

RADIO TEST REPORT

Test Report No. 15196050M-A-R1

Customer	PIONEER CORPORATION
Description of EUT	RDS AV RECEIVER
Model Number of EUT	DMH-WT6000NEX
FCC ID	AJDK125
Test Regulation	FCC Part 15 Subpart C
Test Result	Complied
Issue Date	May 28, 2024
Remarks	Bluetooth Low Energy part(s)

Representative Test Engineer	Approved By
A. Janah	K. Ando
Hiromitsu Tanabe Engineer	Kazuhiro Ando Engineer
	ACCREDITED
	CERTIFICATE 1266.01
The testing in which "Non-accreditation" is displayed in	s outside the accreditation scopes in UL Japan, Inc.
There is no testing item of "Non-accreditation".	

Report Cover Page - Form-ULID-003532 (DCS:13-EM-F0429) Issue# 23.0

Test Report No. 15196050M-A-R1 Page 2 of 35

ANNOUNCEMENT

- This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- The results in this report apply only to the sample tested. (Laboratory was not involved in sampling.)
- This sample tested is in compliance with the limits of the above regulation.
- The test results in this test report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- This test report covers Radio technical requirements.
 It does not cover administrative issues such as Manual or non-Radio test related Requirements.
 (if applicable)
- All test items in this test report are conducted by UL Japan, Inc. Kashima EMC Lab.
- The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan, Inc. has been accredited.
- The information provided by the customer for this report is identified in SECTION 1.
- The laboratory is not responsible for information provided by the customer which can impact the validity of the results.
- For test report(s) referred in this report, the latest version (including any revisions) is always referred.

REVISION HISTORY

Original Test Report No.: 15196050M-A

This report is a revised version of 15196050M-A. 15196050M-A is replaced with this report.

Revision	Test Report No.	Date	Page Revised Contents
-	15196050M-A	May 8, 2024	-
(Original)		-	
1	15196050M-A-R1	May 28, 2024	Page 5
			Deleted "Clock frequency (ies) in the system"
			and added "Operating temperature".
			Page 6
			Deleted the below comment.
			* WLAN and Bluetooth do not transmit
			simultaneously.
			Deleted the list of Supported GNSS and GNSS
			signals.
			Moved the page up from P.6 to P.5.
			All pages
			Changed the number of pages.

Test Report No. 15196050M-A-R1 Page 3 of 35

Reference: Abbreviations (Including words undescribed in this report)

A2LA	The American Association for Laboratory Accreditation	ICES	Interference-Causing Equipment Standard		
AC	Alternating Current	IEC	International Electrotechnical Commission		
AFH	Adaptive Frequency Hopping	IEEE	Institute of Electrical and Electronics Engineers		
AM	Amplitude Modulation	IF	Intermediate Frequency		
Amp, AMP	Amplifier	ILAC	International Laboratory Accreditation Conference		
ANSI	American National Standards Institute	ISED	Innovation, Science and Economic Development Canada		
Ant, ANT	Antenna	ISO	International Organization for Standardization		
AP	Access Point	JAB	Japan Accreditation Board		
ASK	Amplitude Shift Keying	LAN	Local Area Network		
Atten., ATT	Attenuator	LIMS	Laboratory Information Management System		
AV	Average	MCS	Modulation and Coding Scheme		
BPSK	Binary Phase-Shift Keying	MRA	Mutual Recognition Arrangement		
BR	Bluetooth Basic Rate	N/A	Not Applicable		
BT	Bluetooth	NIST	National Institute of Standards and Technology		
BT LE	Bluetooth Low Energy	NS	No signal detect.		
BW	BandWidth	NSA	Normalized Site Attenuation		
Cal Int	Calibration Interval	NVLAP	National Voluntary Laboratory Accreditation Program		
CCK	Complementary Code Keying	OBW	Occupied Band Width		
Ch., CH	Channel	OFDM	Orthogonal Frequency Division Multiplexing		
CISPR	Comite International Special des Perturbations Radioelectriques	P/M	Power meter		
CW	Continuous Wave	PCB	Printed Circuit Board		
DBPSK	Differential BPSK	PER	Packet Error Rate		
DC	Direct Current	PHY	Physical Layer		
D-factor	Distance factor	PK	Peak		
DFS	Dynamic Frequency Selection	PN	Pseudo random Noise		
DQPSK	Differential QPSK	PRBS	Pseudo-Random Bit Sequence		
DSSS	Direct Sequence Spread Spectrum	PSD	Power Spectral Density		
EDR	Enhanced Data Rate	QAM	Quadrature Amplitude Modulation		
EIRP, e.i.r.p.	Equivalent Isotropically Radiated Power	QP	Quasi-Peak		
EMC	ElectroMagnetic Compatibility	QPSK	Quadri-Phase Shift Keying		
EMI	ElectroMagnetic Interference	RBW	Resolution Band Width		
EN	European Norm	RDS	Radio Data System		
ERP, e.r.p.	Effective Radiated Power	RE	Radio Equipment		
EU	European Union	RF	Radio Frequency		
EUT	Equipment Under Test	RMS	Root Mean Square		
Fac.	Factor	RSS	Radio Standards Specifications		
FCC	Federal Communications Commission	Rx	Receiving		
FHSS	Frequency Hopping Spread Spectrum	SA, S/A	Spectrum Analyzer		
FM	Frequency Modulation	SG	Signal Generator		
Freq.	Frequency	SVSWR	Site-Voltage Standing Wave Ratio		
FSK	Frequency Shift Keying	TR	Test Receiver		
GFSK	Gaussian Frequency-Shift Keying	Tx	Transmitting		
GNSS	Global Navigation Satellite System	VBW	Video BandWidth		
GPS	Global Positioning System	Vert.	Vertical		

CONTENTS	PAGE
SECTION 1: Customer Information	5
SECTION 2: Equipment Under Test (EUT)	5
SECTION 3: Test Specification, Procedures & Results	7
SECTION 4: Operation of EUT during testing	
SECTION 5: Radiated Spurious Emission	
SECTION 6: Antenna Terminal Conducted Tests	
APPENDIX 1: Test Data	
99 % Occupied Bandwidth and 6 dB Bandwidth	
Maximum Peak Output Power	
Average Output Power	19
Radiated Spurious Emission	21
Conducted Spurious Emission	27
Power Density	30
APPENDIX 2: Test Instruments	
APPENDIX 3: Photographs of Test Setup	
Radiated Spurious Emission	
Antenna Terminal Conducted Tests	

Test Report No. 15196050M-A-R1 Page 5 of 35

SECTION 1: Customer Information

Company Name	PIONEER CORPORATION
Address	25-1, Yamada, Kawagoe-shi, Saitama, 350-8555, JAPAN
Telephone Number	+81-49-228-6346
Contact Person	Takafumi Ida

The information provided by the customer is as follows;

- Customer, Description of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer Information
- SECTION 2: Equipment Under Test (EUT) other than the Receipt Date and Test Date
- SECTION 4: Operation of EUT during testing

SECTION 2: Equipment Under Test (EUT)

2.1 Identification of EUT

Description	RDS AV RECEIVER
Model Number	DMH-WT6000NEX
Serial Number	Refer to SECTION 4.2
Condition	Production prototype
	(Not for Sale: This sample is equivalent to mass-produced items.)
Modification	No Modification by the test lab
Receipt Date	February 29, 2024
Test Date	April 9 to April 12, 2024

2.2 Product Description

General Specification

Rating	DC 14.4 V, 10 A
Operating temperature	-10 deg. C to 60 deg. C

Radio Specification

This report contains data provided by the customer which can impact the validity of results. UL Japan, Inc. is only responsible for the validity of results after the integration of the data provided by the customer. The data provided by the customer is marked "a)" in the table below.

WLAN (IEEE802.11a/11n-20/11ac-20/11n-40/11ac-40/11ac-80)

Equipment Type	Transceiver		
Frequency of Operation	20 MHz Band:	5745 MHz	
	40 MHz Band:	5755 MHz	
	80 MHz Band:	5775 MHz	
Type of Modulation	OFDM		
Antenna Gain a):	4.47 dBi		

Bluetooth (BR / EDR / Low Energy)

Equipment Type	Transceiver
Frequency of Operation	2402 MHz to 2480 MHz
Type of Modulation	BT: FHSS (GFSK, π/4 DQPSK, 8 DPSK)
	BT LE: GFSK
Antenna Gain a)	-0.83 dBi

Test Report No. 15196050M-A-R1 Page 6 of 35

2.3 Variant model(s)

The EUT has following variant models.

·		Feature								
Product description	Model number	Display LCD size	Movable display structure	Bluetooth	Wi- Fi	GNSS	FM/AM	HD Radio	BSD	Guard Cam
RDS AV RECEIVER *	DMH- WT6000NEX	10.1"	Type A	А	Α	А	А	А	А	А
RDS AV RECEIVER	DMH- WT5000NEX	9.0"	Туре В	А	Α	А	А	А	NA	NA

^{*}Tested model A: Applied NA: Not applied

Model DMH-WT6000NEX* and DMH-WT5000NEX contain the same RF module. The differences between 2 models are above contents and do not affect wireless performance.

Test Report No. 15196050M-A-R1 Page 7 of 35

SECTION 3: Test Specification, Procedures & Results

3.1 Test Specification

Test Specification	FCC Part 15 Subpart C
	The latest version on the first day of the testing period
Title	FCC 47 CFR Part 15 Radio Frequency Device Subpart C Intentional Radiators
	Section 15.207 Conducted limits
	Section 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz,
	and 5725-5850 MHz

3.2 Procedures and Results

Item	Test Procedure	Specification	Worst Margin	Results	Remarks
Conducted	FCC: ANSI C63.10-2013	FCC: Section 15.207	-	N/A	*1)
Emission	6. Standard test methods				
	ISED: RSS-Gen 8.8	ISED: RSS-Gen 8.8			
6dB Bandwidth	FCC: KDB 558074 D01	FCC: Section	See data.	Complied	Conducted
	15.247	15.247(a)(2)			
	Meas Guidance v05r02				
	ISED: -	ISED: RSS-247 5.2(a)	1		
Maximum	FCC: KDB 558074 D01	FCC: Section		Complied	Conducted
Peak	15.247	15.247(b)(3)			
Output Power	Meas Guidance v05r02				
	ISED: RSS-Gen 6.12	ISED: RSS-247 5.4(d)			
Power Density	FCC: KDB 558074 D01	FCC: Section 15.247(e)		Complied	Conducted
	15.247				
	Meas Guidance v05r02				
	ISED: -	ISED: RSS-247 5.2(b)			
Spurious	FCC: KDB 558074 D01	FCC: Section15.247(d)	2.0 dB	Complied	Conducted
Emission	15.247		960.00 MHz,		(below 30 MHz)/
Restricted	Meas Guidance v05r02		QP, Vertical		Radiated
Band Edges	ISED: RSS-Gen 6.13	ISED: RSS-247 5.5	(Mode: Tx BT LE		(above 30 MHz)
		RSS-Gen 8.9	2402 MHz)		*2)
		RSS-Gen 8.10			

Note: UL Japan, Inc.'s EMI Work Procedures: Work Instructions-ULID-003591 and Work Instructions-ULID-003593.

FCC Part 15.31 (e)

The EUT provides stable voltage constantly to the wireless transmitter regardless of input voltage. Instead of a new battery, DC power supply was used for the test. That does not affect the test result, therefore the EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

^{*} In case any questions arise about test procedure, ANSI C63.10: 2013 is also referred.

^{*1)} The test is not applicable since the EUT does not have AC Mains.

^{*2)} Radiated test was selected over 30 MHz based on section 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 8.5 and 8.6.

Test Report No. 15196050M-A-R1 Page 8 of 35

3.3 Addition to Standard

Item	Test Procedure	Specification	Worst Margin	Results	Remarks
99% Occupied	ISED: RSS-Gen 6.7	ISED: -	N/A	-	Conducted
Bandwidth					

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

Measurement uncertainty is not taken into account when stating conformity with a specified requirement. Note: When margins obtained from test results are less than the measurement uncertainty, the test results may exceed the limit.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k = 2.

Radiated emission

Measurement distance	Frequency range	Uncertainty (+/-)
3 m	9 kHz to 30 MHz	3.2 dB
	30 MHz to 200 MHz	6.2 dB
	200 MHz to 1000 MHz	6.3 dB
	1 GHz to 6 GHz	4.7 dB
	6 GHz to 18 GHz	5.1 dB
	18 GHz to 40 GHz	5.5 dB
1 m	1 GHz to 18 GHz	5.2 dB
	18 GHz to 40 GHz	5.6 dB
0.5 m	26.5 GHz to 40 GHz	5.8 dB

Antenna Terminal test

Test Item	Uncertainty (+/-)
6 dB Bandwidth / 99 % Occupied Bandwidth	1.2 %
Maximum Output Power	0.58 dB
Burst Rate	0.20 %
Power Density	2.0 dB
Conducted Spurious Emission (9 kHz to 30 MHz)	2.2 dB

Test Report No. 15196050M-A-R1 Page 9 of 35

3.5 Test Location

UL Japan, Inc. Kashima EMC Lab.

1614 Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

Telephone: +81-478-88-6500

A2LA Certificate Number: 1266.01 / FCC Test Firm Registration Number: 910230

ISED Lab Company Number: 4659A / CAB identifier: JP0006

Test site	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Maximum measurement distance
No.1 Open site	6.0 x 5.5 x 2.5	20 x 40	10 m
No.5 Open site	8.6 x 7.1 x 2.4	18 x 23	10 m
No.1 Shielded room	5.4 x 4.5 x 2.3	-	-
No.5 Shielded Room	4.2 x 3.1 x 2.5	-	-
No.9 Shielded Room	6.1 x 3.6 x 2.8	-	-
No.6 Semi-anechoic Chamber	8.5 x 5.5 x 5.2	-	3 m
No.10 Semi-anechoic Chamber	18.4 x 9.9 x 7.7	-	10 m
No.11 Semi-anechoic Chamber	9.0 x 6.5 x 5.2	-	3 m
No.1 Measurement room	5.0 x 3.7 x 2.6	-	-
No.2 Measurement room	4.3 x 4.4 x 2.7	-	-

3.6 Test Data, Test Instruments, and Test Set Up

Refer to APPENDIX.

Test Report No. 15196050M-A-R1 Page 10 of 35

SECTION 4: Operation of EUT during testing

4.1 Operating Mode(s)

Mode	Remarks*
Bluetooth Low Energy (BT LE)	Maximum Packet Size, PRBS9

*Power of the EUT was set by the software as follows;

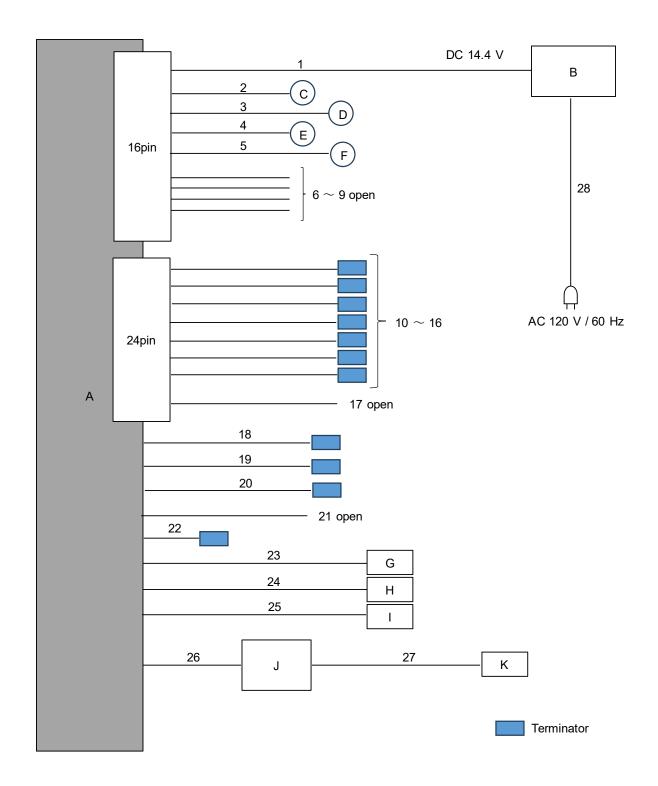
Power Setting: Fixed

Software: Version: 0.03

(Date: 2024.3.27, Storage location: EUT memory)

*This setting of software is the worst case.

Any conditions under the normal use do not exceed the condition of setting.


In addition, end users cannot change the settings of the output power of the product.

*The Details of Operating Mode(s)

Test Item	Operating Mode	Tested Frequency
Radiated Spurious Emission (Below 1 GHz)	Tx BT LE *1)	2402 MHz
Radiated Spurious Emission (Above 1 GHz), Maximum Peak Output Power, Power Density, 6dB Bandwidth, 99% Occupied Bandwidth, Conducted Spurious Emission	Tx BT LE	2402 MHz 2440 MHz 2480 MHz

^{*1)} Spurious emissions for frequencies below 1 GHz was limited to the channel that had the highest power during the antenna terminal test, as preliminary testing indicated that changing the operating frequency had no significant impact on the emissions in those frequency bands.

4.2 Configuration and Peripherals

^{*} Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Test Report No. 15196050M-A-R1 Page 12 of 35

Description of EUT and Support Equipment

No.	Item	Model number	Serial Number	Manufacturer	Remarks
Α	RDS AV RECEIVER	DMH-WT6000NEX	DATM000018UC*1)	PIONEER	EUT
			DATM000019UC*2)	CORPORATION	
В	DC Power Supply	GSV3000	1708192899	DIAMOND	-
				ANTENNA	
С	Speaker	KFC-RS101	482C	JVCKENWOOD	-
D	Speaker	KFC-RS101	482C	JVCKENWOOD	-
E	Speaker	KFC-RS101	482C	JVCKENWOOD	-
F	Speaker	KFC-RS101	482C	JVCKENWOOD	-
G	GPS	CXF1333	-	PIONEER	-
Н	MIC	CPM1127	-	PIONEER	-
I	USB Memory	RUF3-KS8G-BK	-	BAFFALO	-
J	Sirius Module	SXV300	RB2HZDML	Sirius XM Radio	-
				Inc.	
K	Sirius Antenna	NGVA3	2126D	Sirius XM Radio	-
				Inc.	

^{*1)} Used for Antenna Terminal conducted test *2) Used for Radiated Emission test

List of Cables Used

No.	Name	Length (m)	Shield	Remarks	
			Cable	Connector	
1	DC(+B, ACC, GND, PARKING BRAKE)	0.2 + 1.7 (+B) 0.15 + 1.75 (ACC) 0.4 + 1.5 (GND) 1.9 (PARKING)	Unshielded	Unshielded	-
2	Speaker Front Left	0.2 + 1.0	Unshielded	Unshielded	-
3	Speaker Front Right	0.2 + 1.0	Unshielded	Unshielded	-
4	Speaker Rear Left	0.2 + 1.0	Unshielded	Unshielded	-
5	Speaker Rear Right	0.2 + 1.0	Unshielded	Unshielded	-
6	CAR SPEED SIGNAL INPUT	1.9	Unshielded	Unshielded	-
7	REVERSE-GEAR SIGNAL INPUT	1.9	Unshielded	Unshielded	-
8	ANTENNA CONTROL SYSTEM CONTROL	0.1 + 1.0	Unshielded	Unshielded	-
9	ILLUMINATION	0.1 + 1.0	Unshielded	Unshielded	-
10	Front Output	0.15 + 1.55	Shield	Unshielded	-
11	Rear Output	0.15 + 1.55	Shield	Unshielded	-
12	SUBWOOFER Output	0.15 + 1.55	Shield	Unshielded	-
13	REAR MONITOR	0.25 + 0.75	Shield	Unshielded	-
14	REARVIEW CAMERA IN	0.2 + 0.7	Shield	Unshielded	-
15	SECOND CAMERA INPUT	0.2 + 1.4	Shield	Unshielded	-
16	AUX IN	0.15 + 2.0 + 1.55	Shield	Unshielded	-
17	MUTE	1.1	Unshielded	Unshielded	-
18	Signal	4.2	Unshielded	Unshielded	-
19	Signal	4.2	Unshielded	Unshielded	-
20	Signal	1.8	Unshielded	Unshielded	-
21	Audio	1.0	Shield	Unshielded	-
22	FM	0.3	Shield	Shield	-
23	GPS	3.5	Shield	Shield	-
24	MIC	3.0	Shield	Shield	-
25	USB	1.5	Shield	Shield	-
26	Sirius Module	0.6	Shield	Shield	-
27	Sirius Antenna	7.0	Shield	Shield	-
28	AC	1.7	Unshielded	Unshielded	-

Test Report No. 15196050M-A-R1 Page 13 of 35

SECTION 5: Radiated Spurious Emission

Test Procedure

It was measured based on "8.5 and 8.6 of KDB 558074 D01 15.247 Meas Guidance v05r02".

[For below 1 GHz]

EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[For above 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane. Test antenna was aimed at the EUT for receiving the maximum signal and always kept within the illumination area of the 3 dB beamwidth of the antenna.

The height of the measuring antenna varied between 1 m and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

The measurements were made with the following detector function of the test receiver and the Spectrum analyzer (in linear mode).

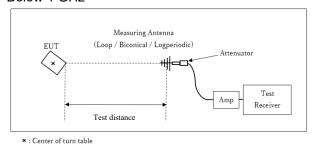
The test was made with the detector (RBW/VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

Test Antennas are used as below;

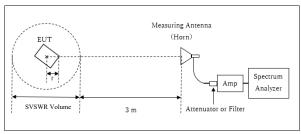
Frequency	30 MHz to 1 GHz	Above 1 GHz
Antenna Type	Hybirid	Horn

In any 100 kHz bandwidth outside the restricted band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator confirmed 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on a radiated measurement.


20 dBc was applied to the frequency over the limit of FCC 15.209 / Table 4 of RSS-Gen 8.9(ISED) and outside the restricted band of FCC15.205 / Table 6 of RSS-Gen 8.10 (ISED).

and outside the re	and outside the restricted band of FCC 15.205 / Table 6 of R55-Gen 6.10 (15ED).						
Frequency	Below 1 GHz	Above 1 GHz		20 dBc			
Instrument Used	Test Receiver	Spectrum Anal	yzer	Spectrum Analyzer			
Detector	QP	PK	AV	PK			
IF Bandwidth	BW 120 kHz	RBW: 1 MHz	<u>11.12.2.5.1</u>	RBW: 100 kHz			
		VBW: 3 MHz	RBW: 1 MHz	VBW: 300 kHz			
			VBW: 3 MHz				
			Detector:				
			Power Averaging (RMS)				
			Trace: 100 traces				
			<u>11.12.2.5.2</u>				
			The duty cycle was less				
			than 98% for detected				
			noise, a duty factor was				
			added to the 11.12.2.5.1				
			results.				

Test Report No. 15196050M-A-R1 Page 14 of 35

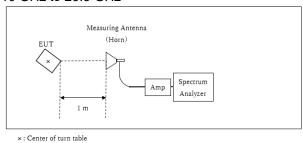

Figure 2: Test Setup

Below 1 GHz

Test Distance: 3 m

1 GHz to 10 GHz

- r : Radius of an outer periphery of EUT
- ×: Center of turn table


Distance Factor: $20 \times (4.35 \text{ m} / 3.0 \text{ m}) = 3.23 \text{ dB}$ * Test Distance: (3 + SVSWR Volume /2) - r = 4.35 m

SVSWR Volume: 3.0 m

(SVSWR Volume has been calibrated based on

CISPR 16-1-4.) r = 0.15 m

10 GHz to 26.5 GHz

Distance Factor: 20 x log (1.0 m / 3.0 m) = -9.54 dB

*Test Distance: 1 m

The carrier level and noise levels were confirmed at each position of 0 deg. and 40 deg. of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

Antenna polarization	Carrier	Spurious (30 MHz - 1 GHz)	Spurious (1 GHz - 2.8 GHz)	Spurious (2.8 GHz - 10 GHz)	Spurious (10 GHz - 18 GHz)	Spurious (18 GHz - 26.5 GHz)
Horizontal	40 deg.	0 deg.	40 deg.	40 deg.	40 deg.	40 deg.
Vertical	40 deg.	0 deg.	40 deg.	40 deg.	40 deg.	40 deg.

Test results are rounded off and limit are rounded down, so some differences might be observed.

Measurement Range : 30 MHz to 26.5 GHz

Test Data : APPENDIX Test Result : Pass

Test Report No. 15196050M-A-R1 Page 15 of 35

SECTION 6: Antenna Terminal Conducted Tests

Test Procedure

The tests were made with below setting connected to the antenna port.

Test	Span	RBW	VBW	Sweep time	Detector	Trace	Instrument Used
6dB Bandwidth	3 MHz	100 kHz	300 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
99% Occupied Bandwidth *1)	Enough width to display emission skirts	1 to 5 % of OBW	Three times of RBW	Auto	Peak	Max Hold	Spectrum Analyzer
Maximum Peak Output Power	-	-	-	Auto	Peak/ Average *2)	-	Power Meter (Sensor: 160 MHz BW)
Peak Power Density	1.5 times the 6dB Bandwidth	3 kHz	9.1 kHz	Auto	Peak	Max Hold	Spectrum Analyzer *3)
Conducted	9 kHz to 150 kHz	200 Hz	620 Hz	Auto	Peak	Max Hold	Spectrum Analyzer
Spurious Emission *4) *5)	150 kHz to 30 MHz	10 kHz	30 kHz				

^{*1)} Peak hold was applied as Worst-case measurement.

Test results are rounded off and limit are rounded down, so some differences might be observed. The equipment and cables were not used for factor 0 dB of the data sheets.

Test Data : APPENDIX Test Result : Pass

^{*2)} Reference data

^{*3)} Section 11.10.2 Method PKPSD (peak PSD) of "ANSI C63.10-2013".

^{*4)} In the frequency range below 30MHz, RBW was narrowed to separate the noise contents.

Then, wide-band noise near the limit was checked separately, however the noise was not detected as shown in the chart. (9 kHz - 150 kHz: RBW = 200 Hz, 150 kHz - 30 MHz: RBW = 10 kHz)

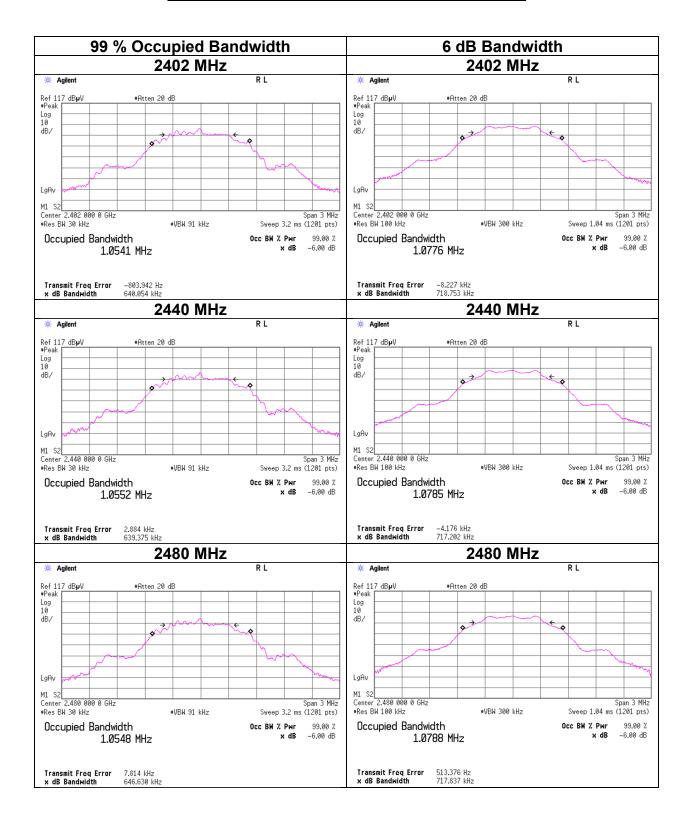
^{*5)} The limits in CFR 47, Part 15, Subpart C, paragraph 15.209(a), are identical to those in RSS-Gen section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377 Ohmes. For example, the measurement at frequency 9 kHz resulted in a level of 45.5 dBuV/m, which is equivalent to 45.5 - 51.5 = -6.0 dBuA/m, which has the same margin, 3 dB, to the corresponding RSS-Gen Table 6 limit as it has to 15.209(a) limit.

Test Report No. 15196050M-A-R1 Page 16 of 35

APPENDIX 1: Test Data

99 % Occupied Bandwidth and 6 dB Bandwidth

Test place Kashima EMC Lab. No.2 Measurement Room


Date April 10, 2024
Temperature / Humidity 24 deg. C / 39 % RH
Engineer Hiromitsu Tanabe

Mode Tx BT LE

Frequency	99% Occupied	6dB Bandwidth	Limit for
	Bandwidth		6dB Bandwidth
[MHz]	[kHz]	[MHz]	[MHz]
2402	1054.1	0.719	> 0.5000
2440	1055.2	0.717	> 0.5000
2480	1054.8	0.718	> 0.5000

Test Report No. 15196050M-A-R1 Page 17 of 35

99 % Occupied Bandwidth and 6 dB Bandwidth

Test Report No. 15196050M-A-R1 Page 18 of 35

Maximum Peak Output Power

Test place Kashima EMC Lab. No.2 Measurement Room

Date April 9, 2024
Temperature / Humidity 22 deg. C / 55 % RH
Engineer Hiromitsu Tanabe

Mode Tx BT LE

					Cond	ducted P	ower			e.i.	r.p. for	RSS-247	7	
Freq.	Reading	Cable	Atten.	Result Limit			Margin	Antenna	Re	sult	Liı	mit	Margin	
		Loss	Loss						Gain					
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]	[dBi]	[dBm]	[mW]	[dBm]	[mW]	[dB]
2402	-10.37	2.10	9.73	1.46	1.40	30.00	1000	28.54	-0.83	0.63	1.16	36.02	4000	35.39
2440	-10.72	2.11	9.73	1.12	1.29	30.00	1000	28.88	-0.83	0.29	1.07	36.02	4000	35.73
2480	-11.99	2.12	9.73	-0.14	0.97	30.00	1000	30.14	-0.83	-0.97	0.80	36.02	4000	36.99

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss

e.i.r.p. Result = Conducted Power Result + Antenna Gain

^{*}The equipment and cables were not used for factor 0 dB of the data sheets.

Test Report No. 15196050M-A-R1 Page 19 of 35

<u>Average Output Power</u> (Reference data for RF Exposure)

Test place Kashima EMC Lab. No.2 Measurement Room

Date April 9, 2024

Temperature / Humidity 22 deg. C / 55 % RH Engineer Hiromitsu Tanabe

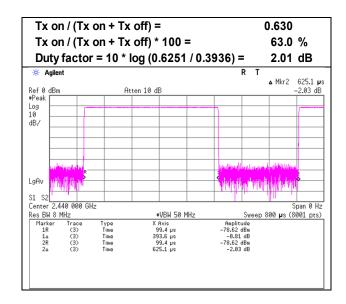
Mode Tx BT LE

Freq.	Reading	Cable	Atten.	Re	sult	Duty	Re	sult
		Loss	Loss	(Time average)		factor	(Burst pow	er average)
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dB]	[dBm]	[mW]
2402	-13.00	2.10	9.73	-1.17	0.76	2.01	0.84	1.21
2440	-13.39	2.11	9.73	-1.55	0.70	2.01	0.46	1.11
2480	-14.79	2.12	9.73	-2.94	0.51	2.01	-0.93	0.81

Sample Calculation:

Result (Time average) = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss Result (Burst power average) = Time average + Duty factor

^{*}The equipment and cables were not used for factor 0 dB of the data sheets.


Test Report No. 15196050M-A-R1 Page 20 of 35

Burst rate confirmation

Test place Kashima EMC Lab. No.2 Measurement Room

Date April 9, 2024
Temperature / Humidity 22 deg. C / 55 % RH
Engineer Hiromitsu Tanabe

Mode Tx BT LE

^{*} Since the burst rate is not different between the channels, the data has been obtained on the representative channel.

Test Report No. 15196050M-A-R1 Page 21 of 35

Radiated Spurious Emission

Test place Kashima EMC Lab.

Semi Anechoic No.10 No.10 No.10 No.10 No.10

Chamber

Date April 12, 2024 April 9, 2024 April 10, 2024 April 11, 2024 April 10, 2024 19 deg. C / 57 % RH Temperature / 21 deg. C / 20 deg. C / 19 deg. C / 21 deg. C / 57 % RH 54 % RH Humidity 51 % RH 55 % RH Hiromitsu Tanabe Hiromitsu Tanabe Engineer Hiromitsu Tanabe Hiromitsu Tanabe Hiromitsu Tanabe (30 MHz to 1 GHz) (1 GHz to 2.8 GHz) (2.8 GHz to 10 GHz) (10 GHz to 18 GHz) (18 GHz to 26.5 GHz)

Mode Tx BT LE 2402 MHz

(* PK: Peak, AV: Average, QP: Quasi-Peak)

		(* PK: Peak	k, AV: Averag	e, QP: Quas	i-Peak)								
Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Distance	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	Factor [dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	254.970	QP	51.20	11.90	7.85	31.05	0.00	39.90	46.0	6.1	100	64	
Hori.	329.182	QP	43.00	14.23	8.34	31.00	0.00	34.57	46.0	11.4	100	66	
Hori.	960.000	QP	33.80	24.05	11.16	30.46	0.00	38.55	46.0	7.4	100	69	
Hori.	1920.000	PK	55.62	26.97	12.95	43.69	3.23	55.08	73.9	18.8	400	244	
Hori.	2390.000	PK	52.03	27.60	13.33	43.66	3.23	52.53	73.9	21.3	233	188	
Hori.	4804.000	PK	50.96	32.53	5.41	45.10	3.23	47.03	73.9	26.8	150	0	Floor noise
Hori.	7206.000	PK	49.36	37.14	6.66	43.99	3.23	52.40	73.9	21.5	150	0	Floor noise
Hori.	9608.000	PK	47.31	38.01	7.46	41.93	3.23	54.08	73.9	19.8	150	0	Floor noise
Hori.	1920.000	AV	47.55	26.97	12.95	43.69	3.23	47.01	53.9	6.8	400	244	
Hori.	4804.000	AV	41.62	32.53	5.41	45.10	3.23	37.69	53.9	16.2	150	0	Floor noise
Hori.	7206.000	AV	40.33	37.14	6.66	43.99	3.23	43.37	53.9	10.5	150	0	Floor noise
Hori.	9608.000	AV	38.26	38.01	7.46	41.93	3.23	45.03	53.9	8.8	150	0	Floor noise
Vert.	147.463	QP	43.20	13.31	7.06	31.13	0.00	32.44	43.5	11.0	100	107	
Vert.	248.828	QP	49.50	11.73	7.81	31.05	0.00	37.99	46.0	8.0	188	166	
Vert.	254.941	QP	49.00	11.90	7.85	31.05	0.00	37.70	46.0	8.3	100	181	
Vert.	431.520	QP	39.90	16.60	8.91	30.92	0.00	34.49	46.0	11.5	100	201	
Vert.	554.810	QP	36.20	18.59	9.52	30.82	0.00	33.49	46.0	12.5	100	6	
Vert.	960.000	QP	39.20	24.05	11.16	30.46	0.00	43.95	46.0	2.0	100	167	
Vert.	1920.000	PK	54.69	26.97	12.95	43.69	3.23	54.15	73.9	19.7	307	250	
Vert.	2390.000	PK	51.64	27.60	13.33	43.66	3.23	52.14	73.9	21.7	132	34	
Vert.	4804.000	PK	50.63	32.53	5.41	45.10	3.23	46.70	73.9	27.2	150	0	Floor noise
Vert.	7206.000	PK	49.61	37.14	6.66	43.99	3.23	52.65	73.9	21.2	150	0	Floor noise
Vert.	9608.000	PK	47.59	38.01	7.46	41.93	3.23	54.36	73.9	19.5	150	0	Floor noise
Vert.	1920.000	AV	48.29	26.97	12.95	43.69	3.23	47.75	53.9	6.1	307	250	
Vert.	4804.000	AV	41.72	32.53	5.41	45.10	3.23	37.79	53.9	16.1	150	0	Floor noise
Vert.	7206.000	AV	39.78	37.14	6.66	43.99	3.23	42.82	53.9	11.0	150	0	Floor noise
Vert.	9608.000	AV	38.39	38.01	7.46	41.93	3.23	45.16	53.9	8.7	150	0	Floor noise

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amplifier) + Distance factor

Distance factor : 1 GHz - 10 GHz : 20log (4.35 m / 3.0 m) = 3.23 dB10 GHz - 40 GHz : 20log (1.0 m / 3.0 m) = -9.54 dB

Average measurement value with duty factor

	,											
Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty	Distance	Result	Limit	Margin	Remark
							Factor	Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2390.000	AV	40.63	27.60	13.33	43.66	2.01	3.23	43.14	53.9	10.7	*1)
Vert.	2390.000	AV	40.57	27.60	13.33	43.66	2.01	3.23	43.08	53.9	10.8	*1)

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amplifier) + Duty factor + Distance factor

Distance factor : 1 GHz - 10 GHz : $20\log (4.35 \text{ m} / 3.0 \text{ m}) = 3.23 \text{ dB}$

10 GHz - 40 GHz : $20\log (1.0 \text{ m} / 3.0 \text{ m}) = -9.54 \text{ dB}$

Duty factor refer to "Burst rate confirmation" sheet.
*1) Not out of band emission (Leakage Power)

20 dBc Data Sheet (RBW 100 kHz, VBW 300 kHz)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Distance	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	Factor [dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2402.000	PK	96.40	27.60	13.34	43.65	3.23	96.92	-	-	Carrier
Hori.	2400.000	PK	43.27	27.60	13.34	43.65	3.23	43.79	76.9	33.1	=
Vert.	2402.000	PK	94.38	27.60	13.34	43.65	3.23	94.90	-	-	Carrier
Vert.	2400.000	PK	41.14	27.60	13.34	43.65	3.23	41.66	74.9	33.2	=

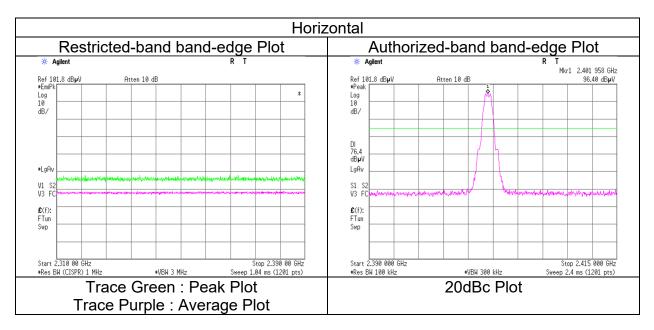
Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amplifier) + Distance factor

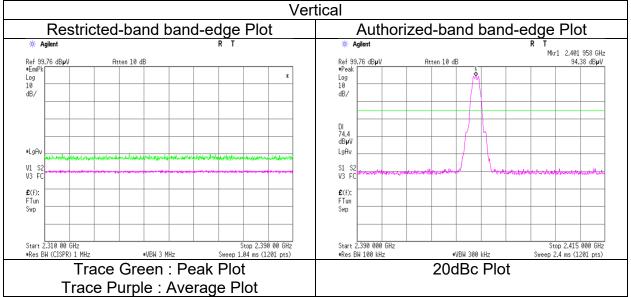
Distance factor : 1 GHz - 10 GHz : 20log (4.35 m / 3.0 m) = 3.23 dB10 GHz - 40 GHz : 20log (1.0 m / 3.0 m) = -9.54 dB

Test Report No. 15196050M-A-R1 Page 22 of 35

Radiated Spurious Emission (Reference Plot for band-edge)

Kashima EMC Lab.


20 deg. C / 55 % RH


Test place Semi Anechoic Chamber

No.11 April 9, 2024 Date

Temperature / Humidity Engineer

Hiromitsu Tanabe (1 GHz to 2.8 GHz) Tx BT LE 2402 MHz Mode

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious

Final result of restricted band edge and authorized band edge were shown in tabular data.

Test Report No. 15196050M-A-R1 Page 23 of 35

Radiated Spurious Emission

Hiromitsu Tanabe

(2.8 GHz to 10 GHz)

Test place Kashima EMC Lab.

Semi Anechoic Chamber No.10

Date April 9, 2024
Temperature / Humidity 20 deg. C / 55 % RH
Engineer Hiromitsu Tanabe

Mode

Hiromitsu Tanabe (1 GHz to 2.8 GHz) Tx BT LE 2440 MHz No.10 No.10 April 10, 2024 April 11 19 deg. C / 57 % RH 21 deg

April 11, 2024 21 deg. C / 54 % RH Hiromitsu Tanabe (10 GHz to 18 GHz) No.10 April 10, 2024 19 deg. C / 57 % RH Hiromitsu Tanabe (18 GHz to 26.5 GHz)

(* PK: Peak AV: Average QP: Quasi-Peak)

		(* PK: Pear	k, Av: Averag	je, QP: Quas	і-Реак)								
Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Distance	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	Factor [dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	1920.000	PK	54.45	26.97	12.95	43.69	3.23	53.91	73.9	19.9	400	245	
Hori.	4880.000	PK	50.47	32.55	5.46	45.15	3.23	46.56	73.9	27.3	150	0	Floor noise
Hori.	7320.000	PK	49.18	37.38	6.69	43.72	3.23	52.76	73.9	21.1	150	0	Floor noise
Hori.	9760.000	PK	49.67	37.91	7.51	41.76	3.23	56.56	73.9	17.3	150	0	Floor noise
Hori.	1920.000	AV	47.49	26.97	12.95	43.69	3.23	46.95	53.9	6.9	400	245	
Hori.	4880.000	AV	41.62	32.55	5.46	45.15	3.23	37.71	53.9	16.1	150	0	Floor noise
Hori.	7320.000	AV	39.74	37.38	6.69	43.72	3.23	43.32	53.9	10.5	150	0	Floor noise
Hori.	9760.000	AV	38.53	37.91	7.51	41.76	3.23	45.42	53.9	8.4	150	0	Floor noise
Vert.	1920.000	PK	55.11	26.97	12.95	43.69	3.23	54.57	73.9	19.3	309	242	
Vert.	4880.000	PK	50.44	32.55	5.46	45.15	3.23	46.53	73.9	27.3	150	0	Floor noise
Vert.	7320.000	PK	49.39	37.38	6.69	43.72	3.23	52.97	73.9	20.9	150	0	Floor noise
Vert.	9760.000	PK	49.04	37.91	7.51	41.76	3.23	55.93	73.9	17.9	150	0	Floor noise
Vert.	1920.000	AV	48.42	26.97	12.95	43.69	3.23	47.88	53.9	6.0	309	242	
Vert.	4880.000	AV	41.76	32.55	5.46	45.15	3.23	37.85	53.9	16.0	150	0	Floor noise
Vert.	7320.000	AV	39.70	37.38	6.69	43.72	3.23	43.28	53.9	10.6	150	0	Floor noise
Vert.	9760.000	AV	38.34	37.91	7.51	41.76	3.23	45.23	53.9	8.6	150	0	Floor noise

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amplifier) + Distance factor

Distance factor : 1 GHz - 10 GHz : 20log (4.35 m / 3.0 m) = 3.23 dB10 GHz - 40 GHz : 20log (1.0 m / 3.0 m) = -9.54 dB

Test Report No. 15196050M-A-R1 Page 24 of 35

Radiated Spurious Emission

Test place

Temperature / Humidity

Kashima EMC Lab.

Semi Anechoic Chamber

No.10 April 9, 2024

20 deg. C / 55 % RH Hiromitsu Tanabe No.10 April 10, 2024 19 deg. C / 57 % RH Hiromitsu Tanabe (2.8 GHz to 10 GHz) No.10 April 11, 2024 21 deg. C / 54 % RH Hiromitsu Tanabe (10 GHz to 18 GHz) No.10 April 10, 2024 19 deg. C / 57 % RH Hiromitsu Tanabe (18 GHz to 26.5 GHz)

Mode

Engineer

(1 GHz to 2.8 GHz) Tx BT LE 2480 MHz

(* PK: Peak, AV: Average, QP: Quasi-Peak)

		(" PK: Pear	k, Av: Averag	je, QP: Quas	i-Peak)								
Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Distance	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	Factor [dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	1920.000	PK	54.87	26.97	12.95	43.69	3.23	54.33	73.9	19.5	400	242	
Hori.	2483.500	PK	51.86	27.86	13.39	43.62	3.23	52.72	73.9	21.1	161	73	
Hori.	4960.000	PK	50.40	32.64	5.51	45.20	3.23	46.58	73.9	27.3	150	0	Floor noise
Hori.	7440.000	PK	48.94	37.41	6.73	43.45	3.23	52.86	73.9	21.0	150	0	Floor noise
Hori.	9920.000	PK	47.84	38.11	7.61	41.76	3.23	55.03	73.9	18.8	150	0	Floor noise
Hori.	1920.000	AV	47.39	26.97	12.95	43.69	3.23	46.85	53.9	7.0	400	242	
Hori.	4960.000	AV	41.55	32.64	5.51	45.20	3.23	37.73	53.9	16.1	150	0	Floor noise
Hori.	7440.000	AV	39.82	37.41	6.73	43.45	3.23	43.74	53.9	10.1	150	0	Floor noise
Hori.	9920.000	AV	38.66	38.11	7.61	41.76	3.23	45.85	53.9	8.0	150	0	Floor noise
Vert.	1920.000	PK	54.85	26.97	12.95	43.69	3.23	54.31	73.9	19.5	312	245	
Vert.	2483.500	PK	51.82	27.86	13.39	43.62	3.23	52.68	73.9	21.2	155	26	
Vert.	4960.000	PK	50.21	32.64	5.51	45.20	3.23	46.39	73.9	27.5	150	0	Floor noise
Vert.	7440.000	PK	48.68	37.41	6.73	43.45	3.23	52.60	73.9	21.3	150	0	Floor noise
Vert.	9920.000	PK	48.07	38.11	7.61	41.76	3.23	55.26	73.9	18.6	150	0	Floor noise
Vert.	1920.000	AV	48.33	26.97	12.95	43.69	3.23	47.79	53.9	6.1	312	245	
Vert.	4960.000	AV	41.61	32.64	5.51	45.20	3.23	37.79	53.9	16.1	150	0	Floor noise
Vert.	7440.000	AV	39.81	37.41	6.73	43.45	3.23	43.73	53.9	10.1	150	0	Floor noise
Vert.	9920.000	AV	38.31	38.11	7.61	41.76	3.23	45.50	53.9	8.4	150	0	Floor noise
D 14	Dooding L Ar		(0.1	. / Δ ! !	. ====	\/I I	40 011 11	0 : (4	nlifior\ L D				

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amplifier) + Distance factor

Distance factor : 1 GHz - 10 GHz : 20log (4.35 m / 3.0 m) = 3.23 dB10 GHz - 40 GHz : 20log (1.0 m / 3.0 m) = -9.54 dB

Average measurement value with duty factor

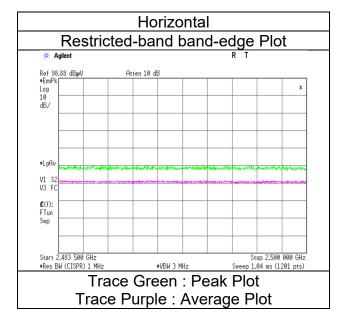
Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty	Distance	Result	Limit	Margin	Remark
							Factor	Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2483.500	AV	40.98	27.86	13.39	43.62	2.01	3.23	43.85	53.9	10.0	*1)
Vert.	2483.500	AV	40.71	27.86	13.39	43.62	2.01	3.23	43.58	53.9	10.3	*1)

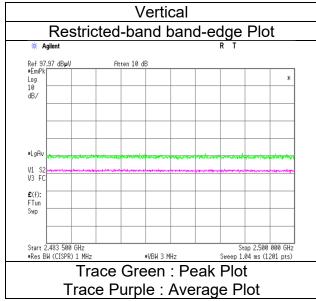
Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amplifier) + Duty factor + Distance factor

Distance factor : 1 GHz - 10 GHz : 20log (4.35 m / 3.0 m) = 3.23 dB10 GHz - 40 GHz : 20log (1.0 m / 3.0 m) = -9.54 dB

Duty factor refer to "Burst rate confirmation" sheet.

^{*1)} Not out of band emission (Leakage Power)

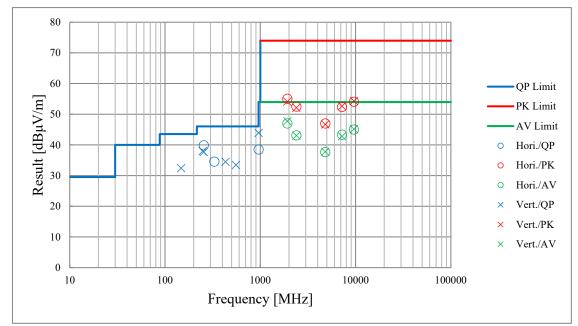

Test Report No. 15196050M-A-R1 Page 25 of 35


Radiated Spurious Emission (Reference Plot for band-edge)

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer

Mode

Kashima EMC Lab. No.11 April 9, 2024 20 deg. C / 55 % RH Hiromitsu Tanabe (1 GHz to 2.8 GHz) Tx BT LE 2480 MHz

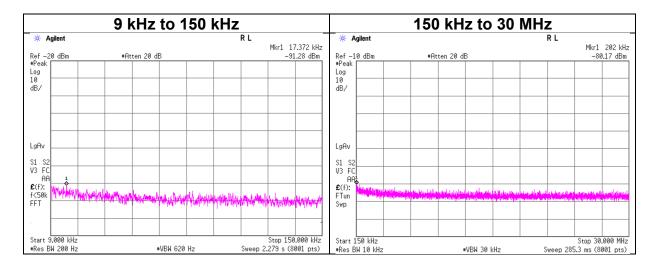

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge was shown in tabular data.

Test Report No. 15196050M-A-R1 Page 26 of 35

Radiated Spurious Emission (Plot data, Worst case mode for Maximum Peak Output Power)

Test place Kashima EMC Lab. Semi Anechoic No.10 No.10 No.10 No.10 No.10 Chamber Date April 12, 2024 April 9, 2024 April 10, 2024 April 11, 2024 April 10, 2024 Temperature / 21 deg. C / 20 deg. C / 19 deg. C / 21 deg. C / 19 deg. C / 55 % RH Humidity 51 % RH 57 % RH 57 % RH 54 % RH Hiromitsu Tanabe Engineer Hiromitsu Tanabe Hiromitsu Tanabe Hiromitsu Tanabe Hiromitsu Tanabe (30 MHz to 1 GHz) (1 GHz to 2.8 GHz) (2.8 GHz to 10 GHz) (10 GHz to 18 GHz) (18 GHz to 26.5 GHz) Mode Tx BT LE 2402 MHz


^{*}These plots data contain sufficient number to show the trend of characteristic features for EUT.

Test Report No. 15196050M-A-R1 Page 27 of 35

Conducted Spurious Emission

Test place Kashima EMC Lab. No.2 Measurement Room

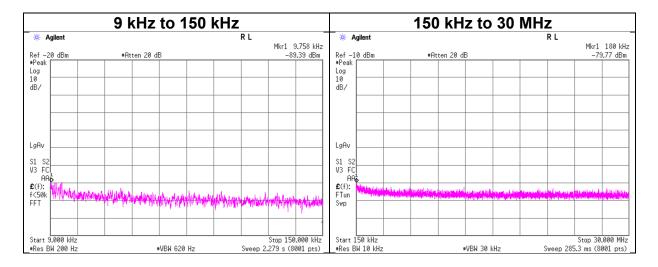
Date April 10, 2024
Temperature / Humidity 24 deg. C / 39 % RH
Engineer Hiromitsu Tanabe
Mode Tx BT LE 2402 MHz

Frequency	Reading	Cable	Attenuator	Antenna	N	EIRP	Distance	Ground	E	Limit	Margin	Remark
		Loss	Loss	Gain*	(Number			bounce	(field strength)			
[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
17.37	-91.3	0.01	9.6	2.0	1	-79.6	300	6.0	-18.4	42.8	61.2	
202.00	-80.2	0.01	9.6	2.0	1	-68.5	300	6.0	-7.3	21.4	28.7	

 $E \left[dBuV/m \right] = EIRP \left[dBm \right] - 20 \log \left(Distance \left[m \right] \right) + Ground \ bounce \left[dB \right] + 104.8 \left[dBuV/m \right]$

 $EIRP[dBm] = Reading \ [dBm] + Cable \ loss \ [dB] + Attenuator \ Loss \ [dB] + Antenna \ gain \ [dBi] + 10 * log \ (N)$

N: Number of output


^{*2.0} dBi was applied to the test result based on ANSI C63.10 since antenna gain was less than 2.0 dBi.

Test Report No. 15196050M-A-R1 Page 28 of 35

Conducted Spurious Emission

Test place Kashima EMC Lab. No.2 Measurement Room

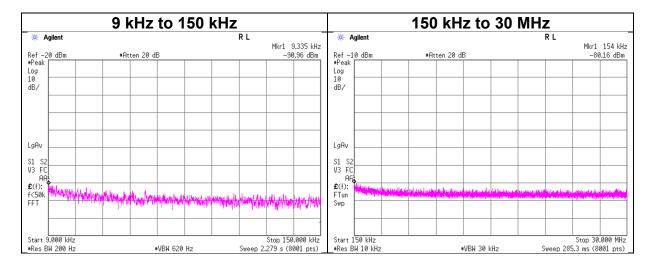
Date April 10, 2024
Temperature / Humidity 24 deg. C / 39 % RH
Engineer Hiromitsu Tanabe
Mode Tx BT LE 2440 MHz

ſ	Frequency	Reading	Cable	Attenuator	Antenna	N	EIRP	Distance	Ground	E	Limit	Margin	Remark
ı			Loss	Loss	Gain*	(Number			bounce	(field strength)			
ı	[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
ſ	9.76	-89.4	0.01	9.6	2.0	1	-77.8	300	6.0	-16.5	47.8	64.3	
ĺ	180.00	-79.8	0.01	9.6	2.0	1	-68.1	300	6.0	-6.9	22.4	29.3	

E [dBuV/m] = EIRP [dBm] - 20 log (Distance [m]) + Ground bounce [dB] + 104.8 [dBuV/m]

EIRP[dBm] = Reading [dBm] + Cable loss [dB] + Attenuator Loss [dB] + Antenna gain [dBi] + 10 * log (N)

N: Number of output


^{*2.0} dBi was applied to the test result based on ANSI C63.10 since antenna gain was less than 2.0 dBi.

Test Report No. 15196050M-A-R1 Page 29 of 35

Conducted Spurious Emission

Test place Kashima EMC Lab. No.2 Measurement Room

Date April 10, 2024
Temperature / Humidity 24 deg. C / 39 % RH
Engineer Hiromitsu Tanabe
Mode Tx BT LE 2480 MHz

	Frequency	Reading	Cable	Attenuator	Antenna	N	EIRP	Distance	Ground	Е	Limit	Margin	Remark
ı			Loss	Loss	Gain*	(Number			bounce	(field strength)			
ı	[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
ı	9.34	-91.0	0.01	9.6	2.0	1	-79.3	300	6.0	-18.1	48.2	66.3	
ı	154.00	-80.2	0.01	9.6	2.0	1	-68.5	300	6.0	-7.3	23.8	31.1	

E [dBuV/m] = EIRP [dBm] - 20 log (Distance [m]) + Ground bounce [dB] + 104.8 [dBuV/m]

EIRP[dBm] = Reading [dBm] + Cable loss [dB] + Attenuator Loss [dB] + Antenna gain [dBi] + 10 * log (N)

N: Number of output

^{*2.0} dBi was applied to the test result based on ANSI C63.10 since antenna gain was less than 2.0 dBi.

Test Report No. 15196050M-A-R1 Page 30 of 35

Power Density

Test place Kashima EMC Lab. No.2 Measurement Room Date April 10, 2024

Date April 10, 2024
Temperature / Humidity 24 deg. C / 39 % RH
Engineer Hiromitsu Tanabe

Mode Tx BT LE


Freq.	Measured	Reading	Cable	Atten.	Result	Limit	Margin
	Frequency		Loss	Loss			
[MHz]	[MHz]	[dBm / 3 kHz]	[dB]	[dB]	[dBm / 3 kHz]	[dBm / 3 kHz]	[dB]
2412	2401.97	-24.97	2.10	9.94	-12.93	8.00	20.93
2437	2439.98	-25.34	2.11	9.94	-13.29	8.00	21.29
2462	2479.98	-26.70	2.12	9.94	-14.64	8.00	22.64

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss

^{*}The equipment and cables were not used for factor 0 dB of the data sheets.

Power Density

Test Report No. 15196050M-A-R1 Page 32 of 35

APPENDIX 2: Test Instruments

Test Equipment

Test Item	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
RE	143121 LOGBICON		Schwarzbeck Mess- Elektronik OHG	VULB 9168	343	2023/04/18	12
RE	178806	5dB Fixed Atten.	Pasternack Enterprises	PE7047-5	none	2023/04/18	12
RE	143165	10 Site RE 3m System	UL Japan	none	none	2023/08/01	12
RE	183880	Pre-Amplifier	UL Japan	ZKL-2	001	2023/04/21	12
RE	144199	Test Receiver	Keysight Technologies Inc	N9038A	MY53290016	2023/07/05	12
RE	144632	Semi Anechoic Chamber	TDK	NSA (No.10)	10	2023/05/08	12
RE	143455	Double Ridged Wave Guide	ETS-Lindgren (Cedar Park, Texas)	3115	00204569	2024/02/09	12
RE	143140	Micro Wave Cable	Junkosha	MWX221	1407S222	2023/11/17	12
RE	192243	Microwave Cable	Huber+Suhner	SF104/11N/11PC35/ 8000MM	808995/4	2024/01/19	12
RE	142940	Pre-Amplifier	Micro Wave Factory	MPR-1G26.5-35	161399	2023/06/08	12
RE	143023	10dB Fixed Atten.	Weinschel - API Technologies Corp	54A-10	56251	2023/05/25	12
RE	143442	HPF	Micro-Tronics	HPM50111-02	009	2023/05/24	12
RE	143643	Spectrum Analyzer	Keysight Technologies Inc	E4448A	MY52490024	2023/06/21	12
RE	144633	Semi Anechoic Chamber	TDK	SVSWR (No.10)	10	2023/05/08	12
RE	143438	Double Ridged Horn	ETS-Lindgren (Cedar Park, Texas)	3160-09	00166043	2023/06/19	12
RE	142937	Pre-Amplifier	TOYO	HAP18-26W	00000035	2023/06/19	12
RE	142992	Micro Wave Cable	Suhner	SUCOFLEX102	MY010/2A	2023/06/04	12
RE	144193	Test Receiver	Rohde & Schwarz	ESU40	100426	2023/04/20	12
RE	222745	Measure	SHINWA RULES CO., LTD.	80862	none	-	-
RE	143542	Temperature & Humidity Indicator	HIOKI E.E. CORPORATION	3641/9680-50	090999895/090 905406	2023/06/27	12
RE	143133	Barometer	Sanoh Co., Ltd	SBR-151	001439	2023/03/10	36
RE	144216	Digital Multimeter	Fluke Corporation	115	994460954	2023/10/24	12
RE	178804	EMI Software	TSJ (Techno Science Japan)	TEPTO-DV3 (RE,CE,ME,PE)	Ver 3.1.0484	-	-
AT	143643	Spectrum Analyzer	Keysight Technologies Inc	E4448A	MY52490024	2023/06/21	12
AT	235556	10dB Fixed Attenuator	Weinschel Associates	WA54-10-1314	0H3E9	2023/06/13	12
AT	143110	Micro Wave Cable	Suhner	SUCOFLEX102	MY3773/2	2023/05/25	12
AT	143588	Peak Power Analyzer	Keysight Technologies Inc	8990B	MY51000276	2023/06/20	12
AT	143606	Power Sensor	Keysight Technologies Inc	N1923A	MY54070024	2023/06/20	12
AT	222747	Measure	SHINWA RULES CO., LTD.	80862	none	-	-
AT	144210	Digital Multimeter	Fluke Corporation	112	89790193	2023/10/24	12
AT	200034	Temperature & Humidity Logger	HIOKI E.E. CORPORATION	LR5001/LR9504	200636456/200 699552	2023/07/18	12
AT	143133	Barometer	Sanoh Co., Ltd	SBR-151	001439	2023/03/10	36

^{*}Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test item:

AT: Antenna Terminal Conducted test

RE: Radiated Emission