		ADJUSTM	ENT			
Adjustment	No.	Adjustment Condition & Tu	ning	Value	Ref.No.	CK. Point
Preparation		Connect the transceiver by c	loning cable			
		(OPC-1122) to a PC (IBM comp	atible) and			
		boot up the cloning software	÷.			
Check points		Be sure to use a tester with	n more than 50			
		kohm/V internal resistance v	hen making			
		each test.				
Lock Voltage		Set the transceiver to the	100 MHz			
Adjustment		and set so that the LV volta				
Adjustment		C133 during RX and C134 dur	-			
		Adj. Freq. 400	MHz			
		RX Side 1.0	v	1.0V	C133	LV
		TX Side 1.1	v	1.1V	C134	
Lock Voltage		Set the transceiver to the 4	100 MII-			
-						
Check		and check that all is within	specification.			
		Adj. Freq. 430	MHz			
		RX Side 3.0V	~4.2V	3.0V-4.2V		LV
		TX Side 3.0V	~4.2V	3.0V-4.2V		
Frequency		Connect a power meter or at	tenuator			
Adjustment		to the antenna terminal.				
		Loose coupling the antenna t	erminal			
		and frequency counter.				
		Set the transceiver to near	the TX greatest			
		high band frequency and set	_			
		Use adjustment software to a				
		frequency to the values belo	-			
		Set Frequency Set Fre	q. ± 500 Hz	±500Hz	Adi.Soft	ANT Con
			4. – 200 m	-5001112	TXF	

				ADJUSTMENT			
Adjustment	No.		Adjustment C	ondition & Tuning	Value	Ref. No.	CK. Point
TX Output		Use	adjustment so	oftware to adjust the			
		adju	istment output	t to the values below.			
						Adj.Soft	
			Adj. Freq.	Greatest Low Band Freq.		Power	
			Hi Power	25.0W	25.OW	ні	ANT Con
			L2 Power	10.0W	10.0W	L2	
			L1 Power	2.5₩	2.5W	11	
TX Output Check		Cheo	k that the i	n-band TX output is within			
		the	specificatio	ns below.			
			Hi Power	20.0~30.0W	20-30W		ANT Con
			L2 Power	8.0~12.5W	8-12.5W		
			L1 Power	2.0~3.0W	2.0-3.0W		
Current Check at		Chec	k that the i	n-band power consumption			
TX	1			ecifications below.			
			Hi Power	Less than 7.0A	Less 7.0A		
Checking		Com	nost a sposta	rum analyzer to the ANT			
Spurious				an attenuator.			
Spartoas				ion so that the spectrum			
			yzer does no				
				ver to TX and when at Hi			
				t spurious is less than the			
		_		he bandwidth.			
			Spurious	Less than -70dB of the	Less than		ANT Con
			Sparious	fundamental wave	-70 dB		ANI COII
				Turualiencar wave	-70 005		

			ADJUSTMENT			
Adjustment	No.	Adjustment Con	dition & Tuning	Value	Ref.No.	CK. Point
Preparation for		When there is no p	articular set limits, set			
Checking Modula-	-	the modulation ana	lyzer for adjustment and			
tion Adjustment		checking as below.				
		HPF	OFF			
		LPF	20 kHz			
		De-Emphasis	OFF			
		Detector	(P ± P)/2			
		Connect the modula	tion analyzer set at the			
			through the attenuator to			
		-	al. Connect an oscillo-			
		scope, distortion:	meter and a level meter to			
		the modulation ana	lyzer's detection output			
		terminal.				
		Connect a millivol	t meter or a 600 ohm out-			
		put impedance CR o	scillator to the trans-			
		ceiver's mic termi	nal.			
Modulation		Use the adjustment	software to adjust the			
Balance		modulation analyze	er's detection output			
Adjustment		horizontal line so	that it becomes a			
		Straight line as b	elow			
		Adjust. Freq.	Near Center Frequency			
				Detection	Adj.Soft	ANT Con
					Balance	
				_		
Deviation		Set the CR oscilla	tor to a 1 kHz sine wave,			
Adjustment		40mVrms, and input	from the external mic			
		terminal. Set the t	transceiver to TX and use			
		the adjustment soft	tware to adjust to the			
		following values.				
		Adjust. Freq.	Near Center Frequency	± 4.05 ~	Adj.Soft	ANT Con
		WIDE	± 4.10 ± 0.05 kHz	±4.15kHz		
		NARROW	± 2.10 ± 0.05 kHz	± 2.05 ~	MOD N	
				±2.15kHz		

			ADJUSTMENT			
Adjustment	No.	Adjustment Condi	tion & Tuning	Value	Ref. No.	CK. Point
Checking		Check that the devia	ation in the bandwidth			
Deviation		is as the values be	low.			
				± 3.6 ~		ANT Con
		WIDE	± 3.60 ~ 4.50 kHz	±4.5kHz		
		NARROW	± 1.80 ~ 2.30 kHz	± 1.8 ~		
				±2.3kHz		
Checking Modula-	-	Check that the modul	lation in the bandwidth			
tion		is as the value belo	OW .			
		WIDE/NARROW	2.8 ~ 6 mV rms	2.8-6mV		ANT Con
		WIDE: ±3 KHz DEV	; NARROW: ±1.5 KHz DEV	rms		
CTCSS Deviation			cector via the attenuator			
Adjustment			nal, Set the transceiver			
		to wide ch and CTCSS	88.5Hz.			
		Transmit while making				
		applied to the mic ((or mic terminal)			
		r				
		Adjust. Freq. N	lear Center Frequency			ANT Con
		WIDE	± 0.7 kHz	±0.7kHz	CTCS/DTC	S
Checking CTCSS/		then reset so that ea	ach signaling type			
DTCS/2/5 TONE/		can be output.	0.05			
DIMF DEVIATION		DTCS CODE				
		CTCSS 88.				
		5 TONE CCLF				
			uto Dial Setting)			
		2 TONE 349.	U HZ			
		chools that and some	sion in it's bandwidth			
		is as the values bel				
			tow, respectively.			
		Wide CTCSS/DTC	S ± 0.50~± 0.90kHz	±0.5-0.9kHz		ANT Con
		Wide 2/5 TONE/		±2.4-3.6kHz		
)TMF			
		Narrow CTCSS/DI		±.2545kHz		
		Narrow 2/5 TONE		±1.2-1.8kHz		
) TMF			
						l

		ADJT	USTMENT			
Adjustment	No.	Adjustment Condition	& Tuning	Value	Ref. No.	CK. Point
Checking TX S/N		Connect a linear detecto	r via the attenuator			
		to the antenna terminal,	and set to the			
		conditions below.				
		HPF 50 H	Z			
		LPF 20 kH	Iz			
		De-emphasis OF	Ŧ			
		Level Meter (F	P/P)/2			
		Apply a 1 kHz signal fro	m the low frequency			
		oscillator to the mic te	erminal, and			
		transmit, then adjust th	e low frequency			
		oscillator output level	so that the maximum			
		modulation is 70%.(WIDE:	3.5KHz,NAR:1.75KHz)			
		Check that the TX S/N in	the bandwidth is			
		as the values below.				
		WIDE Mor	re than 40 dB	Over 40dE		ANT Con
		NARROW Mor	re than 34 dB	Over 34dB		
Adjusting RX		When there is no particu	lar set limits, set			
Sensitivity		the RX adjustments and s				
-		when checking to the set				
		5	2			
		Modulation Freq.	1kHz			
		WIDE	± 3.5 kHz			
		NARROW	± 1.75 kHz			
		Set the signal generator	in the following			
		way for wide channels.				
		Adjust Freq. Near	Greatest Io band F.			
		SG Input level	+20 dBu			
		Connect an 4 ohm non-indu	ctive load and		Adi.Soft	RSSI line
		a distortion meter to the				
		terminal. Adjust BPF (T1)				
		adjustment software, so t				
		is at maximum.	and an basilivity			
	[

		ADJUSTMENT			
Adjustment	No.	Adjustment Condition & Tuning	Value	Ref. No.	CK. Point
Checking RX		Check that the signal generator level when			
Sensitivity		the RX frequency bandwidth becomes 12 dB			
		SINAD, is the value below.			
		RX Sensitivity Less than -10 dBu	Less-10dB		ANT Con
					SP Jack
		Use the same check method for Narrow			
		channels also.			
Adjusting the		This Adjustment is after the RX Sencitivity			
S3 LEVEL		Finish.			
		Set the signal generator in the following			
		way for wide channels.			
		Adjust Freq. Near Greatest Lo band F.			
		SG Input level +23 dBu			
		Modulation Freq. 1kHz			
		WIDE ± 3.5 kHz			
		·			
		S3 SET COMMAND with the Adjustment soft	Adj.Soft		ANT Con
		Ware.	S-METER		
			S3 Level		
Adjusting the		Set the signal generator to the settings			
S1 LEVEL		below.			
		SG Output Level -7 dBu			
		S1 SET COMMAND with the Adjustment soft	Adj.Soft		ANT Con
		Ware.	S-METER		
			S1 Level		

No.					
140	Adjustment Condition	n & Tuning	Value	Ref. No.	CK. Point
	set the transceiver to t	the RX frequency			
	bandwidth's narrow band	center frequency.			
	Set the signal generator	r to the settings			
	below.				ANT Con
	Modulation Freq.	1kHz			
	WIDE	± 3.5 kHz			
	NARROW	± 1.75 kHz			
	SG Output Level	-14 dBu			
	In this condition, using	g the adjustment		Adj.Soft	
	software, raise the squ	elch D/A value until		SQL	
	the squelch closes once	, then lower the D/A			
	value again, and adjust	until the squelch			
	opening point.				
1					
	in the RX frequency band	width is as below.			
		[]			
	Squelch Sensitivity	Less than -10 dBu	Less-10dB		ANT Con
		lch closes in the RX			
	bandwidth.				
		bandwidth's narrow band Set the signal generator below. Modulation Freq. WIDE NARROW SG Output Level In this condition, using software, raise the squa the squelch closes once value again, and adjust opening point. Check that the squelch in the RX frequency band Squelch Sensitivity Next, reduce the signal	Modulation Freq. 1kHz WIDE ± 3.5 kHz NARROW ± 1.75 kHz SG Output Level -14 dBu In this condition, using the adjustment software, raise the squelch D/A value until the squelch closes once, then lower the D/A value again, and adjust until the squelch opening point. Check that the squelch opening point value in the RX frequency bandwidth is as below. Squelch Sensitivity Less than -10 dBu Next, reduce the signal generator output and check that the squelch closes in the RX	bandwidth's narrow band center frequency. Set the signal generator to the settings below. Modulation Freq. 1kHz WIDE ± 3.5 kHz NARROW ± 1.75 kHz SG Output Level -14 dBu In this condition, using the adjustment software, raise the squelch D/A value until the squelch closes once, then lower the D/A value again, and adjust until the squelch opening point. Check that the squelch opening point value in the RX frequency bandwidth is as below. Squelch Sensitivity Less than -10 dBu Next, reduce the signal generator output and check that the squelch closes in the RX	bandwidth's narrow band center frequency. Set the signal generator to the settings below. Modulation Freq. WIDE ± 3.5 kHz NARROW ± 1.75 kHz SG Output Level -14 dBu In this condition, using the adjustment software, raise the squelch D/A value until the squelch closes once, then lower the D/A value again, and adjust until the squelch opening point. Check that the squelch opening point value in the RX frequency bandwidth is as below. Squelch Sensitivity Less than -10 dBu Next, reduce the signal generator output and check that the squelch closes in the RX

		ADJUSTMENT		1	
Adjustment	No.	Adjustment Condition & Tuning	Value	Ref. No.	CK. Point
Checking		Set the signal generator output level to			
AF Output		+60 dBu. The transceiver and SG connection			
		is the same as the squelch adjustment above.			
		Adjust the transceiver volume until the			
		distortion meter reads 5%.			
		Check that the AF output value at this point			
		as below.			
			Over		ANT Con
		AF Output More than 3.5 W	3.5 W		SP Jack
			@ 4 ohm		
			load		
Checking RX S/N		Set the signal generator output level to			
		+60 dBu. Adjust the AF volume so that the			
		AF output is 50% of the rated value.			
		Check that the RX S/N in the bandwidth is			
		as the values below.			
		WIDE More than 40 dB	Over 40dB		ANT Con
		NARROW More than 34 dB	Over 34dE		SP Jack
Checking		Set the signal generator output to +60 dBu			
Howling		as in RX adjustment, and for non modulation.			ANT Con
		set the internal speaker for operation,			Int SP
		and turn the AF volume up to maximum to			
		check that howling does not occur.			
		-			
Checking		While still in the AF output check status,			
Maximm		rotate the volume control clockwise to			
RX Current		obtain the maximum AF output. Check that the			
		current consumption at this time is as the			
		value below.			
		Max. RX Current Less than 1200 mA	Less than		PWR Con
			1200mA		
	1		1		