

Engineering and Testing for EMC and Safety Compliance

TYPE CERTIFICATION REPORT

ICOM Incorporated 1-6-19 Kamikurazukuri Hirano-ku Osaka, Japan 547

MODEL: MR-570R

FCC ID: AFJMR-570R

May 29, 2001

STANDARDS REFERENCED FOR	STANDARDS REFERENCED FOR THIS REPORT				
Part 2: 1999	FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS				
PART 80: 1998	STATIONS IN THE MARITIME SERVICES				
PART 90: 1998	PRIVATE LAND MOBILE RADIO SERVICES				
ANSIC63.4-1992	STANDARD FORMAT MEASUREMENT/TECHNICAL REPORT PERSONAL COMPUTER AND PERIPHERALS				
ANSI/TIA/EIA603- 1992	LAND MOBILE FM OR PM COMMUNICATIONS EQUIPMENT MEASUREMENT AND PERFORMANCE STANDARDS				
ANSI/TIA/EIA 603-1-1998	ADDENDUM TO ANSI/TIA/EIA 603-1992				
RSP-100	RADIO EQUIPMENT CERTIFICATION PROCEDURE				

FCC Rules Parts	Frequency Range	Output Power (W)	Freq. Tolerance	Emission Designator
80 and 90	9380-9440 MHz	4000	9301.64- 9513.64 MHz	55M0P0N
Industry Canada Standard	Frequency Range	Output Power (W)	Freq. Tolerance	Emission Designator
RSP-100	9380-9440 MHz	4000	9301.64- 9513.64 MHz	55M0P0N

REPORT PREPARED BY:

EMI Technician: Desmond A. Fraser Administrative Writer: Melissa Carter

Document Number: 2001092

No part of this report may be reproduced without the full written approval of Rhein Tech Laboratories, Inc.

Phone: 703-689-0368; Fax: 703-689-2056; Metro: 703-471-6441

TABLE OF CONTENTS

1 (GENERAL INFORMATION	4
1.1		
1.2		4
2 (CONFORMANCE STATEMENT	5
	FESTED SYSTEM DETAILS	
4 F	FCC RULES AND REGULATIONS PART 2 §2.1046 (A): RF OUTPUT POWER	7
4.1	Test Procedure	7
4.2		7
5 F	FCC RULES AND REGULATIONS PART 2 §2.1047 (C) (1): MODULATION CHARACTERI	STICS
7		
5.1		
5.2	12012 (011112111	7
5.3	120121111	
6 F	FCC RULES AND REGULATIONS PART 2 §2.1049 (C) (1): OCCUPIED BANDWIDTH	
6.1	1251110025012	
6.2	12012 (011112111	
6.3	120121111	12
	FCC RULES AND REGULATIONS PART 2 §2.1051 (A): SPURIOUS EMISSIONS AT THE	
	ENNA TERMINAL	
7.1	12011 100 022 012	
7.2	120121111	
	FCC RULES AND REGULATIONS PART 2 §2.1053 (A): FIELD STRENGTH OF SPURIOUS	
	IATION	
8.1	1201110020012	
_	3.1.1 Test Equipment	
_	3.1.2 Test Data	
	FCC RULES AND REGULATION PART 2 §2.1055: FREQUENCY STABILITY	
9.1	1EG11 KOCEDCKE	
-	0.1.1 FCC § 80.209(b)	
9.2	1201 2 Q 0 1 1 1 2 1 1	
93	Test Data	23

TABLE OF FIGURES

FIGURE 1:	CONFIGURATION OF TESTED SYSTEM	6
	TABLE OF TABLES	
TABLE 1: TABLE 2: TABLE 3: TABLE 4 TABLE 5 TABLE 6	Components Used in Test Configuration	
	TABLE OF PLOTS	
PLOT 1: PLOT 2: PLOT 3 PLOT 4: PLOT 5: PLOT 6: PLOT 7: PLOT 8: PLOT 9: PLOT 10: PLOT 11: PLOT 12: PLOT 13:	PULSE LENGTH (0.11 MICROSECONDS) PULSE LENGTH (0.29 MICROSECONDS) PULSE LENGTH (0.36 MICROSECONDS) PULSE LENGTH (0.91 MICROSECONDS) BANDWIDTH (0.11 MICROSECONDS PULSE LENGTH) BANDWIDTH (0.29 MICROSECONDS PULSE LENGTH) BANDWIDTH (0.36 MICROSECONDS PULSE LENGTH) BANDWIDTH (0.36 MICROSECONDS PULSE LENGTH) MAGNETRON CONTROL PULSE 0.1µS MAGNETRON CONTROL PULSE 0.26µS MAGNETRON CONTROL PULSE 0.36µS MAGNETRON CONTROL PULSE 0.91µS FREQUENCY STABILITY TEST SETUP	
APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX	B: PRODUCT DESCRIPTION	
A PPENDIX	H: EXTERNAL PHOTOGRAPHS	83

1 GENERAL INFORMATION

The following Report of a Type Certification is prepared on behalf of *ICOM*, *Inc.* in accordance with the Federal Communications Commissions and Industry Canada Rules and Regulations. The Equipment Under Test (EUT) was the *MR-570R*; *FCC ID*: *AFJMR-570R*. The test results reported in this document relate only to the item that was tested.

All measurements contained in this application were conducted in accordance with FCC Rules and Regulations CFR 47 and ANSI C63.4 Methods of Measurement of Radio Noise Emissions, 1992. The instrumentation utilized for the measurements conforms to the ANSI C63.4 standard for EMI and Field Strength Instrumentation. Calibration checks are performed regularly on the instruments, and all accessories including high pass filter, coaxial attenuator, preamplifier and cables.

1.1 TEST FACILITY

The open area test site and conducted measurement facility used to collect the radiated data is located on the parking lot of Rhein Tech Laboratories, Inc. 360 Herndon Parkway, Suite 1400, Herndon, Virginia 20170. This site has been fully described in a report dated March 3, 1994, submitted to and approved by the Federal Communication Commission to perform AC line conducted and radiated emissions testing (ANSI C63.4 1992).

Model: MR-570R

Page 4

FCC ID: AFJMR-570R

1.2 RELATED SUBMITTAL(S)/GRANT(S)

This is an original application report.

2 CONFORMANCE STATEMENT

STANDARDS REFERENCED FOR	STANDARDS REFERENCED FOR THIS REPORT				
Part 2: 1999	FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS				
Part 80: 1998	STATIONS IN THE MARITIME SERVICES				
Part 90: 1998	PRIVATE LAND MOBILE RADIO SERVICES				
ANSIC63.4-1992	STANDARD FORMAT MEASUREMENT/TECHNICAL REPORT PERSONAL COMPUTER AND				
	Peripherals				
ANSI/TIA/EIA603- 1992	LAND MOBILE FM OR PM COMMUNICATIONS EQUIPMENT				
	MEASUREMENT AND PERFORMANCE STANDARDS				
ANSI/TIA/EIA 603-1-1998	ADDENDUM TO ANSI/TIA/EIA 603-1992				
RSP-100	RADIO EQUIPMENT CERTIFICATION PROCEDURE				

FCC Rules Parts	Frequency Range	Output Power (W)	Freq. Tolerance Range	Emission Designator
80 and 90	9380-9440 MHz	4000	9301.64- 9513.64 MHz	55M0P0N
Industry Canada Standard	Frequency Range	Output Power (W)	Freq. Tolerance	Emission Designator
RSP-100	9380-9440 MHz	4000	9301.64- 9513.64 MHz	55M0P0N

We, the undersigned, hereby declare that the equipment tested and referenced in this report conforms to the identified standard(s) as described in this attached test record. No modifications were made to the equipment during testing in order to achieve compliance with these standards.

Furthermore, there was no deviation from, additions to or exclusions from the above mentioned standards Certification methodology.

Signature: Date: May 29, 2001

Typed/Printed Name: Desmond A. Fraser Position: President

(NVLAP Signatory)

Accredited by the National Voluntary Accreditation Program for the specific scope of accreditation under Lab Code 200061-0.

Note: This report may not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government.

FCC and Canadian Certification Report Page 5
2001092 ICOM Incorporated Model: MR-570R FCC ID: AFJMR-570R

TESTED SYSTEM DETAILS 3

Listed below is the identifiers and descriptions of all equipment, cables, and internal devices used with the EUT for this test, as applicable.

TABLE 1: **COMPONENTS USED IN TEST CONFIGURATION**

FIGURE ITEM#	Part	MANUFACTURER	MODEL	SERIAL NUMBER	FCC ID	CABLE DESCRIPTION	RTL BAR CODE
1	DC POWER SUPPLY	ALINCO	DM-330MV	0001638		Unshielded	901124
2	DISPLAY UNIT	ICOM	EX-2473	K35		SHIELDED	13108
3	MAGNETRON	ICOM	MAF1421B	N/A			N/A
4	NARDO	DIRECTIVITY COUPLER	1080	N/A			901151
5	HP	WAVE GUIDE ADAPTER	X281A	N/A			90114
6	ICOM	RADAR UNIT	MR-570R	K35K1288	AFJMR-570R	_	N/A
7	HP	CRYSTAL DETECTOR	423B	N/A			901147

FIGURE 1: **CONFIGURATION OF TESTED SYSTEM**

FCC and Canadian Certification Report 2001092 ICOM Incorporated Model: MR-570R FCC ID: AFJMR-570R

Page 6

4 FCC RULES AND REGULATIONS PART 2 §2.1046 (A): RF OUTPUT POWER

TEST PROCEDURE

The MR-570R RADAR transmitter output into a dummy load was measured with an NARDA directional coupler, a HP pad, and an HP 437B power meter with HP8481B thermocouple sensor. The power meter was corrected for the directional coupler attenuation, attenuating pad, and sensor calibration.

4.2 TEST DATA

Pulse Setting	Pulse LENGTH µSEC	PRF	Av Power (DBM)	Av Power (µW)	CORRECTION FACTOR (DB)	Av Power (W)	PEAK POWER (KW)
SHORT	0.11	2183	-10.7	85	43	1.6	6.66
MEDIUM SHORT	0.29	2183	-6.5	223	43	4.45	7.03
MEDIUM LONG	0.36	2183	-4.8	331	43	6.6	8.40
LONG	0.91	2183	-5.0	316	43	6.3	9.55

Note:

Duty cycle = PRF x Pulse Length Peak Power = Av Power / Duty Cycle

FCC RULES AND REGULATIONS PART 2 §2.1047 (C) (1): MODULATION **CHARACTERISTICS**

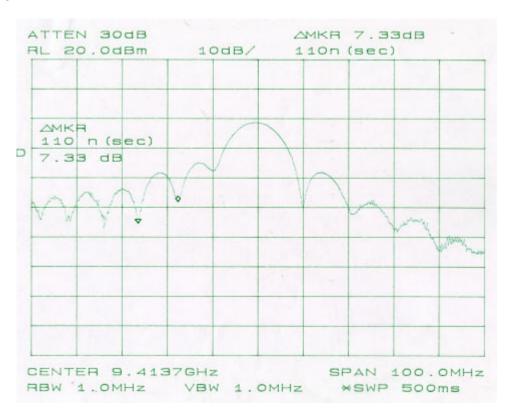
The MR-570R magnetron pulse input was measured with a Tektronix TDS 560 digital oscilloscope and a high voltage probe. The oscilloscope display for each pulse width of 0.11, 0.29, 0.36, and 0.91 microseconds respectively are included.

Occupied bandwidth for nominal pulse widths of 0.11, 0.29, 0.36, and 0.91 microseconds are included respectively. These plots were made with an HP 8564E spectrum analyzer and an HP 7550 plotter.

5.1 **TEST PROCEDURE**

ANSI/TIA/EIA-603-1992, section 2.2.11

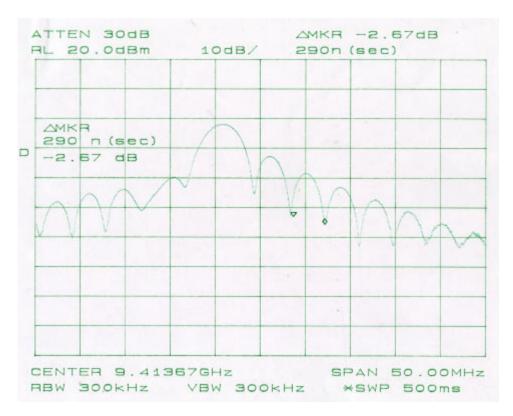
Device with digital modulation: operation to its maximum extent


5.2 TEST EQUIPMENT

Spectrum Analyzer HP8564E s/n 3943A01719

Page 7

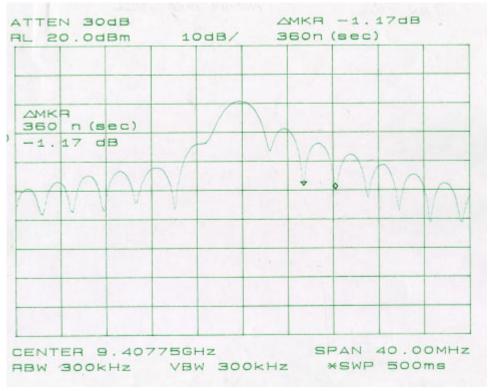
5.3 TEST DATA


Model: MR-570R

Page 8

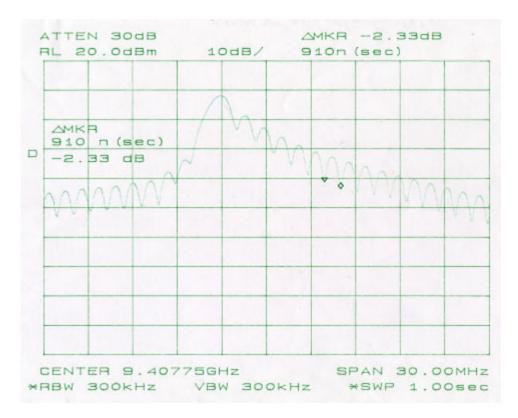
FCC ID: AFJMR-570R

PLOT 1: PULSE LENGTH (0.11 MICROSECONDS)



Page 9

FCC ID: AFJMR-570R

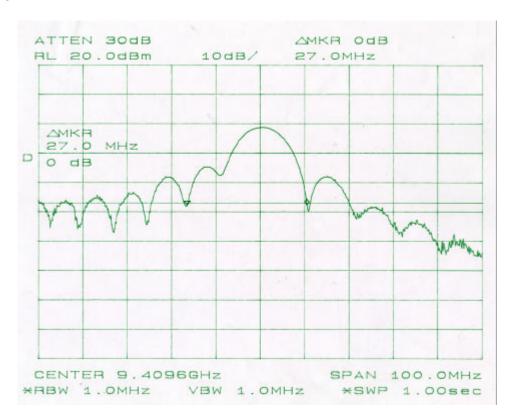

PLOT 2: PULSE LENGTH (0.29 MICROSECONDS)

PLOT 3 PULSE LENGTH (0.36 MICROSECONDS)

PLOT 4: PULSE LENGTH (0.91 MICROSECONDS)

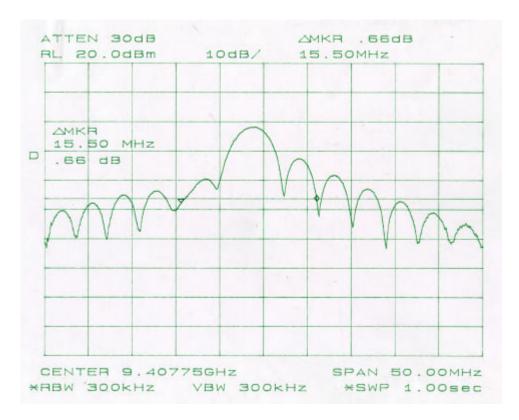
6 FCC RULES AND REGULATIONS PART 2 §2.1049 (C) (1): OCCUPIED BANDWIDTH

OCCUPIED BANDWIDTH (99% POWER BANDWIDTH) - COMPLIANCE WITH THE FCC RULES.

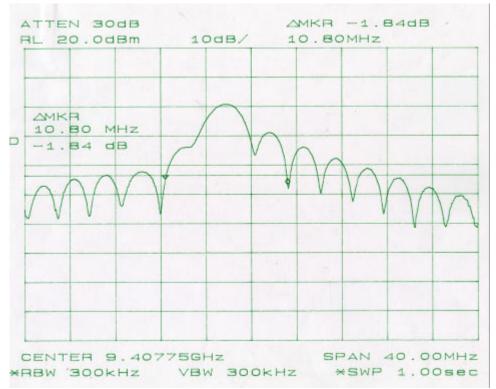

6.1 TEST PROCEDURE

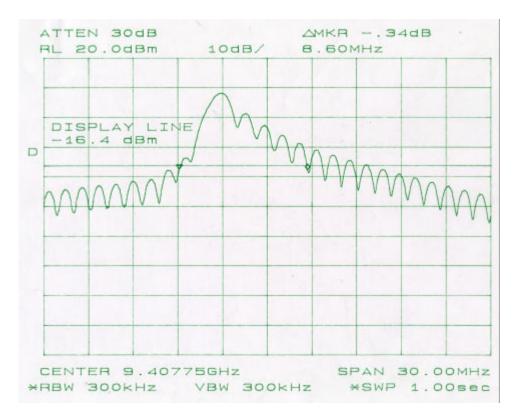
ANSI/TIA/EIA-603-1992, section 2.2.11

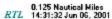
6.2 TEST EQUIPMENT

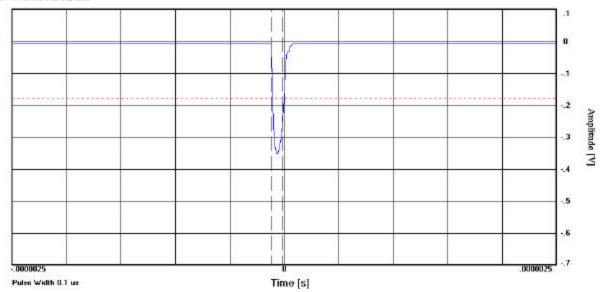

Spectrum Analyzer HP8564E s/n 3943A01719

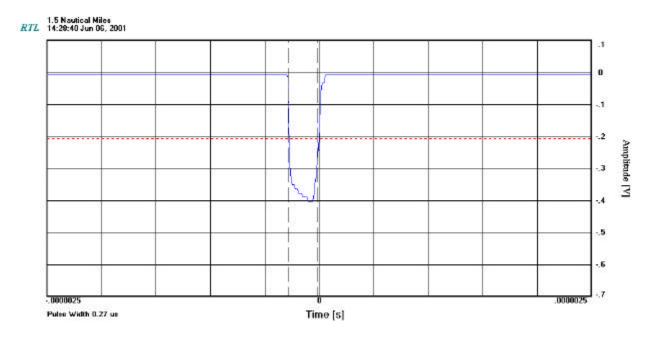
6.3 TEST DATA

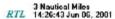

PLOT 5: BANDWIDTH (0.11 MICROSECONDS PULSE LENGTH)

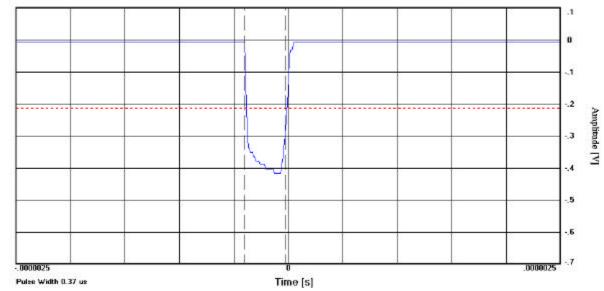

PLOT 6: BANDWIDTH (0.29 MICROSECONDS PULSE LENGTH)

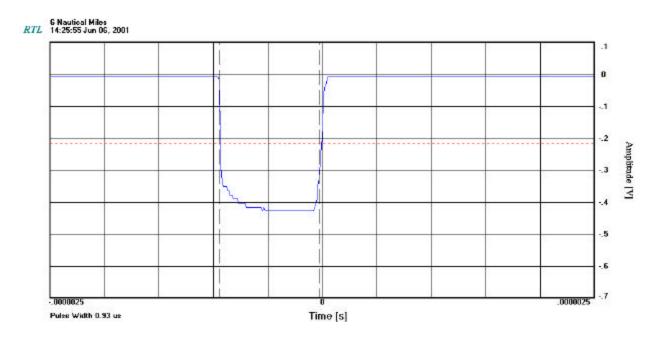

PLOT 7: BANDWIDTH (0.36 MICROSECONDS PULSE LENGTH)




PLOT 8: BANDWIDTH (0.36 MICROSECONDS PULSE LENGTH)




PLOT 9: MAGNETRON CONTROL PULSE 0.1µS


PLOT 10: MAGNETRON CONTROL PULSE 0.26µS

MAGNETRON CONTROL PULSE 0.36µS **PLOT 11:**

PLOT 12: MAGNETRON CONTROL PULSE 0.91µS

Page 17

7 FCC RULES AND REGULATIONS PART 2 §2.1051 (A): SPURIOUS EMISSIONS AT THE ANTENNA TERMINAL

7.1 TEST PROCEDURE

The MR-570R RADAR transmitter was tested for spurious emissions while the equipment was modulated with nominal pulse widths of 0.11, 0.29, 0.36, and 0.91 microseconds. Measurements were made with an HP 8546E Spectrum Analyzer coupled to the transmitter output waveguide through a directional coupler. During the tests, the MDR-570R was terminated in a 50 Ohm dummy X-band load. The supply voltage was maintained at 24VDC through out the test. Spurious emissions were measured from 9KHz to 40GHz. Emissions that were between the required attenuation and the noise floor of the spectrum Analyzer were recorded.

7.2 TEST DATA

	dBC for each nominal Pulse Width				
	0.11µs	0.29µs	0.36µs	0.91µs	
FREQUENCY 9KHz to 40 GHz	NF	NF	NF	NF	
Average Power (W)	1.6	4.45	6.6	6.3	
REQUIRED ATTENUATION 43 + 10LOGP (DB)	45.0	49.5	51.2	51.0	

NF=Noise Floor (There were no signals observed above the Analyzer noise floors). The Spectrum analyzer settings were RBW/VBW = 100 kHz. The data below reflects the analyzer noise floor.

Model: MR-570R

9KHz - 2 GHz = -96dBm 10GHz - 15GHz = -88dBm 30GHz - 35GHz = -67dBm 2GHz - 5 GHz = -89dBm 15GHz - 20GHz = -86dBm 35GHz - 40GHz = -66dBm

5GHz - 10 GHz = -88dBm 20GHz - 25GHz = -76dBm

8 FCC RULES AND REGULATIONS PART 2 §2.1053 (A): FIELD STRENGTH OF SPURIOUS RADIATION

8.1 TEST PROCEDURE

Substitution Method: ERP:

The EUT was setup at an antenna to EUT distance of 3 meters on an open area test site with the transmitter connected to the dummy load. The EUT was placed on a nonconductive turntable approximately 0.8 meters above the ground plane.

The physical arrangement of the EUT and associated cabling was varied in order to determine the effect on the EUT's emissions in amplitude, direction and frequency. At each frequency, the EUT was rotated 360 degrees, and the antenna was raised and lowered from one to four meters in order to determine the maximum emission levels. Measurements were taken using both horizontal and vertical antenna polarizations.

The worst-case, maximum radiated emission was recorded and used as reference for the ERP measurement.

The EUT was then replaced by a ½wave dipole antenna and polarized in accordance with the EUT's antenna polarization. The ½wave dipole antenna was connected to a RF signal generator with a coaxial cable.

The search antenna height, and search antenna polarity was set to levels that produced the maximum reading obtained in step 3. The signal generator was adjusted to a level that produced the radiated emission level obtained in step 3.

The signal generator level was recorded and corrected by the power loss in the cable between the generator and the antenna and further corrected for the gain of the substitution antenna used relative to an ideal ½wave dipole antenna. The signal generator corrected level is the ERP level

CALCULATION METHOD: EIRP

$$P_{Watt} = \frac{E_{v/m}^2 \times d_m^2}{30}$$

8.1.1 TEST EQUIPMENT

Amplifier: HP8449B s/n 3008A00505

Spectrum analyzer: HP8564E s/n 3943A01719

Antenna BiLog Chase 6112L, EMCO Horn 2-4 GHz, EMCO horn 4-8 GHz,

EMCO horn 8 – 12 GHz

RF Signal Generator HP8648C s/n 3537A01741 Synthesized Sweeper HP83752A s/n 3610A00846

FCC and Canadian Certification Report

2001092 ICOM Incorporated

Model: MR-570R

FCC ID: AFJMR-570R

8.1.2 TEST DATA

There were no spurious emissions observed.

TABLE 2: PART 2 §2.1053 (A): FIELD STRENGTH OF SPURIOUS RADIATION

Frequency (M Hz)	Emission Level* (dBuV)	Site Factor (dB/m)	Emission Level (dBuV/m)	Calculated ERP (mW)	Calculated EIRP (mW)	Comments
_						_

Model: MR-570R

Page 20

FCC ID: AFJMR-570R

^{*}Measurement accuracy is +/- 1.5 dB

9 FCC RULES AND REGULATION PART 2 §2.1055: FREQUENCY STABILITY

9.1 TEST PROCEDURE

ANSI/TIA/EIA-603-1992, section 2.2.2

The carrier frequency stability is the ability of the transmitter to maintain an assigned carrier frequency.

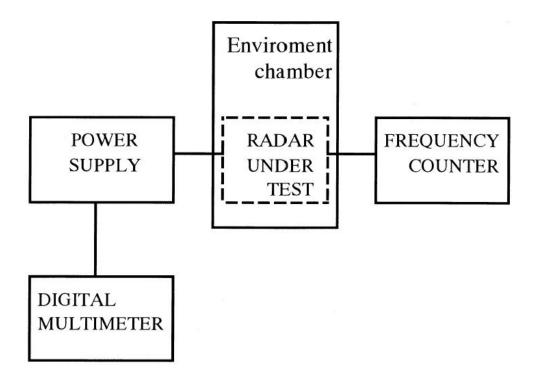
The EUT was evaluated over the temperature range -30°C to +50°C.

The temperature was initially set to -30° C and a 2-hour period was observed for stabilization of the EUT. The frequency stability was measured within one minute after application of primary power to the transmitter. The temperature was raised at intervals of 10 degrees centigrade through the range. A $\frac{1}{2}$ an hour period was observed to stabilize the EUT at each measurement step and the frequency stability was measured within one minute after application of primary power to the transmitter. Additionally, the power supply voltage of the EUT was varied from 85% to 115% of the nominal 24VDC voltage.

9.1.1 FCC § 80.209(b)

The frequency at which maximum emission occurs must be within the authorized bandwidth and must not be closer that 1.5/T MHz to the upper and lower limits of the authorized bandwidth, where T is the pulse duration in microseconds.

1) Center frequency (f₀): Authorized bandwidth (AUBW): 9300 MHZ to 9500 MHz


Upper limit of authorized band = 9500 - 1.5/T Lower limit of authorized band = 9300 + 1.5/T

FREQUENCY TOLERANCE							
PULSE WIDTH (µSEC)	LOWER LIMITS (MHz)	UPPER LIMITS (MHz)					
0.11	9313.64	9513.64					
0.29	9305.17	9505.17					
0.36	9304.15	9504.17					
0.91	9301.65	9501.64					

Note:

From examining the frequency data from variation of frequency with voltage and variation of frequency with temperature results pages, it can be see that the transmitter is within the calculated specification.

PLOT 13: FREQUENCY STABILITY TEST SETUP

The worst-case test data are shown in tables below.

9.2 TEST EQUIPMENT

Temperature Chamber Tenney TH65 s/n 11380

Frequency Counter HP8901A (Frequency Mode) s/n 2545A04102

9.3 TEST DATA

TABLE 3: FREQUENCY STABILITY/TEMPERATURE VARIATION 0.11µS PULSE LENGTH

TEMPERATURE ° C	MEASURED FREQUENCY MHZ
-20	9428.6
-10	9424.2
0	9422.5
10	9421.0
20	9419.4
30	9417.9
40	9415.9
50	9414.2

TABLE 4 FREQUENCY STABILITY/TEMPERATURE VARIATION 0.91µS PULSE LENGTH

TEMPERATURE ° C	MEASURED FREQUENCY MHZ
-20	9424.3
-10	9420.6
0	9419.4
10	9417.3
20	9414.7
30	9414.5
40	9412.8
50	9411.1

Table 5 Frequency Stability/Voltage Variation 0.11µS pulse length

% OF NOMINAL VOLTS	VOLTS (dc)	MEASURED FREQUENCY
100%10.2	10.2	9419.4
85% of 24.0	20.4	9419.4
115% Of 24.0	27.6	9419.4
100%42.0	42.0	9419.4

TABLE 6 FREQUENCY STABILITY/VOLTAGE VARIATION 0.91µS PULSE LENGTH

% OF NOMINAL VOLTS	VOLTS (dc)	MEASURED FREQUENCY
100%10.2	10.2	9414.6
85% of 24.0	20.4	9414.6
115% Of 24.0	27.6	9414.6
100%42.0	42.0	9414.6

The EUT can operate from 10.2 VDC to 42 VDC. Therefore the testing was performed at %85 and %115 of the nominal voltage including at the lowest and the highest operating voltages 10.2 VDCand 42 VDC.