

ROGERS LABS, INC.

4405 West 259th Terrace
Louisburg, KS 66053
Phone / Fax (913) 837-3214

TEST REPORT For APPLICATION of CERTIFICATION

For

GE Transportation Systems Global Signaling
2712 South Dillingham Road
GRAIN VALLEY, MO 64029

Jeff Kleoppel,
Engineer

Phone : (816) 650-6171 ext 4609

MODEL: 12R II - (xx)
VHF TRANSCEIVER
FREQUENCY: 148 - 174 MHz

FCC ID: AJT-GS12RII-V1A

Test Date: March 11, 2002

Certifying Engineer:

Scot D Rogers

Scot D. Rogers
ROGERS LABS, INC.
4405 West 259th Terrace
Louisburg, KS 66053
Phone: (913) 837-3214
FAX: (913) 837-3214

This report shall not be reproduced except in full, without the written approval of the laboratory. This report must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government.

TABLE OF CONTENTS

FORWARD:	3
LIST OF TEST EQUIPMENT	3
2.1033(C) APPLICATION FOR CERTIFICATION	4
2.1046 RF POWER OUTPUT	5
<u>Measurements Required:</u>	5
<u>Test Arrangement:</u>	5
<u>Results:</u>	5
2.1047 MODULATION CHARACTERISTICS	7
<u>Measurements Required:</u>	7
Test Arrangement:	7
<u>Results:</u>	8
2.1049 OCCUPIED BANDWIDTH	10
<u>Measurements Required:</u>	10
<u>Test Arrangement:</u>	10
<u>Results:</u>	10
2.1051 SPURIOUS EMISSIONS AT ANTENNA TERMINALS	13
<u>Measurements Required:</u>	13
<u>Test Arrangement:</u>	13
<u>Results:</u>	14
2.1053 FIELD STRENGTH OF SPURIOUS RADIATION	14
<u>Measurements Required:</u>	14
Test Arrangement:	14
<u>Results:</u>	16
2.1055 FREQUENCY STABILITY	18
<u>Measurements Required:</u>	18
<u>Test Arrangement:</u>	18
<u>Results:</u>	19
TRANSIENT FREQUENCY BEHAVIOR, PER 90.214	20
<u>Test Arrangement:</u>	20
<u>Measurement Data:</u>	21
APPENDIX	23

FORWARD:

In accordance with the Federal Communications Code of Federal Regulations, dated October 1, 2000, Part 2 Subpart J, Paragraphs 2.907, 2.911, 2.913, 2.915, 2.925, 2.926, 2.1031 through 2.1057, applicable paragraphs of Parts 15, 22, 74, and 90, the following is submitted:

List of Test Equipment

A Hewlett Packard 8591EM and or 8562A Spectrum Analyzer was used as the measuring device for the emissions testing. The analyzer settings used are described in the following table. Refer to the Appendix for a complete list of Test Equipment.

HP 8591EM SPECTRUM ANALYZER SETTINGS		
CONDUCTED EMISSIONS:		
RBW	AVG. BW	DETECTOR FUNCTION
9 kHz	30 kHz	Peak/Quasi Peak
RADIATED EMISSIONS (30 - 1000 MHz):		
RBW	AVG. BW	DETECTOR FUNCTION
120 kHz	300 kHz	Peak/Quasi Peak
HP 8562A SPECTRUM ANALYZER SETTINGS		
RADIATED EMISSIONS (1 - 40 GHz):		
RBW	AVG. BW	DETECTOR FUNCTION
1 MHz	1 MHz	Peak/Average
ANTENNA CONDUCTED EMISSIONS:		
RBW	AVG. BW	DETECTOR FUNCTION
120 kHz	300 kHz	Peak

2.1033(c) Application for Certification

(1) Manufacturer: GE Transportation Systems Global Signaling
2712 South Dillingham Road
GRAIN VALLEY, MO 64029

(2) Identification: Model: 12R II - (xx)
S/N: ENG-1
FCC I.D.: AJT-GS12RII-V1A

(3) Instruction Book:

Refer to exhibit for Instruction Manual.

(4) Emission Type: 16K0F3E / 10K0F2D / 6K0F3E

(5) Frequency Range: 148 to 174 MHz

(6) Operating Power Level: 50-Watts variable to 10% of maximum.

(7) Max P_o : 50 Watts

(8) Power into final amplifier: 110.4 Watts (13.8V @ 8.0A)

(9) Tune Up Procedure for Output Power:

Refer to Exhibit for Transceiver Alignment Procedure.

(10) Circuit Diagrams; description of circuits, frequency stability, spurious suppression, and power and modulation limiting:

Refer to Exhibit for Circuit Diagrams and Theory of Operation.

(11) Photograph or drawing of the Identification Plate:

Refer to exhibit for Photograph or Drawing of identification plate.

(12) Drawings of Construction and Layout:

Refer to Exhibit for Drawings of Components Layout and Chassis Drawings.

(13) Detail Description of Digital Modulation:

Refer to Exhibit for description of digital modulation.

2.1046 RF Power Output

Measurements Required:

Measurements shall be made to establish the radio frequency power delivered by the transmitter into the standard output termination. The power output shall be monitored and recorded and no adjustment shall be made to the transmitter after the test has begun, except as noted below:

If the power output is adjustable, measurements shall be made for the highest and lowest power levels.

Test Arrangement:

The radio frequency power output was measured at the antenna terminal by replacing the antenna with a spectrum analyzer, 40-dB attenuation, and cable. The spectrum analyzer had an impedance of 50W to match the impedance of the standard antenna. A HP 8591EM Spectrum Analyzer was used to measure the radio frequency power at the antenna port. The data was taken in dBm and converted to watts as shown in the following Table. Refer to Figures 1 and 2 showing the output power of the transmitter. Data taken per Paragraph 2.1046(a) and applicable parts of Parts 22, 74, and 90.

P_{dBm} = power in dB above 1 milliwatt.

Milliwatts = $10^{(P_{dBm}/10)}$

Watts = (Milliwatts)(0.001) (W/mW)

47.0 dBm = $10^{(47/10)}$
= 50,000 mW
= 50.0 Watts

Results:

FREQUENCY	P_{dBm}	P_{mW}	P_w
150.00	46.5	44,668	45.0
157.00	46.9	48,978	49.0
174.00	47.0	50,000	50.0

The specifications of Paragraph 2.1046(a) and applicable Parts of 22, 74, and 90 are met. There are no deviations to the specifications.

MARKER ACTV DET: PEAK
 150.00000 MHz MEAS DET: PEAK QP
 6.52 dBm MKR 150.00000 MHz
 6.52 dBm

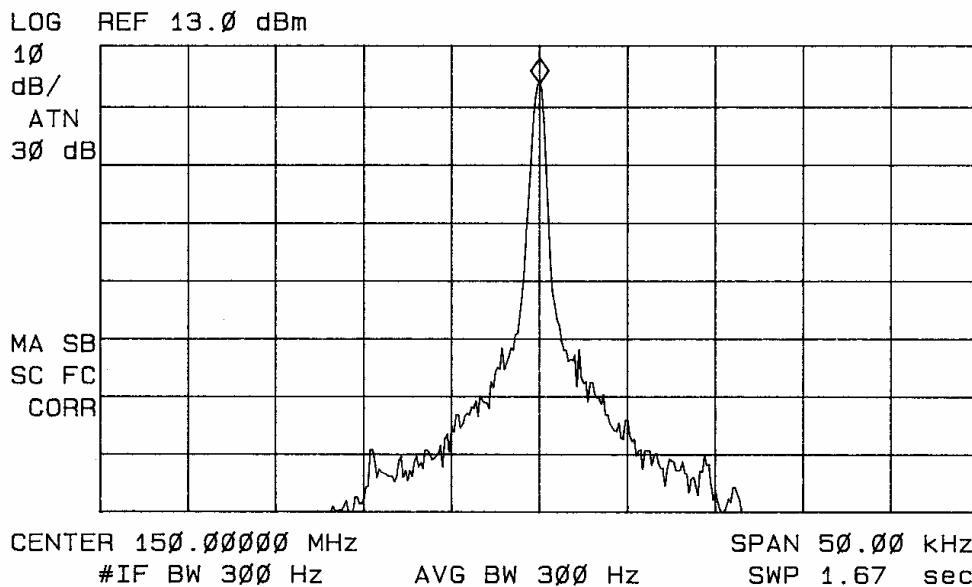


Figure 1: Power Output Channel 150.00

IF BANDWIDTH ACTV DET: PEAK
 1.0 kHz MEAS DET: PEAK QP
 MKR 157.00000 MHz
 6.90 dBm

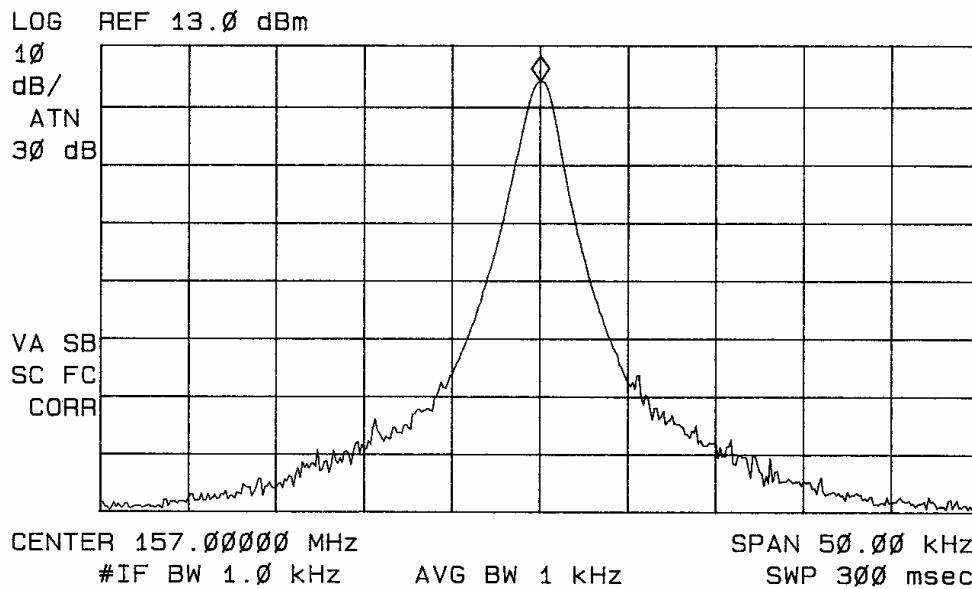


Figure 2: Power Output Channel 157.00

ROGERS LABS, INC.
 4405 West 259th Terrace
 Louisburg, KS 66053
 SN:ENG-1

GE Transportation Systems Global Signaling
 MODEL: 12R II - (xx)
 Test #:020311

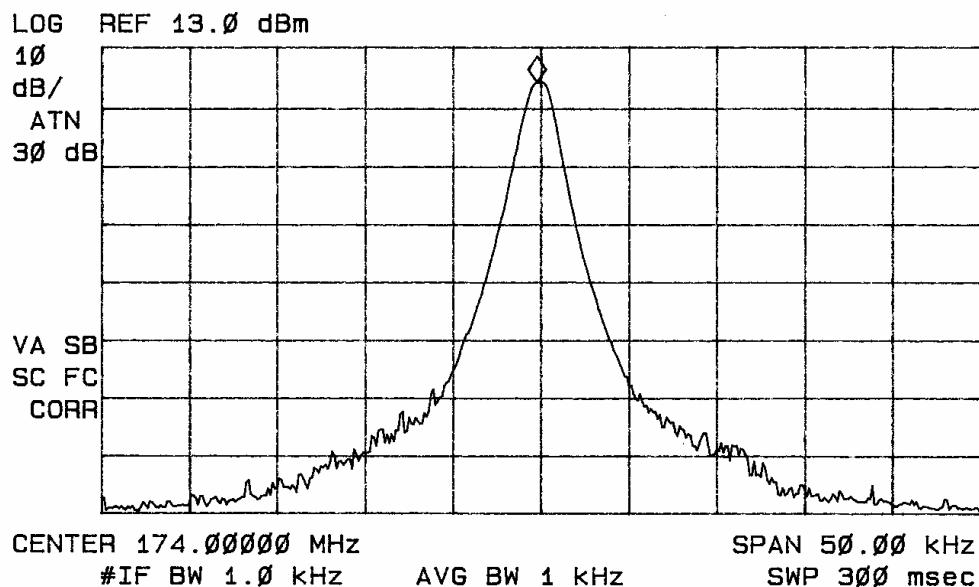
FCC ID#: AJT-GS12RII-V1A

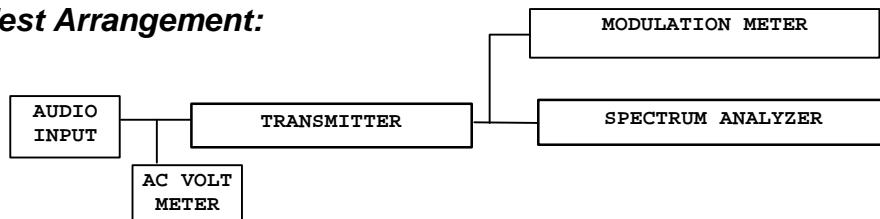
Phone/Fax: (913) 837-3214 Test to: FCC Parts 2, 22, 74 and 90

Page 6 of 26
 CERTIFICATION\GEHH12RA 05/1/2002

MARKER
173.99975 MHz
7.02 dBm

ACTV DET: PEAK
MEAS DET: PEAK QP
MKR 173.99975 MHz
7.02 dBm



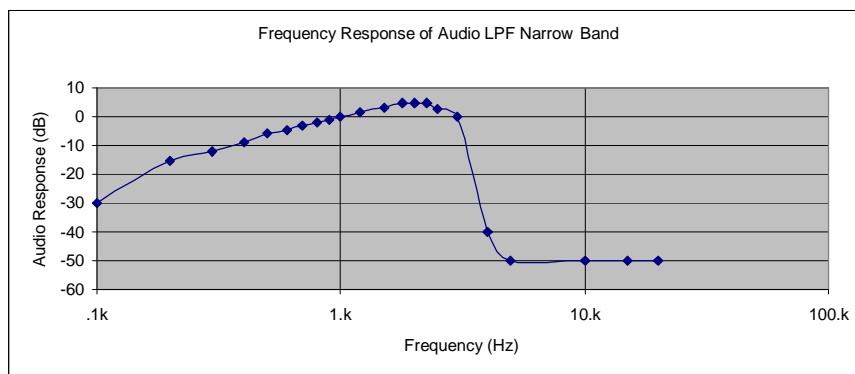

Figure 3: Power Output Channel 174.00

2.1047 Modulation Characteristics

Measurements Required:

A curve or equivalent data, which shows that the equipment will meet the modulation requirements of the rules, under which the equipment is to be licensed, shall be submitted.

Test Arrangement:



The radio frequency output was coupled to a HP Spectrum Analyzer and a modulation meter. The spectrum analyzer was used to observe the radio frequency spectrum with the transmitter operating in its various modes. The modulation meter was used to measure the percent modulation.

Results:

Figure 4 displays the graph made showing the audio frequency response of the modulator. The frequency generator was set to 1 kHz and injected into the audio input port of the EUT. The amplitude was adjusted to obtain 50% modulation at 1000 Hz. This level was then taken as the 0-dB reference. The frequency of the generator was then varied and the output level recorded while holding the input levels constant.

Narrow Band		Wide Band	
Audio Frequency kHz	Attenuation (dB)	Audio Frequency kHz	Attenuation (dB)
0.1	-30	0.1	-30
0.2	-15	0.2	-15
0.3	-12	0.3	-12.5
0.4	-9	0.4	-9
0.5	-6	0.5	-6
0.6	-4.5	0.6	-4.5
0.7	-3	0.7	-3
0.8	-2	0.8	-2
0.9	-1	0.9	-1
1	0	1	0
1.2	1.5	1.2	2
1.5	3	1.5	4
1.8	5	1.8	5
2	5	2	5
2.25	5	2.25	5
2.5	2.5	2.5	5
3	0	3	0
4	-40	4	-40
5	-50	5	-50
10	-50	10	-50
15	-50	15	-50
20	-50	20	-50

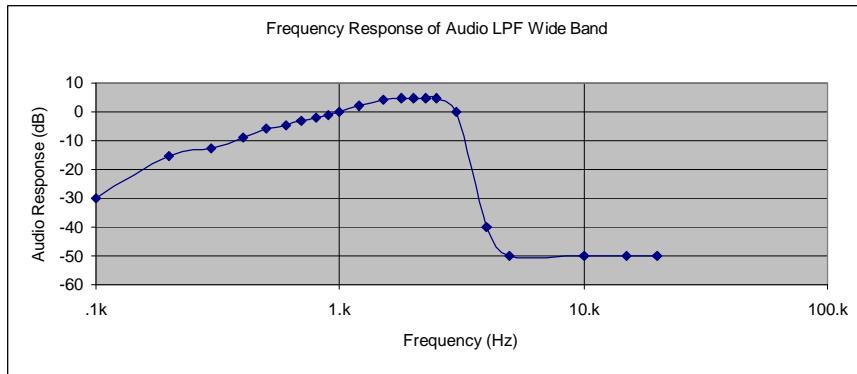


Figure 4: Audio Response Characteristics.

Figure 5 shows the deviation response for each of three frequencies while the input voltage was varied. The frequency is held constant and the frequency deviation is read from the deviation meter.

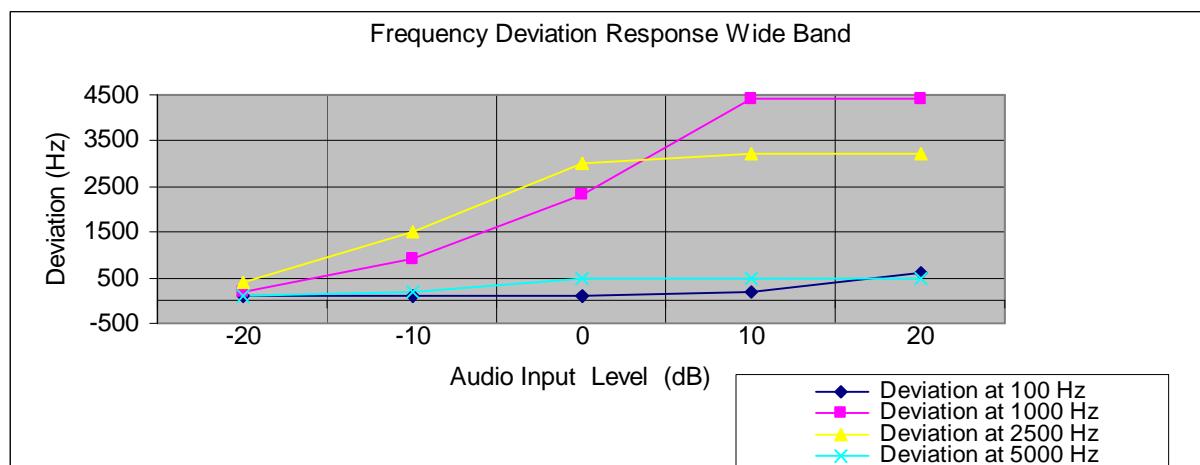
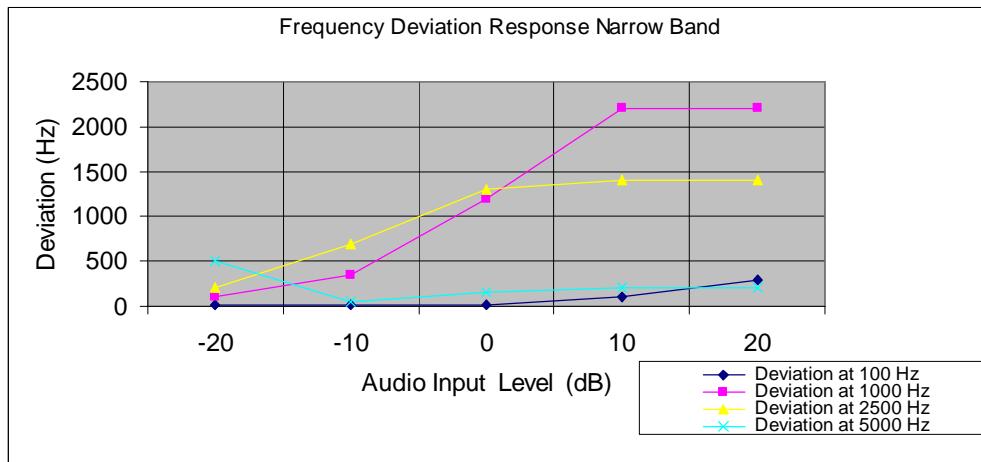
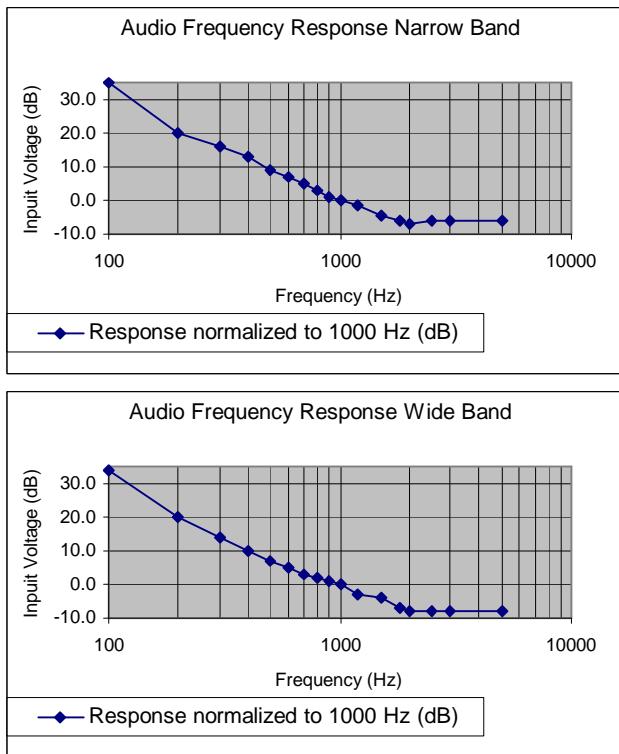
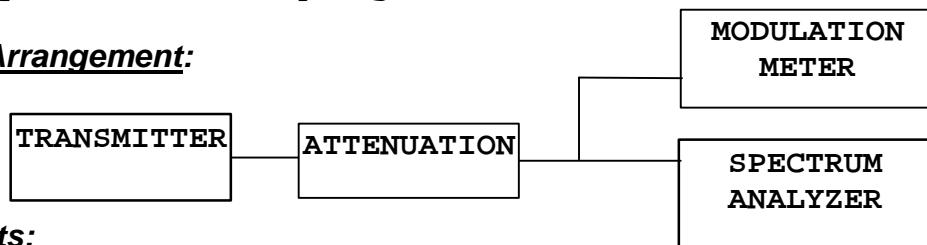



Figure 5: Deviation Characteristics.

Figure 6 shows the frequency response of the audio low pass filter. The specifications of Paragraph 2.1047 and applicable parts of 22, 74, and 90 are met.




Figure 6: Frequency Response of Audio low Pass Filter

2.1049 Occupied Bandwidth

Measurements Required:

The occupied bandwidth, that is the frequency bandwidth such that below its lower and above its upper frequency limits, the mean powers radiated are equal to 0.5 percent of the total mean power radiated by a given emission.

Test Arrangement:

Results:

Channel Width	f_c (MHz)	O.B. (kHz)
12.5 kHz (NB)	161.00	5.75
25 kHz (WB)	161.00	11.0
Digital Information	161.00	10.0

A spectrum analyzer was used to observe the radio frequency spectrum with the transmitter operating in a normal mode, modulated by a frequency of 2500 Hz at a level 16 dB above 50% modulation for voice and a typical digital signal for the digital occupied bandwidth plot. The power ratio in dB representing 99.5% of the total mean power was recorded from the spectrum analyzer. Refer to figures 7, 8, and 9 for plots of the 99.5% power.

Requirements of 2.1049(c)(1) and applicable paragraphs of Parts 22, 74, and 90 are met. There are no deviations to the specifications.

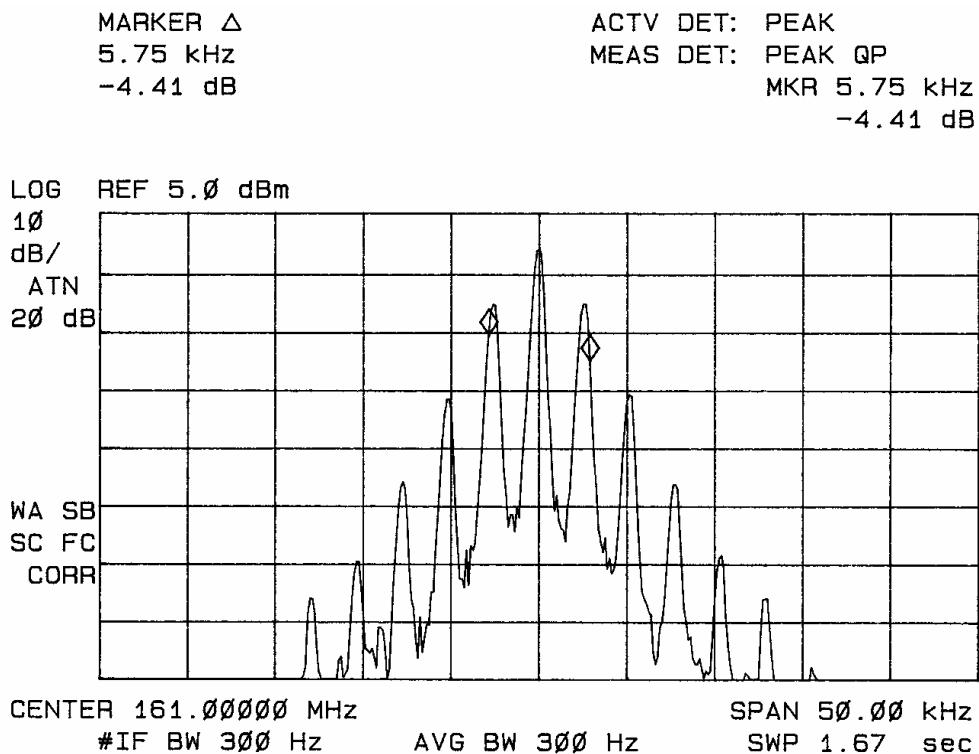


Figure 7: Occupied Band Width, Channel Width 12.5 kHz.

MARKER Δ
10.88 kHz
.50 dB

ACTV DET: PEAK
MEAS DET: PEAK QP
MKR 10.88 kHz
.50 dB

LOG REF 5.0 dBm

10
dB/
ATN
20 dB

MA SB
SC FC
CORR

CENTER 161.00000 MHz
#IF BW 300 Hz

AVG BW 300 Hz

SPAN 50.00 kHz
SWP 1.67 sec

Figure 8: Occupied Band Width, Channel Width 25 kHz.

MARKER Δ
10.00 kHz
-.52 dB

ACTV DET: PEAK
MEAS DET: PEAK QP
MKR 10.00 kHz
-.52 dB

LOG REF 5.0 dBm

10
dB/
ATN
20 dB

MA SB
SC FC
CORR

CENTER 161.00000 MHz
#IF BW 300 Hz

AVG BW 300 Hz

SPAN 50.00 kHz
SWP 1.67 sec

Figure 9: Occupied Band Width, Digital information.

2.1051 Spurious Emissions at Antenna Terminals

Measurements Required:

The radio frequency voltage or power generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna.

Test Arrangement:

The radio frequency output was coupled to a HP 8591EM Spectrum Analyzer. The spectrum analyzer was used to observe the radio frequency spectrum with the transmitter operated in a normal mode. The frequency spectrum from 100 MHz to 1.8 GHz was observed and a plot produced of the frequency spectrum. Figure 10 represents data for the 12R II - (xx). Data taken per 2.1051, 2.1057, and applicable paragraphs of Parts 22, 74, and 90.

MARKER Δ
162 MHz
-64.52 dB

ACTV DET: PEAK
MEAS DET: PEAK QP
MKR 162 MHz
-64.52 dB

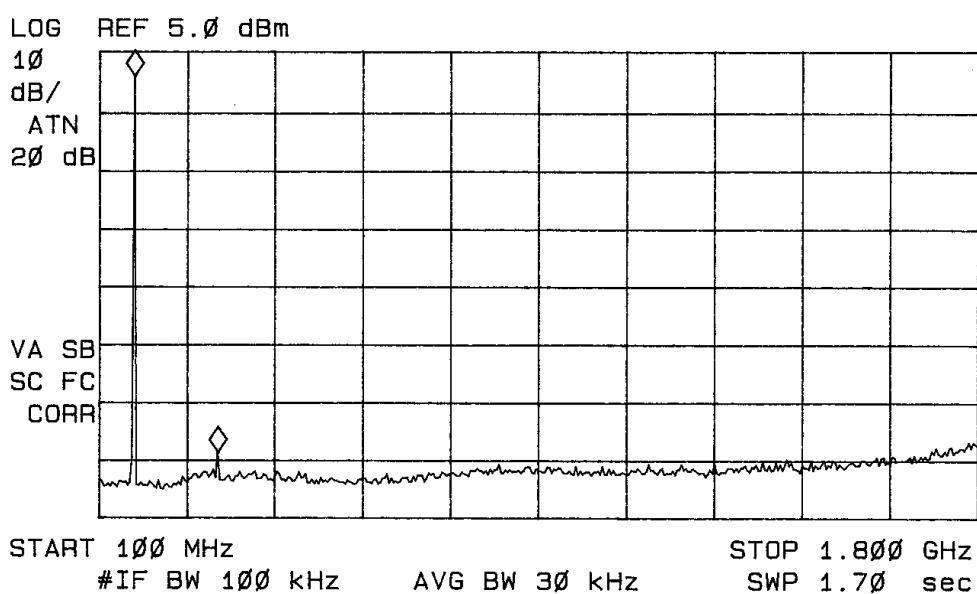


Figure 10: Emissions at Antenna Terminal.

Results:

The output of the unit was coupled to a HP Spectrum Analyzer and the frequency emissions were measured. Data was taken as per 2.1051 and applicable paragraphs of Parts 74 and 90. Specifications of Paragraphs 2.1051, 2.1057 and applicable paragraphs of parts 22, 74, and 90 are met. There are no deviations to the specifications.

FCC Limit:

$$\begin{aligned}
 &= 43 + 10 \text{ LOG}(P_0) \\
 &= 43 + 10 \text{ LOG}(50) \\
 &= 60.0
 \end{aligned}$$

CHANNEL MHz	SPURIOUS FREQ. (MHz)	LEVEL BELOW CARRIER (dB)
150.00	300.0	64.3
	450.0	>70
161.00	322.0	64.5
	483.0	>70
174.00	384.0	64.9
	522.0	>70

2.1053 Field Strength of Spurious Radiation**Measurements Required:**

Measurements shall be made to detect spurious emissions that may be radiated directly from the cabinet, control circuits, power leads, or intermediate circuit elements under normal conditions of installation and operation.

Test Arrangement:

The transmitter was placed on a wooden turntable 0.8 meters above the ground plane and at a distance of 3 meters from the FSM antenna. The turntable was rotated though 360 degrees to locate the position registering the highest amplitude emission. The frequency spectrum was then searched for spurious emissions generated from the transmitter. The amplitude of each spurious emission was maximized by raising and lowering the FSM antenna, and rotating the turntable before final data was recorded. A log periodic antenna was used for frequencies of 200 MHz to

5 GHz and pyramidal horn antennas were used for frequencies of 5 GHz to 40 GHz. Emission levels were measured and recorded from the spectrum analyzer in dB μ V. This level was then added to the antenna factor less amplification stages, to calculate the field strength at 3 meters. Data was taken at the ROGERS LABS, INC. 3 meters open area test site (OATS). A description of the test facility is on file with the FCC, Reference 91910, and dated December 8, 2000. The testing procedures used conform to the procedures stated in the ANSI 63.4-1992 document.

Calculations made are as follows:

CFS = Calculated Field Strength

FSM = Field Strength Measurement

CFS = FSM + Antenna Factor - Amplifier Gain

CFS = 65.9 + 14.2 - 35

CFS = 45.1

The limits for emissions are defined by the following equations:

Limit = Amplitude of spurious emission must be attenuated by this amount below the level of the fundamental.

Calculating the field strength at 3 meters for the 5-watt transmitter was done as follows:

$$E = \frac{5.5 \sqrt{PG}}{d}$$
 where E is V/m, P is Watts, G = 1.64 and d is meters.

$$E = \frac{5.5 \sqrt{50(1.64)}}{3} = 16.6 \text{ V/m} = 16.6 \text{ E}6 \mu\text{V/m}$$
 at 3 meters.

This was converted to dB μ V/m using $(20 \log \mu\text{V/m})$ for convenience.

$20 \log(16.6 \text{ E}6) = 144.4 \text{ dB}\mu\text{V/m} @ 3 \text{ meters}$

On any frequency removed from the assigned frequency by more than 250% of the authorized bandwidth: at least $43 + 10 \log(P_0)$ dB.

Attenuation = $43 + 10 \log_{10}(P_w)$
= $43 + 10 \log_{10}(50)$
= 60.0 dB

Limit = 144.4 - 60.0
= 84.4 dB μ V/m @ 3 meters

Results:

Channel 150.000 MHz Low power output.

Frequency (MHz)	FSM Horz. (dB μ V)	FSM Vert. (dB μ V)	Ant. Factor (dB)	Amp. Gain (dB)	CFS Horz. @ 3m (dB μ V/m)	CFS Vert. @ 3m (dB μ V/m)	Limit (dB μ V/m)
300.0	80.9	56.7	13.9	35	59.8	35.6	84.4
450.0	75.4	56.8	16.9	35	57.3	38.7	84.4
600.0	64.5	60.1	19.3	35	48.8	44.5	84.4
750.0	60.0	64.1	22.5	35	47.5	51.6	84.4
900.0	47.0	56.1	23.8	35	35.8	45.5	84.4
1050.0	23.6	37.6	25.4	35	14.0	28.0	84.4

Channel 161.000 MHz Low power output.

Frequency (MHz)	FSM Horz. (dB μ V)	FSM Vert. (dB μ V)	Ant. Factor (dB)	Amp. Gain (dB)	CFS Horz. @ 3m (dB μ V/m)	CFS Vert. @ 3m (dB μ V/m)	Limit (dB μ V/m)
322.0	60.7	75.5	15.1	35	40.8	55.6	84.4
483.0	54.3	73.9	18.2	35	37.5	57.1	84.4
644.0	70.2	80.1	20.6	35	55.8	65.7	84.4
805.0	62.9	68.1	22.3	35	49.8	55.4	84.4
966.0	43.2	57.4	24.3	35	32.5	46.7	84.4
1127.0	45.8	51.6	25.1	35	35.9	41.7	84.4

Channel 174.000 MHz Low power output.

Frequency (MHz)	FSM Horz. (dB μ V)	FSM Vert. (dB μ V)	Ant. Factor (dB)	Amp. Gain (dB)	CFS Horz. @ 3m (dB μ V/m)	CFS Vert. @ 3m (dB μ V/m)	Limit (dB μ V/m)
384.0	60.0	75.0	16.1	35	41.1	56.1	84.4
522.0	62.6	76.4	18.7	35	46.3	60.1	84.4
696.0	57.8	57.8	21.2	35	44.0	44.0	84.4
870.0	52.1	61.1	23.2	35	40.3	49.3	84.4
1044.0	44.7	44.7	25.0	35	34.7	34.7	84.4

Channel 150.000 MHz High power output.

Frequency (MHz)	FSM Horz. (dB μ V)	FSM Vert. (dB μ V)	Ant. Factor (dB)	Amp. Gain (dB)	CFS Horz. @ 3m (dB μ V/m)	CFS Vert. @ 3m (dB μ V/m)	Limit (dB μ V/m)
300.0	101.3	80.0	13.9	35	80.2	58.9	84.4
450.0	56.8	96.8	16.9	35	38.7	78.7	84.4
600.0	74.0	84.9	19.3	35	58.3	69.2	84.4
750.0	76.8	68.0	22.5	35	64.3	55.5	84.4
900.0	75.0	67.8	23.8	35	63.8	56.6	84.4
1050.0	64.9	52.2	25.4	35	55.3	42.6	84.4

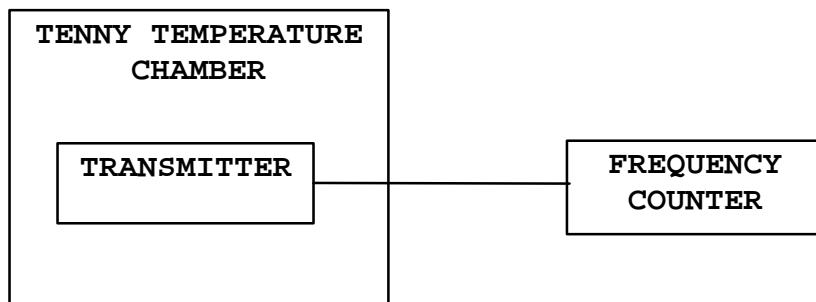
Channel 161.000 MHz High power output.

Frequency (MHz)	FSM Horz. (dB μ V)	FSM Vert. (dB μ V)	Ant. Factor (dB)	Amp. Gain (dB)	CFS Horz. @ 3m (dB μ V/m)	CFS Vert. @ 3m (dB μ V/m)	Limit (dB μ V/m)
322.0	74.0	95.0	15.1	35	54.1	75.1	84.4
483.0	70.3	91.3	18.2	35	53.5	74.5	84.4
644.0	74.0	86.9	20.6	35	59.6	72.5	84.4
805.0	63.8	53.1	22.3	35	51.1	40.4	84.4
966.0	45.9	72.0	24.3	35	35.2	61.3	84.4
1127.0	51.8	65.1	25.1	35	41.9	55.2	84.4

Channel 174.000 MHz High power output.

Frequency (MHz)	FSM Horz. (dB μ V)	FSM Vert. (dB μ V)	Ant. Factor (dB)	Amp. Gain (dB)	CFS Horz. @ 3m (dB μ V/m)	CFS Vert. @ 3m (dB μ V/m)	Limit (dB μ V/m)
384.0	79.3	95.2	16.1	35	60.4	76.3	84.4
522.0	76.4	93.6	18.7	35	60.1	77.3	84.4
696.0	65.2	80.9	21.2	35	51.4	67.1	84.4
870.0	52.3	66.4	23.2	35	40.5	54.6	84.4
1044.0	50.6	66.6	25.0	35	40.6	56.6	84.4

Specifications of Paragraph 2.1053, 2.1057, applicable paragraphs of parts 22, 74, and 90 are met. There are no deviations to the specifications.


2.1055 Frequency Stability

Measurements Required:

The frequency stability shall be measured with variations of ambient temperature from -30° to $+50^{\circ}$ centigrade. Measurements shall be made at the extremes of the temperature range and at intervals of not more than 10° centigrade through the range. A period of time sufficient to stabilize all of the components of the oscillator circuit at each temperature level shall be allowed prior to frequency measurement. In addition to temperature stability, the frequency stability shall be measured with variation of primary supply voltage as follows:

- (1) Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.
- (2) For hand carried, batteries powered equipment, reduce primary supply voltage to the battery-operating end point, which shall be specified by the manufacturer.
- (3) The supply voltage shall be measured at the input to the cable normally provided with the equipment, or at the power supply terminals if cables are not normally provided.

Test Arrangement:

The measurement procedure outlined below shall be followed:

Steps 1: The transmitter shall be installed in an environmental test chamber whose temperature is controllable. Provision shall be made to measure the frequency of the transmitter.

Step 2: With the transmitter inoperative (power switched "OFF"), the temperature of the test chamber shall be adjusted to $+25^{\circ}\text{C}$. After a temperature stabilization period

of one hour at +25°C, the transmitter shall be switched "ON" with standard test voltage applied.

Step 3: The carrier shall be keyed "ON", and the transmitter shall be operated unmodulated at full radio frequency power output at the duty cycle, for which it is rated, for duration of at least 5 minutes. The radio frequency carrier frequency shall be monitored and measurements shall be recorded.

Step 4: The test procedures outlined in Steps 2 and 3, shall be repeated after stabilizing the transmitter at the environmental temperatures specified, -30°C to 50°C in 10 degree increments.

The frequency stability was measured with variations in the power supply voltage from 85 to 115 percent of the nominal value. A Sorensen SLR 40-25 DC Power Supply was used to vary the dc voltage for the power input from 31.4 Vdc to 42.6 Vdc. The frequency was measured and the variation in parts per million was calculated. Data was taken per Paragraphs 2.1055 and applicable paragraphs of parts 22, 74, and 90.

Results:

FREQ. (MHz)	FREQUENCY STABILITY VS TEMPERATURE IN PARTS PER MILLION (PPM)									
	Temperature in °C									
	-30	-20	-10	0	+10	+20	+30	+40	+50	
161.000	0.8	0.5	0.02	-0.1	-0.1	-0.3	-0.3	0.02	0.09	

FREQUENCY IN MHz	FREQUENCY STABILITY VS VOLTAGE VARIATION 37.0 volts nominal; RESULTS IN PPM		
	INPUT VOLTAGE		
	31.4 V _{dc}	37.0 V _{dc}	42.6 V _{dc}
161.000	0.0	0.0	0.0

Specifications of Paragraphs 2.1055 and applicable paragraphs of parts 22, 74, and 90 are met. There are no deviations to the specifications.

Transient Frequency Behavior, Per 90.214

REQUIREMENTS:

When a transmitter is keyed on the radio frequency may take some time to stabilize. During this initial period, the frequency error must not exceed the limits specified in 90.214.

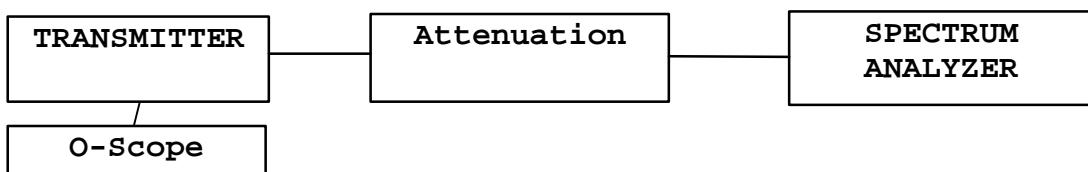
Minimum Standard

Transient Behavior for Equipment Designed to Operate on 25 kHz Channels			
Time Intervals	Maximum Frequency Difference (kHz)	Frequency Range	
		138-174 MHz	406.1-470 MHz
t_1	± 25	5 mS	10 mS
t_2	± 12.5	20 mS	25 mS
t_3	± 25	5 mS	10 mS

Transient Behavior for Equipment Designed to Operate on 12.5 kHz Channels			
Time Intervals	Maximum Frequency Difference (kHz)	Frequency Range	
		138-174 MHz	406.1-470 MHz
t_1	± 12.5	5 mS	10 mS
t_2	± 6.25	20 mS	25 mS
t_3	± 12.5	5 mS	10 mS

POWER INPUT:

37.0 Vdc Battery


TEST EQUIPMENT:

Tektronix Digital Storage Oscilloscope, Model 2230, S/N: 2230 B012508.
 Hewlett Packard Spectrum Analyzer, Model 8591EM, S/N: 3628A00871, Frequency Range 9 kHz to 1.8 GHz.
 EMCO 20 dB Attenuator, 50 Ohm IN/OUT.

METHOD OF MEASUREMENTS:

As recommended, the method given in ETA/TIA standard 603, was used. Refer to figures 11 through 14 for plots showing the transient behavior of the transmitter.

Test Arrangement:

ROGERS LABS, INC.
 4405 West 259th Terrace
 Louisburg, KS 66053
 SN:ENG-1

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2, 22, 74 and 90

GE Transportation Systems Global Signaling
 MODEL: 12R II - (xx)

Test #:020311

FCC ID#: AJT-GS12RII-V1A

Page 20 of 26
 CERTIFICATION\GEHH12RA 05/1/2002

Measurement Data:

TX ON Wide Band. CH1 = RF Power Detector (trigger)
 CH2 = Test Receiver Detector Output Note: Power detector is
 negatively rectified.
 Tek Stop: Single Seq 10.0kS/s

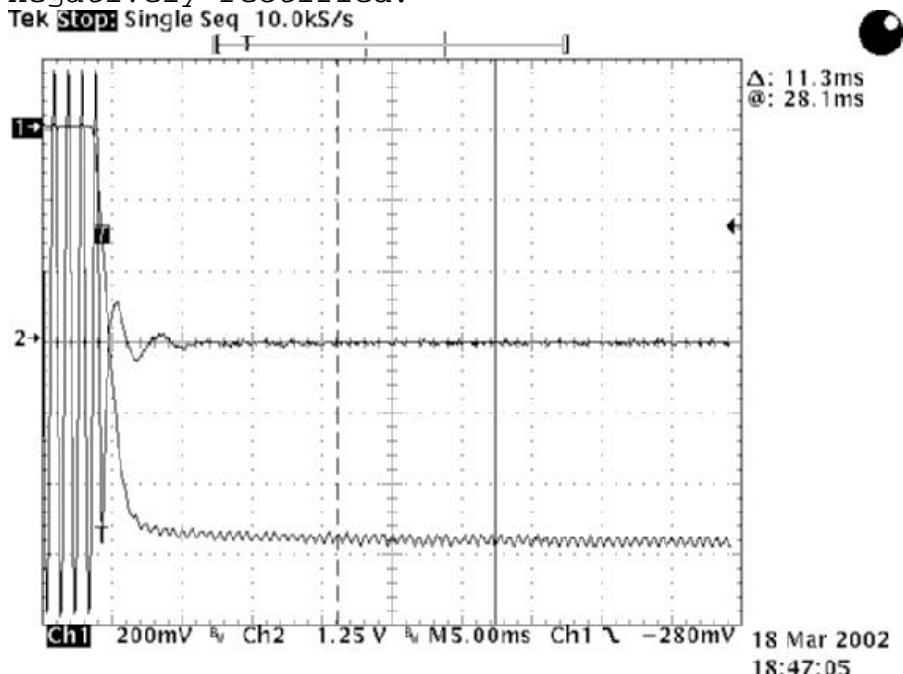


Figure 11, Transient Behavior of Transmitter (25 kHz).

TX ON Narrow Band

Tek Run: 10.0kS/s Sample Trig

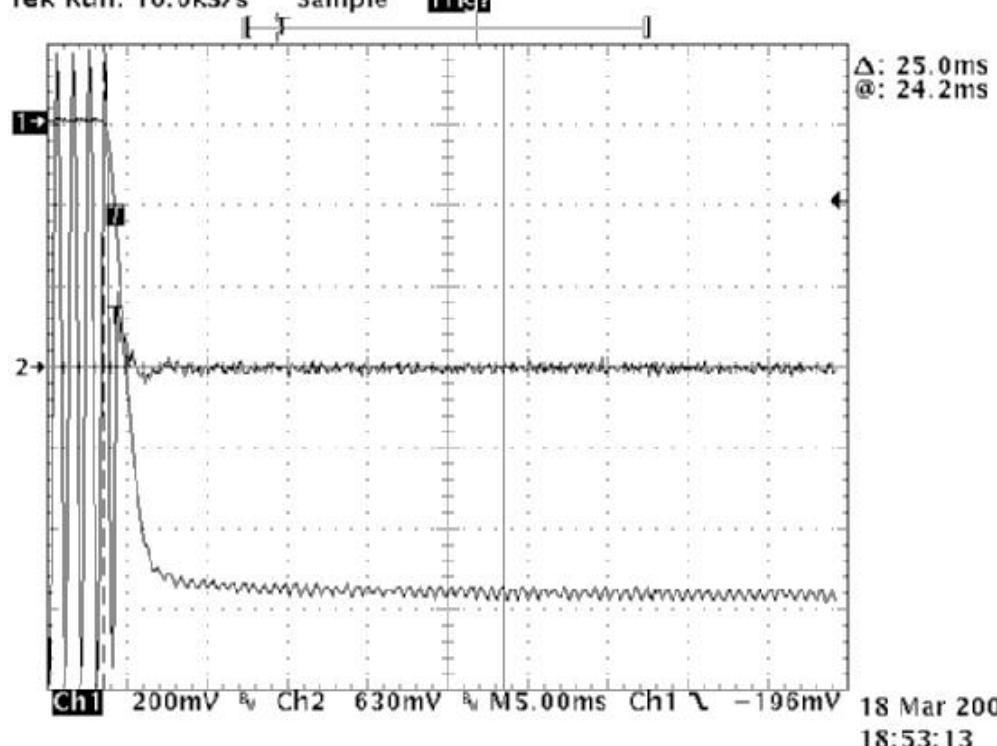


Figure 12, Transient Behavior of Transmitter (12.5 kHz).

ROGERS LABS, INC.
 4405 West 259th Terrace
 Louisburg, KS 66053
 SN:ENG-1

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2, 22, 74 and 90

GE Transportation Systems Global Signaling
 MODEL: 12R II - (xx)

Test #: 020311

FCC ID#: AJT-GS12RII-V1A

Page 21 of 26
 CERTIFICATION\GEHH12RA 05/1/2002

TX OFF Wide Band
Tek Stop: Single Seq 10.0kS/s

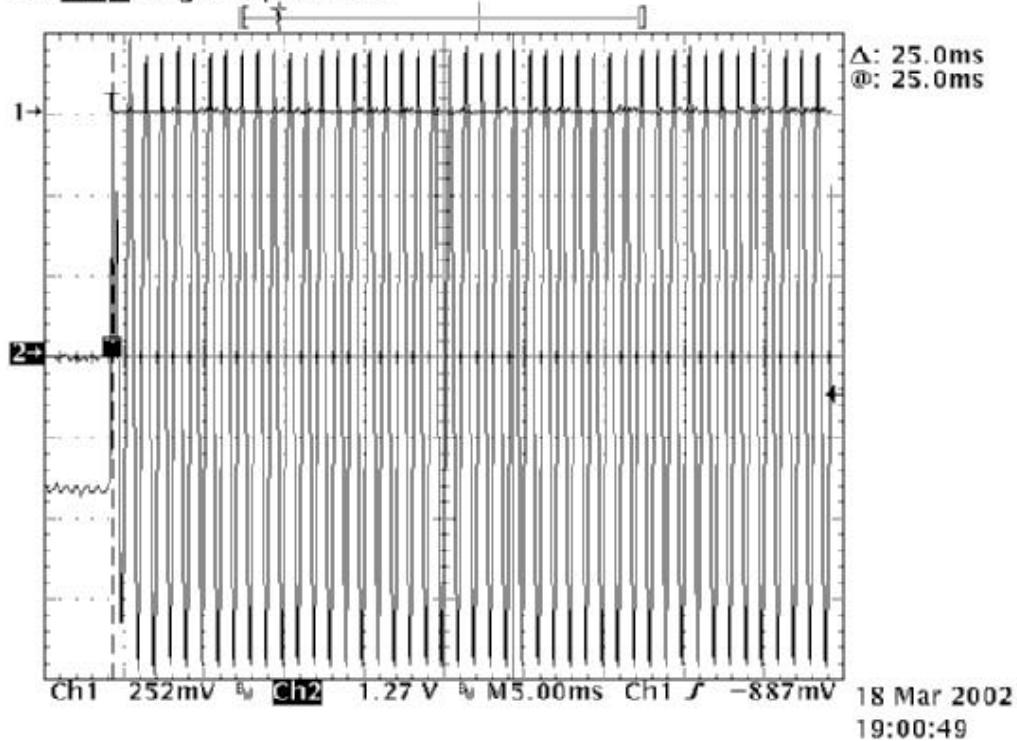


Figure 13, Transient Behavior of Transmitter (25 kHz).

TX OFF Narrow Band

Tek Stop: Single Seq 10.0kS/s

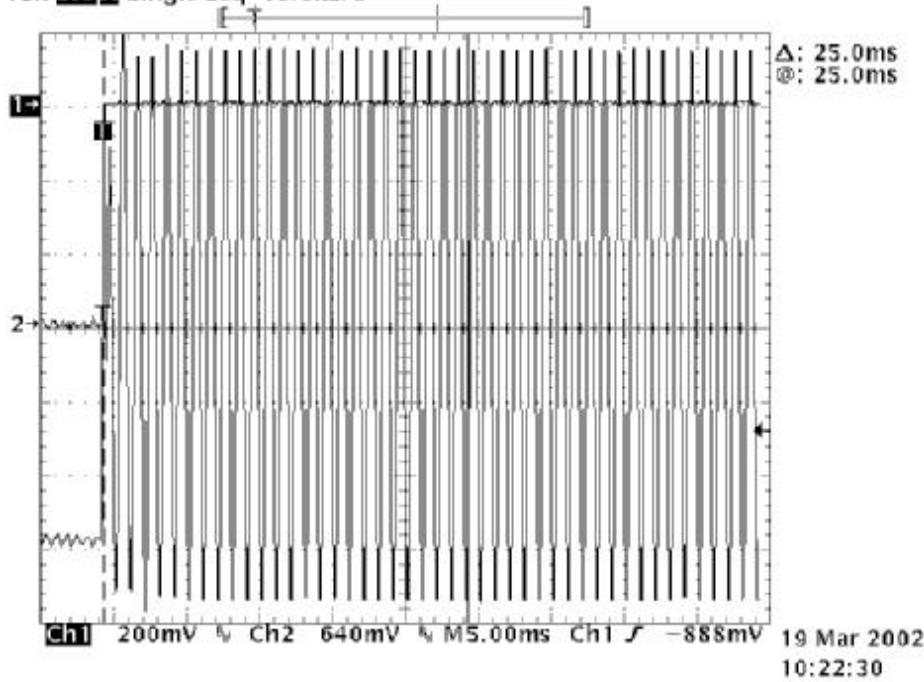


Figure 14, Transient Behavior of Transmitter (25 kHz).
 Specifications of Paragraph 90.214 are met. There are no deviations to the specifications.

ROGERS LABS, INC.
 4405 West 259th Terrace
 Louisburg, KS 66053
 SN:ENG-1

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2, 22, 74 and 90

GE Transportation Systems Global Signaling
 MODEL: 12R II - (xx)

Test #:020311

FCC ID#: AJT-GS12RII-V1A

Page 22 of 26

CERTIFICATION\GEHH12RA 05/1/2002

APPENDIX

Model: 12R II - (xx)

1. Test Equipment List.
2. Rogers Qualifications.
3. FCC Site Approval Letter.

ROGERS LABS, INC.
4405 West 259th Terrace
Louisburg, KS 66053
SN:ENG-1

GE Transportation Systems Global Signaling
MODEL: 12R II - (xx)
Test #:020311 FCC ID#: AJT-GS12RII-V1A
Phone/Fax: (913) 837-3214 Test to: FCC Parts 2, 22, 74 and 90
Page 23 of 26
CERTIFICATION\GEHH12RA 05/1/2002

TEST EQUIPMENT LIST FOR ROGERS LABS, INC.

TEST EQUIPMENT LIST FOR ROGERS LABS, INC.

The test equipment used is maintained in calibration and good operating condition. Use of this calibrated equipment ensures measurements are traceable to national standards.

<u>List of Test Equipment:</u>	<u>Calibration Date:</u>
Scope: Tektronix 2230	2/02
Wattmeter: Bird 43 with Load Bird 8085	2/02
Power Supplies: Sorensen SRL 20-25, SRL 40-25, DCR 150, DCR 140	2/02
H/V Power Supply: Fluke Model: 408B (SN: 573)	2/02
R.F. Generator: HP 606A	2/02
R.F. Generator: HP 8614A	2/02
R.F. Generator: HP 8640B	2/02
Spectrum Analyzer: HP 8562A,	4/01
Mixers: 11517A, 11970A, 11970K, 11970U, 11970V, 11970W	
HP Adapters: 11518, 11519, 11520	
Spectrum Analyzer: HP 8591 EM	7/01
Frequency Counter: Leader LDC 825	2/02
Antenna: EMCO Biconilog Model: 3143	4/01
Antenna: EMCO Log Periodic Model: 3147	10/01
Antenna: Antenna Research Biconical Model: BCD 235	7/01
Antenna: EMCO Dipole Set 3121C	2/02
Antenna: C.D. B-101	2/02
Antenna: Solar 9229-1 & 9230-1	2/02
Antenna: EMCO 6509	2/02
Audio Oscillator: H.P. 201CD	2/02
R.F. Power Amp 65W Model: 470-A-1010	2/02
R.F. Power Amp 50W M185- 10-501	2/02
R.F. PreAmp CPPA-102	2/02
Shielded Room 5 M x 3 M x 3.0 M (101 dB Integrity)	
LISN 50 μ Hy/50 ohm/0.1 μ f	10/01
LISN Compliance Eng. 240/20	2/02
Peavey Power Amp Model: IPS 801	2/02
Power Amp A.R. Model: 10W 1010M7	2/02
Power Amp EIN Model: A301	2/02
ELGAR Model: 1751	2/02
ELGAR Model: TG 704A-3D	2/02
ESD Test Set 2010i	2/02
Fast Transient Burst Generator Model: EFT/B-101	2/02
Current Probe: Singer CP-105	2/02
Current Probe: Solar 9108-1N	2/02
Field Intensity Meter: EFM-018	2/02
KEYTEK Ecat Surge Generator	2/02
02/01/2002	

QUALIFICATIONS
of
SCOT D. ROGERS, ENGINEER
ROGERS LABS, INC.

Mr. Rogers has approximately 13 years experience in the field of electronics. Six years working in the automated controls industry and 6 years working with the design, development and testing of radio communications and electronic equipment.

POSITIONS HELD:

Systems Engineer:	A/C Controls Mfg. Co., Inc.
	6 Years
Electrical Engineer:	Rogers Consulting Labs, Inc.
	5 Years
Electrical Engineer:	Rogers Labs, Inc.
	Current

EDUCATIONAL BACKGROUND:

- 1) Bachelor of Science Degree in Electrical Engineering from Kansas State University.
- 2) Bachelor of Science Degree in Business Administration Kansas State University.
- 3) Several Specialized Training courses and seminars pertaining to Microprocessors and Software programming.

Scot D Rogers
Scot D. Rogers

March 11, 2002
Date

1/11/00

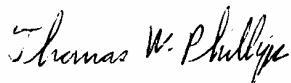
FEDERAL COMMUNICATIONS COMMISSION
Laboratory Division
7435 Oakland Mills Road
Columbia, MD. 21046

December 08, 2000

Registration Number: 90910

Rogers Labs, Inc.
4405 West 259th Terrace
Louisburg, KS 66053

Attention: Scot D. Rogers


Re: Measurement facility located at Louisburg
3 & 10 meter site
Date of Listing: December 08, 2000

Gentlemen:

Your submission of the description of the subject measurement facility has been reviewed and found to be in compliance with the requirements of Section 2.948 of the FCC Rules. The description has, therefore, been placed on file and the name of your organization added to the Commission's list of facilities whose measurement data will be accepted in conjunction with applications for Certification under Parts 15 or 18 of the Commission's Rules. Please note that this filing must be updated for any changes made to the facility, and at least every three years from the date of listing the data on file must be certified as current.

If requested, the above mentioned facility has been added to our list of those who perform these measurement services for the public on a fee basis. An up-to-date list of such public test facilities is available on the Internet on the FCC Website at WWW.FCC.GOV, E-Filing, OET Equipment Authorization Electronic Filing.

Sincerely,

Thomas W Phillips
Electronics Engineer