

	360 Herndon Parkway, Suite 1400	Work Order number	2001326
	Herndon, VA 20170	FCC	Part 15.247
	http://www.rheintech.com	Industry Canada	RSS-210
		FCC ID	AFJAP-12
		M/N	AP-12

APPENDIX A: RF EXPOSURE CALCULATIONS

From FCC 1.1310 table 1A, the maximum permissible RF exposure for an uncontrolled environment is 1mW/cm^2 . The Electric field generated for a 1mW/cm^2 exposure (S) is calculated as follows:

 $S = E^2/Z$

where: S = Power density E = Electric field Z = Impedance.

 $E = \sqrt{S \times Z}$

 $1 \text{mW/cm}^2 = 10 \text{ W/m}^2$

The impedance of free space is 337 ohms, where E and H fields are perpendicular. Thus:

 $E = \sqrt{10 \text{ x} 377} = 61.4 \text{ V/m}$ which is equivalent to 1 mW/cm^2

Using the relationship between Electric field E, Power in watts P, and distance in meters d, the corresponding Antenna numeric gain G and the transmitter output power and solving for d,

$$d = \sqrt{\frac{\text{EIRPp}_{eak} \times 30}{\text{E}}}$$

TABLE 11-1: RF EXPOSURE SEPARATION DISTANCE

ANTENNA TYPE	Antenna Gain (dBi)	Max EIRP (dBm)	CALCULATED RF EXPOSURE SEPARATION DISTANCE (cm)	MINIMUM RF EXPOSURE SEPARATION DISTANCE (cm)
Diversity Slot Antenna	2.8	12.7	1.2	20.0