RF Exposure / MPE Calculation

No.	$:$	$13328641 \mathrm{H}-\mathrm{R} 1$
Applicant	$:$	Pioneer Corporation
Type of Equipment	$:$	Car Audio with Bluetooth/ WLAN
Model No.	$:$	SN211
FCC ID	$:$	AJDK115

Pioneer Corporation declares that Model: SN211 complies with FCC radiation exposure requirement specified in the FCC Rule 2.1091 (for mobile).

RF Exposure Calculations:

The following information provides the minimum separation distance for the highest gain antenna provided with the "SN211" as calculated from (B) Limits for General Population / Uncontrolled Exposure of TABLE 1- LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE) of §1.1310 Radiofrequency radiation exposure limits.

Bluetooth part

This calculation is based on the highest EIRP possible from the system, considering maximum power and antenna gain, and considering a $1 \mathrm{~mW} / \mathrm{cm}^{\wedge} 2$ uncontrolled exposure limit. The Friis formula used was:

$$
S=\frac{P \times G}{4 \times \pi \times r^{2}}
$$

Where
$P=\quad 2.76 \mathrm{~mW}$ (Maximum average output power)
\square Time average was used for the above value in consideration of 6-minutes time-averaging \square Burst power average was used for the above value in consideration of worst condition.
$G=\quad 0.290$ Numerical Antenna gain; equal to -5.38 dBi
$r=\quad 20 \mathrm{~cm}$ (Separation distance)

Power Density Result $S=0.00016 \mathrm{~mW} / \mathrm{cm}^{2}$

WLAN part

This calculation is based on the highest EIRP possible from the system, considering maximum power and antenna gain, and considering a $1 \mathrm{~mW} / \mathrm{cm}^{\wedge} 2$ uncontrolled exposure limit. The Friis formula used was:

Where

$$
S=\frac{P \times G}{4 \times \pi \times r^{2}}
$$

$P=\quad 19.86 \mathrm{~mW}$ (Maximum average output power)
\square Time average was used for the above value in consideration of 6-minutes time-averaging Burst power average was used for the above value in consideration of worst condition.
$G=\quad 0.729$ Numerical Antenna gain; equal to -1.37 dBi
$r=\quad 20 \mathrm{~cm}$ (Separation distance)

Power Density Result $S=0.00288 \mathbf{m W} / \mathrm{cm}^{2}$

Therefore, if Bluetooth and WLAN transmit simultaneously,
$S=0.00016 \mathrm{~mW} / \mathrm{cm}^{2}+0.00288 \mathrm{~mW} / \mathrm{cm}^{2}=0.00304 \mathrm{~mW} / \mathrm{cm}^{2}$
Even taking into account the tolerance, this device can be satisfied with the limits.

