FCC PART: 1.1310

IC PART: RSS-119, Section 9, RSS-102

MANUFACTURER: RITRON, Inc.

MODEL: RPM-160

TYPE OF UNIT: VHF Mobile Transceiver

FCC ID: AIERIT24-160

IC ID: 1084A-RIT24160

DATE: October 30, 2006

PROCEDURE:

Because this product is used as a mobile device, an RF evaluation was done. The RF evaluation entailed testing the unit on RITRON'S 3-meter range to determine EIRP and then calculating the minimum safe distance from the antenna necessary to ensure compliance with the appropriate RF exposure limits.

- 1. The measurement for effective radiated power was taken at the RITRON, Inc. 3-meter test site, details of which are on file with the FCC and Industry Canada.
- 2. The DUT was aligned for transmitter operation on lower, middle and upper band edge frequenices at the 50.0 watt maximum output power rating of the RPM-160 per the tune-up procedure outlined in the Maintenance Manual. The unit was then terminated at the antenna port in a quarterwave magnetic mount antenna which is typical of what might be used with this product. (The user may connect other antennas, however.)
- 3. All field strength measurements were made with the Hewlett-Packard Model 8560E Spectrum Analyzer and an Electro-Metrics EM-6924 adjustable dipole antenna tuned to the carrier frequency.

FCC PART: 1.1310

IC PART: RSS-119, Section 9, RSS-102

MANUFACTURER: RITRON, Inc.

MODEL: RPM-160

TYPE OF UNIT: VHF Mobile Transceiver

FCC ID: AIERIT24-160

IC ID: 1084A-RIT24160

DATE: October 30, 2006

PROCEDURE (CONT.):

- 4. The quarterwave antenna was connected to the DUT via its cable and tested above a 0.5m x 0.5 m ground plane. The height of the field strength measurement antenna and the azimuth orientation of the antenna were varied to provide maximum field strength. The maximum levels were noted.
- 5. A substitution antenna, an adjustable dipole Electro-Metrics Model BDA-25, was substituted for the quarterwave antenna at the RPM-160's previous location. An RF signal generator was set for the frequency of the DUT with the level at the substitution antenna noted.
- 6. The height of the receiving antenna was adjusted for maximum signal strength. The level at the receiving antenna was noted.

FCC PART: 1.1310

IC PART: RSS-119, Section 9, RSS-102

MANUFACTURER: RITRON, Inc.

MODEL: RPM-160

TYPE OF UNIT: VHF Mobile Transceiver

FCC ID: AIERIT24-160

IC ID: 1084A-RIT24160

DATE: October 30, 2006

EQUATIONS FOR EIRP:

The substitution antenna is specified from the manufacturer in terms of antenna factor rather than antenna gain. The conversion is:

 $Ga(dbd) = 20 \log f (MHz) - AF(dB) - 31.9$

The effective radiated power (ERP) is then:

ERP(dBm) = Pr(dBm) + Pgen(dBm) - Ps(dBm) + Ga(dBd)

Where:

Pr is the power level of the radio's emission at the receiving antenna output.

Pgen is the RF signal generator level at the substitution antenna input.

Ps is the power level of the substitution antenna emission at the receiving antenna output.

Ga is the gain of the substitution antenna.

The ERP is converted to watts from dBm by:

 $ERP(watts) = antilog_{10}((ERP(dBm) - 30)/10)$

And finally, ERP is converted to EIRP (isotropic radiator) by: EIRP = 1.64 ERP

FCC PART: 1.1310

IC PART: RSS-119, Section 9, RSS-102

MANUFACTURER: RITRON, Inc.

MODEL: RPM-160

TYPE OF UNIT: VHF Mobile Transceiver

FCC ID: AIERIT24-160

IC ID: 1084A-RIT24160

DATE: October 30, 2006

RESULTS FOR EIRP:

Frequency (MHz)	Pr <u>(dBm)</u>	Pgen <u>(dBm)</u>	Ps <u>(dBm)</u>	Ga <u>(dBd)</u>	ERP <u>(dBm</u>)	EIRP (watts)		
For ¼ wave v	whip anten	na:						
150.050	+20.7	0.0	-21.8	+1.4	+43.9	40.3		
162.050	+23.3	0.0	-20.3	-1.4	+42.2	27.2		
173.950	+20.3	0.0	-23.7	-2.1	+41.9	25.4		
For 5/8 wave whip antenna:								
150.050	+18.3	0.0	-21.8	+1.4	+41.5	23.2		
162.050	+22.5	0.0	-20.3	-1.4	+41.4	22.6		
173.950	+18.0	0.0	-23.7	-2.1	+39.6	15.0		
For Dualband VHF/UHF whip antenna:								
150.050	+21.0	0.0	-21.8	+1.4	+44.2	43.1		
162.050	+19.3	0.0	-20.3	-1.4	+38.2	10.8		
173.950	+16.0	0.0	-23.7	-2.1	+37.6	9.40		

DETERMINING MPE DISTANCE:

Power density is related to EIRP:

 $S(W/m^2) = EIRP(W)/4\pi r^2$ where r is the distance from the source in meters. Rearranging for distance:

 $r = \sqrt{(EIRP/4\pi S)}$

The MPE (maximum permissible exposure) for a VHF device operating in a Occupational/Controlled Exposure environment 10 W/m². The MPE limit is substituted for S and EIRP is entered in the above equation.

FCC PART: 1.1310

IC PART: RSS-119, Section 9, RSS-102

MANUFACTURER: RITRON, Inc.

MODEL: RPM-160

TYPE OF UNIT: VHF Mobile Transceiver

FCC ID: AIERIT24-160

IC ID: 1084A-RIT24160

DATE: October 30, 2006

RESULTS FOR MPE:

Frequency	EIRP	Duty Cycle	S limit	Distance	Distance			
(MHz)	(watts)	<u>(%)</u>	<u>(W/m²⁾</u>	<u>(cm)</u>	<u>(in)</u>			
For ¼ wave whip antenna:								
150.050	40.3	50	5.0	40	16			
162.050	27.2	50	5.4	33	13			
173.950	25.4	50	5.8	32	13			
For 5/8 wave whip antenna:								
150.050	23.2	50	5.0	30	12			
162.050	22.6	50 50	5.4	30	12			
173.950	15.0	50 50	5.4 5.8	24	9			
173.930	13.0	30	5.6	24	9			
For Dualband VHF/UHF whip antenna:								
150.050	43.1	50	5.0	41	16			
162.050	10.8	50	5.4	21	8			
173.950	9.40	50	5.8	19	7			

RF WARNING STATEMENT:

The following statement appears in the Users Manual regarding RF safety:

RF ENERGY EXPOSURE AWARENESS AND CONTROL INFORMATION, AND OPERATIONAL INSTRUCTIONS FOR FCC OCCUPATIONAL USE REQUIREMENTS

BEFORE USING YOUR MOBILE 2-WAY RADIO, READ THIS IMPORTANT RF ENERGY AWARENESS AND CONTROL INFORMATION AND OPERATIONAL INSTRUCTIONS TO ENSURE COMPLIANCE WITH THE FCC'S RF EXPOSURE GUIDELINES.

NOTICE: This radio is intended for use in occupational/controlled conditions, where users have full knowledge of their exposure and can exercise control over their exposure to meet FCC limits. This radio device is NOT authorized for general population, consumer, or any other use.

This 2-way radio uses electromagnetic energy in the radio frequency (RF) spectrum to provide communications between two or more users over a distance. It uses radio frequency (RF) energy or radio waves to send and receive calls. RF energy is one form of electromagnetic energy. Other forms include, but are not limited to, electric power, sunlight and x-rays. RF energy, however, should not be confused with these other forms of electromagnetic energy, which when used improperly can cause biological damage. Very high levels of x-rays, for example, can damage tissues and genetic material.

Experts in science, engineering, medicine, health and industry work with organizations to develop standards for exposure to RF energy. These standards provide recommended levels of RF exposure for both workers and the general public. These recommended RF exposure levels include substantial margins of protection. All 2-way radios marketed in North America are designed, manufactured and tested to ensure they meet government established RF exposure levels. In addition, manufacturers also recommend specific operating instructions to users of 2-way radios. These instructions are important because they inform users about RF energy exposure and provide simple procedures on how to control it. Please refer to the following websites for more information on what RF energy exposure is and how to control your exposure to assure compliance with established RF exposure limits.

http://www.fcc.gov/oet/rfsafety/rf-faqs.html http://www.osha.gov/SLTC/radiofrequencyradiation/index.html

Federal Communications Commission Regulations

The FCC rules require manufacturers to comply with the FCC RF energy exposure limits for mobile 2-way radios before they can be marketed in the U.S. When 2-way radios are used as a consequence of employment, the FCC requires users to be fully aware of and able to control their exposure to meet occupational requirements.

Exposure awareness can be facilitated by the use of a label directing users to specific user awareness information. Your Ritron RPM 60 Series Mobile Radio has a RF exposure product label. Also, your Ritron RPM 60 Series Owners Manual includes information and operating instructions required to control your RF exposure and to satisfy compliance requirements.

Compliance with RF Exposure Standards

Your Ritron RPM 60 Series Mobile Radio is designed and tested to comply with a number of national and international standards and guidelines (listed below) regarding human exposure to radio frequency electromagnetic energy. This radio complies with the IEEE and ICNIRP exposure limits for occupational/controlled RF exposure environment at duty factors of up to 50% talk-50% listen and is authorized by the FCC for occupational use. In terms of measuring RF energy for compliance with the FCC exposure guidelines, your radio antenna radiates measurable RF energy only while it is transmitting (during talking), not when it is receiving (listening) or in standby mode.

Your Ritron RPM 60 Series Mobile Radio complies with the following RF energy exposure standards and guidelines:

- United States Federal Communications Commission, Code of Federal Regulations; 47 CFR §§ 2 sub-part J.
- American National Standards Institute (ANSI) / Institute of Electrical and Electronic Engineers (IEEE) C95. 1-1992.
- Institute of Electrical and Electronic Engineers (IEEE) C95.1-1999 Edition.

RF Exposure Compliance and Control Guidelines and Operating Instructions

To control exposure to yourself and others and ensure compliance with the occupational/controlled environment exposure limits always adhere to the following procedures.

Guidelines:

- User awareness instructions should accompany device when transferred to other users.
- Do not use this device if the operational requirements described herein are not met.

Instructions:

- Transmit no more than the rated duty factor of 50% of the time. To transmit (talk), push the Push-To-Talk (PTT) button. To receive calls, release the PTT button. Transmitting 50% of the time, or less, is important because this radio generates measurable RF energy exposure only when transmitting (in terms of measuring for standards compliance).
- Transmit only when people outside the vehicle are at least the recommended minimum lateral distance away, as shown in Table 1, from a properly installed, according to installation instructions, externally-mounted antenna.

NOTE - Table 1 lists the recommended minimum lateral distance for bystanders in an uncontrolled environment from transmitting types of antennas (*i.e.*, monopoles over a ground plane, or dipoles) at several different ranges of rated radio power for mobile radios installed in a vehicle.

Table 1. Rated Power and Recommended Lateral Distance

Rated Power of Vehicle-	Recommended Minimum Lateral
Installed Mobile Two-way Radio	Distance from Transmitting Antenna
Less than 7 watts	6 in (21 cm)
7 to 15 watts	9 in (31 cm)
16 to 50 watts	16 in (57 cm)

Mobile Antennas

• Antenna Installation – Locate and install the antenna in the center of a large metal area such as the vehicle roof or trunk deck.

NOTE: Take into account the bystander exposure conditions of frontseat and backseat passengers and persons standing outside the vehicle according to the recommended minimum lateral distances in table 1. These mobile antenna installation guidelines are limited to metal body motor vehicles or vehicles with appropriate ground planes.

Additionally, when installing the antenna:

- a.) Take into account the installation requirements of the antenna manufacturer/supplier.
- b.) Refer to the Ritron Mobile Radio Installation Guide found in the Ritron RPMK-12 (RPM Installation Kit) that is included with your RPM 60 Series Mobile Radio.
- Use only Ritron approved supplied antenna or Ritron approved replacement antenna. Unauthorized antennas, modifications, or attachments could damage the radio and may violate FCC regulations.

Approved Accessories

- This radio has been tested and meets the FCC RF exposure guidelines when used with the Ritron accessories supplied or designated for this product. Use of other accessories may not ensure compliance with the FCC's RF exposure guidelines, and may violate FCC regulations.
- For a list of Ritron approved accessories, see the RPM 60 Series Owners Manual, or visit the following website which lists approved accessories: http://www.ritron.com, or contact the radio manufacturer at 1-800-USA-1USA.

Contact Information

For additional information on exposure requirements or other information, contact Ritron, Inc.