

RADIO TEST REPORT

Test Report No. : 13328641H-B-R2

Applicant	:	Pioneer Corporation
Type of EUT	:	Car Audio with Bluetooth / WLAN
Model Number of EUT	:	SN211
FCC ID	:	AJDK115
Test regulation	:	FCC Part 15 Subpart E: 2020
Test Result	:	Complied (Refer to SECTION 3.2)

1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.

- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with the limits of the above regulation.
- 4. The test results in this test report are traceable to the national or international standards.
- 5. This test report covers Radio technical requirements.
- It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- 6. The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- 7. This test report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.
- 8. The information provided from the customer for this report is identified in SECTION 1.
- 9. This report is a revised version of 13328641H-B-R1. 13328641H-B-R1 is replaced with this report.

Date of test: April 20 to May 9, 2020 **Representative test** engineer: Junki Nagatomi Engineer Consumer Technology Division Approved by: my Tsubasa Takayama Leader Consumer Technology Division This laboratory is accredited by the NVLAP LAB CODE R 200572-0, U.S.A. The tests reported herein have been TESTING

performed in accordance with its terms of accreditation. *As for the range of Accreditation in NVLAP, you may refer to the WEB address, http://japan.ul.com/resources/emc accredited/

This report contains data that are not covered by the NVLAP accreditation.

There is no testing item of "Non-accreditation".

NVLAP LAB CODE 200572-0

UL Japan, Inc. Ise EMC Lab. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone : +81 596 24 8999 Facsimile : +81 596 24 8124

Test report No.	: 13328641H-B-R2
Page	: 2 of 74
Issued date	: July 8, 2020
FCC ID	: AJDK115

REVISION HISTORY

Original Test Report No.: 13328461H-B

Revision	Test report No.	Date	Page revised	Contents
- (Original)	13328641H-B	June 12, 2020	-	-
1	13328641H-B-R1	July 1, 2020	P.6	Deletion of sentence about simultaneously transmission.
1	13328641H-B-R1	July 1, 2020	P.11	Correction of power setting value for each mode
1	13328641H-B-R1	July 1, 2020	P.18	Correction of 99 % Occupied Bandwidth data.
1	13328641H-B-R1	July 1, 2020	P.37-42	Corrected the Result (dBm and mW) calculations for Average Output Power.
2	13328641H-B-R2	July 8, 2020	P.37-42	Correction of calculation formula.

Test report No.	: 13328641H-B-R2
Page	: 3 of 74
Issued date	: July 8, 2020
FCC ID	: AJDK115

Reference: Abbreviations (Including words undescribed in this report)

A2LA	The American Association for Laboratory Accreditation	MCS	Modulation and Coding Scheme
AC	Alternating Current	MRA	Mutual Recognition Arrangement
AFH	Adaptive Frequency Hopping	N/A	Not Applicable
AM	Amplitude Modulation	NIST	National Institute of Standards and Technology
Amp, AMP	Amplifier	NS	No signal detect.
ANSI	American National Standards Institute	NSA	Normalized Site Attenuation
Ant, ANT	Antenna	NVLAP	National Voluntary Laboratory Accreditation Program
AP	Access Point	OBW	Occupied Band Width
ASK	Amplitude Shift Keying	OFDM	Orthogonal Frequency Division Multiplexing
Atten., ATT	Attenuator	P/M	Power meter
AV	Average	PCB	Printed Circuit Board
BPSK	Binary Phase-Shift Keying	PER	Packet Error Rate
BR	Bluetooth Basic Rate	PHY	Physical Layer
BT	Bluetooth	PK	Peak
BT LE	Bluetooth Low Energy	PN	Pseudo random Noise
BW	BandWidth	PRBS	Pseudo-Random Bit Sequence
Cal Int	Calibration Interval	PSD	Power Spectral Density
CCK	Complementary Code Keying	QAM	Quadrature Amplitude Modulation
Ch., CH	Channel	QP	Quasi-Peak
CISPR	Comite International Special des Perturbations Radioelectriques	QPSK	Quadri-Phase Shift Keying
CW	Continuous Wave	RBW	Resolution Band Width
DBPSK	Differential BPSK	RDS	Radio Data System
DC	Direct Current	RE	Radio Equipment
D-factor	Distance factor	RF	Radio Frequency
DFS	Dynamic Frequency Selection	RMS	Root Mean Square
DQPSK	Differential QPSK	RSS	Radio Standards Specifications
DSSS	Direct Sequence Spread Spectrum	Rx	Receiving
EDR	Enhanced Data Rate	SA, S/A	Spectrum Analyzer
EIRP, e.i.r.p.	Equivalent Isotropically Radiated Power	SG	Signal Generator
EMC	ElectroMagnetic Compatibility	SVSWR	Site-Voltage Standing Wave Ratio
EMI	ElectroMagnetic Interference	TR	Test Receiver
ENI	European Norm	Tx	Transmitting
ERP, e.r.p.	Effective Radiated Power	VBW	Video BandWidth
EU	European Union	Vert.	Vertical
EUT	Equipment Under Test	WLAN	Wireless LAN
Fac.	Factor	WLAN	WHERE'S LAW
FCC	Federal Communications Commission		
FHSS	Frequency Hopping Spread Spectrum		
FM	Frequency Modulation		
	Frequency Modulation		
Freq. FSK	Frequency Shift Keying		
GFSK GNSS	Gaussian Frequency-Shift Keying		
	Global Navigation Satellite System		
GPS	Global Positioning System		
Hori.	Horizontal		
ICES	Interference-Causing Equipment Standard		
IEC	International Electrotechnical Commission		
IEEE	Institute of Electrical and Electronics Engineers		
IF	Intermediate Frequency		
ILAC	International Laboratory Accreditation Conference		
ISED	Innovation, Science and Economic Development Canada		
ISO	International Organization for Standardization		
IAB	Japan Accreditation Board		

JABJapan Accreditation BoardLANLocal Area Network

LIMS Laboratory Information Management System

UL Japan, Inc. Ise EMC Lab. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone : +81 596 24 8999 Facsimile : +81 596 24 8124

Test report No.	: 13328641H-B-R2
Page	: 4 of 74
Issued date	: July 8, 2020
FCC ID	: AJDK115

CONTENTS

PAGE

SECTION 1. Constant of the former of the sec	_
SECTION 1: Customer information	
SECTION 2: Equipment under test (EUT)	5
SECTION 3: Test specification, procedures & results	7
SECTION 4: Operation of EUT during testing	11
SECTION 5: Radiated Spurious Emission and Band Edge Compliance	14
SECTION 6: Antenna Terminal Conducted Tests	17
APPENDIX 1: Test data	
99 % Occupied Bandwidth	
6 dB Bandwidth	25
Maximum Conducted Output Power	
Average Output Power	
Maximum Power Spectral Density	
Radiated Spurious Emission	
Conducted Spurious Emission	70
APPENDIX 2: Test instruments	71
APPENDIX 3: Photographs of test setup	73
Radiated Spurious Emission	
Worst Case Position	

Test report No. Page	: 13328641H-B-R2 : 5 of 74
Issued date	: July 8, 2020
FCC ID	: AJDK115

SECTION 1: Customer information

Company Name	:	Pioneer Corporation
Address	:	28-8, Honkomagome 2-chome, Bunkyo-ku, Tokyo 113-0021, Japan
Telephone Number	:	+81-49-228-7681
Facsimile Number	:	+81-49-228-6172
Contact Person	:	Yoshifumi Takahashi
Contact Person	:	Yoshifumi Takahashi

The information provided from the customer is as follows;

- Applicant, Type of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer information
- SECTION 2: Equipment under test (EUT) other than the Receipt Date
- SECTION 4: Operation of EUT during testing
- * The laboratory is exempted from liability of any test results affected from the above information in SECTION 2 and 4.

SECTION 2: Equipment under test (EUT)

2.1 Identification of EUT

Туре	:	Car Audio with Bluetooth / WLAN
Model Number	:	SN211
Serial Number	:	Refer to SECTION 4.2
Rating	:	DC 10 V - 16 V, 10 A
Receipt Date	:	April 20, 2020
Country of Mass-production	:	Thailand
Condition	:	Production prototype
		(Not for Sale: This sample is equivalent to mass-produced items.)
Modification	:	No Modification by the test lab.

2.2 Product Description

Model: SN211 (referred to as the EUT in this report) is a Car Audio with Bluetooth / WLAN.

Information of the Factory		
Factory Name	:	PIONEER MANUFACTURING(THAILAND) CO., LTD.
Address	:	Rojana Industrial Park, 1/31 Moo 5
		Tambol Kanham,
		Amphur U-Thai
		Pranakornsriayutthaya 13210 Thailand

Test report No.	: 13328641H-B-R2
Page	: 6 of 74
Issued date	: July 8, 2020
FCC ID	: AJDK115

<u>Radio Specification</u> WLAN (IEEE 802.11a/n/ac) *1)

Type of radio	IEEE802.11a/n/ac	IEEE802.11/n/ac	IEEE802.11ac	
	(20 M band)	(40 M band)	(80 M band)	
Frequency of operation	5745 MHz - 5825 MHz	5755 MHz - 5795 MHz	5775 MHz	
Type of modulation	OFDM (64QAM, 16QAM, QPSK, BPSK)			
Channel spacing	20 MHz	40 MHz	80 MHz	
Antenna type	Internal Antenna			
Antenna Gain	-1.37 dBi			
Clock frequency (Maximum)	125 MHz			

Bluetooth (BR / EDR function)

Type of radio	Bluetooth Version 4.2		
Frequency of operation	2402 MHz - 2480 MHz		
Type of modulation	FHSS		
Channel spacing	1 MHz		
Antenna type	Internal Antenna		
Antenna Gain	-5.38 dBi		
Clock frequency (Maximum)	125 MHz		

[GNSS]

Radio Type	:	Receiver
Frequency of Operation	:	See table below.
Antenna type	:	External Antenna
Antenna Gain	:	20 dBi

Supported GNSS and GNSS signals

GNSS	RNSS Frequency Band / Frequency [MHz]					
GIIBB	1559 to 1610		1215 to 1300		1164 to	1215
BDS	□B11	1561.098	-		-	
Galileo	1278.75	□E5a	1176.45			
	LEI 1575.42	1373:42	LE0 1278.75	□E5b	1207.14	
GLONASS	\boxtimes G1	1598.063 - 1605.375	$\Box G2$	1242.9375 - 1248.625	-	
GPS	⊠L1	1575.42	\Box L2	1227.6	$\Box L5$	1176.45
SBAS	⊠L1	1575.42	-		$\Box L5$	1176.45

 $\boxtimes~$ Supported GNSS signal

□ Not supported GNSS signal

AM / FM / DAB

Type of radio	FM	AM	DAB
Equipment Type		Receiver	
Frequency of Operation	87.5 MHz to 108.0 MHz	522 kHz to 1629 kHz	Band III:174.928 MHz to 239.200 MHz L-Band: 1452.96 MHz to 1490.624 MHz
Type of Modulation	FM	AM	OFDM
Antenna Connector Type	Custom	Custom	Custom
Impedance	75 ohm	75 ohm	50 ohm
Reception method	Conducted	Conducted	Conducted

*1) This test report is applies to WLAN.

Test report No.	: 13328641H-B-R2
Page	: 7 of 74
Issued date	: July 8, 2020
FCC ID	: AJDK115

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification	:	FCC Part 15 Subpart E FCC Part 15 final revised on May 26, 2020 and effective July 27, 2020 except 15.258
Title	:	FCC 47 CFR Part 15 Radio Frequency Device Subpart E Unlicensed National Information Infrastructure Devices Section 15.407 General technical requirements

* The revision does not affect the test result conducted before its effective date.

* The customer has declared that the EUT has complies with FCC Part 15 Subpart B as SDoC.

Test report No.	: 13328641H-B-R2
Page	: 8 of 74
Issued date	: July 8, 2020
FCC ID	: AJDK115

3.2 **Procedures and results**

Item	Test Procedure	Specification	Worst margin	Results	Remarks	
0 1 4 15 1	FCC: ANSI C63.10-2013	FCC: 15.407 (b) (6) / 15.207			*1)	
Conducted Emission	ISED: RSS-Gen 8.8	ISED: RSS-Gen 8.8	N/A	N/A		
26 dB Emission	FCC: KDB Publication Number 789033	FCC: 15.407 (a) (1) (2) (3)	N/A	N/A	*2)	
Bandwidth	ISED: -	ISED: -			<i>,</i>	
NC 1	FCC: KDB Publication Number 789033	FCC: 15.407 (a) (1) (2) (3)				
Maximum Conducted Output Power	ISED: -	ISED: RSS-247 6.2.1.1 6.2.2.1 6.2.3.1 6.2.4.1		Complied a)	Conducted	
Maximum Power Spectral Density	FCC: KDB Publication Number 789033	FCC: 15.407 (a) (1) (2) (3)				
	ISED: -	ISED: RSS-247 6.2.1.1 6.2.2.1 6.2.3.1 6.2.4.1		N/A b)	Conducted	
Spurious Emission	FCC: ANSI C63.10-2013 KDB Publication Number 789033	FCC: 15.407 (b), 15.205 and 15.209	11.9 dB	Complied	Conducted (< 30 MHz)/ Radiated (> 30 MHz) *3)	
Restricted Band Edge	ISED: -	ISED: RSS-247 6.2.1.2 6.2.2.2 6.2.3.2 6.2.4.2	208.674 MHz, QP, Vert.	c) / d)		
6 dB Emission	FCC: ANSI C63.10-2013	FCC: 15.407 (e)	See data	Complied	Conducted	
Bandwidth	dwidth ISED: - ISED: RSS-247 6.2.4.1		See daid	e)	Conducted	

*1) The test is not applicable since the EUT is not the device that is designed to be connected to the public utility (AC) power line. *2) The test is not applicable since the EUT does not support W53 and W56 bands.

*3) Radiated test was selected over 30 MHz based on FCC 15.407 (b) and KDB 789033 D02 G.3.b).

a) Refer to APPENDIX 1 (data of Maximum Conducted Output Power)

b) Refer to APPENDIX 1 (data of Maximum Power Spectral Density)

c) Refer to APPENDIX 1 (data of Radiated Spurious Emission)

d) Refer to APPENDIX 1 (data of Conducted Spurious Emission)

e) Refer to APPENDIX 1 (data of 6 dB Bandwidth)

Symbols:

Complied The data of this test item has enough margin, more than the measurement uncertainty.

Complied# The data of this test item meets the limits unless the measurement uncertainty is taken into consideration.

* In case any questions arise about test procedure, ANSI C63.10: 2013 is also referred.

FCC Part 15.31 (e)

This EUT provides the stable voltage constantly to RF part regardless of input voltage. Therefore, this EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

3.3 Addition to standard

Item	Test Procedure	Specification	Worst margin	Results	Remarks	
99 % Occupied Band Width	ISED: RSS-Gen 6.7	ISED: -	N/A	- a)	Conducted	
a) Refer to APPENDIX 1 (data of 26 dB Emission Bandwidth and 99 % Occupied Bandwidth)						

Other than above, no addition, exclusion nor deviation has been made from the standard.

Test report No. Page	: 13328641H-B-R2 : 9 of 74
Issued date	: July 8, 2020
FCC ID	: AJDK115

3.4 Uncertainty

There is no applicable rule of uncertainty in this applied standard. Therefore, the following results are derived depending on whether or not laboratory uncertainty is applied.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k=2. Ise EMC Lab.

Radiated emission

Measurement distance	Frequency range		Uncertainty (+/-)
3 m	9 kHz to 30	MHz	3.3 dB
10 m			3.2 dB
3 m	30 MHz to 200 MHz	(Horizontal)	4.8 dB
		(Vertical)	5.0 dB
	200 MHz to 1000 MHz	(Horizontal)	5.2 dB
		(Vertical)	6.3 dB
10 m	30 MHz to 200 MHz	(Horizontal)	4.8 dB
		(Vertical)	4.8 dB
	200 MHz to 1000 MHz	(Horizontal)	5.0 dB
		(Vertical)	5.0 dB
3 m	1 GHz to 6 GHz		4.9 dB
	6 GHz to 18	GHz	5.2 dB
1 m	10 GHz to 26.5 GHz		5.5 dB
	26.5 GHz to 4	0 GHz	5.5 dB
0.5 m	26.5 GHz to 40 GHz		5.5 dB
10 m	1 GHz to 18	GHz	5.2 dB

Antenna Terminal test					
Test Item	Uncertainty (+/-)				
26 dB Emission Bandwidth / 6 dB Emission Bandwidth /	0.96 %				
Maximum Conducted Output Power / Average Output Power	1.4 dB				
Burst Rate	0.10 %				
Maximum Power Spectral Density	2.6 dB				
Spurious Emission (Conducted)	2.6 dB				

Test report No. Page	: 13328641H-B-R2 : 10 of 74
Issued date	: July 8, 2020
FCC ID	: AJDK115

3.5 Test Location

UL Japan, Inc. Ise EMC Lab.

*NVLAP Lab. code: 200572-0 / FCC Test Firm Registration Number: 199967 / ISED Lab Company Number: 2973C 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone: +81 596 24 8999, Facsimile: +81 596 24 8124

Test site	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	Maximum measuremen t distance
No.1 semi-anechoic chamber	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 semi-anechoic chamber	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.5 measurement room	6.4 x 6.4 x 3.0	6.4 x 6.4	-	-
No.6 shielded room	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	3.1 x 5.0 x 2.7	3.1 x 5.0	-	-
No.9 measurement room	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.11 measurement room	6.2 x 4.7 x 3.0	4.8 x 4.6	-	-

* Size of vertical conducting plane (for Conducted Emission test) : 2.0 x 2.0 m for No.1, No.2,

No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

3.6 Test data, Test instruments, and Test set up

Refer to APPENDIX.

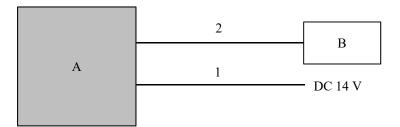
Test report No. Page Issued date FCC ID	: 13328641H-B-R2 : 11 of 74 : July 8, 2020 : AJDK115

SECTION 4: Operation of EUT during testing

4.1 **Operating Mode(s)**

Test operating mode was determined as follows according to "Section 1 of 6 802.11 a/b/g/n testing - Managing Complex Regulatory Approvals -" of TCB Council Workshop October 2009.

Mode		Remarks*		
IEEE 802.11a (11	a)	54 Mbps, PN9		
IEEE 802.11n SIS	O 20 MHz BW (11n-20)	MCS 7 (Long GI), PN9		
IEEE 802.11n SIS	5O 40 MHz BW (11n-40)	MCS 7 (Long GI), PN9		
IEEE 802.11ac SI	SO 20 MHz BW (11ac-20)	MCS 7 (Long GI), PN9		
IEEE 802.11ac SI	SO 40 MHz BW (11ac-40)	MCS 7 (Long GI), PN9		
IEEE 802.11ac SI	SO 80 MHz BW (11ac-80)	MCS 0 (Long GI), PN9		
*Power of the EUT	T was set by the software as follows;			
Power settings:	11a, 11n-20, 11ac-20:14 dBm			
	11n-40, 11ac-40: 13 dBm			
	11ac-80: 8 dBm			
Software:	R.A2.00.12.65.20.00.00			
	(Date: April 20, 2020, Storage location: EUT memory)			
*This setting of software is the worst case.				
Any conditions under the normal use do not exceed the condition of setting.				
In addition, end use	ers cannot change the settings of the o	utput power of the product.		


*The details of Operation mode(s)

Test Item	Operating Mode	Tested Frequency			
99 % Occupied Bandwidth,	11a Tx	5745 MHz			
6 dB Bandwidth,	11n-20 Tx	5785 MHz			
Maximum Conducted Output	11ac-20 Tx	5825 MHz			
Power,	11n-40 Tx	5755 MHz			
Maximum Power Spectral	11ac-40 Tx	5795 MHz			
Density	11ac-80 Tx	5775 MHz			
Radiated Spurious Emission	11ac-80 Tx *1)	5775 MHz			
(Below 1 GHz)					
Radiated Spurious Emission	11ac-20 Tx	5745 MHz			
(Above 1 GHz)		5785 MHz			
		5825 MHz			
	11ac-40 Tx	5755 MHz			
		5895 MHz			
	11ac-80 Tx	5775 MHz			
Conducted Spurious Emission	11ac-20 Tx *2) 5785 MHz				
*1) The mode was tested as a representative, because it had the highest power at worst mode.					
*2) The mode was tested as a rep	*2) The mode was tested as a representative, because it had the highest power at antenna terminal test.				

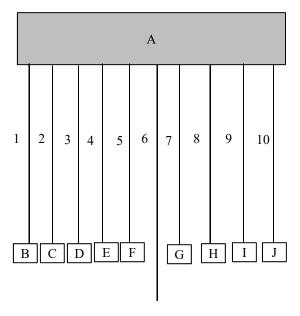
Test report No. Page	: 13328641H-B-R2 : 12 of 74
Issued date FCC ID	: July 8, 2020 : AJDK115
FUUID	: AJDK115

4.2 Configuration and peripherals

Antenna Terminal Conducted Tests

* Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Description of EUT and Support equipment


No.	Item	Model number	Serial number	Manufacturer	Remarks
А	Car Audio with Bluetooth / WLAN	SN211	KATA035	Pioneer Corporation	EUT
В	USB Memory	U202	1942QF0935MSQ 1RL1L	TOSHIBA	-

List of cables used

No.	Name	Length (m)	Shield		Remarks
			Cable	Connector	
1	DC & Signal Cable	2.0	Unshielded	Unshielded	-
2	USB Cable	1.5	Shielded	Shielded	-

Test report No.	: 13328641H-B-R2
Page	: 13 of 74
Issued date	: July 8, 2020
FCC ID	: AJDK115

Radiated Spurious Emission

DC 14 V

* Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

No.	Item	Model number	Serial number	Manufacturer	Remarks
А	Car Audio with	SN211	KATA036	Pioneer Corporation	EUT
	Bluetooth / WLAN				
В	USB Memory	U202	1942QF0935MSQ	TOSHIBA	-
			1RL1L		
С	Terminator	-	-	-	-
D	GNSS Antenna	DA15-D010	A388619	MITSUMI ELEC.	-
Е	Terminator	-	-	-	-
F	Jig Board	-	-	-	-
G	Mic	39813-59800	-	-	-
Η	Dummy Speaker	-	-	-	-
Ι	Camera	-	-	-	-
J	Terminator	-	-	-	-

Description of EUT and Support equipment

List of cables used

No.	Name	Length (m)	Shield		Remarks
			Cable	Connector	
1	USB Cable	2.0	Shielded	Shielded	-
2	DAB Cable	2.0	Shielded	Shielded	-
3	GNSS Antenna Cable	2.0	Shielded	Shielded	-
4	HDMI Cable	1.2	Shielded	Shielded	-
5	Signal Cable	2.0	Unshielded	Unshielded	-
6	DC Cable	2.8	Unshielded	Unshielded	-
7	MIC Cable	2.0	Unshielded	Unshielded	-
8	Speaker Cable	2.0	Unshielded	Unshielded	-
9	Signal Cable	2.2	Unshielded	Unshielded	-
10	AM/FM Cable	2.0	Shielded	Shielded	-

Test report 1	No. : 13328641H-B-R2
Page	: 14 of 74
Issued date	: July 8, 2020
FCC ID	: AJDK115

SECTION 5: Radiated Spurious Emission and Band Edge Compliance

Test Procedure

< Below 1GHz >

EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

< Above 1GHz >

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane.

The height of the measuring antenna varied between 1 m and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

Test antenna was aimed at the EUT for receiving the maximum signal and always kept within the illumination area of the 3 dB beamwidth of the antenna.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

The measurements were made with the following detector function of the test receiver and the Spectrum analyzer (in linear mode).

The test was made with the detector (RBW/VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

< Below 1GHz >

The result also satisfied with the general limits specified in section 15.209 (a).

< Above 1GHz >

Inside of restricted bands (Section 15.205): Apply to limit in the Section 15.209 (a).

Outside of the restricted bands:

Apply to limit 68.2 dBuV/m, 3 m (-27 dBm e.i.r.p.^{*}) in the Section 15.407 (b) (1) (2) (3).

-27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge in the section 15.407(b)(4)(i).

Restricted band edge:

Apply to limit in the Section 15.209 (a). Since this limit is severer than the limit of the inside of restricted bands.

*Electric field strength to e.i.r.p. conversion:

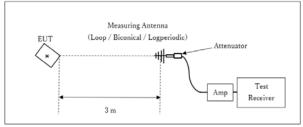
$$E = \frac{1000000 \sqrt{30 P}}{3} \quad (uV/m)$$

:*P* is the e.i.r.p. (Watts)

Test report No.	: 13328641H-B-R2
Page	: 15 of 74
Issued date	: July 8, 2020
FCC ID	: AJDK115

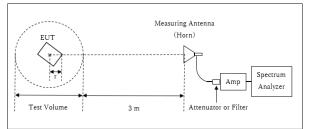
Test Antennas are used as below;

Frequency	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna Type	Biconical	Logperiodic	Horn
Frequency	Below 1 GHz	Above 1 GHz	
Instrument used	Test Receiver	Spectrum Analyzer	
Detector	QP	Peak	Average
IF Bandwidth	BW: 120 kHz	RBW: 1 MHz	Method AD *1)
		VBW: 3 MHz	RBW: 1 MHz
			VBW: 3 MHz
			Detector: Power
			Averaging (RMS)
			Trace: ≥ 100 traces
			If duty cycle was less
			than 98%, a duty
			factor was added to
			the results.


*1) The test method was also referred to KDB 789033 D02 General UNII Test Procedures New Rules v02r01 "Guidelines for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices Part 15, Subpart E".

Test report No. Page	: 13328641H-B-R2 : 16 of 74
Issued date	: July 8, 2020
FCC ID	: AJDK115

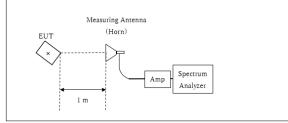
Test Distance: 3 m


Figure 2: Test Setup

Below 1 GHz

× : Center of turn table

1 GHz - 10 GHz


Distance Factor: $20 \times \log (3.85 \text{ m} / 3.0 \text{ m}) = 2.17 \text{ dB}$ * Test Distance: (3 + Test Volume /2) - r = 3.85 m

Test Volume : 2.0 m

(Test Volume has been calibrated based on CISPR 16-1-4.) $r\,{=}\,0.15~m$

r : Radius of an outer periphery of EUT × : Center of turn table

10 GHz - 26.5 GHz

Distance Factor: 20 x log (1.0 m / 3.0 m) = -9.5 dB*Test Distance: 1 m

× : Center of turn table

The carrier level and noise levels were confirmed at each position of 0 degree and 40 degree as tilt angle of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Measurement range	: 30 MHz - 40 GHz
Test data	: APPENDIX
Test result	: Pass

Test report No. Page	: 13328641H-B-R2 : 17 of 74
Issued date FCC ID	: July 8, 2020 : AJDK115

SECTION 6: Antenna Terminal Conducted Tests

Test Procedure

The tests were made with below setting connected to the antenna port.

Test	Span	RBW	VBW	Sweep time	Detector	Trace	Instrument used and Test method
99 % Occupied Bandwidth *1)	Enough width to display emission skirts	1 % to 5 % of OBW	\geq 3 RBW	Auto	Peak	Max Hold	Spectrum Analyzer
6 dB Bandwidth	Enough to capture the emission	100 kHz	300 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
Maximum Conducted Output Power	-	-	-	Auto	Average	-	Power Meter (Sensor: 80 MHz BW) (Method PM-G)
Maximum Power Spectral Density	Encompass the entire EBW	470 kHz *2)	\geq 3 RBW	Auto	Power Averaging (200 times)	Clear Write	Spectrum Analyzer
Conducted Spurious Emission*3) *4)	9 kHz – 150 kHz 150 kHz – 30 MHz	200 Hz 9.1 kHz	620 Hz 27 kHz	Auto	Peak	Max Hold	Spectrum Analyzer

* The test method was also referred to KDB 789033 D02 General UNII Test Procedures New Rules v02r01 "Guidelines for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices Part 15, Subpart E".

*1) Peak hold was applied as Worst-case measurement.

*2) KDB 789033 D02 says that RBW is set to be 500 kHz for 5.725 GHz-5.850 GHz, but it is not possible with spectrum analyzer, so RBW Correction Factor (10 log(500 kHz / 470 kHz)) was added to the test result.

*3) In the frequency range below 30 MHz, RBW was narrowed to separate the noise contents. Then, wide-band noise near the limit was checked separately, however the noise was not detected as shown in the chart. (9 kHz-150 kHz: RBW = 200 Hz, 150 kHz-30 MHz: RBW = 9.1 kHz)

*4) The limits in CFR 47, Part 15, Subpart C, paragraph 15.209(a), are identical to those in RSS-Gen section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377 Ohms. For example, the measurement at frequency 9 kHz resulted in a level of 45.5 dBuV/m, which is equivalent to 45.5 - 51.5 = -6.0 dBuA/m, which has the same margin, 3 dB, to the corresponding RSS-Gen Table 6 limit as it has to 15.209(a) limit.

The test results and limit are rounded off to two decimals place, so some differences might be observed. The equipment and cables were not used for factor 0 dB of the data sheets.

Test data	: APPENDIX
Test result	: Pass

Test report No.	: 13328641H-B-R2
Page	: 18 of 74
Issued date	: July 8, 2020
FCC ID	: AJDK115

APPENDIX 1: Test data

99 % Occupied Bandwidth

Report No. Test place	13328641H Ise EMC Lab. No.6 Measurement Room
Date	April 23, 2020
Temperature / Humidity	24 deg. C / 23 % RH
Engineer	Yuta Moriya
Mode	Tx

11a

Antenna	Tested	26 dB Emission	99 % Occupied	
	Frequency	Bandwidth	Bandwidth	
	[MHz]	[MHz]	[kHz]	
	5745	-	16783.6	
Antenna 1	5785	-	16757.7	
	5825	-	16784.3	

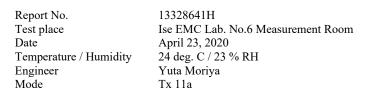
11n-20

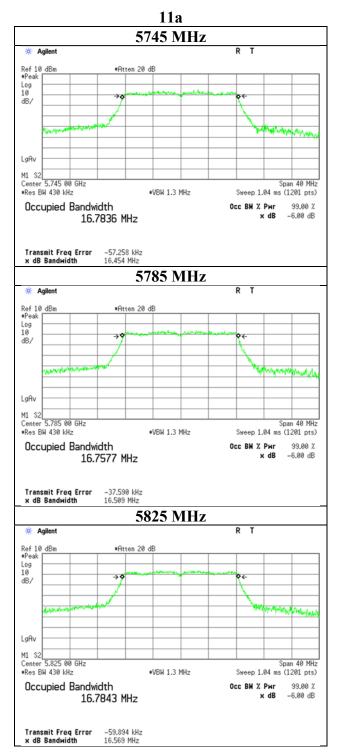
Antenna	Tested	26 dB Emission	99 % Occupied	
	Frequency	Bandwidth	Bandwidth	
	[MHz]	[MHz]	[kHz]	
	5745	-	17767.5	
Antenna 1	5785	-	17834.8	
	5825	-	17750.2	

11ac-20

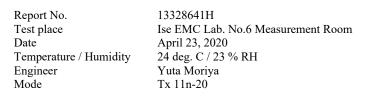
Antenna	Tested	26 dB Emission	99 % Occupied
	Frequency	Bandwidth	Bandwidth
	[MHz]	[MHz]	[kHz]
	5745	-	17802.4
Antenna 1	5785	-	17781.3
	5825	-	17723.3

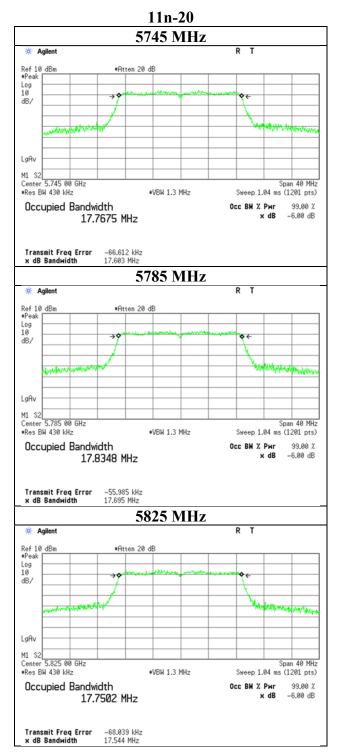
11n-40

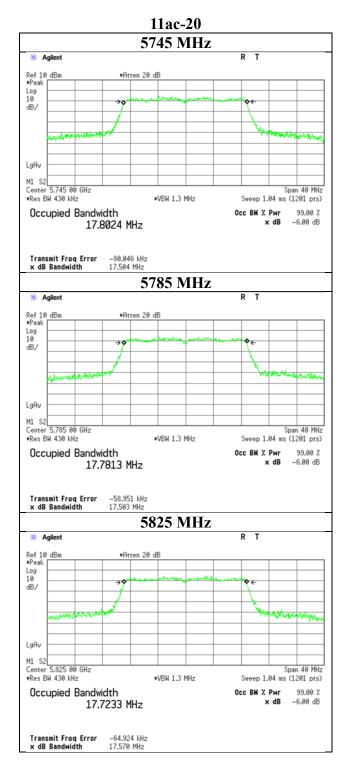

Antenna	Tested	26 dB Emission	99 % Occupied
	Frequency	Bandwidth	Bandwidth
	[MHz]	[MHz]	[kHz]
Antenna 1	5755	-	36210.5
7 thtelina 1	5795	-	36234.1

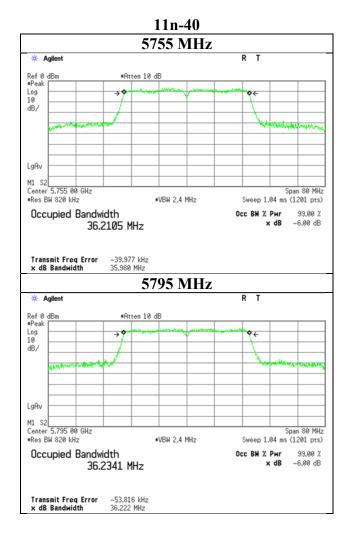

11ac-40

Antenna	Tested	26 dB Emission	99 % Occupied
	Frequency	Bandwidth	Bandwidth
	[MHz]	[MHz]	[kHz]
Antenna 1	5755	-	36230.4
Antonna i	5795	-	36290.3

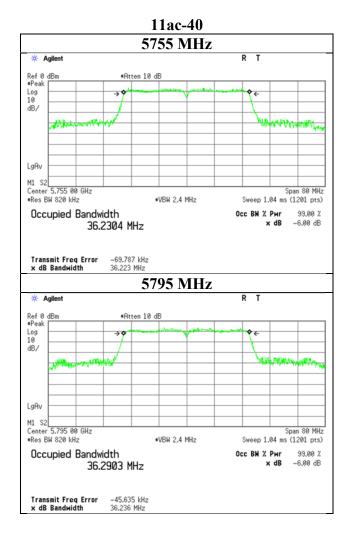

11ac-80


Ante	enna	Tested	26 dB Emission	99 % Occupied
		Frequency	Bandwidth	Bandwidth
		[MHz]	[MHz]	[kHz]
Ante	nna 1	5775	-	76317.2

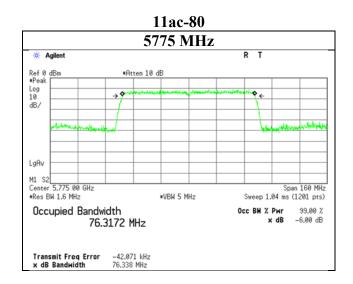

UL Japan, Inc. Ise EMC Lab. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone : +81 596 24 8999 Facsimile : +81 596 24 8124


UL Japan, Inc. Ise EMC Lab. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone : +81 596 24 8999 Facsimile : +81 596 24 8124

Report No.	13328641H
Test place	Ise EMC Lab. No.6 Measurement Room
Date	April 23, 2020
Temperature / Humidity	24 deg. C / 23 % RH
Engineer	Yuta Moriya
Mode	Tx 11ac-20


Test report No.	: 13328641H-B-R2
Page	: 22 of 74
Issued date	: July 8, 2020
FCC ID	: AJDK115

Report No.	13328641H
Test place	Ise EMC Lab. No.6 Measurement Room
Date	April 23, 2020
Temperature / Humidity	24 deg. C / 23 % RH
Engineer	Yuta Moriya
Mode	Tx 11n-40


Test report No.	: 13328641H-B-R2
Page	: 23 of 74
Issued date	: July 8, 2020
FCC ID	: AJDK115

Report No.	13328641H
Test place	Ise EMC Lab. No.6 Measurement Room
Date	April 23, 2020
Temperature / Humidity	24 deg. C / 23 % RH
Engineer	Yuta Moriya
Mode	Tx 11ac-40

Test report No.	: 13328641H-B-R2
Page	: 24 of 74
Issued date	: July 8, 2020
FCC ID	: AJDK115

Report No. Test place	13328641H Ise EMC Lab. No.6 Measurement Room
Date	April 23, 2020
Temperature / Humidity	24 deg. C / 23 % RH
Engineer	Yuta Moriya
Mode	Tx 11ac-80

13328641H
Ise EMC Lab. No.6 Measurement Room
April 23, 2020
24 deg. C / 23 % RH
Yuta Moriya
Tx

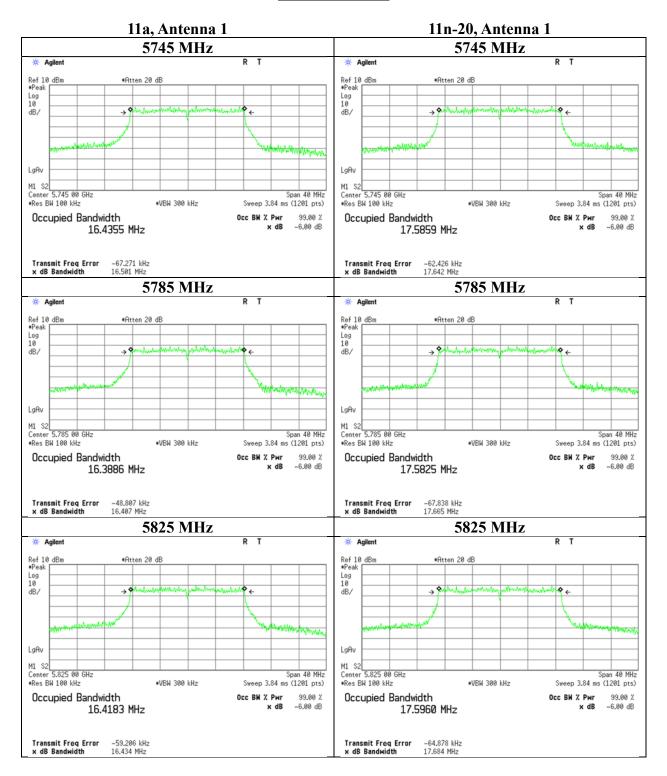
11a 6 dB Antenna Tested Limit Frequency Bandwidth [MHz] [MHz] [MHz] 16.501 5745 > 0.500 Antenna 1 5785 16.407 > 0.500 5825 16.434 > 0.500

Antenna	Tested	6 dB	Limit
	Frequency	Bandwidth	
	[MHz]	[MHz]	[MHz]
	5745	17.642	> 0.500
Antenna 1	5785	17.665	> 0.500
	5825	17.684	> 0.500

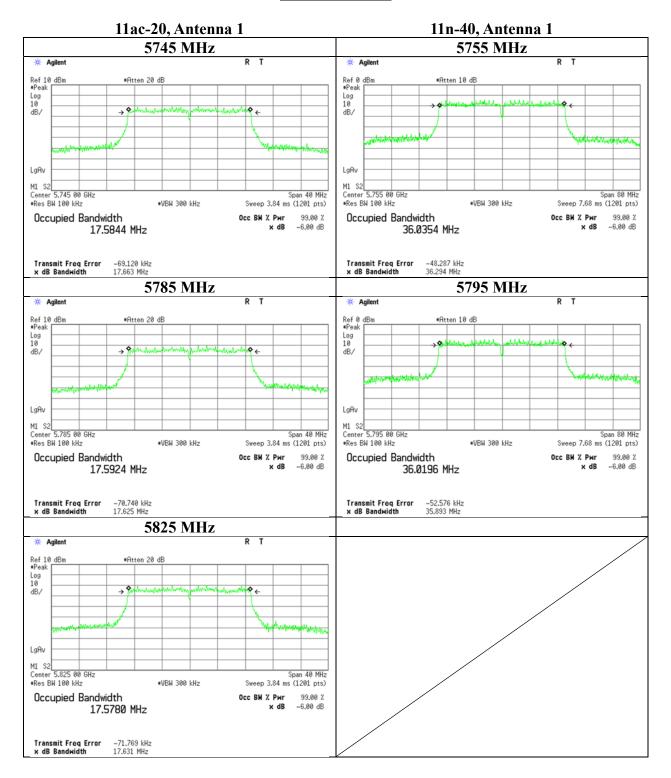
11ac-20

Antenna	Tested	6 dB	Limit
	Frequency	Bandwidth	
	[MHz]	[MHz]	[MHz]
	5745	17.663	> 0.500
Antenna 1	5785	17.625	> 0.500
	5825	17.631	> 0.500

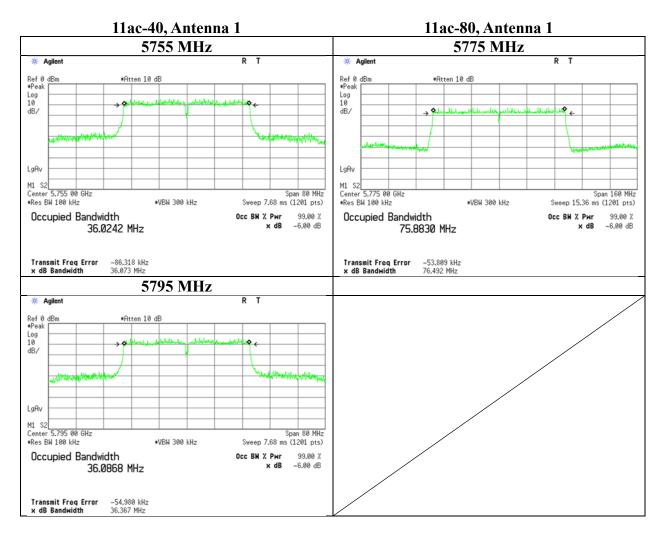
11n-40			
Antenna	Tested	6 dB	Limit
	Frequency	Bandwidth	
	[MHz]	[MHz]	[MHz]
Antenna 1	5755	36.294	> 0.500
Antenna I	5795	35.893	> 0.500


11ac-40

Antenna	Tested	6 dB	Limit
	Frequency	Bandwidth	
	[MHz]	[MHz]	[MHz]
Antenna 1	5755	36.073	> 0.500
Antenna I	5795	36.367	> 0.500


11ac-80

Antenna	Tested	6 dB	Limit
	Frequency	Bandwidth	
	[MHz]	[MHz]	[MHz]
Antenna 1	5775	76.492	> 0.500


Test report No.	: 13328641H-B-R2
Page	: 26 of 74
Issued date	: July 8, 2020
FCC ID	: AJDK115

Test report No.	: 13328641H-B-R2
Page	: 27 of 74
Issued date	: July 8, 2020
FCC ID	: AJDK115

Test report No.	: 13328641H-B-R2
Page	: 28 of 74
Issued date	: July 8, 2020
FCC ID	: AJDK115

Test report No.	: 13328641H-B-R2
Page	: 29 of 74
Issued date	: July 8, 2020
FCC ID	: AJDK115

Report No.	13328641H
Test place	Ise EMC Lab. No.3 Measurement Room
Date	May 7, 2020
Temperature / Humidity	21 deg. C / 50 % RH
Engineer	Junki Nagatomi
Mode	Tx 11a

Applied limit: 15.407, mobile and portable client device

11a										Applied	limit: 15	.407, mob	ile and po	rtable clie	ent device
Tested	Power	Cable	Atten.	Duty	Antenna	26 dB	99%		Conducto	ed Power			e.i.1	r.p.	
Frequency	Meter	Loss	Loss	Factor	Gain	EBW	OBW	Res	sult	Limit	M argin	Res	sult	Limit	Margin
	Reading					(B for FCC)	(B for IC)								
[MHz]	[dBm]	[dB]	[dB]	[dB]	[dBi]	[MHz]	[MHz]	[dBm]	[mW]	[dBm]	[dB]	[dBm]	[mW]	[dBm]	[dB]
5745	-0.25	3.05	10.12	0.00	-1.37	-	16.784	12.92	19.59	30.00	17.08	11.55	14.29	36.00	24.45
5785	-0.23	3.06	10.12	0.00	-1.37	-	16.758	12.95	19.72	30.00	17.05	11.58	14.39	36.00	24.42
5825	-0.27	3.07	10.12	0.00	-1.37	-	16.784	12.92	19.59	30.00	17.08	11.55	14.29	36.00	24.45

Sample Calculation:

Conducted Power Result = Reading + Cable Loss (including the cable(s) customer supplied) + Atten. Loss + Duty Factor

e.i.r.p. Result = Conducted Power Result + Antenna Gain

Conducted Power Limit (5725 MHz-5850 MHz) = 1W

Test report No.	: 13328641H-B-R2
Page	: 30 of 74
Issued date	: July 8, 2020
FCC ID	: AJDK115

Report No.	13328641H
Test place	Ise EMC Lab. No.3 Measurement Room
Date	May 7, 2020
Temperature / Humidity	21 deg. C / 50 % RH
Engineer	Junki Nagatomi
Mode	Tx 11n-20

									Applied	limit: 15	407, mob	ile and po	rtable clie	ent device
Power	Cable	Atten.	Duty	Antenna	26 dB	99%		Conduct	ed Power			e.i.1	r.p.	
Meter	Loss	Loss	Factor	Gain	EBW	OBW	Res	sult	Limit	Margin	Res	sult	Limit	M argin
Reading					(B for FCC)	(B for IC)								
[dBm]	[dB]	[dB]	[dB]	[dBi]	[MHz]	[MHz]	[dBm]	[mW]	[dBm]	[dB]	[dBm]	[mW]	[dBm]	[dB]
-0.07	3.05	10.12	0.00	-1.37	-	17.768	13.10	20.42	30.00	16.90	11.73	14.89	36.00	24.27
-0.06	3.06	10.12	0.00	-1.37	-	17.835	13.12	20.51	30.00	16.88	11.75	14.96	36.00	24.25
-0.15	3.07	10.12	0.00	-1.37	-	17.750	13.04	20.14	30.00	16.96	11.67	14.69	36.00	24.33
	M eter Reading [dBm] -0.07 -0.06	Meter Loss Reading [dBm] [dBm] [dB] -0.07 3.05 -0.06 3.06 -0.15 3.07	Meter Loss Loss [dBm] [dB] [dB] -0.07 3.05 10.12 -0.06 3.06 10.12 -0.15 3.07 10.12	Meter Loss Factor Reading [dBm] [dB] [dB] -0.07 3.05 10.12 0.00 -0.06 3.06 10.12 0.00 -0.15 3.07 10.12 0.00	Meter Reading Loss Factor Gain [dBm] [dB] [dB] [dB] [dB] -0.07 3.05 10.12 0.00 -1.37 -0.06 3.06 10.12 0.00 -1.37 -0.15 3.07 10.12 0.00 -1.37	Meter Reading Loss Factor Gain EBW (B for FCC) [dBm] [dB] [dB] [dB] [dB] [MHz] -0.07 3.05 10.12 0.00 -1.37 - -0.06 3.06 10.12 0.00 -1.37 - -0.15 3.07 10.12 0.00 -1.37 -	Meter Reading Loss Loss Factor Gain EBW (B for FCC) OBW (B for IC) [dBm] [dB] [dB] [dB] [dB] [MHz] [MHz] -0.07 3.05 10.12 0.00 -1.37 - 17.683 -0.06 3.06 10.12 0.00 -1.37 - 17.835 -0.15 3.07 10.12 0.00 -1.37 - 17.750	Meter Reading Loss Loss Facor Gain EBW (B for FCC) OBW (B for FCC) Res (B for FCC) [dBm] [dB] [dB] [dB] [dBi] [MHz] [MHz] [dBm] -0.07 3.05 10.12 0.00 -1.37 - 17.768 13.10 -0.06 3.06 10.12 0.00 -1.37 - 17.835 13.12 -0.15 3.07 10.12 0.00 -1.37 - 17.750 13.04	Meter Loss Loss Factor Gain EBW OBW Result [dBm] [dB] [dB] [dB] [dB] [Metric [Metri [Metri	Power Meter Cable Loss Atten. Duty Factor Antenna Gain 26 dB EBW 99% Conducted Power [dBm] Loss Factor Gain EBW OBW Result Limit [dBm] [dB] [dB] [dB] [dB] [MHz] [MHz] [MHz] [MB] [mW] [dBm] -0.07 3.05 10.12 0.00 -1.37 - 17.768 13.10 20.42 30.00 -0.06 3.06 10.12 0.00 -1.37 - 17.835 13.12 20.51 30.00 -0.15 3.07 10.12 0.00 -1.37 - 17.750 13.04 20.14 30.00	Power Meter Cable Loss Atten. Duty Factor Antenna Gain 26 dB EBW 99% Conducted Power [dBm] [dB] [dB] [dB] [dB] [Bar EBW OBW Result Limit Margin [dBm] [dB] [dB] [dB] [dBi] [MHz] [MHz] [dBm] [mW] [dBm] [dB] -0.07 3.05 10.12 0.00 -1.37 - 17.768 13.10 20.42 30.00 16.89 -0.15 3.07 10.12 0.00 -1.37 - 17.750 13.04 20.14 30.00 16.96	Power Meter Cable Loss Atten. Duty Factor Antenna Gain 26 dB EBW (B for FCC) 99% Conducted Power Margin Result [dBm] [dB] [dB] [dB] [dB] [dB] [MHz] [MHz] [dBm] [mW] [dBm] [dB] [d	Power Cable Atten. Duty Antenna 26 dB 99% Conducted Power i.i. Meter Loss Loss Factor Gain EBW OBW Result Limit Margin Result [dBm] [dB] [dB] [dB] [dB] [MHz] [MHz] [dBm] [mW] [dBm] [dB] [dBm] [mW] [dBm] [mW] [dBm] [mW] [dBm] [mW] [mW]	Meter Loss Loss Factor Gain EBW OBW Result Limit Margin Result <t< td=""></t<>

Sample Calculation:

Conducted Power Result = Reading + Cable Loss (including the cable(s) customer supplied) + Atten. Loss + Duty Factor

e.i.r.p. Result = Conducted Power Result + Antenna Gain

Conducted Power Limit (5725 MHz-5850 MHz) = 1W

Test report No.	: 13328641H-B-R2
Page	: 31 of 74
Issued date	: July 8, 2020
FCC ID	: AJDK115

Report No.	13328641H
Test place	Ise EMC Lab. No.3 Measurement Room
Date	May 7, 2020
Temperature / Humidity	21 deg. C / 50 % RH
Engineer	Junki Nagatomi
Mode	Tx 11ac-20

									Applied	limit: 15	407, mob	ile and po	rtable clie	ent device
Power	Cable	Atten.	Duty	Antenna	26 dB	99%		Conduct	ed Power			e.i.1	r.p.	
Meter	Loss	Loss	Factor	Gain	EBW	OBW	Res	sult	Limit	Margin	Res	sult	Limit	M argin
Reading					(B for FCC)	(B for IC)								
[dBm]	[dB]	[dB]	[dB]	[dBi]	[MHz]	[MHz]	[dBm]	[mW]	[dBm]	[dB]	[dBm]	[mW]	[dBm]	[dB]
-0.02	3.05	10.12	0.00	-1.37	-	17.802	13.15	20.65	30.00	16.85	11.78	15.07	36.00	24.22
-0.02	3.06	10.12	0.00	-1.37	-	17.781	13.16	20.70	30.00	16.84	11.79	15.10	36.00	24.21
-0.12	3.07	10.12	0.00	-1.37	-	17.723	13.07	20.28	30.00	16.93	11.70	14.79	36.00	24.30
	Meter Reading [dBm] -0.02 -0.02	Meter Loss Reading [dBm] [dBm] [dB] -0.02 3.05 -0.02 3.06 -0.12 3.07	Meter Loss Loss [dBm] [dB] [dB] -0.02 3.05 10.12 -0.12 3.07 10.12	Meter Loss Factor Reading [dBm] [dB] [dB] -0.02 3.05 10.12 0.00 -0.02 3.06 10.12 0.00 -0.12 3.07 10.12 0.00	Meter Reading Loss Factor Gain [dBm] [dB] [dB] [dB] [dB] -0.02 3.05 10.12 0.00 -1.37 -0.02 3.07 10.12 0.00 -1.37	Meter Reading Loss Factor Gain EBW (B for FCC) [dBm] [dB] [dB] [dB] [dB] [MHz] -0.02 3.05 10.12 0.00 -1.37 - -0.12 3.07 10.12 0.00 -1.37 -	Meter Reading Loss Factor Gain EBW (B for FCC) OBW (B for IC) [dBm] [dB] [dB] [dB] [dB] [MHz] [MHz] -0.02 3.05 10.12 0.00 -1.37 - 17.802 -0.12 3.07 10.12 0.00 -1.37 - 17.781	Meter Reading Loss Loss Facor Gain EBW (B for FCC) OBW (B for FCC) Res (B for FCC) [dBm] [dB] [dB] [dB] [dB] [MHz] [MHz] [dBm] -0.02 3.05 10.12 0.00 -1.37 - 17.802 13.15 -0.02 3.06 10.12 0.00 -1.37 - 17.781 13.16 -0.12 3.07 10.12 0.00 -1.37 - 17.723 13.07	Meter Loss Loss Factor Gain EBW OBW Result [dBm] [dB] [dB] [dB] [dBi] [MHz] [MHz] [dBm] [mW] -0.02 3.05 10.12 0.00 -1.37 - 17.802 13.15 20.65 -0.02 3.06 10.12 0.00 -1.37 - 17.781 13.16 20.70 -0.12 3.07 10.12 0.00 -1.37 - 17.723 13.07 20.28	Power Meter Cable Loss Atten. Duty Factor Antenna Gain 26 dB EBW 99% Conducted Power [dBm] Loss Factor Gain EBW OBW Result Limit [dBm] [dB] [dB] [dB] [dB] [MHz] [MHz] [MHz] [MBm] -0.02 3.05 10.12 0.00 -1.37 - 17.802 13.15 20.65 30.00 -0.12 3.07 10.12 0.00 -1.37 - 17.781 13.16 20.70 30.00	Power Meter Cable Loss Atten. Duty Factor Antenna Gain 26 dB EBW 99% Conducted Power [dBm] [dB] [dB] [dB] [dB] [Bar] [Bar] [Bar] [Bar] [MHz] [MHz] [dBm] [mW] [dBm] [dB] -0.02 3.05 10.12 0.00 -1.37 - 17.802 13.15 20.65 30.00 16.84 -0.12 3.07 10.12 0.00 -1.37 - 17.723 13.07 20.28 30.00 16.93	Power Meter Cable Loss Atten. Duty Factor Antenna Gain 26 dB EBW (B for FCC) 99% Conducted Power Margin Result Imit Margin Result [dBm] [dB] [dB] [dB] [dB] [MHz] [MHz] [MHz] [dBm] [mW] [dBm] [dB] [dBm] -0.02 3.05 10.12 0.00 -1.37 - 17.802 13.15 20.65 30.00 16.85 11.78 -0.02 3.06 10.12 0.00 -1.37 - 17.781 13.16 20.70 30.00 16.84 11.79 -0.12 3.07 10.12 0.00 -1.37 - 17.723 13.07 20.28 30.00 16.93 11.70	Power Cable Atten. Duty Antenna 26 dB 99% Conducted Power i.i. Meter Loss Loss Factor Gain EBW OBW Result Limit Margin Result ei.i. Reading [dB] [dB] [dB] [dB] [MHz] [MHz] [dBm] [mW] [dBm] [dB] [dBm] [mW] -0.02 3.05 10.12 0.00 -1.37 - 17.781 13.16 20.70 30.00 16.85 11.78 15.07 -0.02 3.06 10.12 0.00 -1.37 - 17.781 13.16 20.70 30.00 16.84 11.79 15.10 -0.12 3.07 10.12 0.00 -1.37 - 17.723 13.07 20.28 30.00 16.93 11.70 14.79	Meter Loss Loss Factor Gain EBW OBW Result Limit Margin Result <t< td=""></t<>

Sample Calculation:

Conducted Power Result = Reading + Cable Loss (including the cable(s) customer supplied) + Atten. Loss + Duty Factor

e.i.r.p. Result = Conducted Power Result + Antenna Gain

Conducted Power Limit (5725 MHz-5850 MHz) = 1W

Test report No.	: 13328641H-B-R2
Page	: 32 of 74
Issued date	: July 8, 2020
FCC ID	: AJDK115

Report No.	13328641H
Test place	Ise EMC Lab. No.3 Measurement Room
Date	May 7, 2020
Temperature / Humidity	21 deg. C / 50 % RH
Engineer	Junki Nagatomi
Mode	Tx 11n-40

11n-40										Applied	limit: 15	407, mob	ile and po	rtable clie	nt device
Tested	Power	Cable	Atten.	Duty	Antenna	26 dB	99%		Conducte	ed Power			e.i.1	r.p.	
Frequency	Meter	Loss	Loss	Factor	Gain	EBW	OBW	Res	sult	Limit	Margin	Res	sult	Limit	M argin
	Reading					(B for FCC)	(B for IC)								_
[MHz]	[dBm]	[dB]	[dB]	[dB]	[dBi]	[MHz]	[MHz]	[dBm]	[mW]	[dBm]	[dB]	[dBm]	[mW]	[dBm]	[dB]
5755	-1.13	3.06	10.12	0.00	-1.37	-	36.211	12.05	16.03	30.00	17.95	10.68	11.69	36.00	25.32
5795	-1.12	3.06	10.12	0.00	-1.37	-	36.234	12.06	16.07	30.00	17.94	10.69	11.72	36.00	25.31

Sample Calculation:

Conducted Power Result = Reading + Cable Loss (including the cable(s) customer supplied) + Atten. Loss + Duty Factor

e.i.r.p. Result = Conducted Power Result + Antenna Gain

Conducted Power Limit (5725 MHz-5850 MHz) = 1 W

Test report No.	: 13328641H-B-R2
Page	: 33 of 74
Issued date	: July 8, 2020
FCC ID	: AJDK115

Report No.	13328641H
Test place	Ise EMC Lab. No.3 Measurement Room
Date	May 7, 2020
Temperature / Humidity	21 deg. C / 50 % RH
Engineer	Junki Nagatomi
Mode	Tx 11ac-40

11ac-40 Applied limit: 15.407, mobile and portable client device														
Power	Cable	Atten.	Duty	Antenna	26 dB	99%		Conducto	ed Power			e.i.1	r.p.	
Meter	Loss	Loss	Factor	Gain	EBW	OBW	Res	sult	Limit	Margin	Res	sult	Limit	Margin
Reading					(B for FCC)	(B for IC)								
[dBm]	[dB]	[dB]	[dB]	[dBi]	[MHz]	[MHz]	[dBm]	[mW]	[dBm]	[dB]	[dBm]	[mW]	[dBm]	[dB]
-1.12	3.06	10.12	0.00	-1.37	-	36.230	12.06	16.07	30.00	17.94	10.69	11.72	36.00	25.31
-1.10	3.06	10.12	0.00	-1.37	-	36.290	12.08	16.14	30.00	17.92	10.71	11.78	36.00	25.29
	Meter Reading [dBm] -1.12	Meter Loss Reading [dBm] [dBm] [dB] -1.12 3.06 -1.10 3.06	Meter Loss Reading - [dBm] [dB] -1.12 3.06 -1.10 3.06	Meter Loss Loss Factor Reading [dBm] [dB] [dB] [dB] -1.12 3.06 10.12 0.00	Meter Reading Loss Factor Gain [dBm] [dB] [dB] [dB] [dB] -1.12 3.06 10.12 0.00 -1.37	Meter Reading Loss Factor Gain EBW (B for FCC) [dBm] [dB] [dB] [dB] [dB] [MHz] -1.12 3.06 10.12 0.00 -1.37 -	Meter Reading Loss Factor Gain EBW OBW [dBm] [dB] [dB]	Meter Loss Loss Facor Gain EBW OBW Res Reading - - - - (B for FCC) (B for IC) (B for IC) [dBm] [dB] [dB] [dB] [dBi] [MHz] [MHz] [dBm] -1.12 3.06 10.12 0.00 -1.37 - 36.230 12.06	Meter Loss Loss Factor Gain EBW OBW Result Reading - - 6 -	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	PowerCableAtten.DutyAntenna26 dB99% \Box Conducted Power $e.i.$ MeterLossLossFactorGainEBWOBWResultLimitMarginResulte.i.Reading(BB)[dB][dB][dB][MHz][MHz][dBm][mW][dBm][dB][dBm][mW]-1.123.0610.120.00-1.37-36.23012.0616.0730.0017.9410.6911.72	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

Sample Calculation:

Conducted Power Result = Reading + Cable Loss (including the cable(s) customer supplied) + Atten. Loss + Duty Factor

e.i.r.p. Result = Conducted Power Result + Antenna Gain

Conducted Power Limit (5725 MHz-5850 MHz) = 1 W

Test report No.	: 13328641H-B-R2
Page	: 34 of 74
Issued date	: July 8, 2020
FCC ID	: AJDK115

Report No.	13328641H
Test place	Ise EMC Lab. No.3 Measurement Room
Date	May 7, 2020
Temperature / Humidity	21 deg. C / 50 % RH
Engineer	Junki Nagatomi
Mode	Tx 11ac-80

11ac-80

Applied limit: 15.407, mobile and portable client device

Tested	Power	Cable	Atten.	Duty	Antenna	26 dB	99%		Conducte	ed Power			e.i.1	:.р.	
Frequency	Meter	Loss	Loss	Factor	Gain	EBW	OBW	Res	ult	Limit	Margin	Res	sult	Limit	M argin
	Reading					(B for FCC)	(B for IC)								
[MHz]	[dBm]	[dB]	[dB]	[dB]	[dBi]	[MHz]	[MHz]	[dBm]	[mW]	[dBm]	[dB]	[dBm]	[mW]	[dBm]	[dB]
5775	-5.94	3.06	10.12	0.00	-1.37	-	76.317	7.24	5.30	30.00	22.76	5.87	3.86	36.00	30.13

Sample Calculation:

 $Conducted \ Power \ Result = Reading + Cable \ Loss \ (including \ the \ cable(s) \ customer \ supplied) + Atten. \ Loss \ + \ Duty \ Factor$

e.i.r.p. Result = Conducted Power Result + Antenna Gain

Conducted Power Limit (5725 MHz-5850 MHz) = 1W

Test report No.	: 13328641H-B-R2
Page	: 35 of 74
Issued date	: July 8, 2020
FCC ID	: AJDK115

Report No.13328641HTest placeIse EMC Lab. No.6 Measurement RoomDateApril 20, 2020Temperature / Humidity23 deg. C / 38 % RHEngineerJunya OkunoModeTx

11a	5745 MH	z
Rate	Reading	Remark
[Mbps]	[dBm]	
6	0.00	
9	0.03	
12	-0.02	
18	-0.03	
24	-0.07	
36	0.00	
48	0.08	
54	0.09	*

*: Worst Rate

11n-20	5745 MHz	z			
MCS	Reading	Remark			
	[dBm]				
0	0.03				
1	0.09				
2	0.15				
3	0.16				
4	0.24				
5	0.25				
6	0.28				
7	0.31	*			
*: Worst Rate					

11ac-20	5745 MHz	z
MCS	Reading	Remark
	[dBm]	
0	-0.01	
1	0.04	
2	0.08	
3	0.03	
4	0.14	
5	0.18	
6	0.19	
7	0.24	*
8	-5.75	
*· Worst I	2 ate	

*: Worst Rate

Cable Loss and Attenuator Loss are included in the P/M(AV) Reading All comparisons were carried out on same frequency and meas

The difference between the worst rate check data and formal test results is due to the different test condition.

Test report No.	: 13328641H-B-R2
Page	: 36 of 74
Issued date	: July 8, 2020
FCC ID	: AJDK115

Report No. Test place	13328641H Ise EMC Lab. No.6 Measurement Room
Date	April 20, 2020
Temperature / Humidity	23 deg. C / 38 % RH
Engineer	Junya Okuno
Mode	Tx

11n-40	5755 MH	Z
MCS	Reading	Remark
	[dBm]	
0	-1.02	
1	-1.02	
2	-0.98	
3	-1.02	
4	-0.95	
5	-0.89	
6	-0.89	
7	-0.84	*

*: Worst Rate

11ac-40	5755 MH	Z			
MCS	Reading	Remark			
	[dBm]				
0	-0.97				
1	-1.05				
2	-1.09				
3	-0.99				
4	-0.97				
5	-0.99				
6	-0.92				
7	-0.85	*			
8	-5.78				
9	-5.73				
*: Worst Rate					

11ac-80	5775 MHz	
MCS	Reading	Remark
	-	
	[dBm]	
0	-5.44	*
1	-5.96	
2	-5.92	
3	-5.50	
4	-5.99	
5	-5.92	
6	-5.92	
7	-5.85	
8	-5.86	
9	-5.85	
*: Worst Rate		

Cable Loss and Attenuator Loss are included in the $\ensuremath{P/M(AV)}\xspace$ Reading All comparisons were carried out on same frequency and measured

The difference between the worst rate check data and formal test results is due to the different test condition.

Report No.	13328641H
Test place	Ise EMC Lab. No.3 Measurement Room
Date	May 7, 2020
Temperature / Humidity	21 deg. C / 50 % RH
Engineer	Junki Nagatomi
Mode	Tx 11a

Antenna 1

Tested	Power	Cable	Atten.	Result	
Frequency	Meter	Loss	Loss	(Burst power average)	
	Reading				
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]
5745	-0.41	3.05	10.12	12.76	18.88
5785	-0.35	3.06	10.12	12.83	19.19
5825	-0.36	3.07	10.12	12.83	19.19

Sample Calculation:

Result (Burst power average) = Reading + Cable Loss (including the cable(s) customer supplied) + Atten. Loss

The average output power was measured with the lowest order modulation and lowest data rate configuration in each IEEE 802.11 mode based on KDB 248227 D01.

Report No.	13328641H
Test place	Ise EMC Lab. No.3 Measurement Room
Date	May 7, 2020
Temperature / Humidity	21 deg. C / 50 % RH
Engineer	Junki Nagatomi
Mode	Tx 11n-20

Antenna 1

Tested	Power	Cable	Atten.	Result		
Frequency	Meter	Loss	Loss	(Burst power average)		
	Reading					
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	
5745	-0.24	3.05	10.12	12.93	19.63	
5785	-0.23	3.06	10.12	12.95	19.72	
5825	-0.32	3.07	10.12	12.87	19.36	
~ 1 ~						

Sample Calculation:

Result (Burst power average) = Reading + Cable Loss (including the cable(s) customer supplied) + Atten. Loss

The average output power was measured with the lowest order modulation and lowest data rate configuration in each IEEE 802.11 mode based on KDB 248227 D01.

Report No.	13328641H
Test place	Ise EMC Lab. No.3 Measurement Room
Date	May 7, 2020
Temperature / Humidity	21 deg. C / 50 % RH
Engineer	Junki Nagatomi
Mode	Tx 11ac-20

Antenna 1

Tested	Power	Cable	Atten.	Result			
Frequency	Meter	Loss	Loss	(Burst power average)			
	Reading						
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]		
5745	-0.22	3.05	10.12	12.95	19.72		
5785	-0.20	3.06	10.12	12.98	19.86		
5825	-0.30	3.07	10.12	12.89	19.45		
~ 1 ~							

Sample Calculation:

Result (Burst power average) = Reading + Cable Loss (including the cable(s) customer supplied) + Atten. Loss

The average output power was measured with the lowest order modulation and lowest data rate configuration in each IEEE 802.11 mode based on KDB 248227 D01.

Report No. Test place	13328641H Ise EMC Lab. No.3 Measurement Room
Date	May 7, 2020
Temperature / Humidity	21 deg. C / 50 % RH
Engineer	Junki Nagatomi
Mode	Tx 11n-40

Antenna 1						
Tested	Power	Cable	Atten.	Result		
Frequency	Meter	Loss	Loss	(Burst power average)		
_	Reading					
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	
5755	-1.42	3.06	10.12	11.76	15.00	
5795	-1.29	3.06	10.12	11.89	15.45	

Sample Calculation:

Result (Burst power average) = Reading + Cable Loss (including the cable(s) customer supplied) + Atten. Loss

The average output power was measured with the lowest order modulation and lowest data rate configuration in each IEEE 802.11 mode based on KDB 248227 D01.

Report No. Test place	13328641H Ise EMC Lab. No.3 Measurement Room
Date	May 7, 2020
Temperature / Humidity	21 deg. C / 50 % RH
Engineer	Junki Nagatomi
Mode	Tx 11ac-40

_	Antenna 1						
	Tested	Power	Cable	Atten.	Result		
	Frequency	Meter	Loss	Loss	(Burst power average)		
		Reading					
	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	
	5755	-1.44	3.06	10.12	11.74	14.93	
	5795	-1.36	3.06	10.12	11.82	15.21	

Sample Calculation:

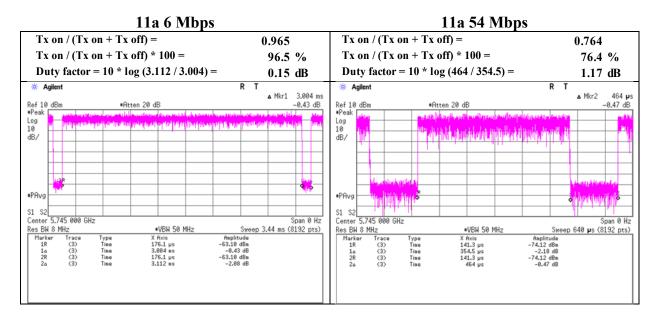
Result (Burst power average) = Reading + Cable Loss (including the cable(s) customer supplied) + Atten. Loss

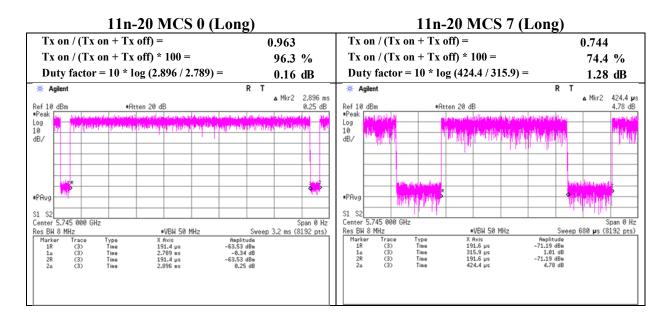
The average output power was measured with the lowest order modulation and lowest data rate configuration in each IEEE 802.11 mode based on KDB 248227 D01.

Report No. Test place	13328641H Ise EMC Lab. No.3 Measurement Room
Date	May 7, 2020
Temperature / Humidity	21 deg. C / 50 % RH
Engineer	Junki Nagatomi
Mode	Tx 11ac-80

Antenna 1							
Tested	Power	Cable	Atten.	Re	sult		
Frequency	Meter	Loss	Loss	(Burst power average			
	Reading						
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]		
5775	-5.94	3.06	10.12	7.24	5.30		

Sample Calculation:

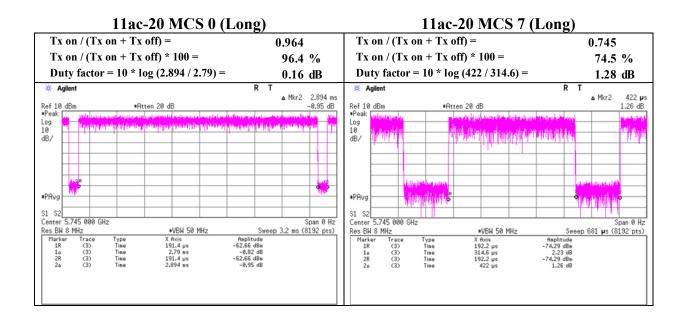

Result (Burst power average) = Reading + Cable Loss (including the cable(s) customer supplied) + Atten. Loss

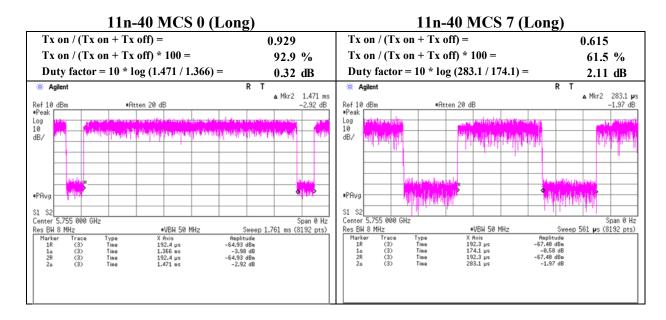

The average output power was measured with the lowest order modulation and lowest data rate configuration in each IEEE 802.11 mode based on KDB 248227 D01.

Test report No.	: 13328641H-B-R2
Page	: 43 of 74
Issued date	: July 8, 2020
FCC ID	: AJDK115

Burst rate confirmation

13328641H
Ise EMC Lab. No.6 Measurement Room
April 23, 2020
24 deg. C / 23 % RH
Yuta Moriya
Tx

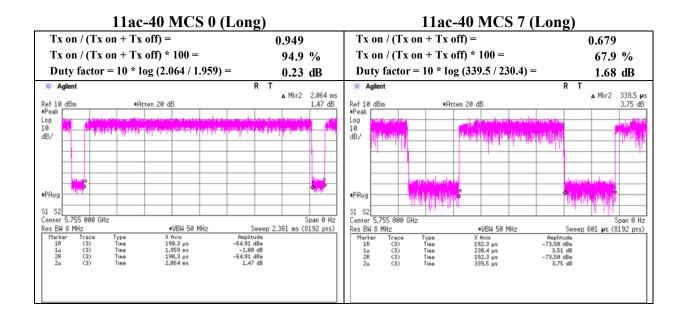


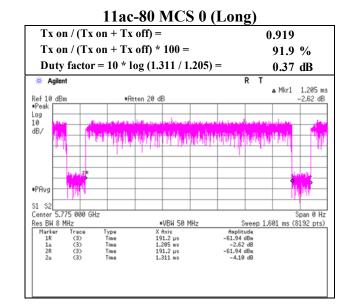


Test report No.	: 13328641H-B-R2
Page	: 44 of 74
Issued date	: July 8, 2020
FCC ID	: AJDK115

Burst rate confirmation

Report No.	13328641H
Test place	Ise EMC Lab. No.6 Measurement Room
Date	April 23, 2020
Temperature / Humidity	24 deg. C / 23 % RH
Engineer	Yuta Moriya
Mode	Tx





Test report No.	: 13328641H-B-R2
Page	: 45 of 74
Issued date	: July 8, 2020
FCC ID	: AJDK115

Burst rate confirmation

Report No.	13328641H
Test place	Ise EMC Lab. No.6 Measurement Room
Date	April 23, 2020
Temperature / Humidity	24 deg. C / 23 % RH
Engineer	Yuta Moriya
Mode	Tx

Test report No.	: 13328641H-B-R2
Page	: 46 of 74
Issued date	: July 8, 2020
FCC ID	: AJDK115

Report No.	13328641H
Test place	Ise EMC Lab. No.6 Measurement Room
Date	April 23, 2020
Temperature / Humidity	24 deg. C / 23 % RH
Engineer	Yuta Moriya
Mode	Tx 11a

Antenna 1 Applied limit: 15.407, mobile and portable client device										ent device		
Tested	PSD	Cable	Atten.	Duty	Antenna	RBW	PSI	PSD (Conducted) PSD (.)
Frequency	Reading	Loss	Loss	Factor	Gain	Correction	Result	Limit	Margin	Result	Limit	Margin
	[dBm					Factor	[dBm	[dBm		[dBm	[dBm	
[MHz]	/MHz]	[dB]	[dB]	[dB]	[dBi]	[dB]	/MHz]	/MHz]	[dB]	/MHz]	/MHz]	[dB]
5745	-14.27	3.05	10.11	1.17	-1.37	0.27	0.33	30.00	29.67	-1.04	36.00	37.04
5785	-13.91	3.06	10.11	1.17	-1.37	0.27	0.70	30.00	29.30	-0.67	36.00	36.67
5825	-14.25	3.07	10.11	1.17	-1.37	0.27	0.37	30.00	29.63	-1.00	36.00	37.00

Sample Calculation:

PSD: Power Spectral Density

The PSD within 5725 MHz to 5825 MHz are based on any 500 kHz band.

RBW Correction Factor = 10 * log (Specified bandwidth / Measured bandwidth)

PSD Result (Conducted) = Reading + Cable Loss (including the cable(s) customer supplied) + Atten. Loss + Duty Factor + RBW Correction Factor PSD Result (e.i.r.p.) = Conducted PSD Result + Antenna Gain

Test report No.	: 13328641H-B-R2
Page	: 47 of 74
Issued date	: July 8, 2020
FCC ID	: AJDK115

Report No.	13328641H
Test place	Ise EMC Lab. No.6 Measurement Room
Date	April 23, 2020
Temperature / Humidity	24 deg. C / 23 % RH
Engineer	Yuta Moriya
Mode	Tx 11n-20
Wode	1X 1111-20

Antenna 1 Applied limit: 15.407, mobile and portable client device										ent device		
Tested	PSD	Cable	Atten.	Duty	Antenna	RBW	PSI	PSD (Conducted) PSD (e.i				.)
Frequency	Reading	Loss	Loss	Factor	Gain	Correction	Result	Limit	Margin	Result	Limit	Margin
	[dBm					Factor	[dBm	[dBm		[dBm	[dBm	
[MHz]	/MHz]	[dB]	[dB]	[dB]	[dBi]	[dB]	/MHz]	/MHz]	[dB]	/MHz]	/MHz]	[dB]
5745	-14.34	3.05	10.11	1.28	-1.37	0.27	0.37	30.00	29.63	-1.00	36.00	37.00
5785	-14.73	3.06	10.11	1.28	-1.37	0.27	-0.01	30.00	30.01	-1.38	36.00	37.38
5825	-14.37	3.07	10.11	1.28	-1.37	0.27	0.36	30.00	29.64	-1.01	36.00	37.01

Sample Calculation:

PSD: Power Spectral Density

The PSD within 5725 MHz to 5825 MHz are based on any 500 kHz band.

RBW Correction Factor = 10 * log (Specified bandwidth / Measured bandwidth)

PSD Result (Conducted) = Reading + Cable Loss (including the cable(s) customer supplied) + Atten. Loss + Duty Factor + RBW Correction Factor PSD Result (e.i.r.p.) = Conducted PSD Result + Antenna Gain

Test report No.	: 13328641H-B-R2
Page	: 48 of 74
Issued date	: July 8, 2020
FCC ID	: AJDK115

Report No.	13328641H
Test place	Ise EMC Lab. No.6 Measurement Room
Date	April 23, 2020
Temperature / Humidity	24 deg. C / 23 % RH
Engineer	Yuta Moriya
Mode	Tx 11ac-20

Antenna 1 Applied limit: 15.407, mobile and portable client device												
Tested	PSD	Cable	Atten.	Duty	Antenna	RBW	PSD (Conducted)			PSD (e.i.r.p.)		
Frequency	Reading	Loss	Loss	Factor	Gain	Correction	Result	Limit	Margin	Result	Limit	Margin
	[dBm					Factor	[dBm	[dBm		[dBm	[dBm	
[MHz]	/MHz]	[dB]	[dB]	[dB]	[dBi]	[dB]	/MHz]	/MHz]	[dB]	/MHz]	/MHz]	[dB]
5745	-14.28	3.05	10.11	1.28	-1.37	0.27	0.43	30.00	29.57	-0.94	36.00	36.94
5785	-14.45	3.06	10.11	1.28	-1.37	0.27	0.27	30.00	29.73	-1.10	36.00	37.10
5825	-14.23	3.07	10.11	1.28	-1.37	0.27	0.49	30.00	29.51	-0.88	36.00	36.88

Sample Calculation:

PSD: Power Spectral Density

The PSD within 5725 MHz to 5825 MHz are based on any 500 kHz band.

RBW Correction Factor = 10 * log (Specified bandwidth / Measured bandwidth)

PSD Result (Conducted) = Reading + Cable Loss (including the cable(s) customer supplied) + Atten. Loss + Duty Factor + RBW Correction Factor PSD Result (e.i.r.p.) = Conducted PSD Result + Antenna Gain

Test report No.	: 13328641H-B-R2
Page	: 49 of 74
Issued date	: July 8, 2020
FCC ID	: AJDK115

Test placeIse EMC Lab. No.6 Measurement RooDateApril 23, 2020Temperature / Humidity24 deg. C / 23 % RHEngineerYuta MoriyaModeTx 11n-40
--

Antenna 1 Applied limit: 15.407, mobile and portable client device													
Tested	PSD	Cable	Atten.	Duty	Antenna	RBW	PSD (Conducted)			Р	PSD (e.i.r.p.)		
Frequency	Reading	Loss	Loss	Factor	Gain	Correction	Result	Limit	Margin	Result	Limit	Margin	
	[dBm					Factor	[dBm	[dBm		[dBm	[dBm		
[MHz]	/MHz]	[dB]	[dB]	[dB]	[dBi]	[dB]	/MHz]	/MHz]	[dB]	/MHz]	/MHz]	[dB]	
5755	-19.17	3.06	10.11	2.11	-1.37	0.27	-3.62	30.00	33.62	-4.99	36.00	40.99	
5795	-18.98	3.06	10.11	2.11	-1.37	0.27	-3.43	30.00	33.43	-4.80	36.00	40.80	

Sample Calculation:

PSD: Power Spectral Density

The PSD within 5725 MHz to 5825 MHz are based on any 500 kHz band.

RBW Correction Factor = 10 * log (Specified bandwidth / Measured bandwidth)

PSD Result (Conducted) = Reading + Cable Loss (including the cable(s) customer supplied) + Atten. Loss + Duty Factor + RBW Correction Factor PSD Result (e.i.r.p.) = Conducted PSD Result + Antenna Gain

Test report No.	: 13328641H-B-R2
Page	: 50 of 74
Issued date	: July 8, 2020
FCC ID	: AJDK115

Antenna 1 Applied limit: 15.407, mobile and portable client device											ent device	
Tested	PSD	Cable	Atten.	Duty	Antenna	RBW	PSD (Conducted)			PSD (e.i.r.p.)		
Frequency	Reading	Loss	Loss	Factor	Gain	Correction	Result	Limit	Margin	Result	Limit	Margin
	[dBm					Factor	[dBm	[dBm		[dBm	[dBm	
[MHz]	/MHz]	[dB]	[dB]	[dB]	[dBi]	[dB]	/MHz]	/MHz]	[dB]	/MHz]	/MHz]	[dB]
5755	-18.91	3.06	10.11	1.68	-1.37	0.27	-3.79	30.00	33.79	-5.16	36.00	41.16
5795	-18.72	3.06	10.11	1.68	-1.37	0.27	-3.60	30.00	33.60	-4.97	36.00	40.97

Sample Calculation:

PSD: Power Spectral Density

The PSD within 5725 MHz to 5825 MHz are based on any 500 kHz band.

RBW Correction Factor = $10 * \log$ (Specified bandwidth / Measured bandwidth)

PSD Result (Conducted) = Reading + Cable Loss (including the cable(s) customer supplied) + Atten. Loss + Duty Factor + RBW Correction Factor PSD Result (e.i.r.p.) = Conducted PSD Result + Antenna Gain

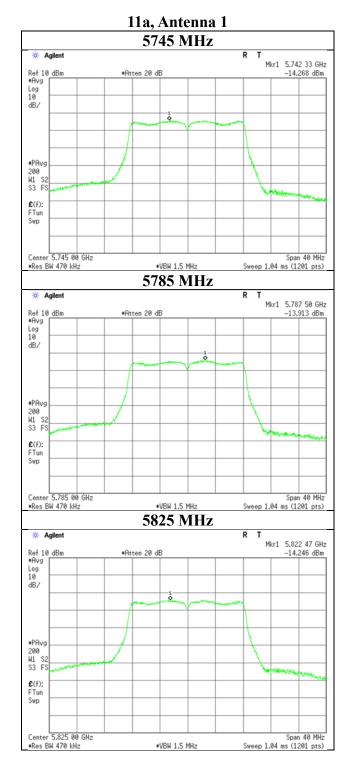
Test report No.	: 13328641H-B-R2
Page	: 51 of 74
Issued date	: July 8, 2020
FCC ID	: AJDK115

Report No.	13328641H
Test place	Ise EMC Lab. No.6 Measurement Room
Date	April 23, 2020
Temperature / Humidity	24 deg. C / 23 % RH
Engineer	Yuta Moriya
Mode	Tx 11ac 80
Mode	Tx 11ac-80

Antenna 1 Applied limit: 15.407, mobile and portable client device											ent device		
Tested	PSD	Cable	Atten.	Duty	Antenna	RBW	PSD (Conducted)			Р	PSD (e.i.r.p.)		
Frequency	Reading	Loss	Loss	Factor	Gain	Correction	Result	Limit	Margin	Result	Limit	M argin	
	[dBm					Factor	[dBm	[dBm		[dBm	[dBm		
[MHz]	/MHz]	[dB]	[dB]	[dB]	[dBi]	[dB]	/MHz]	/MHz]	[dB]	/MHz]	/MHz]	[dB]	
5775	-26.28	3.06	10.11	0.37	-1.37	0.27	-12.47	30.00	42.47	-13.84	36.00	49.84	

Sample Calculation:

PSD: Power Spectral Density

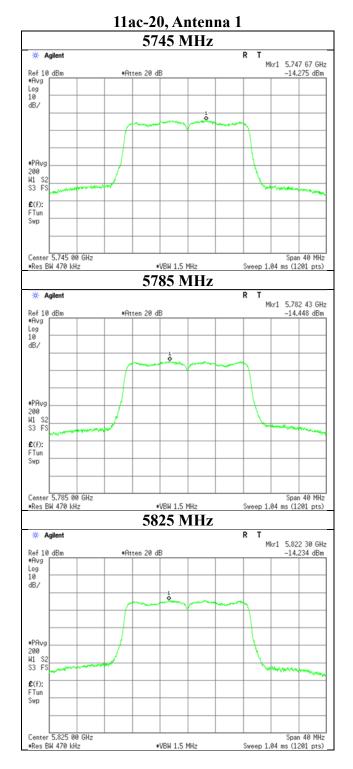

The PSD within 5725 MHz to 5825 MHz are based on any 500 kHz band.

RBW Correction Factor = 10 * log (Specified bandwidth / Measured bandwidth)

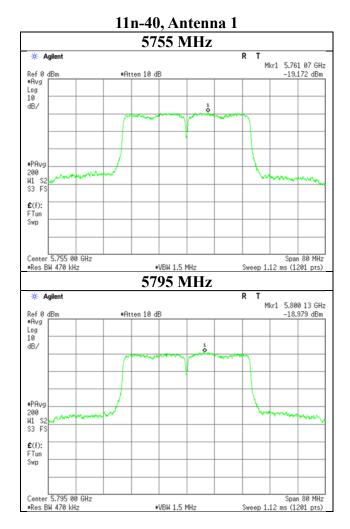
PSD Result (Conducted) = Reading + Cable Loss (including the cable(s) customer supplied) + Atten. Loss + Duty Factor + RBW Correction Factor PSD Result (e.i.r.p.) = Conducted PSD Result + Antenna Gain

Test report No.	: 13328641H-B-R2
Page	: 52 of 74
Issued date	: July 8, 2020
FCC ID	: AJDK115

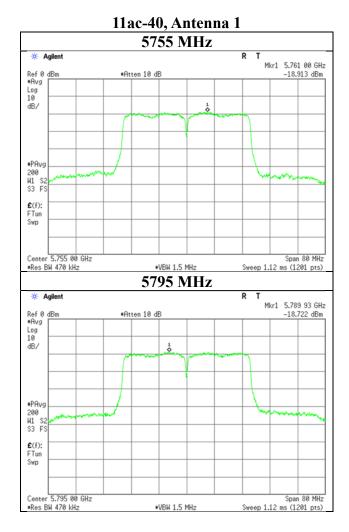
Report No.	13328641H
Test place	Ise EMC Lab. No.6 Measurement Room
Date	April 23, 2020
Temperature / Humidity	24 deg. C / 23 % RH
Engineer	Yuta Moriya
Mode	Tx 11a


Test report No.	: 13328641H-B-R2
Page	: 53 of 74
Issued date	: July 8, 2020
FCC ID	: AJDK115

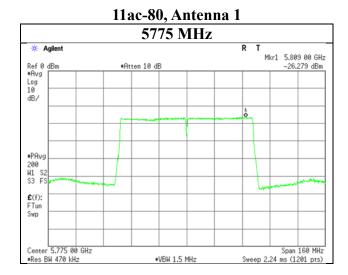
Report No.	13328641H
Test place	Ise EMC Lab. No.6 Measurement Room
Date	April 23, 2020
Temperature / Humidity	24 deg. C / 23 % RH
Engineer	Yuta Moriya
Mode	Tx 11n-20


Test report No.	: 13328641H-B-R2
Page	: 54 of 74
Issued date	: July 8, 2020
FCC ID	: AJDK115

Report No.	13328641H
Test place	Ise EMC Lab. No.6 Measurement Room
Date	April 23, 2020
Temperature / Humidity	24 deg. C / 23 % RH
Engineer	Yuta Moriya
Mode	Tx 11ac-20


Test report No.	: 13328641H-B-R2
Page	: 55 of 74
Issued date	: July 8, 2020
FCC ID	: AJDK115

Report No. Test place Date Temperature / Humidity Engineer	13328641H Ise EMC Lab. No.6 Measurement Room April 23, 2020 24 deg. C / 23 % RH Yuta Moriya
Mode	Tx 11n-40


Test report No.	: 13328641H-B-R2
Page	: 56 of 74
Issued date	: July 8, 2020
FCC ID	: AJDK115

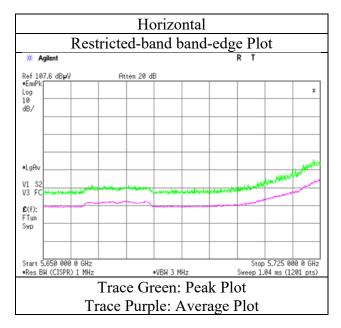
Report No.	13328641H
Test place	Ise EMC Lab. No.6 Measurement Room
Date	April 23, 2020
Temperature / Humidity	24 deg. C / 23 % RH
Engineer	Yuta Moriya
Mode	Tx 11ac-40

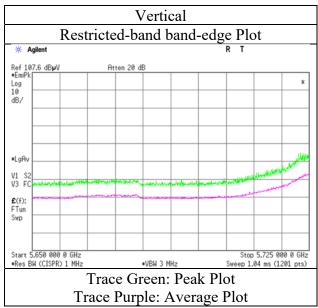
Test report No.	: 13328641H-B-R2
Page	: 57 of 74
Issued date	: July 8, 2020
FCC ID	: AJDK115

Report No. Test place	13328641H Ise EMC Lab. No.6 Measurement Room
Date	April 23, 2020
Temperature / Humidity	24 deg. C / 23 % RH
Engineer	Yuta Moriya
Mode	Tx 11ac-80

Test report No.	: 13328641H-B-R2
Page	: 58 of 74
Issued date	: July 8, 2020
FCC ID	: AJDK115

Report No.	13328641H
Test place	Ise EMC Lab.
Semi Anechoic Chamber	No.4
Date	May 2, 2020
Temperature / Humidity	22 deg. C / 53 % RH
Engineer	Junki Nagatomi
	(1 GHz - 40 GHz)
Mode	Tx 11ac-20 5745 MHz


Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	5650.000	PK	41.6	32.3	6.3	31.4	-	48.9	68.2	19.3	
Hori.	5672.917	PK	46.7	32.4	6.4	31.4	-	54.1	85.2	31.2	
Hori.	5700.000	PK	46.6	32.5	6.4	31.4	-	54.0	105.2	51.2	
Hori.	5720.000	PK	56.1	32.5	6.4	31.4	-	63.7	110.8	47.2	
Hori.	5725.000	PK	64.3	32.5	6.4	31.4	-	71.8	122.2	50.4	
Hori.	11490.000	PK	42.5	40.1	-1.7	33.3	-	47.6	73.9	26.3	Floor noise
Hori.	17235.000	PK	43.9	41.6	0.0	32.7	-	52.8	68.2	15.4	Floor noise
Hori.	11490.000	AV	33.8	40.1	-1.7	33.3	-	38.9	53.9	15.0	Floor noise
Vert.	5650.000	PK	41.2	32.3	6.3	31.4	-	48.5	68.2	19.7	
Vert.	5672.917	PK	44.9	32.4	6.4	31.4	-	52.3	85.2	33.0	
Vert.	5700.000	PK	45.3	32.5	6.4	31.4	-	52.8	105.2	52.4	
Vert.	5720.000	PK	57.0	32.5	6.4	31.4	-	64.5	110.8	46.3	
Vert.	5725.000	PK	62.6	32.5	6.4	31.4	-	70.1	122.2	52.1	
Vert.	11490.000	PK	42.3	40.1	-1.7	33.3	-	47.4	73.9	26.5	Floor noise
Vert.	17235.000	PK	44.5	41.6	0.0	32.7	-	53.4	68.2	14.8	Floor noise
Vert.	11490.000	AV	33.8	40.1	-1.7	33.3	-	38.9	53.9	15.0	Floor noise


Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

Distance factor: 1 GHz - 10 GHz 20log (3.85 m / 3.0 m) = 2.17 dB 10 GHz - 40 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

Report No.	13328641H
Test place	Ise EMC Lab.
Semi Anechoic Chamber	No.4
Date	1.011
	May 2, 2020
1 5	
6	6
Mode	Tx 11ac-20 5745 MHz
Temperature / Humidity Engineer Mode	22 deg. C / 53 % RH Junki Nagatomi Tx 11ac-20 5745 MHz

* The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge was shown in tabular data.

Test report No.	: 13328641H-B-R2
Page	: 60 of 74
Issued date	: July 8, 2020
FCC ID	: AJDK115

Report No.	13328641H	
Test place	Ise EMC Lab.	
Semi Anechoic Chamber	No.4	No.4
Date	May 2, 2020	May 5, 2020
Temperature / Humidity	22 deg. C / 53 % RH	23 deg. C / 43 % RH
Engineer	Junki Nagatomi	Ken Fujita
	(1 GHz - 40 GHz)	(Below 1 GHz)
Mode	Tx 11ac-20 5785 MHz	

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	74.253	QP	32.0	6.4	7.8	32.0	-	14.3	40.0	25.8	
Hori.	85.999	QP	32.3	7.9	7.9	31.9	-	16.2	40.0	23.9	
Hori.	172.101	QP	34.1	15.9	8.8	31.9	-	26.9	43.5	16.6	
Hori.	196.644	QP	35.0	16.5	9.0	31.8	-	28.7	43.5	14.8	
Hori.	208.674	QP	38.1	11.2	9.1	31.8	-	26.6	43.5	16.9	
Hori.	294.670	QP	40.2	13.5	9.7	31.8	-	31.6	46.0	14.4	
Hori.	11570.000	PK	42.1	39.9	-1.7	33.3	-	47.0	73.9	26.9	Floor noise
Hori.	17355.000	PK	44.0	42.7	0.1	32.8	-	54.0	68.2	14.2	
Hori.	11570.000	AV	34.3	39.9	-1.7	33.3	-	39.2	53.9	14.7	Floor noise
Vert.	74.253	QP	25.4	6.4	7.8	32.0	-	7.7	40.0	32.4	
Vert.	85.999	QP	29.3	7.9	7.9	31.9	-	13.2	40.0	26.9	
Vert.	172.101	QP	32.3	15.9	8.8	31.9	-	25.1	43.5	18.4	
Vert.	196.644	QP	37.2	16.5	9.0	31.8	-	30.9	43.5	12.6	
Vert.	208.674	QP	43.1	11.2	9.1	31.8	-	31.6	43.5	11.9	
Vert.	294.670	QP	42.4	13.5	9.7	31.8	-	33.8	46.0	12.2	
Vert.	11570.000	PK	42.8	39.9	-1.7	33.3	-	47.7	73.9	26.2	Floor noise
Vert.	17355.000	PK	44.1	42.7	0.1	32.8	-	54.1	68.2	14.1	
Vert.	11570.000	AV	34.3	39.9	-1.7	33.3	-	39.2	53.9	14.7	Floor noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

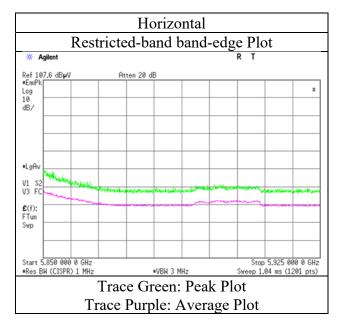
Distance factor:

1 GHz - 10 GHz 20log (3.85 m / 3.0 m) = 2.17 dB 10 GHz - 40 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

Test report No.	: 13328641H-B-R2
Page	: 61 of 74
Issued date	: July 8, 2020
FCC ID	: AJDK115

Report No.	13328641H
Test place	Ise EMC Lab.
Semi Anechoic Chamber	No.4
Date	May 2, 2020
Temperature / Humidity	22 deg. C / 53 % RH
Engineer	Junki Nagatomi
	(1 GHz - 40 GHz)
Mode	Tx 11ac-20 5825 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	M argin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	5850.000	PK	43.9	32.8	6.4	31.4	-	51.7	122.2	70.5	
Hori.	5855.000	PK	52.6	32.8	6.4	31.4	-	60.5	110.8	50.4	
Hori.	5875.000	PK	43.3	32.8	6.5	31.4	-	51.1	105.2	54.1	
Hori.	5896.677	PK	45.9	32.8	6.5	31.4	-	53.7	89.1	35.5	
Hori.	5925.000	PK	42.0	32.8	6.5	31.4	-	49.8	68.2	18.4	
Hori.	11650.000	PK	43.5	39.4	-1.7	33.3	-	47.9	73.9	26.0	Floor noise
Hori.	17475.000	PK	44.2	43.7	0.2	32.8	-	55.2	68.2	13.0	Floor noise
Hori.	11650.000	AV	34.7	39.4	-1.7	33.3	-	39.1	53.9	14.8	Floor noise
Vert.	5850.000	PK	42.5	32.8	6.4	31.4	-	50.3	122.2	71.9	
Vert.	5855.000	PK	49.3	32.8	6.4	31.4	-	57.1	110.8	53.7	
Vert.	5875.000	PK	41.9	32.8	6.5	31.4	-	49.7	105.2	55.5	
Vert.	5896.677	PK	44.0	32.8	6.5	31.4	-	51.8	89.1	37.4	
Vert.	5925.000	PK	41.4	32.8	6.5	31.4	-	49.3	68.2	18.9	
Vert.	11650.000	PK	43.5	39.4	-1.7	33.3	-	47.9	73.9	26.0	Floor noise
Vert.	17475.000	PK	44.0	43.7	0.2	32.8	-	55.1	68.2	13.2	Floor noise
Vert.	11650.000	AV	34.7	39.4	-1.7	33.3	-	39.1	53.9	14.8	Floor noise


Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

Distance factor:

1 GHz - 10 GHz 20log (3.85 m / 3.0 m) = 2.17 dB 10 GHz - 40 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

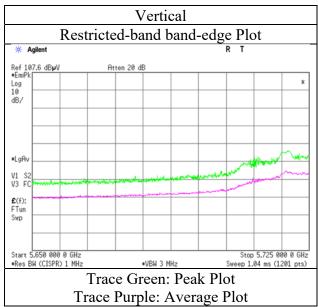
Report No.	13328641H
Test place	Ise EMC Lab.
Semi Anechoic Chamber	No.4
Date	May 2, 2020
Temperature / Humidity	22 deg. C / 53 % RH
Engineer	Junki Nagatomi
Mode	Tx 11ac-20 5825 MHz

* The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge was shown in tabular data.

Test report No.	: 13328641H-B-R2
Page	: 63 of 74
Issued date	: July 8, 2020
FCC ID	: AJDK115

Report No.	13328641H
Test place	Ise EMC Lab.
Semi Anechoic Chamber	No.4
Date	May 2, 2020
Temperature / Humidity	22 deg. C / 53 % RH
Engineer	Junki Nagatomi
	(1 GHz - 40 GHz)
Mode	Tx 11ac-40 5755 MHz


Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	5650.000	PK	42.4	32.3	6.3	31.4	-	49.7	68.2	18.5	
Hori.	5700.000	PK	51.4	32.5	6.4	31.4	-	58.9	105.2	46.4	
Hori.	5720.000	PK	64.3	32.5	6.4	31.4	-	71.8	110.8	39.0	
Hori.	5725.000	PK	64.4	32.5	6.4	31.4	-	71.9	122.2	50.3	
Hori.	11510.000	PK	43.2	40.0	-1.6	33.3	-	48.2	73.9	25.7	Floor noise
Hori.	17265.000	PK	44.5	41.7	0.0	32.8	-	53.6	68.2	14.6	Floor noise
Hori.	11510.000	AV	33.9	40.0	-1.6	33.3	-	39.0	53.9	14.9	Floor noise
Vert.	5650.000	PK	41.5	32.3	6.3	31.4	-	48.8	68.2	19.4	
Vert.	5700.000	PK	49.7	32.5	6.4	31.4	-	57.1	105.2	48.1	
Vert.	5720.000	PK	62.3	32.5	6.4	31.4	-	69.8	110.8	41.0	
Vert.	5725.000	PK	62.7	32.5	6.4	31.4	-	70.2	122.2	52.0	
Vert.	11510.000	PK	43.4	40.0	-1.6	33.3	-	48.4	73.9	25.5	Floor noise
Vert.	17265.000	PK	44.8	41.7	0.0	32.8	-	53.8	68.2	14.4	Floor noise
Vert.	11510.000	AV	33.9	40.0	-1.6	33.3	-	39.0	53.9	14.9	Floor noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

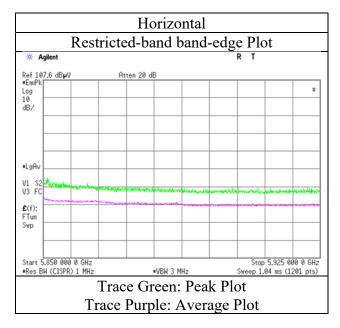
Distance factor:	1 GHz - 10 GHz	20log (3.85 m / 3.0 m) = 2.17 dB
	10 GHz - 40 GHz	$20\log(1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

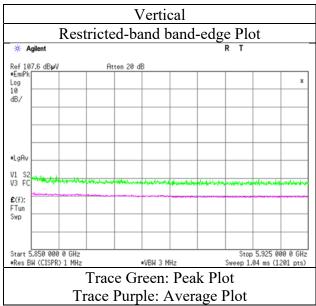
Report No.	13328641H
Test place	Ise EMC Lab.
Semi Anechoic Chamber	No.4
Date	May 2, 2020
Temperature / Humidity	22 deg. C / 53 % RH
Engineer	Junki Nagatomi
Mode	Tx 11ac-40 5755 MHz

* The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge was shown in tabular data.

Test report No.	: 13328641H-B-R2
Page	: 65 of 74
Issued date	: July 8, 2020
FCC ID	: AJDK115


Report No.	13328641H
Test place	Ise EMC Lab.
Semi Anechoic Chamber	No.4
Date	May 2, 2020
Temperature / Humidity	22 deg. C / 53 % RH
Engineer	Junki Nagatomi
	(1 GHz - 40 GHz)
Mode	Tx 11ac-40 5795 MHz

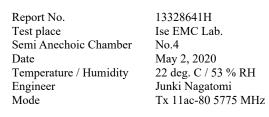

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	5850.000	PK	46.4	32.8	6.4	31.4	-	54.2	122.2	68.0	
Hori.	5855.000	PK	50.2	32.8	6.4	31.4	-	58.1	110.8	52.8	
Hori.	5875.000	PK	45.5	32.8	6.5	31.4	-	53.3	105.2	51.9	
Hori.	5925.000	PK	41.6	32.8	6.5	31.4	-	49.4	68.2	18.8	
Hori.	11590.000	PK	42.9	39.7	-1.7	33.3	-	47.7	73.9	26.2	Floor noise
Hori.	17385.000	PK	43.7	42.9	0.1	32.8	-	54.0	68.2	14.2	Floor noise
Hori.	11590.000	AV	34.2	39.7	-1.7	33.3	-	39.0	53.9	14.9	Floor noise
Vert.	5850.000	PK	43.9	32.8	6.4	31.4	-	51.8	122.2	70.4	
Vert.	5855.000	PK	47.3	32.8	6.4	31.4	-	55.2	110.8	55.6	
Vert.	5875.000	PK	43.9	32.8	6.5	31.4	-	51.7	105.2	53.5	
Vert.	5925.000	PK	42.1	32.8	6.5	31.4	-	49.9	68.2	18.3	
Vert.	11590.000	PK	43.4	39.7	-1.7	33.3	-	48.1	73.9	25.8	Floor noise
Vert.	17385.000	PK	43.9	42.9	0.1	32.8	-	54.2	68.2	14.0	Floor noise
Vert.	11590.000	AV	34.2	39.7	-1.7	33.3	-	39.0	53.9	14.9	Floor noise

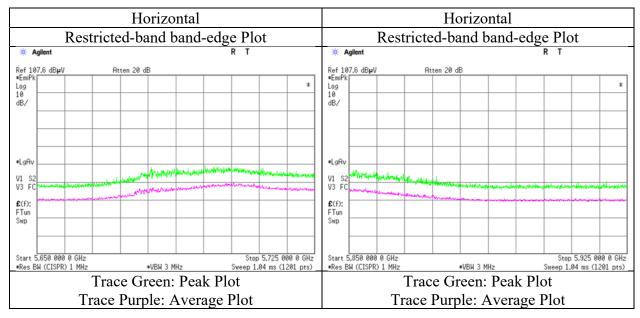
Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

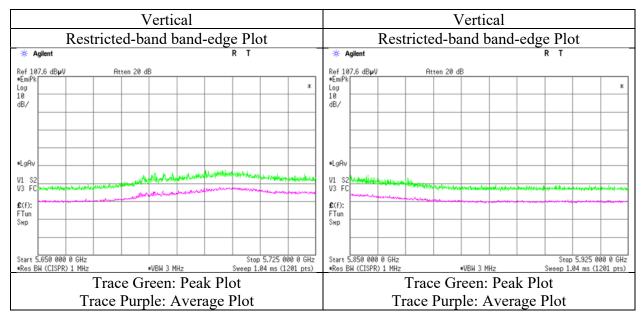
Distance factor:	1 GHz - 10 GHz	20log (3.85 m / 3.0 m) = 2.17 dB
	10 GHz - 40 GHz	$20\log(1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

Report No.	13328641H
Test place	Ise EMC Lab.
Semi Anechoic Chamber	No.4
Date	May 2, 2020
Temperature / Humidity	22 deg. C / 53 % RH
Engineer	Junki Nagatomi
Mode	Tx 11ac-40 5795 MHz

* The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

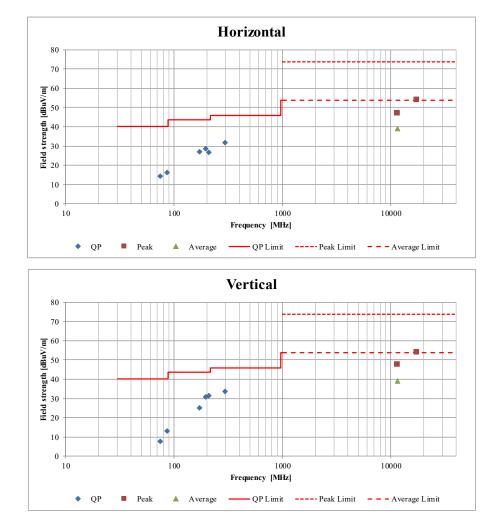

Final result of restricted band edge was shown in tabular data.


Report No.	13328641H
Test place	Ise EMC Lab.
Semi Anechoic Chamber	No.4
Date	May 2, 2020
Temperature / Humidity	22 deg. C / 53 % RH
Engineer	Junki Nagatomi
	(1 GHz - 40 GHz)
Mode	Tx 11ac-80 5775 MHz


Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	5650.000	PK	43.2	32.3	6.3	31.4	-	50.5	68.2	17.7	
Hori.	5700.000	PK	55.8	32.5	6.4	31.4	-	63.3	105.2	41.9	
Hori.	5720.000	PK	53.2	32.5	6.4	31.4	-	60.7	110.8	50.1	
Hori.	5725.000	PK	52.5	32.5	6.4	31.4	-	60.0	122.2	62.2	
Hori.	5850.000	PK	53.6	32.8	6.4	31.4	-	61.5	122.2	60.7	
Hori.	5855.000	PK	56.0	32.8	6.4	31.4	-	63.8	110.8	47.0	
Hori.	5875.000	PK	48.3	32.8	6.5	31.4	-	56.1	105.2	49.1	
Hori.	5925.000	PK	41.4	32.8	6.5	31.4	-	49.2	68.2	19.0	
Hori.	11550.000	PK	42.7	40.0	-1.7	33.3	-	47.8	73.9	26.1	Floor noise
Hori.	17325.000	PK	43.9	42.4	0.1	32.8	-	53.6	68.2	14.6	Floor noise
Hori.	11550.000	AV	34.2	40.0	-1.7	33.3	-	39.2	53.9	14.7	Floor noise
Vert.	5650.000	PK	47.0	32.3	6.3	31.4	-	54.3	68.2	13.9	
Vert.	5700.000	PK	54.8	32.5	6.4	31.4	-	62.2	105.2	43.0	
Vert.	5720.000	PK	51.3	32.5	6.4	31.4	-	58.8	110.8	52.0	
Vert.	5725.000	PK	51.0	32.5	6.4	31.4	-	58.6	122.2	63.7	
Vert.	5850.000	PK	51.8	32.8	6.4	31.4	-	59.6	122.2	62.6	
Vert.	5855.000	PK	53.3	32.8	6.4	31.4	-	61.1	110.8	49.7	
Vert.	5875.000	PK	45.5	32.8	6.5	31.4	-	53.3	105.2	51.9	
Vert.	5925.000	PK	41.5	32.8	6.5	31.4	-	49.4	68.2	18.8	
Vert.	11550.000	PK	42.4	40.0	-1.7	33.3	-	47.5	73.9	26.4	Floor noise
Vert.	17325.000	PK	44.0	42.4	0.1	32.8	-	53.7	68.2	14.6	Floor noise
Vert.	11550.000	AV	34.2	40.0	-1.7	33.3	-	39.2	53.9	14.7	Floor noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).



* The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge was shown in tabular data.

Radiated Spurious Emission (Plot data, Worst case)

Report No.	13328641H	
Test place	Ise EMC Lab.	
Semi Anechoic Chamber	No.4	No.4
Date	May 2, 2020	May 5, 2020
Temperature / Humidity	22 deg. C / 53 % RH	23 deg. C / 43 % RH
Engineer	Junki Nagatomi	Ken Fujita
	(1 GHz - 40 GHz)	(Below 1 GHz)
Mode	Tx 11ac-20 5785 MHz	

*These plots data contains sufficient number to show the trend of characteristic features for EUT.

Test report No.	: 13328641H-B-R2
Page	: 70 of 74
Issued date	: July 8, 2020
FCC ID	: AJDK115

Conducted Spurious Emission

Report No.	13328641H
Test place	Ise EMC Lab. No.3 Measurement Room
Date	May 9, 2020
Temperature / Humidity	23 deg. C / 34 % RH
Engineer	Junki Nagatomi
Mode	Tx 11ac-20 5785 MHz
11000	

	9 kHz - 150 kHz								150 kHz - 30 MHz												
¥ A	Agilent							RΤ			¥ A	gilent							RΤ		
Ref -5	50 dBm		•A:	tten 20 d	IB					10.18 kHz 6.55 dBm	Ref -5	-		•At	ten 20 d	В					150 kHz 8.39 dBm
Peak Log											■Peak Log 10										
10 dB/									DO	Coupled	dB/									D	Coupled
												>									
	1 0											and a side in	deres selfille	iannit-inali	-institut	a for the second	ershillion da	www.hanis	المعدفادهم		abort the state
LgAv	alle be	Advight	in this is a second second	(philipping)	et an the	www.haya	New York	es,Malan	anythin	nd ar valited	LgAv										
M1 \$2 \$3 F\$	2			ļ							M1 \$2								ļ		
											S3 FS										
£(f): f<50k											£(f): FTun										
FFT											Ѕжр										
	9.00 kHz									50.00 kHz		50 kHz		1							0.000 MHz
Res E	3W 200 H	z			•VBW 620	Hz		Sweep 2.	.279 s (1	201 pts)	Res B	W 9.1 kH:	z			•VBW 27	kHz	1	Ѕweep 34	4.8 ms (1	201 pts)

Frequency	Reading	Cable	Attenuator	Antenna	Ν	EIRP	Distance	Ground	Е	Limit	Margin	Remark
		Loss		Gain*	(Number			bounce	(field strength)			
[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
10.18	-86.6	1.00	9.9	2.0	1	-73.7	300	6.0	-12.4	47.4	59.8	
150.00	-78.4	1.01	9.9	2.0	1	-65.5	300	6.0	-4.3	24.0	28.3	

E [dBuV/m] = EIRP [dBm] - 20 log (Distance [m]) + Ground bounce [dB] + 104.8 [dBuV/m]

EIRP[dBm] = Reading [dBm] + Cable loss [dB] + Attenuator Loss [dB] + Antenna gain [dBi] + 10 * log (N) N: Number of output

*2.0 dBi was applied to the test result based on KDB 789033 since antenna gain was less than 2.0 dBi.

Test report No.	: 13328641H-B-R2
Page	: 71 of 74
Issued date	: July 8, 2020
FCC ID	: AJDK115

APPENDIX 2: Test instruments

Test equipment

Test Item	Local ID	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
AT		141561	Thermo-Hygrometer	CUSTOM	CTH-201	1401	01/07/2020	12
AT		141333	Attenuator(10dB)	Suhner	6810.19.A	-	12/09/2019	12
AT	MCC-67	141329	Microwave Cable 1G-40GHz	Suhner	SUCOFLEX102	28635/2	04/02/2020	12
AT	MPM-16	141812	Power Meter	Keysight Technologies Inc	8990B	MY51000271	08/02/2019	12
AT	MPSE-23	141835	Power sensor	Keysight Technologies Inc	N1923A	MY54070004	08/02/2019	12
AT	MMM-12	141547	DIGITAL HiTESTER	Hioki	3805	60500120	02/03/2020	12
AT	MSA-13	141900	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY46185823	-	-
AT	MCC-64	141327	Coaxial Cable	UL Japan	-	-	02/04/2020	12
AT	MAT-10	141156	Attenuator(10dB)	Weinschel Corp	2	BL1173	11/07/2019	12
AT	MAT-92	141421	Attenuator	Weinschel Associates	WA56-10	56100308	05/25/2020	12
AT	MPSE-27	165119	Power Sensor	Rohde & Schwarz	NRP6A	1424.6796K02-101 380-ez	11/21/2019	12
RE	MOS-15	141562	Thermo-Hygrometer	CUSTOM	CTH-201	0010	01/07/2020	12
RE		141545	DIGITAL HITESTER	Hioki	3805	51201148	01/06/2020	12
RE	MJM-26	142227	Measure	KOMELON	KMC-36	-	_	-
RE		178648	EMI measurement	TSJ (Techno Science Japan)	TEPTO-DV	-	-	-
RE	MAEC-04-S VSWR	142017	AC4_Semi Anechoic Chamber(SVSWR)	TDK	Semi Anechoic Chamber 3m	DA-10005	04/04/2019	24
RE	MHA-21	141508	Horn Antenna 1-18GHz	Schwarzbeck Mess - Elektronik	BBHA9120D	557	05/22/2020	12
RE	MPA-12	141581	MicroWave System Amplifier	Keysight Technologies Inc	83017A	650	10/16/2019	12
RE	MCC-141	141412	Microwave Cable		MWX221	1305S002R(1m) / 1405S146(5m)	06/17/2019	12
RE	MSA-04	141885	Spectrum Analyzer	Keysight Technologies Inc	E4448A	US44300523	11/21/2019	12
RE	MHA-17	141506	Horn Antenna 15-40GHz	Schwarzbeck Mess - Elektronik	BBHA9170	BBHA9170307	10/08/2019	12
RE	MHA-29	141517	Horn Antenna 26.5-40GHz	ETS LINDGREN	3160-10	152399	09/19/2019	12
RE	MCC-224	160324	Coaxial Cable	Huber+Suhner	SUCOFLEX 102A	MY009/2A	11/22/2019	12
RE	MPA-22	141588	Pre Amplifier	MITEQ, Inc	AMF-6F-2600400-33-8P / AMF-4F-2600400-33-8P	1871355 /1871328	09/27/2019	12
RE	MCC-178	141227	Microwave Cable	Junkosha	MMX221-00500DMSDMS	1502S305	03/18/2020	12
RE		141294	High Pass Filter 7-20GHz	TOKIMEC	TF37NCCC	603	01/06/2020	12
AT	MOS-29	141568	Thermo-Hygrometer	CUSTOM	CTH-201	2901	01/07/2020	12
AT	MMM-08	141532	DIGITAL HITESTER	Hioki	3805	51201197	01/06/2020	12
AT	MAT-58	141334	Attenuator(10dB)	Suhner	6810.19.A	-	12/09/2019	12
AT		141568	Thermo-Hygrometer	CUSTOM	CTH-201	2901	01/07/2020	12
AT		141902	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY46187105	10/09/2019	12
RE	MAT-34	141331	Attenuator(6dB)		UFA-01	-	02/05/2020	12
RE		141425	Biconical Antenna		VHA9103+BBA9106	1302	08/24/2019	12
RE	MCC-50	141397	Coaxial Cable	UL Japan	-	-	03/24/2020	12
RE		141267	Logperiodic Antenna (200-1000MHz)	Schwarzbeck Mess - Elektronik	VUSLP9111B	9111B-192	08/24/2019	12
RE	MPA-14	141583	Pre Amplifier	SONOMA INSTRUMENT	310	260833	02/18/2020	12
RE	MAEC-04	142011	AC4_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	06/28/2018	24
RE	MOS-15	141562	Thermo-Hygrometer	CUSTOM	CTH-201	0010	01/07/2020	12

Test report No.	: 13328641H-B-R2
Page	: 72 of 74
Issued date	: July 8, 2020
FCC ID	: AJDK115

*Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test item:

RE: Radiated Emission

AT: Antenna Terminal Conducted test