

FCC Test Report

FCC ID : NKR-SY30

Equipment : WLAN/BT Module

Model No. : DHSR-SY30

Brand Name : Wistron NeWeb Corp.

Applicant : Wistron NeWeb Corp.

Address : 20 Park Avenue II, Hsinchu Science Park,

Hsinchu 308, Taiwan, R.O.C.

Standard : 47 CFR FCC Part 15.247

Received Date : Dec. 07, 2015

Tested Date : Dec. 31, 2015 ~ Jan. 21, 2016

We, International Certification Corp., would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory.

Approved & Reviewed by:

Gary Chang / Manager

ilac-MRA

Page: 1 of 37

Report No.: FR5D0701AE Report Version: Rev. 01

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Local Support Equipment List	9
1.3	Test Setup Chart	9
1.4	Test Equipment List and Calibration Data	10
1.5	Test Standards	
1.6	Measurement Uncertainty	11
2	TEST CONFIGURATION	12
2.1	Testing Condition	12
2.2	The Worst Test Modes and Channel Details	12
3	TRANSMITTER TEST RESULTS	13
3.1	Conducted Emissions	13
3.2	6dB and Occupied Bandwidth	16
3.3	RF Output Power	
3.4	Power Spectral Density	20
3.5	Emissions in Restricted Frequency Bands	
3.6	Emissions in non-restricted Frequency Bands	34
4	TEST LABORATORY INFORMATION	37

Release Record

Report No.	Version	Description	Issued Date
FR5D0701AE	Rev. 01	Initial issue	Jan. 29, 2016

Report No.: FR5D0701AE Page: 3 of 37

Summary of Test Results

FCC Rules	Test Items	Measured	Result
15.207	AC Power Line Conducted Emissions	[dBuV]: 20.924MHz 18.15 (Margin -31.85dB) - AV	Pass
15.247(d)	Radiated Emissions	[dBuV/m at 3m]: 51.34MHz	Pass
15.209	Radiated Emissions	29.65 (Margin -10.35dB) - PK	Pa55
15.247(b)(3)	Maximum Output Power	Power [dBm]: 7.82	Pass
15.247(a)(2)	6dB Bandwidth	Meet the requirement of limit	Pass
15.247(e)	Power Spectral Density	Meet the requirement of limit	Pass
15.203	Antenna Requirement	Meet the requirement of limit	Pass

Report No.: FR5D0701AE Page: 4 of 37

1 General Description

1.1 Information

1.1.1 Specification of the Equipment under Test (EUT)

RF General Information							
Frequency Range (MHz) Bluetooth Ch. Freq. (MHz) Channel Number Data Rate							
2400-2483.5 V4.2 LE 2402-2480 0-39 [40] 1 Mbps							
Note 1: Bluetooth LE	Note 1: Bluetooth LE (Low energy) uses GFSK modulation.						

Report No.: FR5D0701AE Page: 5 of 37

1.1.2 Antenna Details

Ant. No.	Model	Туре	Connector	Gain (dBi)
1	Antenna 1 (Green PCB, Cable 1)	Dipole	UFL	0.21
2	Antenna 2 (Blue PCB, Cable 2)	Dipole	UFL	1.25

Note: Antenna 2 with highest gain was chosen for final test.

The following antenna cables are used in this EUT. The only difference is cable length.

For Antenna 1 (Green PCB, Cable 1)

Cable No.	Model (Cable Color: Black)	Cable No.	Model (Cable Color: Gray)	Cable Length (mm)
1	8JJEKQ199000001H1	22	8JJEKR199000001H1	199
2	8JJEKQ210000001H1	23	8JJEKR210000001H1	210
3	8JJEKQ220000001H1	24	8JJEKR220000001H1	220
4	8JJEKQ230000001H1	25	8JJEKR230000001H1	230
5	8JJEKQ240000001H1	26	8JJEKR240000001H1	240
6	8JJEKQ250000001H1	27	8JJEKR250000001H1	250
7	8JJEKQ260000001H1	28	8JJEKR260000001H1	260
8	8JJEKQ270000001H1	29	8JJEKR270000001H1	270
9	8JJEKQ280000001H1	30	8JJEKR280000001H1	280
10	8JJEKQ290000001H1	31	8JJEKR290000001H1	290
11	8JJEKQ300000001H1	32	8JJEKR300000001H1	300
12	8JJEKQ310000001H1	33	8JJEKR310000001H1	310
13	8JJEKQ320000001H1	34	8JJEKR320000001H1	320
14	8JJEKQ330000001H1	35	8JJEKR330000001H1	330
15	8JJEKQ340000001H1	36	8JJEKR340000001H1	340
16	8JJEKQ350000001H1	37	8JJEKR350000001H1	350
17	8JJEKQ360000001H1	38	8JJEKR360000001H1	360
18	8JJEKQ370000001H1	39	8JJEKR370000001H1	370
19	8JJEKQ380000001H1	40	8JJEKR380000001H1	380
20	8JJEKQ390000001H1	41	8JJEKR390000001H1	390
21	8JJEKQ400000001H1	42	8JJEKR400000001H1	400

Report No.: FR5D0701AE Page: 6 of 37

For Antenna 2 (Blue PCB, Cable 2)

Cable No.	Model (Cable Color: Black)	Cable No.	Model (Cable Color: Gray)	Cable No.	Model (Cable Color: White)	Cable Length (mm)
1	8JJEKQ400000001H1	52	8JJEKR4000000001H1	103	8JJEKP4000000001H1	400
2	8JJEKQ4100000001H1	53	8JJEKR4100000001H1	104	8JJEKP4100000001H1	410
3	8JJEKQ4200000001H1	54	8JJEKR4200000001H1	105	8JJEKP4200000001H1	420
4	8JJEKQ4300000001H1	55	8JJEKR4300000001H1	106	8JJEKP4300000001H1	430
5	8JJEKQ440000001H1	56	8JJEKR4400000001H1	107	8JJEKP4400000001H1	440
6	8JJEKQ4500000001H1	57	8JJEKR4500000001H1	108	8JJEKP4500000001H1	450
7	8JJEKQ4600000001H1	58	8JJEKR4600000001H1	109	8JJEKP4600000001H1	460
8	8JJEKQ4700000001H1	59	8JJEKR4700000001H1	110	8JJEKP4700000001H1	470
9	8JJEKQ4800000001H1	60	8JJEKR4800000001H1	111	8JJEKP4800000001H1	480
10	8JJEKQ490000001H1	61	8JJEKR4900000001H1	112	8JJEKP4900000001H1	490
11	8JJEKQ5000000001H1	62	8JJEKR5000000001H1	113	8JJEKP5000000001H1	500
12	8JJEKQ5100000001H1	63	8JJEKR5100000001H1	114	8JJEKP5100000001H1	510
13	8JJEKQ5200000001H1	64	8JJEKR5200000001H1	115	8JJEKP5200000001H1	520
14	8JJEKQ5300000001H1	65	8JJEKR5300000001H1	116	8JJEKP5300000001H1	530
15	8JJEKQ540000001H1	66	8JJEKR540000001H1	117	8JJEKP5400000001H1	540
16	8JJEKQ5500000001H1	67	8JJEKR5500000001H1	118	8JJEKP5500000001H1	550
17	8JJEKQ5600000001H1	68	8JJEKR5600000001H1	119	8JJEKP5600000001H1	560
18	8JJEKQ5700000001H1	69	8JJEKR5700000001H1	120	8JJEKP5700000001H1	570
19	8JJEKQ5800000001H1	70	8JJEKR5800000001H1	121	8JJEKP5800000001H1	580
20	8JJEKQ590000001H1	71	8JJEKR5900000001H1	122	8JJEKP5900000001H1	590
21	8JJEKQ6000000001H1	72	8JJEKR6000000001H1	123	8JJEKP6000000001H1	600
22	8JJEKQ6100000001H1	73	8JJEKR6100000001H1	124	8JJEKP6100000001H1	610
23	8JJEKQ6200000001H1	74	8JJEKR6200000001H1	125	8JJEKP6200000001H1	620
24	8JJEKQ6300000001H1	75	8JJEKR6300000001H1	126	8JJEKP6300000001H1	630
25	8JJEKQ640000001H1	76	8JJEKR6400000001H1	127	8JJEKP6400000001H1	640
26	8JJEKQ6500000001H1	77	8JJEKR6500000001H1	128	8JJEKP6500000001H1	650
27	8JJEKQ6600000001H1	78	8JJEKR6600000001H1	129	8JJEKP6600000001H1	660
28	8JJEKQ6700000001H1	79	8JJEKR6700000001H1	130	8JJEKP6700000001H1	670
29	8JJEKQ6800000001H1	80	8JJEKR6800000001H1	131	8JJEKP6800000001H1	680
30	8JJEKQ6900000001H1	81	8JJEKR6900000001H1	132	8JJEKP6900000001H1	690
31	8JJEKQ700000001H1	82	8JJEKR7000000001H1	133	8JJEKP7000000001H1	700
32	8JJEKQ7100000001H1	83	8JJEKR7100000001H1	134	8JJEKP7100000001H1	710
33	8JJEKQ720000001H1	84	8JJEKR720000001H1	135	8JJEKP7200000001H1	720
34	8JJEKQ730000001H1	85	8JJEKR730000001H1	136	8JJEKP730000001H1	730
35	8JJEKQ740000001H1	86	8JJEKR740000001H1	137	8JJEKP740000001H1	740
36	8JJEKQ7500000001H1	87	8JJEKR7500000001H1	138	8JJEKP7500000001H1	750
37	8JJEKQ7600000001H1	88	8JJEKR7600000001H1	139	8JJEKP7600000001H1	760

Report No.: FR5D0701AE Page: 7 of 37

38 8JJEKQ7700000001H1 89 8JJEKR7700000001H1 140 8JJEKP7700000001H1 39 8JJEKQ7800000001H1 90 8JJEKR7800000001H1 141 8JJEKP7800000001H1 40 8JJEKQ7900000001H1 91 8JJEKR7900000001H1 142 8JJEKP7900000001H1 41 8JJEKQ8000000001H1 92 8JJEKR8000000001H1 143 8JJEKP8000000001H1 42 8JJEKQ8100000001H1 93 8JJEKR8100000001H1 144 8JJEKP8100000001H1	770 780 790 800
40 8JJEKQ7900000001H1 91 8JJEKR7900000001H1 142 8JJEKP7900000001H1 41 8JJEKQ8000000001H1 92 8JJEKR80000000001H1 143 8JJEKP8000000001H1	790
41 8JJEKQ800000001H1 92 8JJEKR8000000001H1 143 8JJEKP8000000001H1	
	800
42 8JJEKQ8100000001H1 93 8JJEKR8100000001H1 144 8JJEKP8100000001H1	
	810
43 8JJEKQ8200000001H1 94 8JJEKR8200000001H1 145 8JJEKP8200000001H1	820
44 8JJEKQ8300000001H1 95 8JJEKR8300000001H1 146 8JJEKP8300000001H1	830
45 8JJEKQ8400000001H1 96 8JJEKR8400000001H1 147 8JJEKP8400000001H1	840
46 8JJEKQ8500000001H1 97 8JJEKR8500000001H1 148 8JJEKP8500000001H1	850
47 8JJEKQ8600000001H1 98 8JJEKR8600000001H1 149 8JJEKP860000001H1	860
48 8JJEKQ8700000001H1 99 8JJEKR8700000001H1 150 8JJEKP8700000001H1	870
49 8JJEKQ8800000001H1 100 8JJEKR8800000001H1 151 8JJEKP8800000001H1	880
50 8JJEKQ8900000001H1 101 8JJEKR8900000001H1 152 8JJEKP8900000001H1	890
51 8JJEKQ900000001H1 102 8JJEKR9000000001H1 153 8JJEKP900000001H1	900

1.1.3 Power Supply Type of Equipment under Test (EUT)

Power Supply Type	DC 4V/1A
-------------------	----------

1.1.4 Accessories

N/A

1.1.5 Channel List

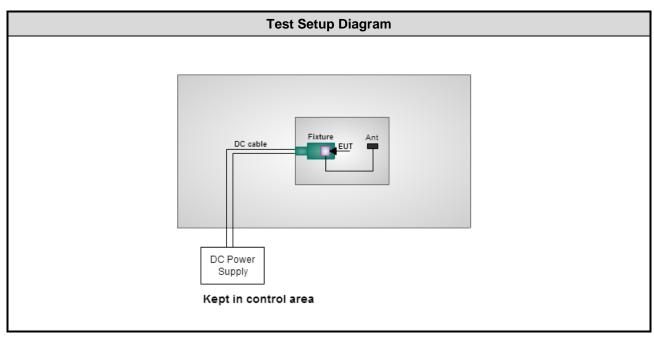
Frequency band (MHz)					2400~	2483.5	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
37	2402	9	2422	18	2442	28	2462
0	2404	10	2424	19	2444	29	2464
1	2406	38	2426	20	2446	30	2466
2	2408	11	2428	21	2448	31	2468
3	2410	12	2430	22	2450	32	2470
4	2412	13	2432	23	2452	33	2472
5	2414	14	2434	24	2454	34	2474
6	2416	15	2436	25	2456	35	2476
7	2418	16	2438	26	2458	36	2478
8	2420	17	2440	27	2460	39	2480

Report No.: FR5D0701AE Page: 8 of 37

1.1.6 Test Tool and Duty Cycle

Test tool	WCN Combo Tool, ver. 2.1417.00
Duty cycle of test signal (%)	62.24%
Duty Factor (dB)	2.06

1.1.7 Power Setting


Modulation Mode	Test Frequency (MHz)				
Modulation Mode	2402	2440	2480		
GFSK/1Mbps	Default	Default	Default		

1.2 Local Support Equipment List

	Support Equipment List							
No.	Equipment	Signal cable / Length (m)						
1	Notebook	DELL	Latitude E6440	2ZC4Z52	DoC			
2	DC Power Supply	GW INSTEK	GPC-3060D	EM884797				
3	Fixture							

Note: Fixture was supplied by applicant.

1.3 Test Setup Chart

Note: The support notebook was disconnected from EUT and removed from test table when EUT is set to transmit continuously.

Report No.: FR5D0701AE Page: 9 of 37

1.4 Test Equipment List and Calibration Data

Test Item	Conducted Emission								
Test Site	Conduction room 1 / (Conduction room 1 / (CO01-WS)							
Tested Date	Dec. 31, 2015	Dec. 31, 2015							
Instrument	Manufacturer Model No. Serial No. Calibration Date Calibration Until								
EMC Receiver	R&S	ESCS 30	100169	Oct. 21, 2015	Oct. 20, 2016				
LISN	SCHWARZBECK	Schwarzbeck 8127	8127-667	Nov. 13, 2015	Nov. 12, 2016				
RF Cable-CON	EMC	EMCCFD300-BM-B M-6000	50821	Dec. 21, 2015	Dec. 20, 2016				
Measurement Software	AUDIX	e3	6.120210k	NA	NA				

Test Item	Radiated Emission								
Test Site	966 chamber1 / (03CF	H01-WS)							
Tested Date	Jan. 21, 2016	an. 21, 2016							
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until				
Spectrum Analyzer	R&S	FSV40	101063	Feb. 03, 2015	Feb. 02, 2016				
Receiver	R&S	ESR3	101658	Nov. 04, 2015	Nov. 03, 2016				
Bilog Antenna	SCHWARZBECK	VULB9168	VULB9168-522	Aug. 20, 2015	Aug. 19, 2016				
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1095	Oct. 07, 2015	Oct. 06, 2016				
Horn Antenna 18G-40G	SCHWARZBECK	BBHA 9170	BBHA 9170517	Nov. 04, 2015	Nov. 03, 2016				
Loop Antenna	R&S	HFH2-Z2	11900	Nov. 16, 2015	Nov. 15, 2016				
Loop Antenna Cable	KOAX KABEL	101354-BW	101354-BW	Dec. 10, 2015	Dec. 09, 2016				
Preamplifier	Burgeon	BPA-530	SN:100219	Sep. 10, 2015	Sep. 09, 2016				
Preamplifier	Agilent	83017A	MY39501308	Oct. 02, 2015	Oct. 01, 2016				
Preamplifier	EMC	EMC184045B	980192	Sep. 01, 2015	Aug. 31, 2016				
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16014/4	Dec. 10, 2015	Dec. 09, 2016				
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16019/4	Dec. 10, 2015	Dec. 09, 2016				
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16139/4	Dec. 10, 2015	Dec. 09, 2016				
LF cable 3M	Woken	CFD400NL-LW	CFD400NL-001	Dec. 10, 2015	Dec. 09, 2016				
LF cable 10M	Woken	CFD400NL-LW	CFD400NL-002	Dec. 10, 2015	Dec. 09, 2016				
Measurement Software	AUDIX	e3	6.120210g	NA	NA				
Note: Calibration Inter	rval of instruments listed	d above is one year.							

Report No.: FR5D0701AE Page: 10 of 37

Test Item	RF Conducted								
Test Site	(TH01-WS)	TH01-WS)							
Tested Date	Jan. 21, 2016	Jan. 21, 2016							
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until				
Spectrum Analyzer	R&S	FSV40	101063	Feb. 03, 2015	Feb. 02, 2016				
Power Meter	Anritsu	ML2495A	1241002	Sep. 21, 2015	Sep. 20, 2016				
Power Sensor	Anritsu	MA2411B	1207366	Sep. 21, 2015	Sep. 20, 2016				
DC POWER SOURCE	GW INSTEK	GPC-3060D	EM884797	Oct. 20, 2015	Oct. 19, 2016				
Measurement Software	Sporton	Sporton_1	1.3.30	NA	NA				
Note: Calibration Inter	rval of instruments liste	d above is one year.							

1.5 Test Standards

According to the specification of EUT, the EUT must comply with following standards and KDB documents.

47 CFR FCC Part 15.247 ANSI C63.10-2013 FCC KDB 558074 D01 DTS Meas Guidance v03r04

1.6 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Measurement Uncertainty					
Parameters	Uncertainty				
Bandwidth	±34.134 Hz				
Conducted power	±0.808 dB				
Power density	±0.463 dB				
Conducted emission	±2.670 dB				
AC conducted emission	±2.90 dB				
Radiated emission ≤ 1GHz	±3.66 dB				
Radiated emission > 1GHz	±5.63 dB				

Report No.: FR5D0701AE Page: 11 of 37

2 Test Configuration

2.1 Testing Condition

Test Item	Test Site	Ambient Condition	Tested By
AC Conduction	CO01-WS	20°C / 59%	Peter Lin
Radiated Emissions	03CH01-WS	22°C / 63%	Vincent Yeh Felix Sung
RF Conducted	TH01-WS	23°C / 65%	Alex Huang

FCC site registration No.: 657002IC site registration No.: 10807A-1

2.2 The Worst Test Modes and Channel Details

Test item	Mode	Test Frequency (MHz)	Data Rate	
AC Power Line Conducted Emissions	BT LE	2402	1Mbps	
Radiated Emissions ≤ 1GHz	BT LE	2402	1Mbps	
Radiated Emissions > 1GHz	BT LE	2402, 2440, 2480	1Mbps	
Maximum Output Power				
6dB bandwidth	BT LE	2402, 2440, 2480	1Mbps	
Power spectral density				

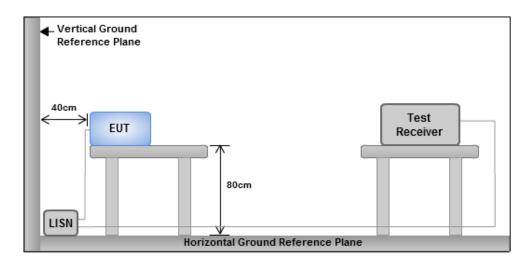
NOTE:

- 1. The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement X, Y, and Z-plane. The **Y-plane** result was found as the worst case and was shown in this report.
- 2. See item 1.1.2 antenna sheet list. **Cable length 400mm & 900mm** were selected for radiated emission below 1GHz test. **Cable length 400mm** was for radiated emission above 1GHz test.
- 3. Test configurations are listed as below:
 - 1) Configuration 1: Antenna cable length: 400mm.
 - 2) Configuration 2: Antenna cable length: 900mm.

Report No.: FR5D0701AE Page: 12 of 37

3 Transmitter Test Results

3.1 Conducted Emissions

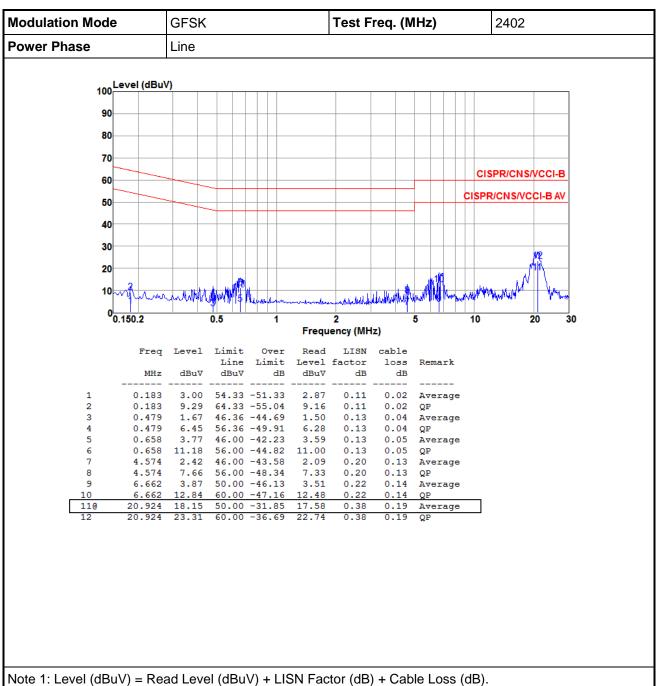

3.1.1 Limit of Conducted Emissions

Conducted Emissions Limit						
Frequency Emission (MHz) Quasi-Peak Average						
0.15-0.5	66 - 56 *	56 - 46 *				
0.5-5	56	46				
5-30	60	50				
Note 1: * Decreases with the logarithm of the frequency.						

3.1.2 Test Procedures

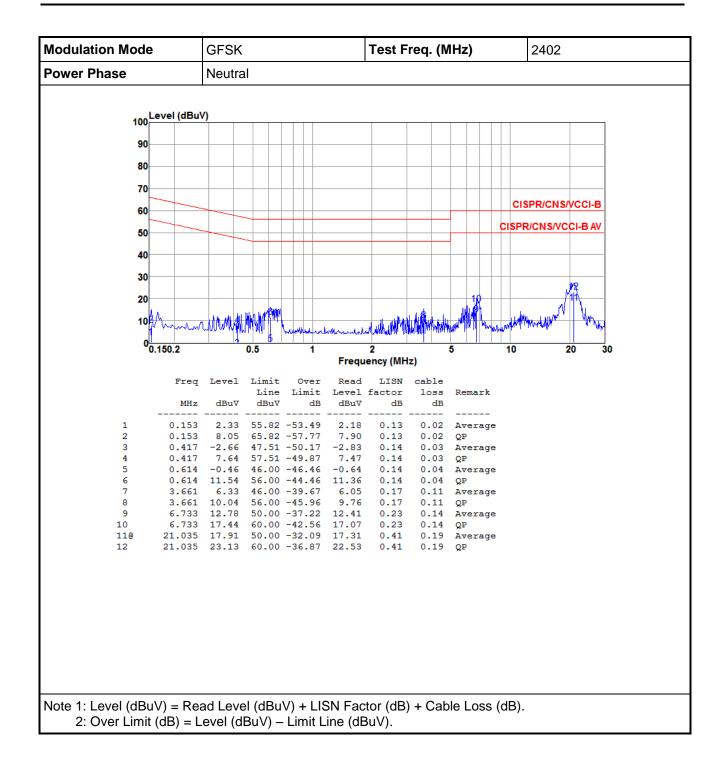
- 1. The device is placed on a test table, raised 80 cm above the reference ground plane. The vertical conducting plane is located 40 cm to the rear of the device.
- 2. The device is connected to line impedance stabilization network (LISN) and other accessories are connected to other LISN. Measured levels of AC power line conducted emission are across the 50 Ω LISN port.
- 3. AC conducted emission measurements is made over frequency range from 150 kHz to 30 MHz.
- 4. This measurement was performed with AC 120V/60Hz

3.1.3 Test Setup


Note: 1. Support units were connected to second LISN.

Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

Report No.: FR5D0701AE Page: 13 of 37


Test Result of Conducted Emissions 3.1.4

2: Over Limit (dB) = Level (dBuV) – Limit Line (dBuV).

Report No.: FR5D0701AE Page: 14 of 37

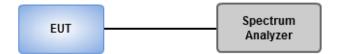
Report No.: FR5D0701AE Page: 15 of 37

3.2 6dB and Occupied Bandwidth

3.2.1 Limit of 6dB Bandwidth

The minimum 6dB bandwidth shall be at least 500 kHz.

3.2.2 Test Procedures

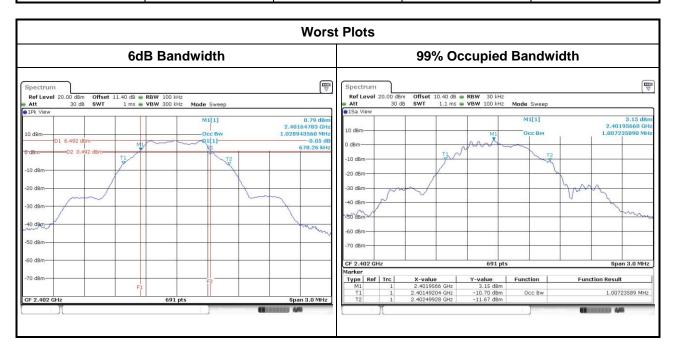

6dB Bandwidth

- 1. Set resolution bandwidth (RBW) = 100 kHz, Video bandwidth = 300 kHz.
- 2. Detector = Peak, Trace mode = max hold.
- 3. Sweep = auto couple, Allow the trace to stabilize.
- 4. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6dB relative to the maximum level measured in the fundamental emission.

Occupied Bandwidth

- 1. Set resolution bandwidth (RBW) = 30 kHz, Video bandwidth = 100 kHz.
- 2. Detector = Sample, Trace mode = max hold.
- 3 Sweep = auto couple, Allow the trace to stabilize.
- 4. Use the OBW measurement function of spectrum analyzer to measure the occupied bandwidth.

3.2.3 Test Setup



Report No.: FR5D0701AE Page: 16 of 37

3.2.4 Test Result of 6dB and Occupied Bandwidth

Mode	Freq. (MHz)	6dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	Limit of 6dB Bandwidth (kHz)
BT LE	2402	0.678	1.01	500
BT LE	2440	0.687	1.01	500
BT LE	2480	0.687	1.01	500

Report No.: FR5D0701AE Page: 17 of 37

3.3 RF Output Power

3.3.1 Limit of RF Output Power

Cor	duct	ed power shall not exceed 1Watt.
\boxtimes	Ante	enna gain <= 6dBi, no any corresponding reduction is in output power limit.
	Ante	enna gain > 6dBi
		Non Fixed, point to point operations. The conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dB
		Fixed, point to point operations Systems operating in the 2400–2483.5 MHz band that are used exclusively for fixed, point-to-point Operations, maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.
		Systems operating in the 5725–5850 MHz band that are used exclusively for fixed, point-to-point operations ,no any corresponding reduction is in transmitter peak output power

3.3.2 Test Procedures

Maximum Peak Conducted Output Power

- 1. Set RBW = 1MHz, VBW = 3MHz, Detector = Peak.
- 2. Sweep time = auto, Trace mode = max hold, Allow trace to fully stabilize.
- 3. Use the spectrum analyzer channel power measurement function with the band limits set equal to the DTS bandwidth edges.

Nower meter

- A broadband Peak RF power meter is used for output power measurement. The video bandwidth of power meter is greater than DTS bandwidth of EUT. If duty cycle of test signal is not 100 %, trigger and gating function of power meter will be enabled to capture transmission burst for measuring output power.
- Maximum Conducted Average Output Power (For reference only)

Nower meter

 A broadband Average RF power meter is used for output power measurement. The video bandwidth of power meter is greater than DTS bandwidth of EUT. If duty cycle of test signal is not 100 %, trigger and gating function of power meter will be enabled to capture transmission burst for measuring output power.

3.3.3 Test Setup

Report No.: FR5D0701AE Page: 18 of 37

3.3.4 Test Result of Maximum Output Power

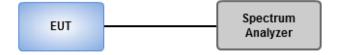
		Peak Power			Antenna	EIRP	EIRP
Mode	de Freq. (MHz)	Power (mW)	Power (dBm)	Limit (dBm)	gain (dBi)	(dBm)	Limit (dBm)
BT LE	2402	6.053	7.82	30	1.25	9.07	36
BT LE	2440	5.781	7.62	30	1.25	8.87	36
BT LE	2480	5.420	7.34	30	1.25	8.59	36

Mode	Freq. (MHz)	AV Power (mW)	AV Power (dBm)	Limit (dBm)
BT LE	2402	5.662	7.53	
BT LE	2440	5.521	7.42	
BT LE	2480	5.200	7.16	

Note: Average power is for reference only

Report No.: FR5D0701AE Page: 19 of 37

3.4 Power Spectral Density

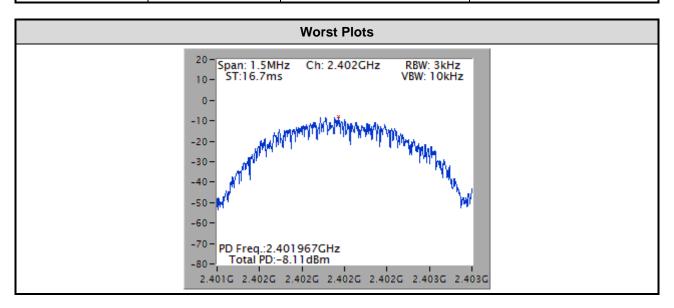

3.4.1 Limit of Power Spectral Density

Power spectral density shall not be greater than 8 dBm in any 3 kHz band.

3.4.2 Test Procedures

- Maximum peak conducted output power was used to demonstrate compliance to the fundamental output power limit.
 - Set the RBW = 3kHz, VBW = 10kHz.
 - 2. Detector = Peak, Sweep time = auto couple.
 - 3. Trace mode = max hold, allow trace to fully stabilize.
 - 4. Use the peak marker function to determine the maximum amplitude level.
- Maximum (average) conducted output power was used to demonstrate compliance to the fundamental output power limit.
 - Set the RBW = 100kHz, VBW = 300 kHz.
 - 2. Detector = RMS, Sweep time = auto couple.
 - 3. Set the sweep time to: ≥ 10 x (number of measurement points in sweep) x (maximum data rate per stream).
 - 4. Perform the measurement over a single sweep.
 - 5. Use the peak marker function to determine the maximum amplitude level.\

3.4.3 Test Setup



Report No.: FR5D0701AE Page: 20 of 37

3.4.4 Test Result of Power Spectral Density

Mode	Freq. (MHz)	Total Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)
BT LE	2402	-8.11	8
BT LE	2440	-8.21	8
BT LE	2480	-8.92	8

Report No.: FR5D0701AE Page: 21 of 37

3.5 Emissions in Restricted Frequency Bands

3.5.1 Limit of Emissions in Restricted Frequency Bands

	Restricted Band Emissions Limit											
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)									
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300									
0.490~1.705	24000/F(kHz)	33.8 - 23	30									
1.705~30.0	30	29	30									
30~88	100	40	3									
88~216	150	43.5	3									
216~960	200	46	3									
Above 960	500	54	3									

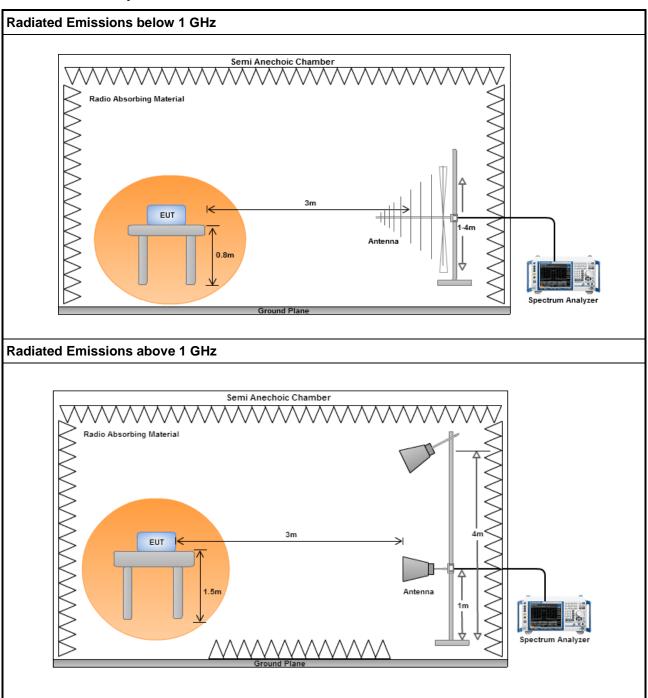
Note 1:

Qusai-Peak value is measured for frequency below 1GHz except for 9–90 kHz, 110–490 kHz frequency band. Peak and average value are measured for frequency above 1GHz. The limit on average radio frequency emission is as above table. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit **Note 2:**

Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below, Frequency at or above 30 MHz: 20 dB/decade Frequency below 30 MHz: 40 dB/decade.

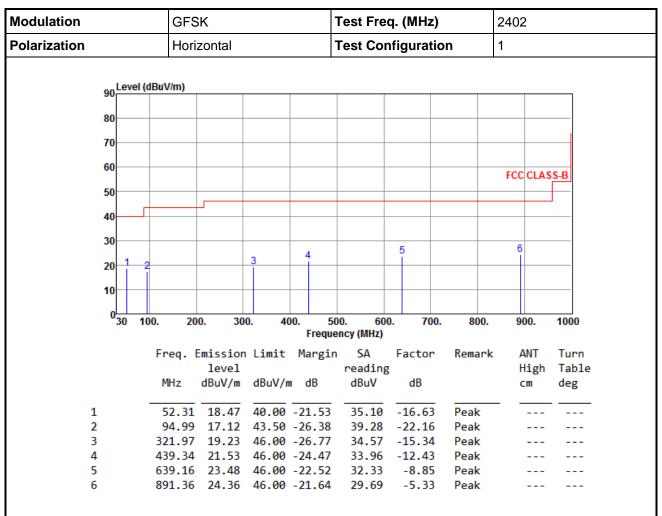
3.5.2 Test Procedures

- 1. Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at test table. For emissions testing at or below 1 GHz, the table height is 80 cm above the reference ground plane. For emission measurements above 1 GHz, the table height is 1.5 m
- 2. Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
- 3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.


Note:

- 1. 120kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1GHz.
- 2. RBW=1MHz, VBW=3MHz and Peak detector is for peak measured value of radiated emission above 1GHz.
- RBW=1MHz, VBW=1/T and Peak detector is for average measured value of radiated emission above 1GHz.

Report No.: FR5D0701AE Page: 22 of 37

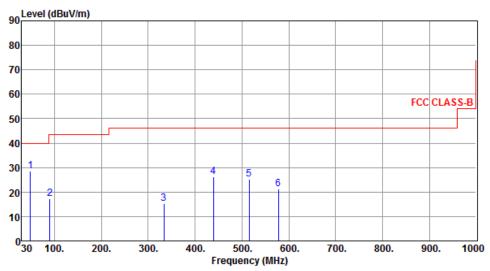

3.5.3 Test Setup

Report No.: FR5D0701AE Page: 23 of 37

3.5.4 Transmitter Radiated Unwanted Emissions (Below 1GHz)

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain


Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

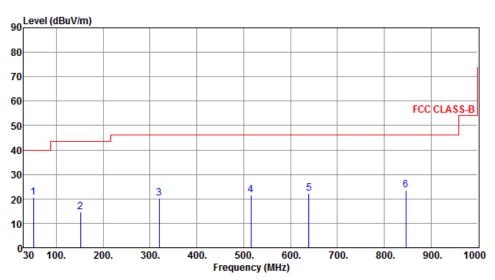
Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR5D0701AE Page: 24 of 37

Modulation	GFSK	Test Freq. (MHz)	2402
Polarization	Vertical	Test Configuration	1

	Freq. MHz	Emission level dBuV/m	Limit dBuV/m	Ū	SA reading dBuV		Remark	ANT High cm	Turn Table deg
1	10 12	28.41	40.00	11 EQ	44.75	-16.34	Peak		
1	40.43	20.41	40.00	-11.59	44.75	-10.34	reak		
2	90.14	17.18	43.50	-26.32	40.15	-22.97	Peak		
3	333.61	15.33	46.00	-30.67	30.46	-15.13	Peak		
4	439.34	26.40	46.00	-19.60	38.83	-12.43	Peak		
5	515.00	25.38	46.00	-20.62	36.30	-10.92	Peak		
6	578.05	21.09	46.00	-24.91	31.03	-9.94	Peak		

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)


*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR5D0701AE Page: 25 of 37

Modulation	GFSK	Test Freq. (MHz)	2402
Polarization	Horizontal	Test Configuration	2

	Freq.	Emission level	Limit	Margin	SA reading		Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	51.34	20.69	40.00	-19.31	37.21	-16.52	Peak		
2	151.25	14.68	43.50	-28.82	31.41	-16.73	Peak		
3	320.03	20.27	46.00	-25.73	35.65	-15.38	Peak		
4	515.00	21.44	46.00	-24.56	32.36	-10.92	Peak		
5	639.16	22.36	46.00	-23.64	31.21	-8.85	Peak		
6	846.74	23.42	46.00	-22.58	29.34	-5.92	Peak		

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB) *Factor includes antenna factor , cable loss and amplifier gain

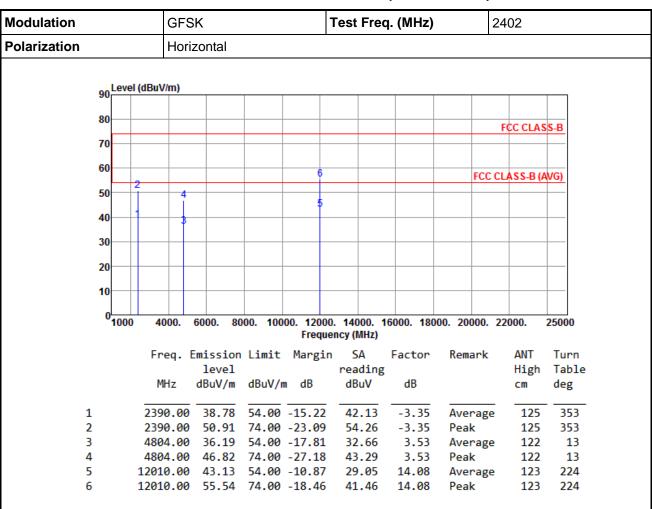
Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR5D0701AE Page: 26 of 37

Modulation			GFS	SK .			Test Fre	q. (MHz)		2402		
Polarization			Verti	ical			Test Cor	nfiguratio	on	2		
	90Le	vel (dB	uV/m)									
•	80											
	70											
	60											
'	60									FCC CLA	SS-B	
:	50											
	40			_							_	
•	40											
;	30						4			6		
	20					3		5				
	20		2			Ĭ						
	10											
	ال											
	0 30	100.	. 20	0. 30	0. 40		00. 600 ency (MHz)	0. 700.	800.	900.	1000	
			r					F	DI-	ANT	т	
		1	Freq. i	mission level	Limit	margin	n SA reading	Factor	Remark	ANT High	Turn Table	
			MHz	dBuV/m	dBuV/r	n dB	dBuV	dB		cm	deg	
				abar,	abar, .	. 45	ubu.				acB	
1			51.34	29.65	40.00	-10.35	46.17	-16.52	Peak			
2			149.31	13.52		-29.98	30.26	-16.74	Peak			
3			411.21			-28.22			Peak			
4				25.48				-10.82	Peak			
5				22.50				-8.19	Peak			
6			896.21	24.90	46.00	-21.10	30.18	-5.28	Peak			

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB) *Factor includes antenna factor , cable loss and amplifier gain

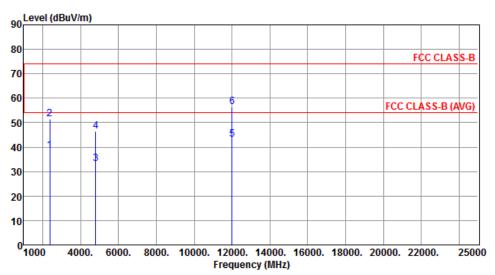

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR5D0701AE Page: 27 of 37

3.5.5 Transmitter Radiated Unwanted Emissions (Above 1GHz) for GFSK

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)


*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) - Limit (dBuV/m).

Report No.: FR5D0701AE Page: 28 of 37

Modulation	GFSK	Test Freq. (MHz)	2402
Polarization	Vertical		

	Freq. MHz	Emission level dBuV/m	Limit dBuV/m	J	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
1	2390.00	38.47	54.00	15 52	41.82	-3.35	Average	145	12
1	2590.00	30.47	34.00	-15.55	41.02	-3.33	Average	145	12
2	2390.00	51.57	74.00	-22.43	54.92	-3.35	Peak	145	12
3	4804.00	33.26	54.00	-20.74	29.73	3.53	Average	162	83
4	4804.00	46.55	74.00	-27.45	43.02	3.53	Peak	162	83
5	12010.00	43.34	54.00	-10.66	29.26	14.08	Average	155	29
6	12010.00	56.60	74.00	-17.40	42.52	14.08	Peak	155	29

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR5D0701AE Page: 29 of 37

Modulation			C	GFSI	K				Te	est F	req.	. (MHz	2)	2	2440	
Polarization			H	Horizontal												
	90	Level	(dBuV/n	n)					,							
	80														FCC CLAS	SS-B
	70															
	60					\dashv								FCC (CLASS-B (AVG)
	50	2	4	-6		8									,	
				Ĭ												
	40			5		7										
	30															
	20															
	10															
	0	1000	400	00. 6	6000.	800	0. 100			1400 cy (Mł		000. 1	3000.	20000.	22000.	25000
			_	_												_
			Fre	q. E	missi leve		Limit	Marg		SA		Factor	· R	emark	ANT	Turr Tab]
			MH:	7			dBuV/	m dB		read: dBu\		dB			High cm	deg
			1-11-1	_	ubuv/		abuv/	40		aba	•	ub			CIII	ueg
:	1		2390	.00	38.7	4	54.00	-15.2	26	42.0	09	-3.35	A A	verage	150	352
	2		2390	.00	50.6	1	74.00	-23.3	39	53.9		-3.39		eak	150	352
	3							-15.1		41.		-2.93		verage		
	4							-23.3		53.		-2.93		eak	150	
	5							-19.8		30.4		3.77		verage		18
	6		4880	.00	46.8	1	74.00	-27.1	19	43.0	04	3.77	/ P	eak	150	18

8.43

8.43

Average

Peak

150

150

286

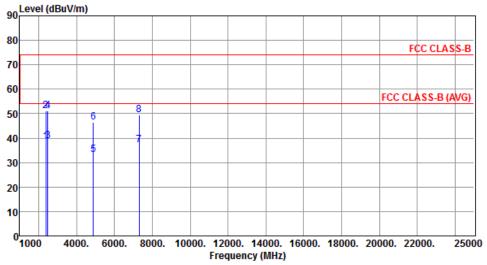
286

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

7320.00 37.87 54.00 -16.13 29.44

7320.00 49.75 74.00 -24.25 41.32

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).


Report No.: FR5D0701AE Page: 30 of 37

Report Version: Rev. 01

7

Modulation	GFSK	Test Freq. (MHz)	2440
Polarization	Vertical		
90 Level (dBu	V/m)		
90			

	Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	2390.00	38.65	54.00	-15.35	42.00	-3.35	Average	183	336
2	2390.00	51.21	74.00	-22.79	54.56	-3.35	Peak	183	336
3	2483.50	38.83	54.00	-15.17	41.76	-2.93	Average	183	336
4	2483.50	51.08	74.00	-22.92	54.01	-2.93	Peak	183	336
5	4880.00	33.33	54.00	-20.67	29.56	3.77	Average	150	89
6	4880.00	46.57	74.00	-27.43	42.80	3.77	Peak	150	89
7	7320.00	37.19	54.00	-16.81	28.76	8.43	Average	160	100
8	7320.00	49.32	74.00	-24.68	40.89	8.43	Peak	160	100

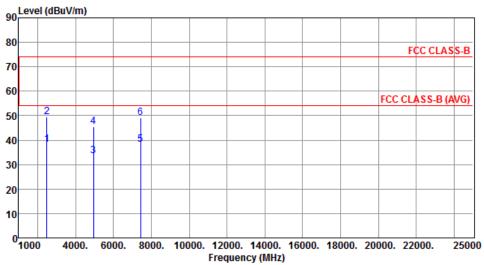
Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR5D0701AE Page: 31 of 37

Modulation	GF\$	GFSK			Test Freq. (MHz)			2480	
Polarization	Hor	Horizontal							
90 Leve	l (dBuV/m)								
80									
70								FCC CLAS	SS-B
70									
60	2						FCC	CLASS-B (A	WG)
50	4	6							
40	1 1								
40	3								
30									
20									
40									
10									
0 <mark>1000</mark>	4000.	6000. 8	000. 100		14000. 1	16000. 180	00. 20000.	22000.	25000
	Frea.	Emissio	n Limit	Margin		Factor	Remark	ANT	Turn
		level			reading			High	Table
	MHz	dBuV/m	dBuV/	m dB	dBuV	dB		CM	deg
1	2483.50	39.37	54.00	-14.63	42.30	-2.93	Average	122	352
2	2483.50			-21.50	55.43	-2.93	Peak	122	352
3				-17.36	32.60	4.04	Average		3
4 5				-26.82 -16.76	43.14 28.68	4.04 8.56	Peak	120 155	3 326
6		49.67			41.11	8.56	Average Peak	155	326

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)


*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR5D0701AE Page: 32 of 37

Report Version: Rev. 01

Modulation	GFSK	Test Freq. (MHz)	2480				
Polarization	Vertical						
Lovel (dBul/m)							

	Freq. MHz	Emission level dBuV/m	Limit dBuV/m	Ū	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
1	2483.50	38.08	54.00	-15.92	41.01	-2.93	Average	185	152
2	2483.50	49.52	74.00	-24.48	52.45	-2.93	Peak	185	152
3	4960.00	33.42	54.00	-20.58	29.38	4.04	Average	155	310
4	4960.00	45.36	74.00	-28.64	41.32	4.04	Peak	155	310
5	7440.00	38.17	54.00	-15.83	29.61	8.56	Average	155	123
6	7440.00	49.28	74.00	-24.72	40.72	8.56	Peak	155	123

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

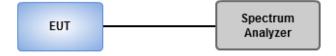
Report No.: FR5D0701AE Page: 33 of 37

3.6 Emissions in non-restricted Frequency Bands

3.6.1 Emissions in non-restricted frequency bands limit

The peak output power measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz.

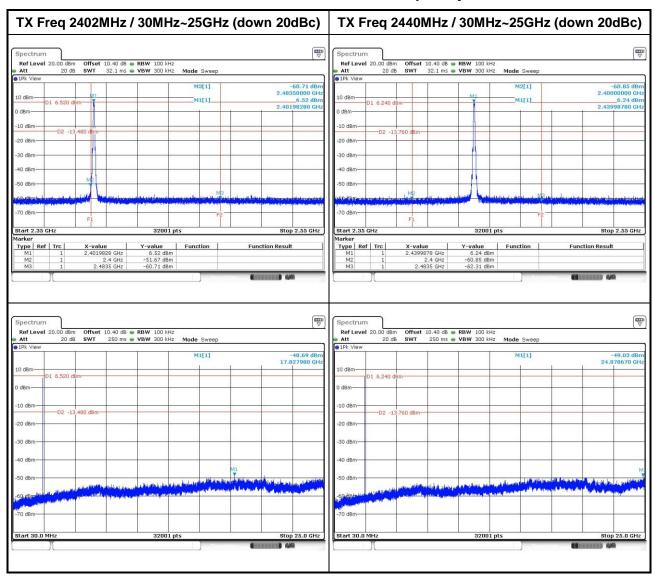
3.6.2 Test Procedures


Reference Level Measurement

- 1. Set the RBW = 100 kHz, VBW = 300 kHz, Detector = peak.
- 2. Set Sweep time = auto couple, Trace mode = max hold.
- 3. Allow trace to fully stabilize.
- 4. Use the peak marker function to determine the maximum amplitude level.

Unwanted Emissions Level Measurement

- 1. Set RBW = 100 kHz, VBW = 300 kHz, Detector = peak.
- 2. Trace Mode = max hold, Sweep = auto couple.
- 3. Allow the trace to stabilize.
- 4. Use peak marker function to determine maximum amplitude of all unwanted emissions within any 100 kHz bandwidth.


3.6.3 Test Setup

Report No.: FR5D0701AE Page: 34 of 37

3.6.4 Test Result of Emissions in non-restricted Frequency Bands

Report No.: FR5D0701AE Page: 35 of 37

Report No.: FR5D0701AE Page: 36 of 37

4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corp, it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan Hsiang. Location map can be found on our website http://www.icertifi.com.tw.

Linkou

Tel: 886-2-2601-1640

No. 30-2, Ding Fwu Tsuen, Lin Kou District, New Taipei City, Taiwan,

R.O.C.

Kwei Shan

Tel: 886-3-271-8666 No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C. Kwei Shan Site II

Tel: 886-3-271-8640

No. 14-1, Lane 19, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

If you have any suggestion, please feel free to contact us as below information

Tel: 886-3-271-8666 Fax: 886-3-318-0155

Email: ICC_Service@icertifi.com.tw

__END__

Report No.: FR5D0701AE Page: 37 of 37