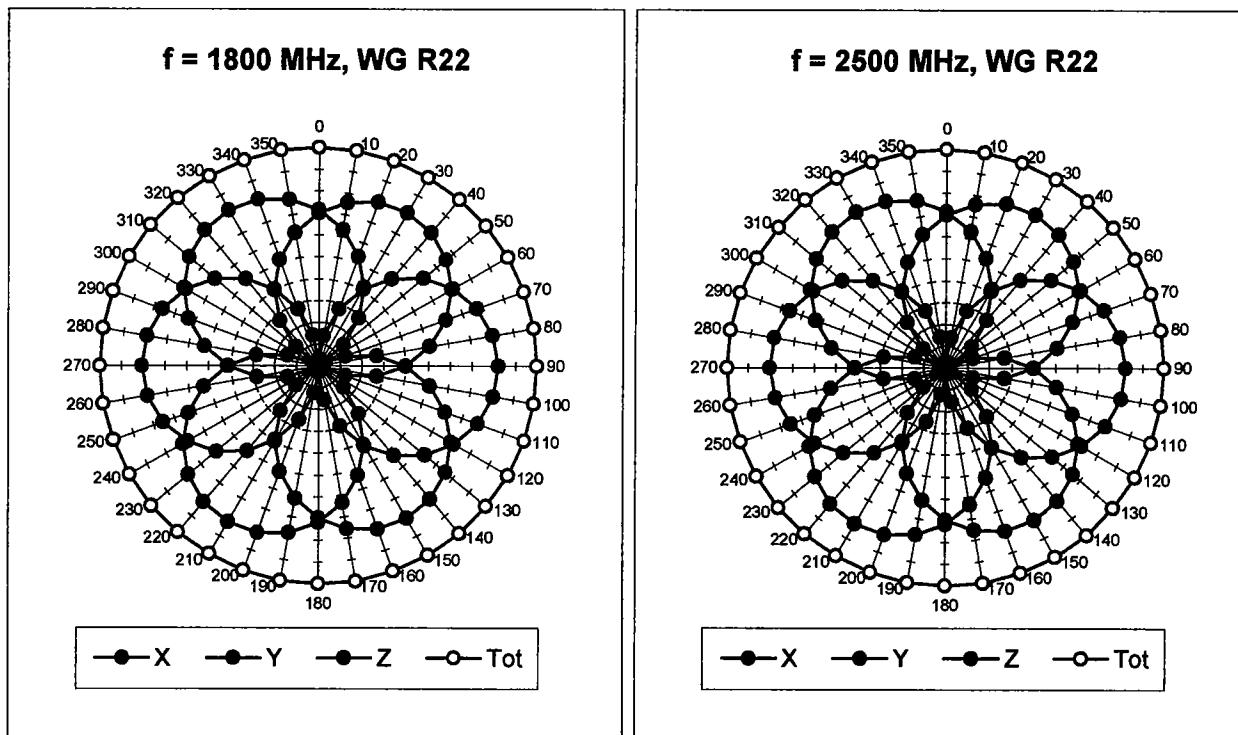
Sensor Offset


Probe Tip to Sensor Center **2.0** mm

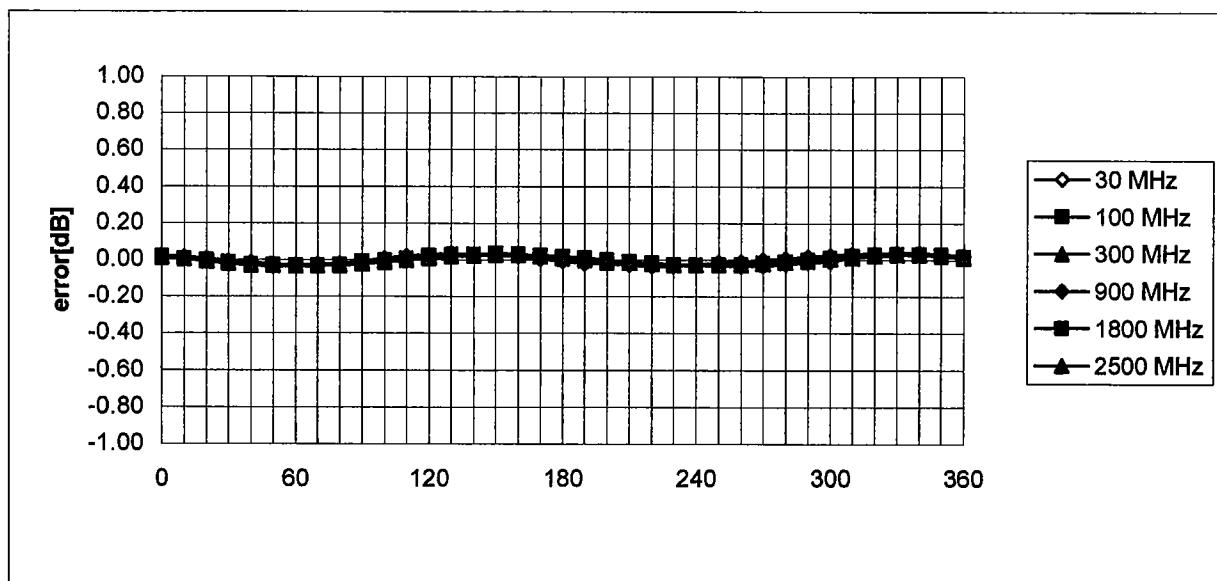
Receiving Pattern (ϕ , $\theta = 0^\circ$)


f = 30 MHz, TEM cell ifi110

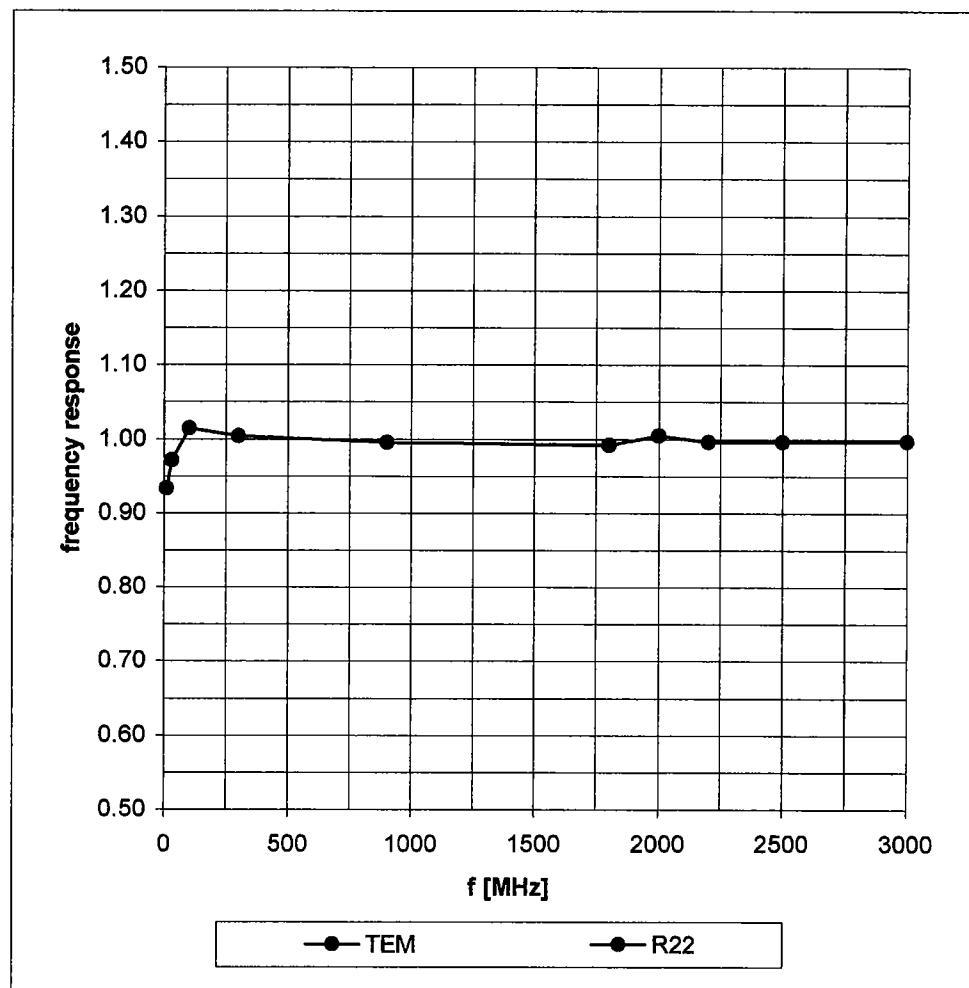

f = 100 MHz, TEM cell ifi110



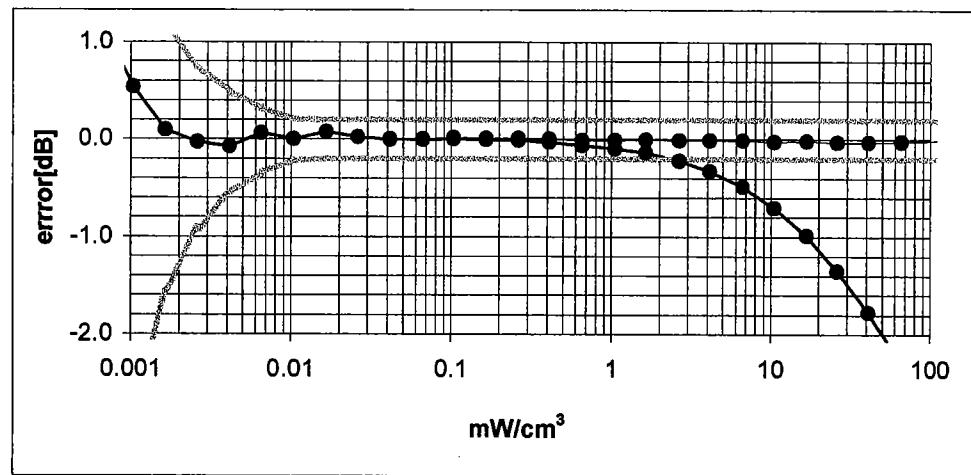
f = 300 MHz, TEM cell ifi110



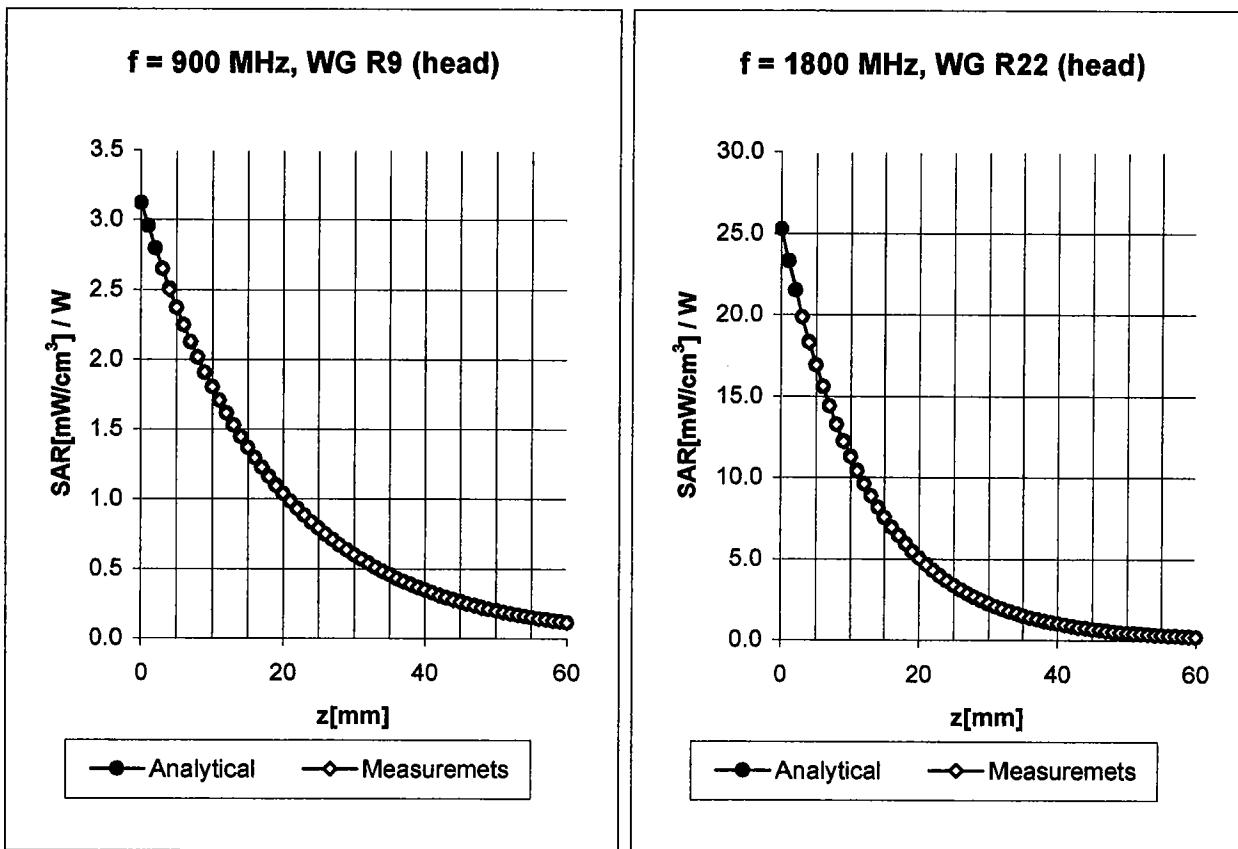
f = 900 MHz, TEM cell ifi110



Isotropy Error (ϕ), $\theta = 0^\circ$




Frequency Response of E-Field

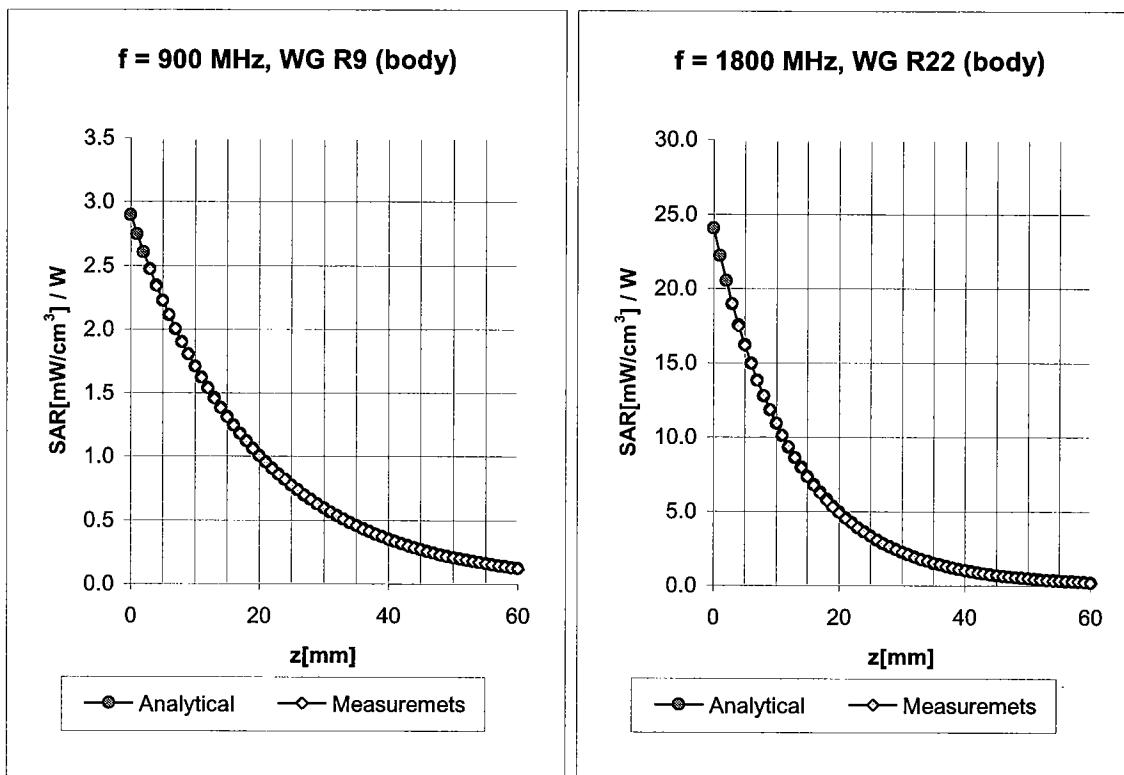

(TEM-Cell:ifi110, Waveguide R22)

Dynamic Range f(SAR_{brain}) (Waveguide R22)

Conversion Factor Assessment

Head **900 MHz** $\epsilon_r = 41.5 \pm 5\%$ $\sigma = 0.97 \pm 5\% \text{ mho/m}$

Valid for $f=800$ -1000 MHz with Head Tissue Simulating Liquid according to EN 50361, P1528-200X


ConvF X	6.1 $\pm 9.5\%$ (k=2)	Boundary effect:
ConvF Y	6.1 $\pm 9.5\%$ (k=2)	Alpha 0.32
ConvF Z	6.1 $\pm 9.5\%$ (k=2)	Depth 1.65

Head **1800 MHz** $\epsilon_r = 40.0 \pm 5\%$ $\sigma = 1.40 \pm 5\% \text{ mho/m}$

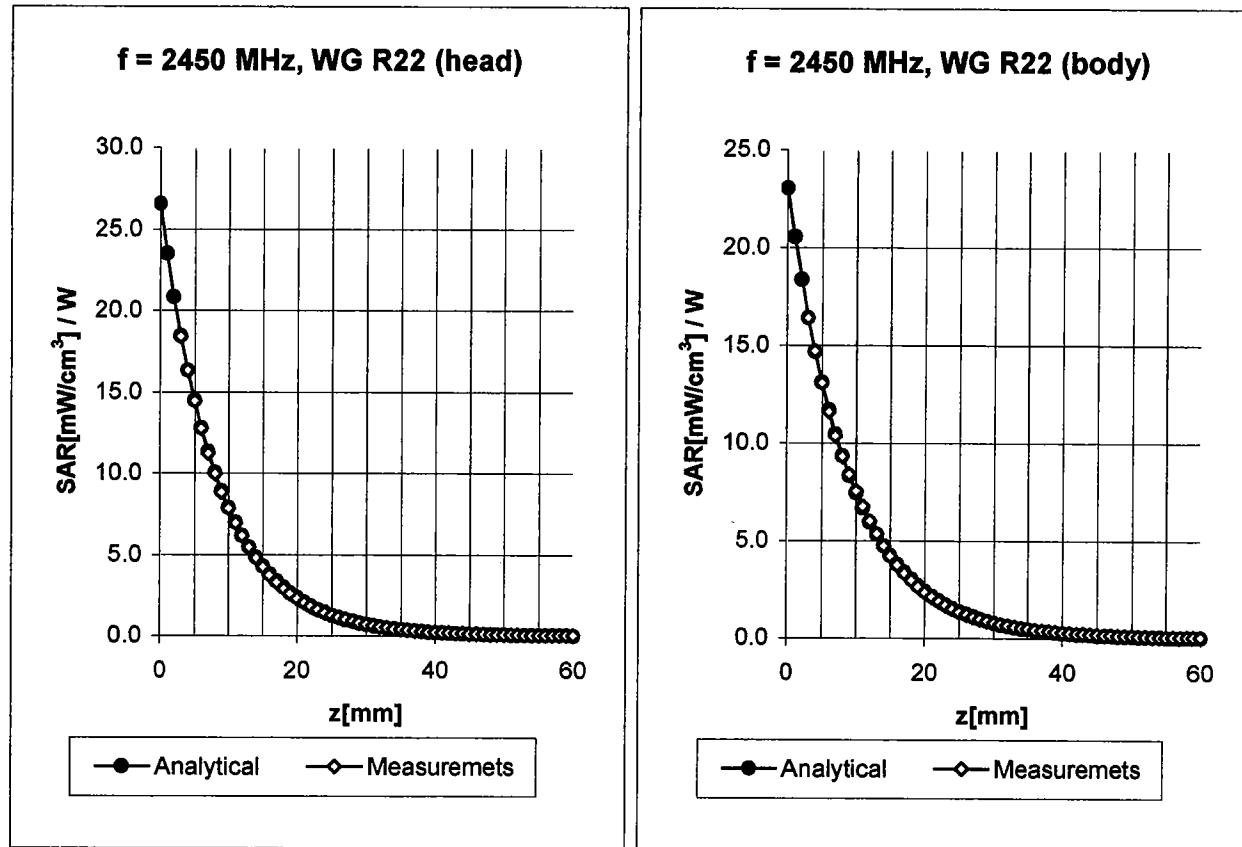
Valid for $f=1710$ -1910 MHz with Head Tissue Simulating Liquid according to EN 50361, P1528-200X

ConvF X	5.0 $\pm 9.5\%$ (k=2)	Boundary effect:
ConvF Y	5.0 $\pm 9.5\%$ (k=2)	Alpha 0.25
ConvF Z	5.0 $\pm 9.5\%$ (k=2)	Depth 2.30

Conversion Factor Assessment

Body **900 MHz** $\epsilon_r = 55.0 \pm 5\%$ $\sigma = 1.05 \pm 5\% \text{ mho/m}$

Valid for $f=800$ -1000 MHz with Body Tissue Simulating Liquid according to OET 65 Suppl. C


ConvF X	6.0 $\pm 9.5\%$ (k=2)	Boundary effect:
ConvF Y	6.0 $\pm 9.5\%$ (k=2)	Alpha 0.38
ConvF Z	6.0 $\pm 9.5\%$ (k=2)	Depth 1.47

Body **1800 MHz** $\epsilon_r = 53.3 \pm 5\%$ $\sigma = 1.52 \pm 5\% \text{ mho/m}$

Valid for $f=1710$ -1910 MHz with Body Tissue Simulating Liquid according to OET 65 Suppl. C

ConvF X	4.5 $\pm 9.5\%$ (k=2)	Boundary effect:
ConvF Y	4.5 $\pm 9.5\%$ (k=2)	Alpha 0.22
ConvF Z	4.5 $\pm 9.5\%$ (k=2)	Depth 3.42

Conversion Factor Assessment

Head **2450 MHz** $\epsilon_r = 39.2 \pm 5\%$ $\sigma = 1.80 \pm 5\% \text{ mho/m}$

2450 MHz $\epsilon_r = 39.2 \pm 5\%$

$$\sigma = 1.80 \pm 5\% \text{ mho/m}$$

Valid for f=2400-2500 MHz with Head Tissue Simulating Liquid according to EN 50361, P1528-200X

ConvF X **4.5** \pm 9.5% (k=2)

Boundary effect:

ConvF Y 4.5 ± 9.5% (k=2)

Alpha 0.42

ConvF Z **4.5** \pm 9.5% (k=2)

Depth 1.56

$$\text{Body} \quad 2450 \text{ MHz} \quad \epsilon_r = 52.7 \pm 5\% \quad \sigma = 1.95 \pm 5\% \text{ mho/m}$$

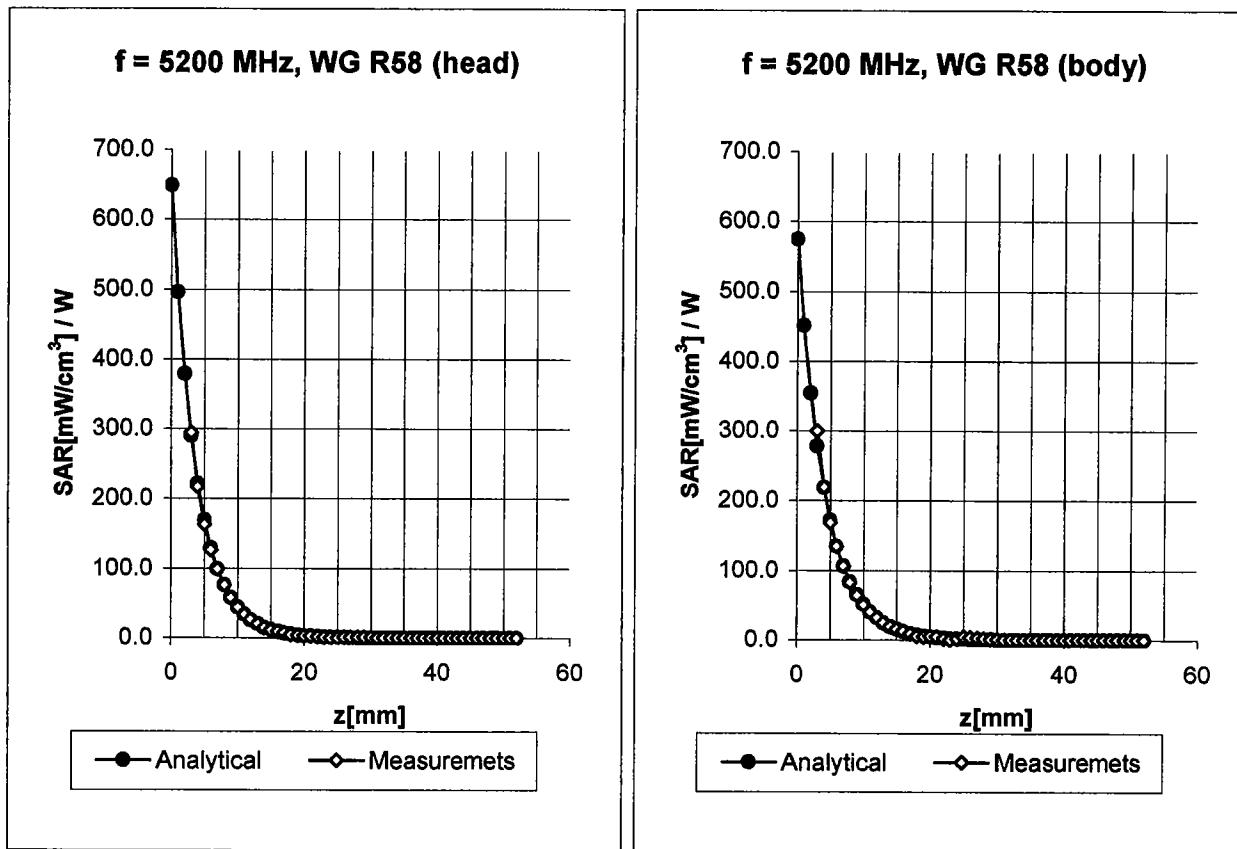
2450 MHz $\epsilon_r = 52.7 \pm 5\%$

$$\sigma = 1.95 \pm 5\% \text{ mho/m}$$

Valid for f=2400-2500 MHz with Body Tissue Simulating Liquid according to OET 65 Suppl. C

ConvF X 4.2 ± 9.5% (k=2)

Boundary effect:


ConvE Y 4.2 ± 9.5% (k=2)

Alpha 0.42

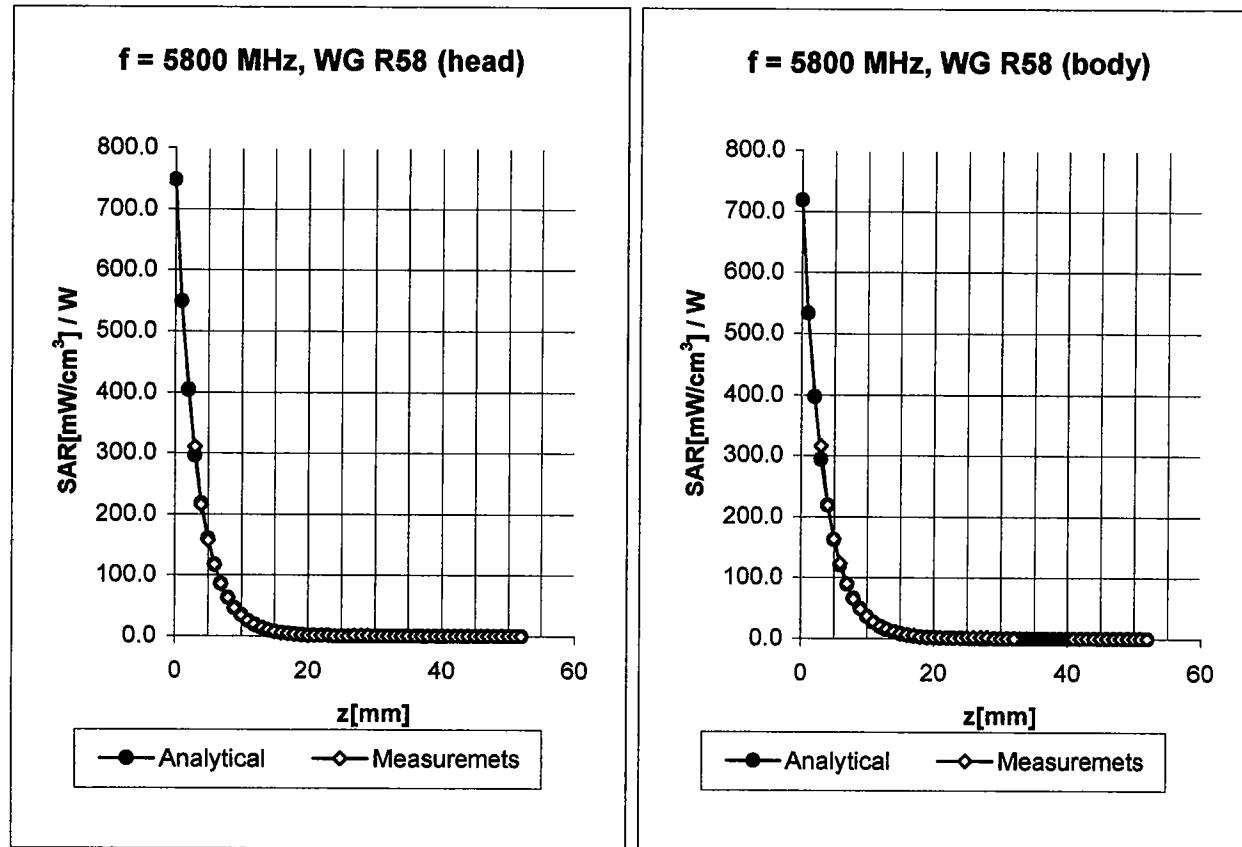
CopyE 7 4.2 ± 9.5% (k=2)

Depth 165

Conversion Factor Assessment

Head 5200 MHz $\epsilon_r = 36.0 \pm 5\%$ $\sigma = 4.66 \pm 5\% \text{ mho/m}$

Valid for f=4940-5460 MHz with Head Tissue Simulating Liquid according to OET65-SuppC


ConvF X	2.60 $\pm 16.6\%$ (k=2)	Boundary effect:
ConvF Y	2.60 $\pm 16.6\%$ (k=2)	Alpha 0.93
ConvF Z	2.60 $\pm 16.6\%$ (k=2)	Depth 1.50

Body 5200 MHz $\epsilon_r = 49.0 \pm 5\%$ $\sigma = 5.30 \pm 5\% \text{ mho/m}$

Valid for f=4940-5460 MHz with Body Tissue Simulating Liquid according to OET65-SuppC

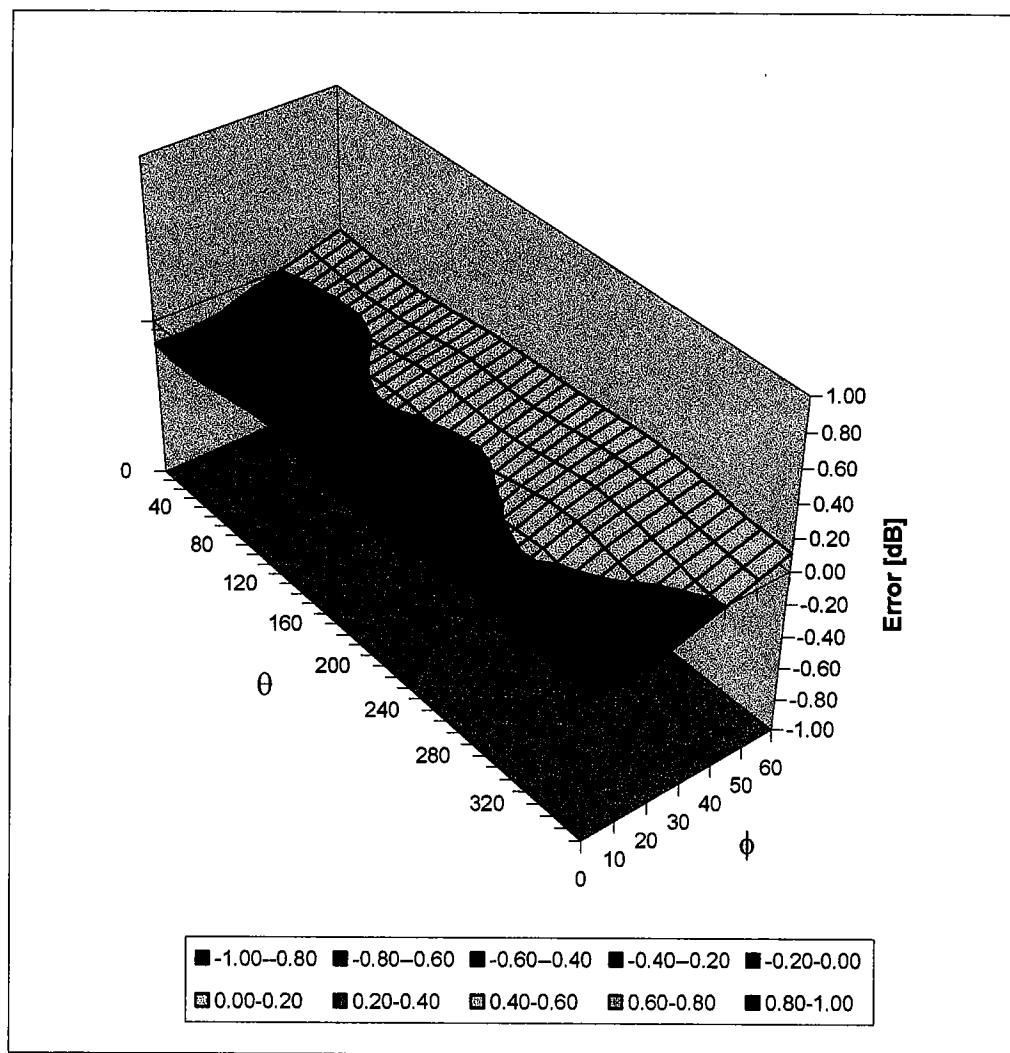
ConvF X	1.80 $\pm 16.6\%$ (k=2)	Boundary effect:
ConvF Y	1.80 $\pm 16.6\%$ (k=2)	Alpha 1.05
ConvF Z	1.80 $\pm 16.6\%$ (k=2)	Depth 1.60

Conversion Factor Assessment

Head 5800 MHz $\epsilon_r = 35.3 \pm 5\%$ $\sigma = 5.27 \pm 5\% \text{ mho/m}$

Valid for f=5510-6090 MHz with Head Tissue Simulating Liquid according to OET65-SuppC

ConvF X	2.15 $\pm 16.6\%$ (k=2)	Boundary effect:
ConvF Y	2.15 $\pm 16.6\%$ (k=2)	Alpha 1.04
ConvF Z	2.15 $\pm 16.6\%$ (k=2)	Depth 1.50


Body 5800 MHz $\epsilon_r = 48.2 \pm 5\%$ $\sigma = 6.0 \pm 5\% \text{ mho/m}$

Valid for f=5510-6090 MHz with Body Tissue Simulating Liquid according to OET65-SuppC

ConvF X	1.57 $\pm 16.6\%$ (k=2)	Boundary effect:
ConvF Y	1.57 $\pm 16.6\%$ (k=2)	Alpha 1.15
ConvF Z	1.57 $\pm 16.6\%$ (k=2)	Depth 1.70

Deviation from Isotropy in HSL

Error ($\theta\phi$), f = 900 MHz

Additional Conversion Factors for Dosimetric E-Field Probe

Type:

ES3DV2

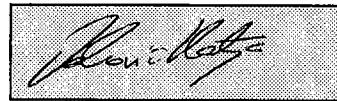
Serial Number:

3022

Place of Assessment:

Zurich

Date of Assessment:


October 3, 2003

Probe Calibration Date:

September 23, 2003

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 900 MHz or at 1800 MHz.

Assessed by:

Dosimetric E-Field Probe ES3DV2 SN:3022

Conversion factor (\pm standard deviation)

150 MHz	ConvF	$8.5 \pm 8\%$	$\epsilon_r = 52.3 \pm 5\%$ $\sigma = 0.76 \pm 5\% \text{ mho/m}$ (head tissue)
150 MHz	ConvF	$8.0 \pm 8\%$	$\epsilon_r = 61.9 \pm 5\%$ $\sigma = 0.80 \pm 5\% \text{ mho/m}$ (body tissue)
450 MHz	ConvF	$7.1 \pm 8\%$	$\epsilon_r = 43.5 \pm 5\%$ $\sigma = 0.87 \pm 5\% \text{ mho/m}$ (head tissue)
450 MHz	ConvF	$7.2 \pm 8\%$	$\epsilon_r = 56.7 \pm 5\%$ $\sigma = 0.94 \pm 5\% \text{ mho/m}$ (body tissue)

Additional Conversion Factors for Dosimetric E-Field Probe

Type:

ES3DV2

Serial Number:

3022

Place of Assessment:

Zurich

Date of Assessment:

November 28, 2003

Probe Calibration Date:

September 23, 2003

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 900 MHz or at 1800 MHz.

Assessed by:

Dosimetric E-Field Probe ES3DV2 SN:3022

Conversion factor (\pm standard deviation)

1600 MHz

ConvF

5.2 \pm 8%

$\square = 40.3 \pm 5\%$

$\square = 1.29 \pm 5\% \text{ mho/m}$

(head tissue)

1600 MHz

ConvF

4.9 \pm 8%

$\square = 53.8 \pm 5\%$

$\square = 1.40 \pm 5\% \text{ mho/m}$

(body tissue)