

VHF DIGITAL REPEATER Model No.: IC-FR5300/ UR-FR5300 FCC ID: AFJ409100 IC: 202D-409100

Applicant: **ICOM** Incorporated 1-1-32, Kamiminami, Hirano-ku Osaka, Japan, 547-0003

Tested in Accordance With

Federal Communications Commission (FCC) 47 CFR, Parts 2, 22, 74, 80 and 90 (Subpart I) And Industry Canada, RSS-119, Issue 12 Land Mobile and Fixed Transmitters and Receivers **Operating in the Frequency Range 27.41-960 MHz**

UltraTech's File No.: 20ICOM520_FCC90

This Test report is Issued under the Authority of Tri M. Luu, BASc, Vice President of Engineering UltraTech Group of Labs

Date: February 25, 2020

Report Prepared by: Santhosh Fernandez

Tested by: Nimisha Desai

Issued Date: February 25, 2020

Test Dates: January 29 – February 10, 2020

The results in this Test Report apply only to the sample(s) tested, and the sample tested is randomly selected.

This report must not be used by the client to claim product endorsement by any agency of the US Government.

This test report shall not be reproduced, except in full, without a written approval from UltraTech.

3000 Bristol Circle, Oakville, Ontario, Canada, L6H 6G4 Tel.: (905) 829-1570 Fax.: (905) 829-8050 Website: www.ultratech-labs.com, Email: vic@ultratech-labs.com, Email: tri@ultratech-labs.com

CA0001

1309

46390-2049

บกบกบก IUNUr

TABLE OF CONTENTS

EXHIBI	Т 1.	INTRODUCTION	. 1
1.1.	SCOP	Е	. 1
1.2.		TED SUBMITTAL(S)/GRANT(S)	
1.3.	NORM	IATIVE REFERENCES	. 1
EXHIBI'	Т 2.	PERFORMANCE ASSESSMENT	. 2
2.1.	CLIEN	JT INFORMATION	\mathbf{r}
2.1.		PMENT UNDER TEST (EUT) INFORMATION	
2.3.	~	S TECHNICAL SPECIFICATIONS	
2.4.		DF EUT'S PORTS.	
2.5.		LLARY EQUIPMENT	
EXHIBI	Т 3.	EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS	. 5
3.1.	CLIM	ATE TEST CONDITIONS	. 5
3.2.		ATIONAL TEST CONDITIONS & ARRANGEMENT FOR TEST SIGNALS	
EXHIBI	Т 4.	SUMMARY OF TEST RESULTS	. 6
4.1.	LOCA	TION OF TESTS	. 6
4.2.		ICABILITY & SUMMARY OF EMISSION TEST RESULTS	
4.3.		FICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES	
4.3.1	l. D	DEVIATION OF STANDARD TEST PROCEDURES	. 7
EXHIBI	Т 5.	MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS	. 8
5.1.	TEST	PROCEDURES	. 8
5.2.	MEAS	SUREMENT UNCERTAINTIES	. 8
5.3.	MEAS	SUREMENT EQUIPMENT USED	. 8
5.4.		NTIAL/PRIMARY FUNCTIONS AS DECLARED BY THE MANUFACTURER	
5.5.		WER OUTPUT [§§ 2.1046, 22.565, 74.461, 80.215 & 90.205] [RSS-GEN § 4.8 & RSS-119 § 5.4]	
5.5.1		imits	
5.5.2		lethod of Measurements	
5.5.3		est Data	.9 10
5.6. <i>5.6</i> .1		O FREQUENCY RESPONSE [§ 2.1047(A), 80.213(E) & 90.242(B)(8)]	
5.6.2		imits Iethod of Measurements	
5.6.2		est Data	
		JLATION LIMITING [§§ 2.1047 (в), 74.463, 80.213 & 90.210]	
5.7.		imits	
5.7.2		lethod of Measurements	
5.7.3	3. T	est Data	16
5.8.	OCCU	IPIED BANDWIDTH & EMISSION MASK [§§ 2.1049, 74.462, 80.211(F), 90.209 & 90.210] [RSS-119 §§ 5.1	5
& 5.8]	[RSS-1	19 § 5.5 & 5.8]	20
5.8.1		imits	
5.8.2		lethod of Measurements	
5.8.3		est Data	21
5.9.		SMITTER ANTENNA POWER SPURIOUS/HARMONIC CONDUCTED EMISSIONS [§ 2.1051, 2.1057,	5 0
		1(F)(3) & 90.210] [RSS-119 § 5.8]	
5.9.1 5.9.2		imits Iethod of Measurements	
5.9.2		est Data	
5.7	. 1		20

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u> File #: 20ICOM520_FCC90 February 25, 2020

5.10. TRANSMITTER SPURIOUS/HARMONIC RADIATED EMISSIONS [§§ 2.1053, 2.1057, 22.359, 80	
90.210] [RSS-119, § 5.5 & 5.8]	
5.10.1. Limits	
5.10.2. Method of Measurements	
5.10.3. Test Data	
5.11. FREQUENCY STABILITY [§§ 2.1055, 22.355, 74.464, 80.209 & 90.213] [RSS-119 § 5.3]	
5.11.1. Limits	
5.11.2. Method of Measurements	
<i>5.11.3. Test Data</i> 5.12. TRANSIENT FREQUENCY BEHAVIOR [§ 90.214 & 74.462(c)] [RSS-119 § 5.9]	
5.12.1. Limits	
5.12.2. Method of Medsurements	
5.12.5. Test Data 5.13. RF EXPOSURE REQUIREMENTS [§§ 1.1310 & 2.1091] [RSS GEN SEC 5.6 & RSS-102]	
5.13.1. Limits	
5.13.2. Method of Measurements	
5.13.3. Evaluation of RF Exposure Compliance Requirements	
5.14. RECEIVER ANTENNA POWER SPURIOUS/HARMONIC CONDUCTED EMISSIONS [RSS-119]	3511 RSS-
GEN §§ 4.10 & 6]	
5.14.1. Limits	
5.14.2. Method of Measurements	
5.14.3. Test Data	
5.15. RECEIVER SPURIOUS EMISSIONS (RADIATED) [RSS-119 § 5.11, RSS-GEN §§ 4.10 & 6]	
5.15.1. Limits	
5.15.2. Method of Measurements	
5.15.3. Test Data	
5.16. POWER LINE CONDUCTED EMISSIONS [ICES-003, RSS-GEN § 7.2.2]	
5.16.1. Limit(s)	
5.16.2. Method of Measurements	
5.16.3. Test Data	
5.17. RADIATED EMISSIONS FROM UNINTENTIONAL RADIATORS [ICES-003]	101
5.17.1. Limits	101
5.17.2. Method of Measurements	
5.17.3. Test Data	101
EXHIBIT 6. TEST SETUP AND EQUIPMENT LIST	102
-	
6.1. CONDUCTED POWER	
6.2. MODULATION LIMIT	
6.3. AUDIO FREQUENCY RESPONSE	
6.4. TRANSIENT FREQUENCY BEHAVIOR	
6.5. 99% OBW AND MASK	
6.6. RX CONDUCTED EMISSION	
6.7. TX CONDUCTED EMISSION	
6.8. FREQUENCY STABILITY	
6.9. TX RADIATED	
6.10. RX RADIATED.	
6.11. Power Line Conducted Emission	
EXHIBIT 7. MEASUREMENT UNCERTAINTY	113
7.1. LINE CONDUCTED EMISSION MEASUREMENT UNCERTAINTY (0.15-30 MHz)	113
7.2. RADIATED EMISSION MEASUREMENT UNCERTAINTY	
EXHIBIT 8. MEASUREMENT METHODS	114

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u> File #: 20ICOM520_FCC90 February 25, 2020

8.1.	CONDUCTED POWER MEASUREMENTS	
8.2.	RADIATED POWER MEASUREMENTS (ERP & EIRP) USING SUBSTITUTION METHOD	115
8.2.	1. MAXIMIZING RF EMISSION LEVEL (E-FIELD)	115
8.2.	2. Measuring the EIRP of Spurious/Harmonic Emissions using Substitution Method	116
8.3.	FREQUENCY STABILITY	118
8.4.	EMISSION MASK	119
8.5.	SPURIOUS EMISSIONS (CONDUCTED)	119
8.6.	TRANSIENT FREQUENCY BEHAVIOR	120

EXHIBIT 1. INTRODUCTION

1.1. SCOPE

Reference:	FCC Parts 2, 22, 74, 80 and 90 (Subpart I) RSS-119
Title:	Code of Federal Regulations (CFR), Title 47 Telecommunication – Parts 2, 22, 74, 80 and 90 (Subpart I) Land Mobile and Fixed Radio Transmitters and Receivers Operating in the Frequency Range 27.41-960 MHz
Purpose of Test:	To obtain FCC Certification Authorization for Radio operating in the Frequency Band 136-174 MHz and RSS-119
Test Procedures:	Both conducted and radiated emissions measurements were conducted in accordance with TIA/EIA Standard TIA/EIA-603-E – Land Mobile FM or PM Communications Equipment Measurement and performance Standards.

1.2. RELATED SUBMITTAL(S)/GRANT(S)

None

1.3. NORMATIVE REFERENCES

Publication	Year	Title	
FCC CFR Parts 0-19, 80-End	2019	Code of Federal Regulations – Telecommunication	
ANSI C63.4	2014	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz	
ANSI/TIA-603-E	2016	Land Mobile FM or PM Communications Equipment Measurement and Performance Standards	
ANSI C63.26	2015	American National Standard for Compliance Testing of Transmitters used in Licensed Radio Services	
CISPR 22	2008-09 Ed 6	Information Technology Equipment - Radio Disturbance Characteristics - Limits and Methods of Measurement	
CISPR 16-1-1 +A1 +A2	2006 2006 2007	Specification for radio disturbance and immunity measuring apparatus and methods. Part 1-1: Measuring Apparatus	
CISPR 16-1-2 +A1 +A2	2003 2004 2006	Specification for radio disturbance and immunity measuring apparatus and methods. Part 1-2: Conducted disturbances	
RSS-119, Issue 12	2015	Land Mobile and Fixed Transmitters and Receivers, 27.41-960 MHz	
ICES-003, ISSUE 6	2019	Information Technology Equipment (Including Digital Apparatus) — Limits and Methods of Measurement	

EXHIBIT 2. PERFORMANCE ASSESSMENT

2.1. CLIENT INFORMATION

APPLICANT	
Name:	Icom Incorporated
Address:	1-1-32, Kamiminami Hirano-ku, Osaka Japan, 547-0003
Contact Person:	Mr. Atsushi Tomiyama Phone #: +81 6 6793 5302 Fax #: +81 6 6793 0013 Email Address: world_support@icom.co.jp

MANUFACTURER	
Name:	Icom Incorporated
Address:	1-1-32, Kamiminami Hirano-ku, Osaka Japan, 547-0003
Contact Person:	Mr. Atsushi Tomiyama Phone #: +81 6 6793 5302 Fax #: +81 6 6793 0013 Email Address: world_support@icom.co.jp

2.2. EQUIPMENT UNDER TEST (EUT) INFORMATION

The applicant has supplied the following information (with the exception of the Date of Receipt).

Brand Name:	ICOM Incorporated
Product Name:	VHF DIGITAL REPEATER
Model Name or Number:	IC-FR5300
Serial Number:	00000102
Type of Equipment:	Licensed Non-Broadcast Station Transmitter
Power Supply Requirement:	13.6 VDC nominal
Transmitting/Receiving Antenna Type:	Non-integral
Primary User Functions of EUT:	2-Way Wireless Voice & Data repeater

2.3. EUT'S TECHNICAL SPECIFICATIONS

TRANSMITTER	
Equipment Type:	Mobile
Intended Operating Environment:	Restricted to Occupational Use only
Power Supply Requirement:	13.6 VDC Nominal
RF Output Power Rating:	50 Watt (High) / 5 Watt (Low)
Operating Frequency Range:	136-174 MHz
RF Output Impedance:	50 Ω
Channel Spacing:	25 kHz, 12.5kHz,15 kHz, 6.25 kHz
Occupied Bandwidth (99%):	16.66 kHz (25 kHz Analog) 10.48 kHz (12.5 kHz Analog), 3.86 kHz (6.25 kHz Digital)
Emission Designation*:	16K0F3E**, 11K0F3E, 4K00F1E, 4K00F1D
Antenna Connector Type:	N

* For an average case of commercial telephony, the Necessary Bandwidth is calculated as follows:

For FM Voice Modulation:

Channel Spacing = 12.5 KHz, D = 2.5 KHz max, K = 1, M = 3 KHz $B_n = 2M + 2DK = 2(3) + 2(2.5)(1) = 11 \text{ KHz}$ Emission designation: 11K0F3E

****Note:** The emission designation 16K0F3E with 25 KHz Channel bandwidth is only applied to the device operated in FCC Rules Part 22, 74 & 80 frequencies. The operation of 16K0F3E emission will be disabled in the firmware by the manufacturer for device that operates in FCC Rules Part 90 frequencies (Private Land Mobile) as declared by the applicant.

2.4. LIST OF EUT'S PORTS

Port Number	EUT's Port Description	Number of Identical Ports	Cable Type/Termination
1	Tx Antenna Connector	1	Terminated to 50Ω Load
2	Microphone Jack	1	Non-shielded
3	DC Power Receptacle	1	Non-shielded
4	Rx Antenna Connector	1	Terminated to 50Ω Load
5	DC Fan Input Power Receptacle	1	Non-shielded
6	DB25	1	Shielded
7	Bus1/2 RJ45	2	Non-shielded
8	LAN	1	Non-shielded
9	Ext Speaker Jack	1	Non-shielded
10	GPS Antenna	1	GPS Antenna

2.5. ANCILLARY EQUIPMENT

The EUT was tested while connected to the following representative configuration of ancillary equipment necessary to exercise the ports during tests:

Ancillary Equipment # 1		
Description:	Microphone	
Brand name:	ICOM	
Model Name or Number:	HM-152	
Connected to EUT's Port:	Microphone Port	

Ancillary Equipment # 2		
Description:	External Speaker	
Brand name:	ICOM	
Model Name or Number:	SP-35	
Connected to EUT's Port:	Ext. Speaker	

EXHIBIT 3. EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS

3.1. CLIMATE TEST CONDITIONS

The climate conditions of the test environment are as follows:

Temperature:	21°C - 24°C
Humidity:	45% to 58%
Pressure:	102 kPa
Power Input Source:	13.6 VDC Nominal

3.2. OPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TEST SIGNALS

Operating Modes:	The transmitter was operated in a continuous transmission mode with the carrier modulated as specified in the Test Data.
Special Test Software:	N/A
Special Hardware Used:	N/A
Transmitter Test Antenna:	The EUT is tested with the antenna port terminated to a 50 Ohm RF Load.

Transmitter Test Signals	
Frequency Band(s):	136-174 MHz
Test Frequencies: (Near lowest, near middle & near highest frequencies in the frequency range of operation.)	138.1 MHz, 151.1 MHz, 160.9 MHz, 173.3 MHz
Transmitter Wanted Output Test Signals:	
Transmitter Power (measured maximum output power):	48.42 W High
Normal Test Modulation:	FM Voice/Digital
Modulating signal source:	External

EXHIBIT 4. SUMMARY OF TEST RESULTS

4.1. LOCATION OF TESTS

All of the measurements described in this report were performed at Ultratech Group of Labs located in the city of Oakville, Province of Ontario, Canada.

Radiated Emissions were performed at the Ultratech's 3-10 TDK Semi-Anechoic Chamber situated in the Town of Oakville, province of Ontario. This test site been calibrated in accordance with ANSI C63.4, and found to be in compliance with the requirements of Sec. 2.948 of the FCC Rules. The descriptions and site measurement data of the Oakville 3-10 TDK Semi-Anechoic Chamber has been filed with ANAB File No.: AT-1945.

4.2. APPLICABILITY & SUMMARY OF EMISSION TEST RESULTS

FCC/RSS Section(s)	Test Requirements	Applicability (Yes/No)
1.1307, 1.1310, 2.1091 & 2.1093 RSS-Gen, §3.4 & RSS-102	RF Exposure Limit	Yes
2.1046, 22.565, 74.461, 80.215 & 90.205 RSS-119 § 5.4	RF Power Output	Yes
2.1047(a), 80.213(e) & 90.242(b)(8)	Audio Frequency Response	Not applicable to new standard. However, tests are conducted under FCC's recommendation.
2.1047(b), 74.463, 80.213 & 90.210	Modulation Limiting	Yes
2.1049, 74.462, 80.211(f), 90.209 & 90.210 RSS-Gen § 6.7 RSS-119 § 5.5	Emission Limitation & Emission Mask	Yes
2.1051, 2.1057, 80.211(f)(3), & 90.210	Emission Limits - Spurious Emissions at Antenna Terminal	Yes
2.1053, 2.1057, 22.359, 80.211(f)(3), & 90.210 RSS-119 § 5.8	Emission Limits - Field Strength of Spurious Emissions	Yes
2.1055, 22.355, 74.464 80.209 & 90.213 RSS-119 § 5.3	Frequency Stability	Yes
74.462(c) & 90.214 RSS-119 § 5.9	Transient Frequency Behavior	Yes
ICES-003 § 6.2	Radiated Emissions from Digital Apparatus – Radiated	Yes
RSS-Gen § 8.8 ICES-003 § 6.1	Power Line Conducted Emissions from Digital Apparatus	Yes
RSS-119 § 5.11 RSS-Gen, Section 7.3	Receiver Spurious Emissions (Radiated)	Yes
RSS-119 § 5.11 RSS-Gen, Section 7.4	Receiver Spurious Emissions (Antenna Conducted)	Yes

VHF DIGITAL REPEATER, Model No.: IC-FR5300, by ICOM Incorporated has also been tested and found to comply with FCC Part 15, Subpart B - Radio Receivers and Digital Devices. The engineering test report has been documented and kept on file and is available upon request.

4.3. MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES

None

4.3.1. DEVIATION OF STANDARD TEST PROCEDURES

None

EXHIBIT 5. MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS

5.1. TEST PROCEDURES

This section contains test results only. Details of test methods and procedures can be found in EXHIBIT 8 of this report.

5.2. MEASUREMENT UNCERTAINTIES

The measurement uncertainties stated were calculated in accordance with the requirements of CISPR 16-4-2 @ IEC:2003 and JCGM 100:2008 (GUM 1995) – Guide to the Expression of Uncertainty in Measurement. Refer to Exhibit 7 for Measurement Uncertainties.

5.3. MEASUREMENT EQUIPMENT USED

The measurement equipment used complied with the requirements of the Standards referenced in the Methods & Procedures ANSI C63.4 and CISPR 16-1-1.

5.4. ESSENTIAL/PRIMARY FUNCTIONS AS DECLARED BY THE MANUFACTURER

The essential function of the EUT is to communicate to and from radios over RF link.

5.5. RF POWER OUTPUT [§§ 2.1046, 22.565, 74.461, 80.215 & 90.205] [RSS-Gen § 4.8 & RSS-119 § 5.4]

5.5.1. Limits

Please refer to FCC 47 CFR 90.205, 74.461, 80.215 & 22.565 for specification details. RSS-119 The output power shall be within + 1.0 dB of the manufacturer's rated power and RSS 119 Section 5.4 table 2

5.5.2. Method of Measurements

Refer to Section 8.1 (Conducted) of this report for measurement details

5.5.3. Test Data

Fundamental Frequency (MHz)	Measured (Average) Power (W)	Power Rating (W)
	High Power Level, 50 W	
138.100	47.53	50.0
151.100	48.42	50.0
160.900	48.31	50.0
173.300	47.64	50.0
	Low Power Level, 5.0 W	
138.100	5.05	5.0
151.100	5.13	5.0
160.900	5.06	5.0
173.300	4.88	5.0
	Mid Power Level, 25.0 W	
138.100	24.72	25.0
151.100	24.72	25.0
160.900	24.77	25.0
173.300	24.95	25.0

5.6. AUDIO FREQUENCY RESPONSE [§ 2.1047(a), 80.213(e) & 90.242(b)(8)]

5.6.1. Limits

§ **2.1047(a):** Voice modulated communication equipment. A curve or equivalent data showing the frequency response of the audio modulating circuit over a range of 100 to 5000 Hz shall be submitted. For equipment required to have an audio low-pass filter, a curve showing the frequency response of the filter or of all circuitry installed between the modulation limiter and the modulated stage shall be submitted.

§ 90.242(b)(8): Recommended audio filter attenuation characteristics are given below:

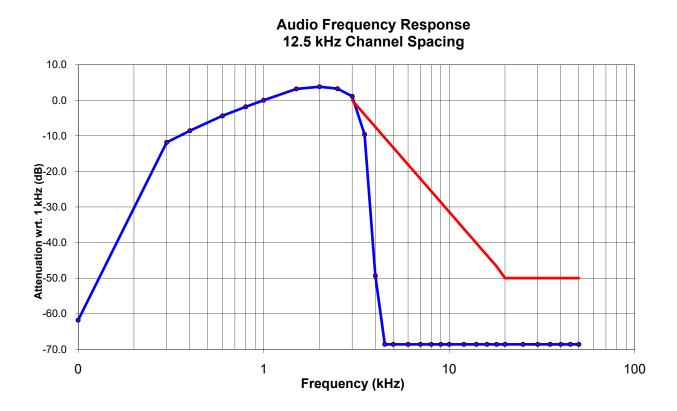
Audio band	Minimum Attenuation Rel. to 1 kHz Attenuation
5 –20 KHz	83log ₁₀ (f/5) dB where f is in kHz
20 – 30 KHz	50dB

80.213(e) Recommended audio filter attenuation characteristics are given below:

Audio band	Minimum Attenuation Rel. to 1 kHz Attenuation
3 –20 KHz	60 log ₁₀ (f/3) dB where f is in kHz
20 – 30 KHz	50dB

5.6.2. Method of Measurements

The rated audio input signal was applied to the input of the audio low-pass filter (or of all modulation stages) using an audio oscillator, this input signal level and its corresponding output signal were then measured and recorded using the FFT Digital Spectrum Analyzer. Tests were repeated at different audio signal frequencies from 0 to 50 KHz.

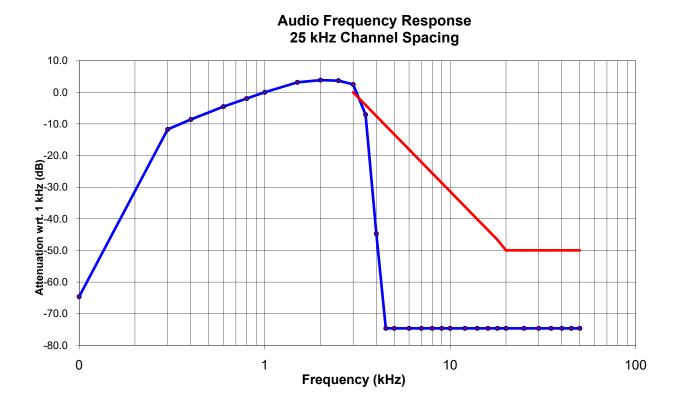

٦

5.6.3. Test Data

Г

5.6.3.1. 12.5 KHz Channel Spacing, F3E

_	Audio In	Audio Out	Attenuation	Attenuation	Recommended
Frequency (KHz)	(dBV)	(dBV)	(Out - In) (dB)	Rel. to 1 KHz (dB)	Attenuation (dB)
0.1	-49.63	-63.20	-13.6	-61.8	
0.3	-49.63	-13.23	36.4	-11.9	
0.4	-49.63	-9.95	39.7	-8.6	
0.6	-49.63	-5.75	43.9	-4.4	
0.8	-49.63	-3.22	46.4	-1.8	
1.0	-49.63	-1.38	48.2	0.0	
1.5	-49.63	1.82	51.4	3.2	
2.0	-49.63	2.42	52.1	3.8	
2.5	-49.63	1.87	51.5	3.3	
3.0	-49.63	-0.27	49.4	1.1	0
3.5	-49.63	-10.98	38.7	-9.6	-4
4.0	-49.63	-50.72	-1.1	-49.3	-7
4.5	-49.63	-70.00	-20.4	-68.6	-11
5.0	-49.63	-70.00	-20.4	-68.6	-13
6.0	-49.63	-70.00	-20.4	-68.6	-18
7.0	-49.63	-70.00	-20.4	-68.6	-22
8.0	-49.63	-70.00	-20.4	-68.6	-26
9.0	-49.63	-70.00	-20.4	-68.6	-29
10.0	-49.63	-70.00	-20.4	-68.6	-31
12.0	-49.63	-70.00	-20.4	-68.6	-36
14.0	-49.63	-70.00	-20.4	-68.6	-40
16.0	-49.63	-70.00	-20.4	-68.6	-44
18.0	-49.63	-70.00	-20.4	-68.6	-47
20.0	-49.63	-70.00	-20.4	-68.6	-50
25.0	-49.63	-70.00	-20.4	-68.6	-50
30.0	-49.63	-70.00	-20.4	-68.6	-50
35.0	-49.63	-70.00	-20.4	-68.6	-50
40.0	-49.63	-70.00	-20.4	-68.6	-50
45.0	-49.63	-70.00	-20.4	-68.6	-50
50.0	-49.63	-70.00	-20.4	-68.6	-50



5.6.3.2. 25 KHz Channel Spacing, F3E

<u>Note</u>: Due to the difficulty of measuring the Frequency Response of the internal low-pass filter, the Frequency Response of All Modulation States is performed to show the roll-off at 3 KHz in comparison with the recommended audio filter attenuation.

Frequency (KHz)	Audio In (dBV)	Audio Out (dBV)	Attenuation (Out - In) (dB)	Attenuation Rel. to 1 KHz (dB)	Recommended Attenuation (dB)
0.1	-49.63	-60.00	-10.4	-64.7	
0.3	-49.63	-7.07	42.6	-11.7	
0.4	-49.63	-3.94	45.7	-8.6	
0.6	-49.63	0.15	49.8	-4.5	
0.8	-49.63	2.68	52.3	-2.0	
1.0	-49.63	4.65	54.3	0.0	
1.5	-49.63	7.81	57.4	3.2	
2.0	-49.63	8.51	58.1	3.9	
2.5	-49.63	8.34	58.0	3.7	
3.0	-49.63	7.14	56.8	2.5	0
3.5	-49.63	-2.38	47.3	-7.0	-4
4.0	-49.63	-40.08	9.6	-44.7	-7
4.5	-49.63	-70.00	-20.4	-74.7	-11
5.0	-49.63	-70.00	-20.4	-74.7	-13
6.0	-49.63	-70.00	-20.4	-74.7	-18
7.0	-49.63	-70.00	-20.4	-74.7	-22
8.0	-49.63	-70.00	-20.4	-74.7	-26
9.0	-49.63	-70.00	-20.4	-74.7	-29
10.0	-49.63	-70.00	-20.4	-74.7	-31
12.0	-49.63	-70.00	-20.4	-74.7	-36
14.0	-49.63	-70.00	-20.4	-74.7	-40
16.0	-49.63	-70.00	-20.4	-74.7	-44
18.0	-49.63	-70.00	-20.4	-74.7	-47
20.0	-49.63	-70.00	-20.4	-74.7	-50
25.0	-49.63	-70.00	-20.4	-74.7	-50
30.0	-49.63	-70.00	-20.4	-74.7	-50
35.0	-49.63	-70.00	-20.4	-74.7	-50
40.0	-49.63	-70.00	-20.4	-74.7	-50
45.0	-49.63	-70.00	-20.4	-74.7	-50
50.0	-49.63	-70.00	-20.4	-74.7	-50

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

5.7. MODULATION LIMITING [§§ 2.1047 (b), 74.463, 80.213 & 90.210]

5.7.1. Limits

§ 2.1047(b): Equipment which employs modulation limiting. A curve or family of curves showing the percentage of modulation versus the modulation input voltage shall be supplied. The information submitted shall be sufficient to show modulation limiting capability throughout the range of modulating frequencies and input modulating signal levels employed.

Recommended frequency deviation characteristics are given below:

- 1.25 kHz for 6.25 kHz Channel Spacing System
- 2.5 KHz for 12.5 kHz Channel Spacing System

5.7.2. Method of Measurements

For Audio Transmitter: The carrier frequency deviation was measured with the tone input signal level varied from 0 Vp to audio input rating level plus 16 dB at frequencies 0.1, 0.5, 1.0, 3.0 and 5.0 kHz. The maximum deviation was recorded at each test condition.

For Data Transmitter with Maximum Frequency Deviation set by Factory: The EUT was set at maximum frequency deviation, and its peak frequency deviation was then measured using EUT's internal random data source.

5.7.3. Test Data

5.7.3.1. Voice Modulation Limiting for 12.5 KHz Channel Spacing Operation

Modulating Signal Level		Maximum Limit				
(mVrms)	0.1 kHz	0.5 kHz	1.0 kHz	3.0 kHz	5.0 kHz	(kHz)
2	0.16	0.42	0.80	1.33	0.14	2.5
4	0.14	0.78	1.58	1.42	0.15	2.5
6	0.13	1.15	1.80	1.45	0.15	2.5
8	0.14	1.53	1.86	1.46	0.14	2.5
10	0.13	1.79	1.92	1.47	0.13	2.5
15	0.14	2.02	1.98	1.47	0.14	2.5
20	0.12	2.12	2.00	1.47	0.14	2.5
25	0.14	2.20	2.02	1.46	0.13	2.5
30	0.14	2.24	2.02	1.47	0.14	2.5
35	0.14	2.28	2.03	1.47	0.23	2.5
40	0.14	2.27	2.03	1.47	0.10	2.5
45	0.14	2.26	2.04	1.47	0.20	2.5
50	0.14	2.27	2.05	1.47	0.08	2.5
60	0.39	2.28	2.04	1.47	0.08	2.5
70	0.51	2.27	2.04	1.47	0.21	2.5
80	0.24	2.27	2.03	1.47	0.20	2.5
90	0.34	2.27	2.03	1.47	0.05	2.5
100	0.55	2.28	2.03	1.47	0.04	2.5

CH7 6.25KHz Digital deviation 1.533 kHz

Voice Signal Input Level	= STD MOD Level + 16 dB = 3.3mV + 16 dB = 26.37 dB(mVrms) = 20.82 mVrms	
Modulation Frequency (kHz)	Peak Deviation (kHz)	Maximum Limit (kHz)
0.1	0.15	2.5
0.2	0.14	2.5
0.4	2.13	2.5
0.6	2.14	2.5
0.8	2.10	2.5
1.0	2.00	2.5
1.2	1.93	2.5
1.4	2.03	2.5
1.6	2.08	2.5
1.8	2.09	2.5
2.0	2.08	2.5
2.5	1.95	2.5
3.0	1.47	2.5
3.5	0.89	2.5
4.0	0.16	2.5
4.5	0.14	2.5
5.0	0.06	2.5
6.0	0.07	2.5
7.0	0.06	2.5
8.0	0.06	2.5
9.0	0.07	2.5
10.0	0.06	2.5

Modulating Signal Level						
(mVrms)	0.1 kHz	0.5 kHz	1.0 kHz	3.0 kHz	5.0 kHz	(kHz)
2	0.22	0.82	1.66	3.04	0.21	5.0
4	0.21	1.53	3.13	3.34	0.22	5.0
6	0.23	2.31	3.56	3.35	0.25	5.0
8	0.24	3.08	3.76	3.39	0.24	5.0
10	0.22	3.56	3.85	3.36	0.25	5.0
15	0.23	4.06	4.01	3.41	0.23	5.0
20	0.23	4.23	4.07	3.41	0.23	5.0
25	0.23	4.36	4.09	3.41	0.23	5.0
30	0.24	4.47	4.11	3.41	0.23	5.0
35	0.22	4.52	4.15	3.41	0.43	5.0
40	0.23	4.51	4.14	3.41	0.22	5.0
45	0.24	4.52	4.14	3.41	0.44	5.0
50	0.23	4.54	4.16	3.41	0.15	5.0
60	0.83	4.55	4.14	3.41	0.15	5.0
70	0.73	4.55	4.13	3.41	0.41	5.0
80	0.73	4.55	4.15	3.41	0.40	5.0
90	0.90	4.55	4.12	3.41	0.10	5.0
100	1.03	4.55	4.13	3.41	0.10	5.0

5.7.3.2. Voice Modulation Limiting for 25 KHz Channel Spacing Operation

Voice Signal Input Level	= STD MOD Level + 16 dB = 3.3mV + 16 dB = 26.37 dB(mVrms) = 20.82 mVrms	
Modulation Frequency (KHz)	Peak Deviation (KHz)	Maximum Limit (KHz)
0.1	0.24	5.0
0.2	0.22	5.0
0.4	4.24	5.0
0.6	4.25	5.0
0.8	4.20	5.0
1.0	4.08	5.0
1.2	3.87	5.0
1.4	3.92	5.0
1.6	4.12	5.0
1.8	4.17	5.0
2.0	4.16	5.0
2.5	4.08	5.0
3.0	3.41	5.0
3.5	2.41	5.0
4.0	0.29	5.0
4.5	0.25	5.0
5.0	0.22	5.0
6.0	0.22	5.0
7.0	0.22	5.0
8.0	0.23	5.0
9.0	0.22	5.0
10.0	0.24	5.0

5.8. OCCUPIED BANDWIDTH & EMISSION MASK [§§ 2.1049, 74.462, 80.211(f), 90.209 & 90.210] [RSS-119 §§ 5.5 & 5.8] [RSS-119 § 5.5 & 5.8]

5.8.1. Limits

Emissions shall be attenuated below the mean output power of the transmitter as follows:

Frequency Range (MHz)	Maximum Authorized BW (KHz)	Channel Spacing (KHz)	Recommended Frequency Deviation (KHz)	FCC Applicable Mask
156-174, 421-512	11.25	12.5	2.5	Mask D – Voice & Data
156-174, 421-512	20	25	5.0	Mask B – Voice & Data
150-174, 421-512	6	6.25	1.25	Mask E – Voice & Data

§80.211(f) Emission limitations

Emissions shall be attenuated below the mean output power of the transmitter as follows:

(1) On any frequency removed from the assigned frequency by more than 50 percent up to and including 100 percent of the authorized bandwidth: At least 25 dB;

(2) On any frequency removed from the assigned frequency by more than 100 percent up to and including 250 percent of the authorized bandwidth: At least 35 dB; and

(3) On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: At least 43 plus $10\log_{10}$ (mean power in watts) dB.

RSS119

Table 3 - Channel Spacing, Authorized Bandwidths and Applica	ble Spectrum Masks
--	--------------------

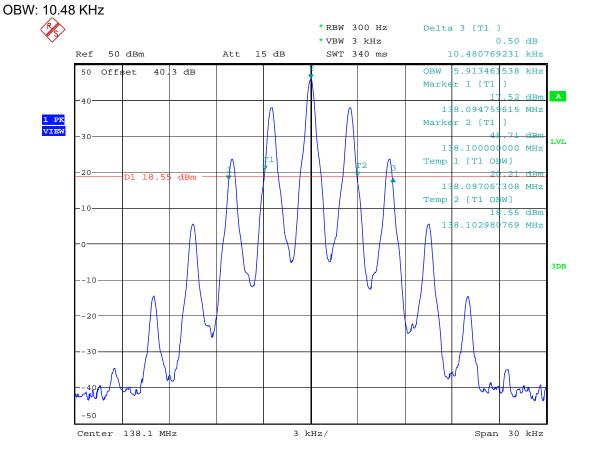
Frequency Band (MHz)	Related SRSP for Channelling Plan and e.r.p.	Channel Spacing (kHz)	Authorized Bandwidth (kHz)	Spectrum Masks with Audio Filter	Spectrum Masks Without Audio Filter
27.41-28.0 and 29.7-50.0	N/A	20	20	В	С
72-76	N/A	20	20	В	С
138-144; 148-149.9 and 150.05-174	SRSP-500	30	20	В	C
		15	11.25	D	D
		7.4	6	E	E
217-218 and 219-220	N/A	12.5	11.25	D or I	D or J
220-222	SRSP-512	5	4	F	F
406.1-430 and 450-470	SRSP-501	25	20	В	C (G, Note 1)
		12.5	11.25	D	D
		6.25	6	E	E

Paging transmitters in the bands 406.1-430 MHz or 450-470 MHz are to use Mask G.

5.8.2. Method of Measurements

Refer to Section 8.4 of this report for measurement details.

5.8.3. Test Data


5.8.3.1. 99% Occupied Bandwidth

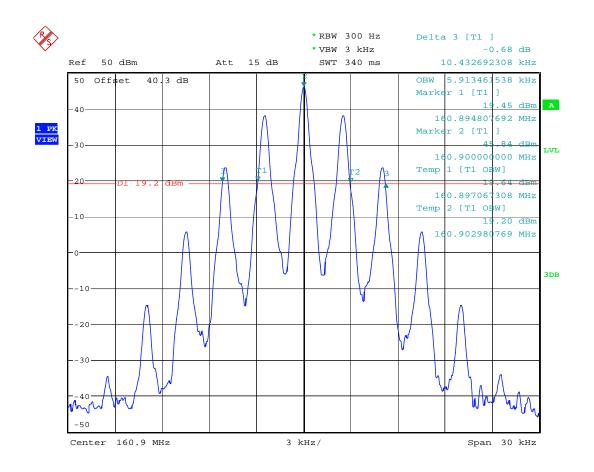
Frequency (MHz)	Channel Spacing (kHz)	Modulation	*Measured 99% OBW at Maximum Freq. Deviation (kHz)	Maximum Authorized Bandwidth (kHz)
138.1	25.0*	FM with 2.5 KHz sine wave signal	16.66*	20.0
151.1	25.0*	FM with 2.5 KHz sine wave signal	16.6*	20.0
160.9	25.0*	FM with 2.5 kHz sine wave signal	16.6*	20.0
173.3	25.0*	FM with 2.5 KHz sine wave signal	16.66*	20.0
138.1	12.5	FM with 2.5 kHz sine wave signal	10.48	11.25
151.1	12.5	FM with 2.5 kHz sine wave signal	10.43	11.25
160.9	12.5	FM with 2.5 kHz sine wave signal	10.43	11.25
173.3	12.5	FM with 2.5 kHz sine wave signal	10.43	11.25
138.1	6.25	Digital	3.84	6.0
151.1	6.25	Digital	3.86	6.0
160.9	6.25	Digital	3.81	6.0
173.3	6.25	Digital	3.86	6.0

* Not for FCC Part 90 Certification, refer to cover letter for details.


Refer to the following test data plots for details.

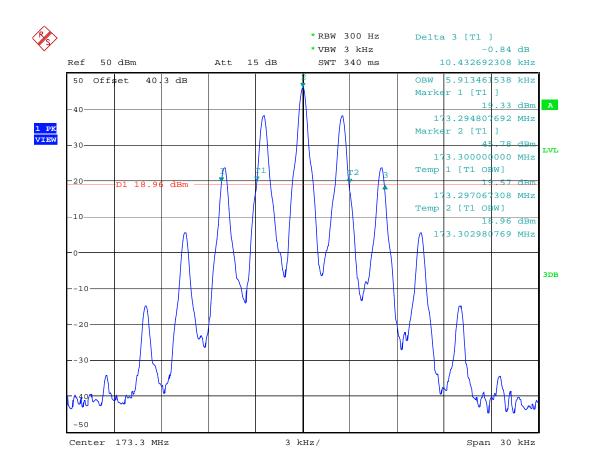
Analog

5.8.3.2. Configuration: 99% OBW, 138.1MHz, 12.5 KHz, Analog, High power


Date: 30.JAN.2020 14:07:57

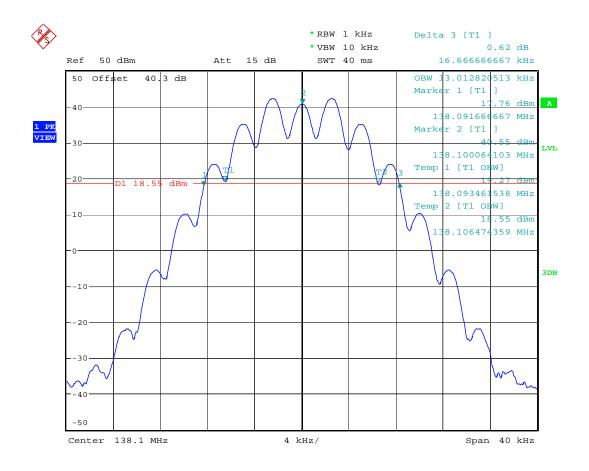
5.8.3.3. Configuration: 99% OBW, 151.0MHz, 12.5 KHz, Analog, High power OBW: 10.43 KHz

Date: 30.JAN.2020 14:12:19

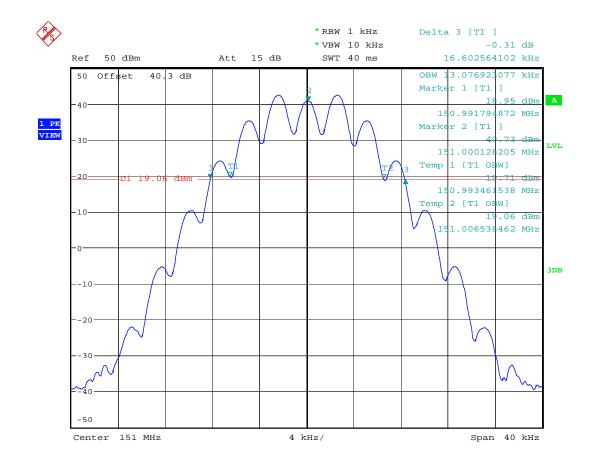

5.8.3.4. Configuration: 99% OBW, 160.9MHz, 12.5 KHz, Analog, High power OBW: 10.43 KHz

Date: 30.JAN.2020 14:14:38

ULTRATECH GROUP OF LABS 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u> File #: 20ICOM520_FCC90 February 25, 2020

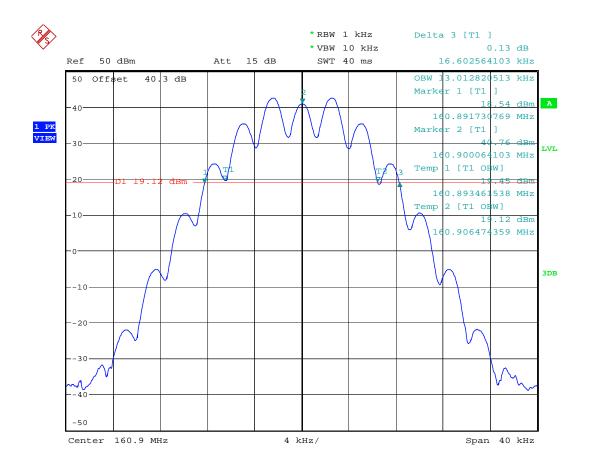

5.8.3.5. Configuration: 99% OBW, 173.3MHz, 12.5 KHz, Analog, High power OBW: 10.43 KHz

Date: 30.JAN.2020 14:16:24


ULTRATECH GROUP OF LABS 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u> File #: 20ICOM520_FCC90 February 25, 2020

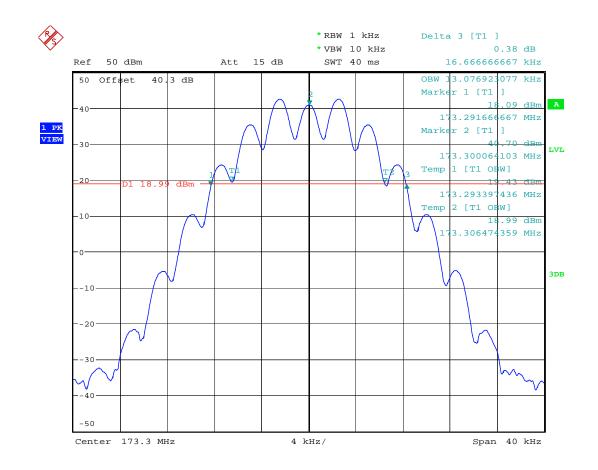
5.8.3.6. Configuration: 99% OBW, 138.1MHz, 25 KHz, Analog, High power OBW: 16.66 KHz

Date: 31.JAN.2020 10:49:40


ULTRATECH GROUP OF LABS 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u> File #: 20ICOM520_FCC90 February 25, 2020

5.8.3.7. Configuration: 99% OBW, 151.0MHz, 25 KHz, Analog, High power OBW: 16.6 KHz

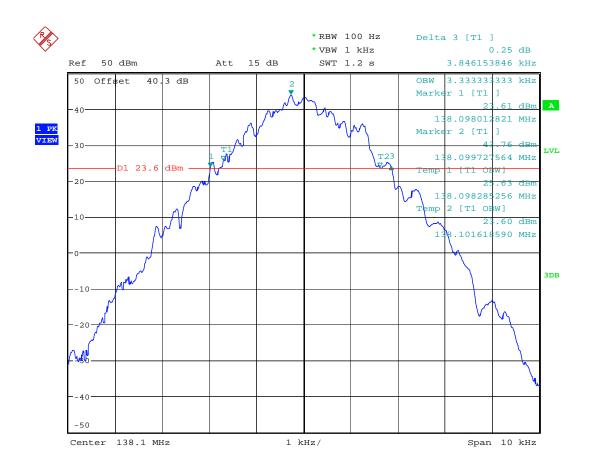
Date: 31.JAN.2020 10:51:53


5.8.3.8. Configuration: 99% OBW, 160.9MHz, 25 KHz, Analog, High power OBW: 16.6 KHz

Date: 31.JAN.2020 10:53:15

ULTRATECH GROUP OF LABS 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>

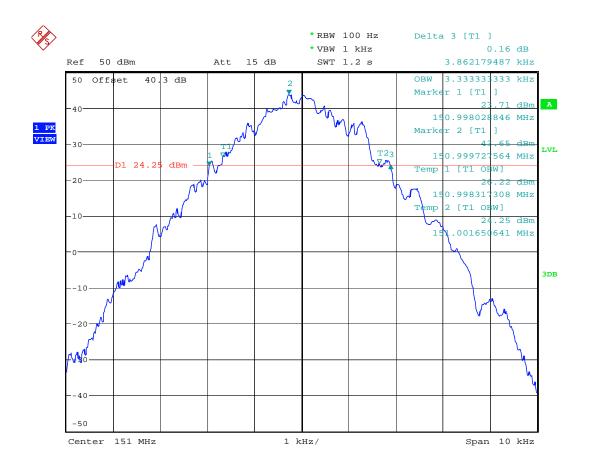
File #: 20ICOM520_FCC90 February 25, 2020



5.8.3.9. Configuration: 99% OBW, 173.3MHz, 25 KHz, Analog, High power OBW: 16.66 KHz

Date: 31.JAN.2020 10:54:33

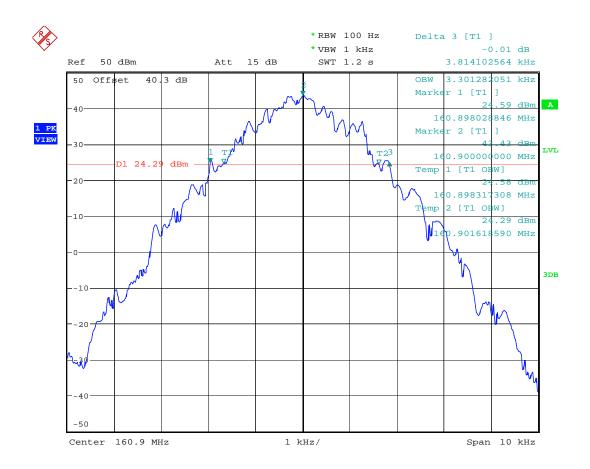
Digital


5.8.3.10. Configuration: 99% OBW, 138.1MHz, 6.25 KHz, Digital, High power OBW: 3.84 KHz

Date: 30.JAN.2020 14:59:27

ULTRATECH GROUP OF LABS 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u> File #: 20ICOM520_FCC90 February 25, 2020

5.8.3.11. Configuration: 99% OBW, 151.0MHz, 6.25 KHz, Digital, High power OBW: 3.86 KHz

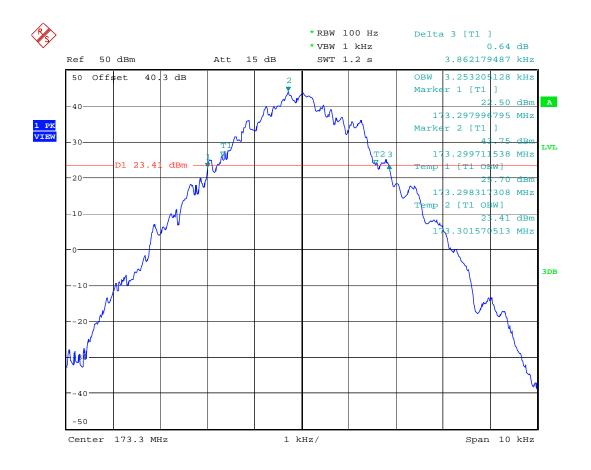

Date: 30.JAN.2020 15:05:50

ULTRATECH GROUP OF LABS 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>

File #: 20ICOM520_FCC90 February 25, 2020

5.8.3.12. Configuration: 99% OBW, 160.9MHz, 6.25 KHz, Digital, High power OBW: 3.81 KHz



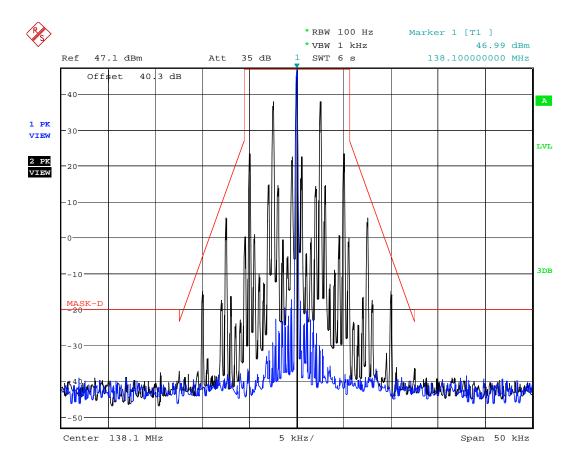
Date: 30.JAN.2020 15:08:18

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u> File #: 20ICOM520_FCC90 February 25, 2020

5.8.3.13. Configuration: 99% OBW, 173.3MHz, 6.25 KHz, Digital, High power OBW: 3.86 KHz

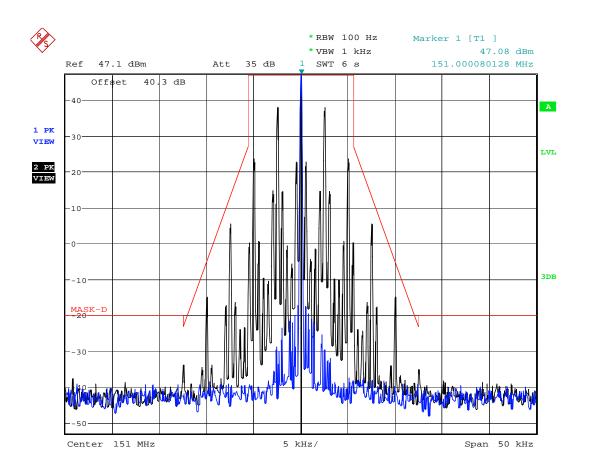
Date: 30.JAN.2020 15:10:36


ULTRATECH GROUP OF LABS

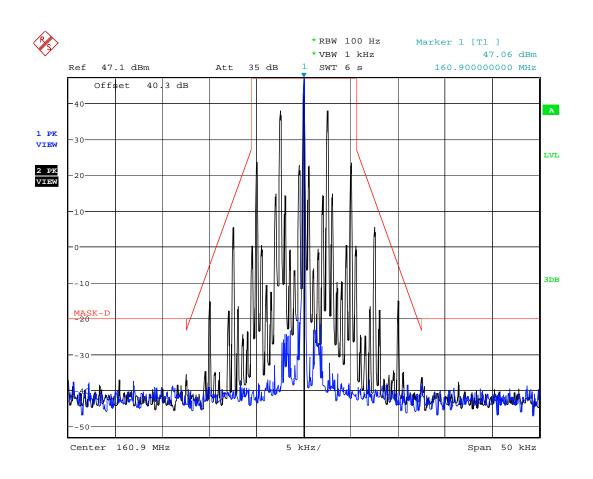
3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u> File #: 20ICOM520_FCC90 February 25, 2020

5.8.3.14. Emission Mask D

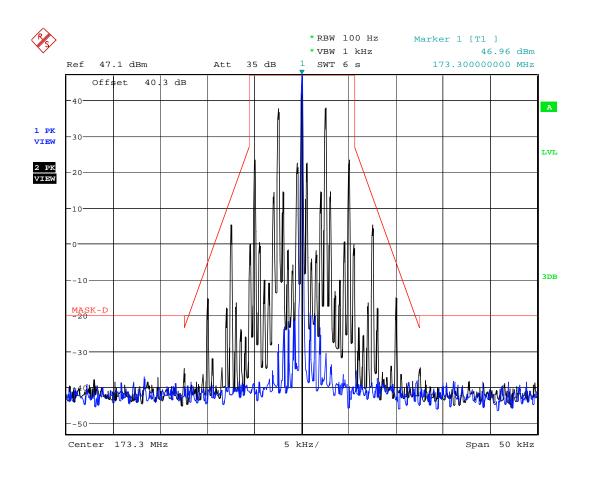
High Power


5.8.3.15. Configuration: Mask D, 138.1MHz, 12.5 KHz, Analog, High power

Date: 31.JAN.2020 14:24:19


ULTRATECH GROUP OF LABS 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>

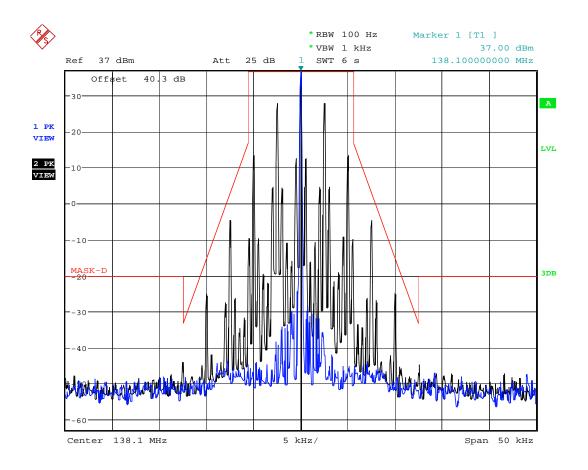
File #: 20ICOM520_FCC90 February 25, 2020


5.8.3.16. Configuration: Mask D, 151.0MHz, 12.5 KHz, Analog, High power

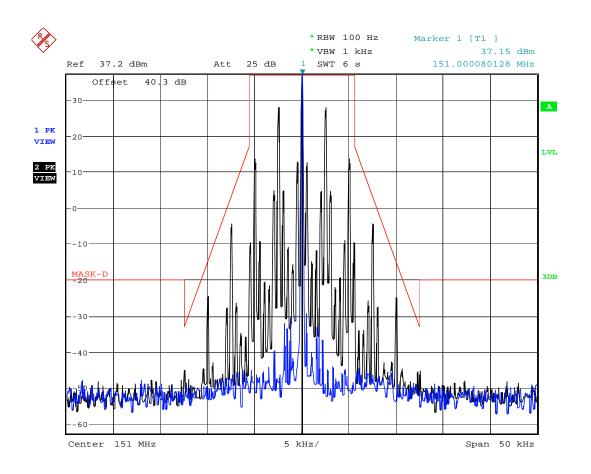
Date: 31.JAN.2020 14:27:12

5.8.3.17. Configuration: Mask D, 160.9MHz, 12.5 KHz, Analog, High power

Date: 31.JAN.2020 14:29:53

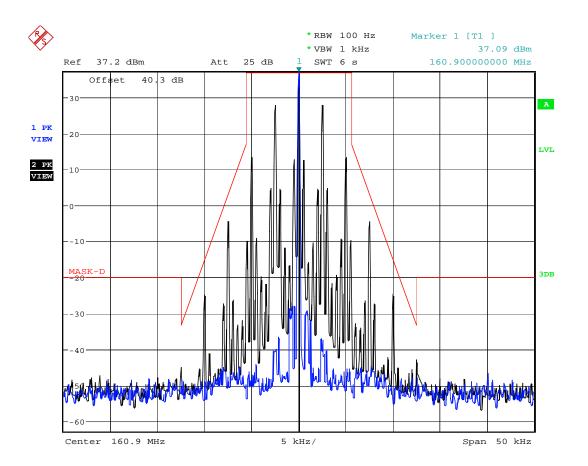


5.8.3.18. Configuration: Mask D, 173.3MHz, 12.5 KHz, Analog, High power

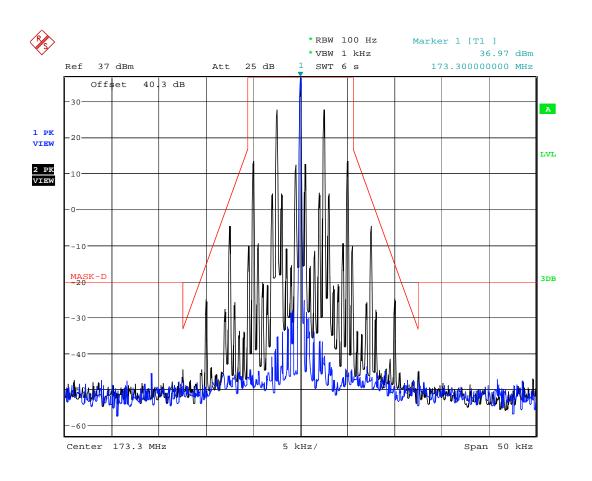

Date: 31.JAN.2020 14:32:38

Low Power

5.8.3.19. Configuration: Mask D, 138.1MHz, 12.5 KHz, Analog, Low power



Date: 31.JAN.2020 14:35:37


5.8.3.20. Configuration: Mask D, 151.0MHz, 12.5 KHz, Analog, Low power

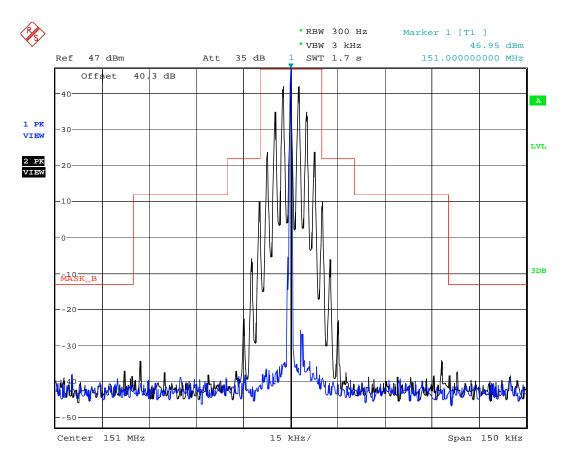
Date: 31.JAN.2020 14:38:09

5.8.3.21. Configuration: Mask D, 160.9MHz, 12.5 KHz, Analog, Low power

Date: 31.JAN.2020 14:40:35

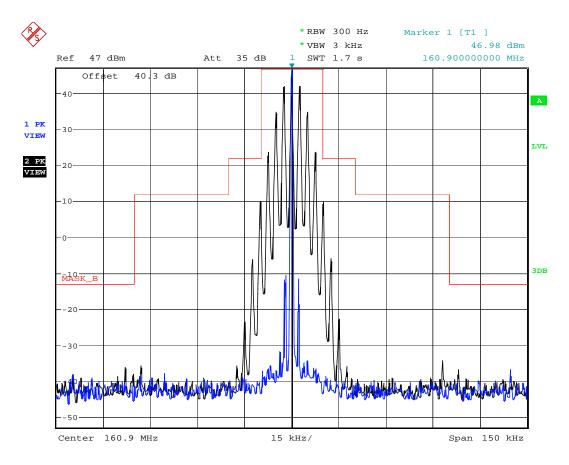
5.8.3.22. Configuration: Mask D, 173.3MHz, 12.5 KHz, Analog, Low power

Date: 31.JAN.2020 14:43:15

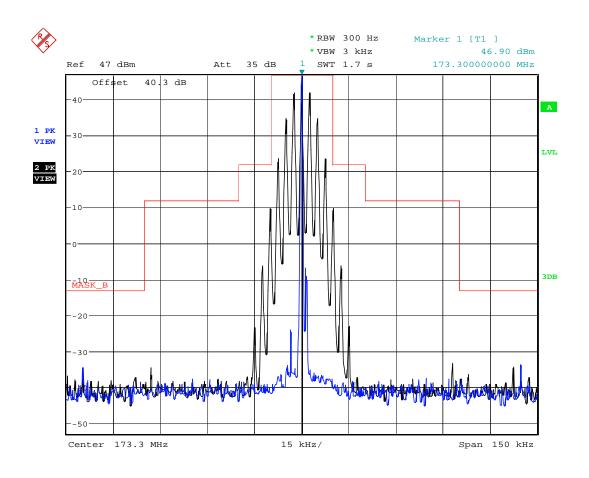

Mask B High Power

*RBW 300 Hz Marker 1 [T1] *VBW 3 kHz 46.88 dBm 138.10000000 MHz 46.9 dBm 35 dB SWT 1.7 s Ref At.t. 40.3 dB Offset -40 A 1 PK -30-VIEW LVL 2 PK VIEW 20 10 3DB -10-MASK_B -20 -30 50 15 kHz/ Center 138.1 MHz Span 150 kHz

5.8.3.23. Configuration: Mask B, 138.1MHz, 25 KHz, Analog, High power

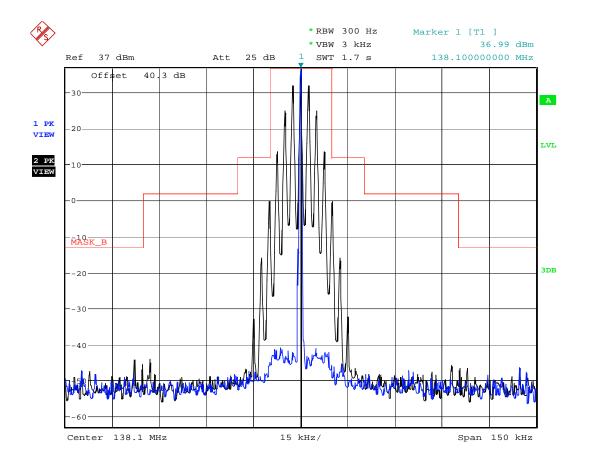

Date: 31.JAN.2020 11:04:13

File #: 20ICOM520_FCC90 February 25, 2020

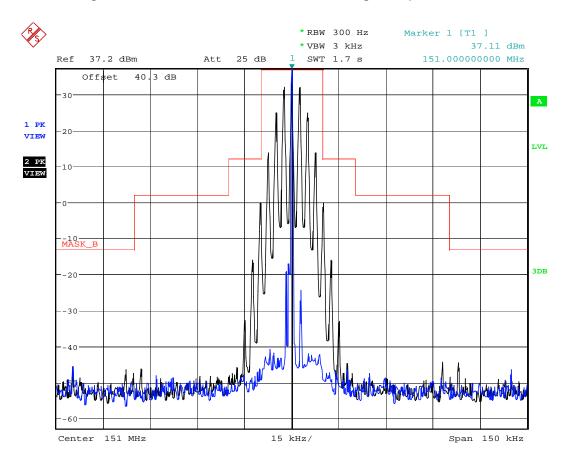

5.8.3.24. Configuration: Mask B, 151.0MHz, 25 KHz, Analog, High power

Date: 31.JAN.2020 11:07:49

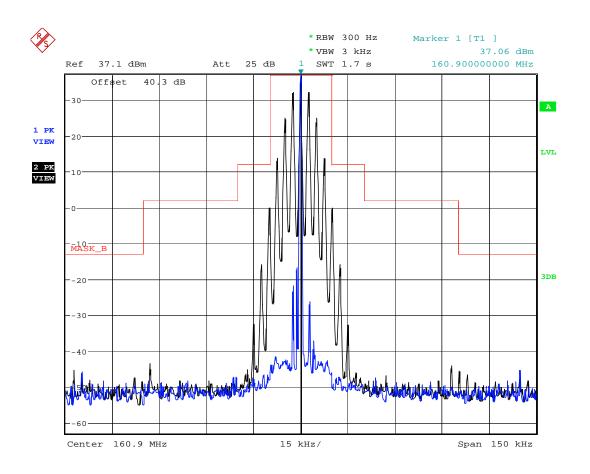
5.8.3.25. Configuration: Mask B, 160.9MHz, 25 KHz, Analog, High power


Date: 31.JAN.2020 11:10:01

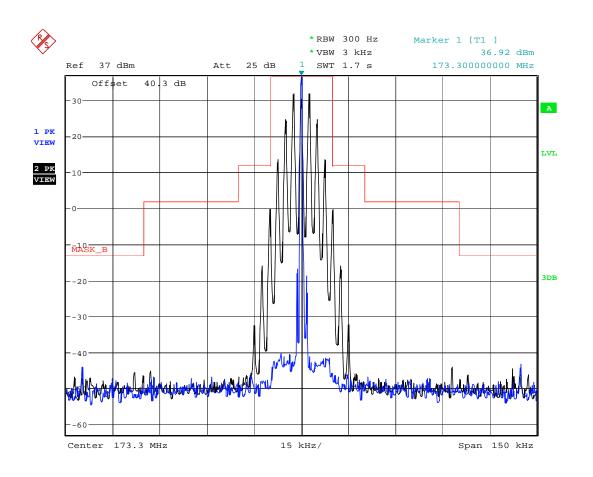
5.8.3.26. Configuration: Mask B, 173.3MHz, 25 KHz, Analog, High power


Date: 31.JAN.2020 11:12:05

Low Power

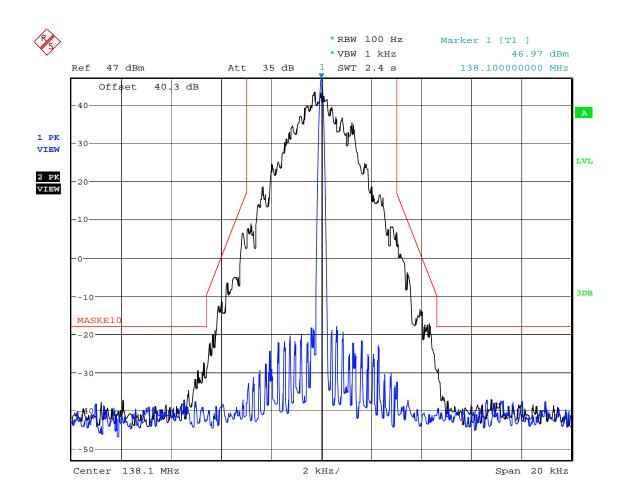

5.8.3.27. Configuration: Mask B, 138.1MHz, 25 KHz, Analog, Low power

Date: 31.JAN.2020 11:14:49


5.8.3.28. Configuration: Mask B, 151.0MHz, 25 KHz, Analog, Low power

Date: 31.JAN.2020 11:17:07

5.8.3.29. Configuration: Mask B, 160.9MHz, 25 KHz, Analog, Low power

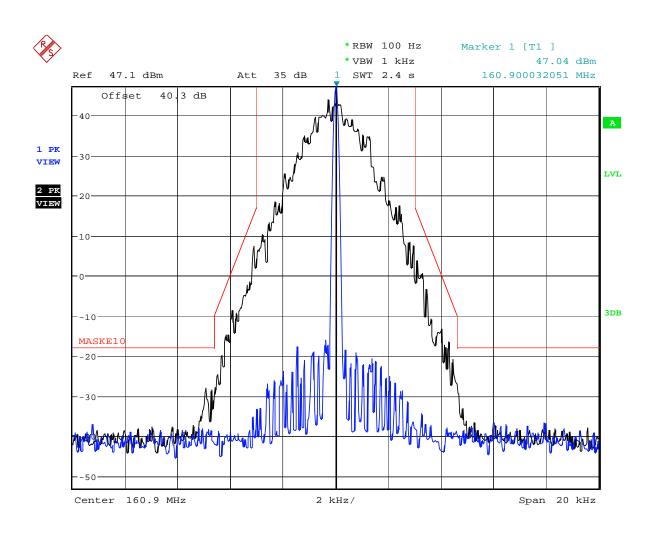

Date: 31.JAN.2020 11:19:08

5.8.3.30. Configuration: Mask B, 173.3MHz, 25 KHz, Analog, Low power

Date: 31.JAN.2020 11:21:30

MASK E High Power

5.8.3.31. Configuration: Mask E, 138.1MHz, 6.25 KHz, Digital, High power

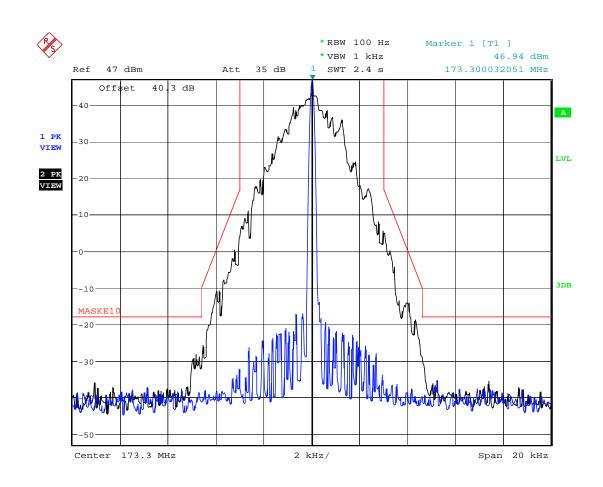

Date: 31.JAN.2020 14:48:11

File #: 20ICOM520_FCC90 February 25, 2020

*RBW 100 Hz Marker 1 [T1] 47.03 dBm *VBW 1 kHz Ref 47.1 dBm Att 35 dB SWT 2.4 s 151.000032051 MHz Offset 40.3 dB 40 A MM 1 PK 30 VIEW LVL 2 PK VIEW 20 V M -10 hn 0 3DB -10 MASKE1 -20 -30 344 50 2 kHz/ Center 151 MHz Span 20 kHz

5.8.3.32. Configuration: Mask E, 151.0MHz, 6.25 KHz, Digital, High power

Date: 31.JAN.2020 14:52:49

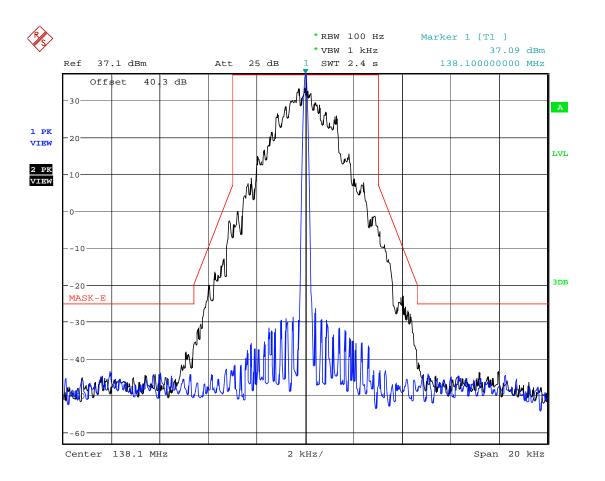

5.8.3.33. Configuration: Mask E, 160.9MHz, 6.25 KHz, Digital, High power

Date: 31.JAN.2020 14:55:48

ULTRATECH GROUP OF LABS 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

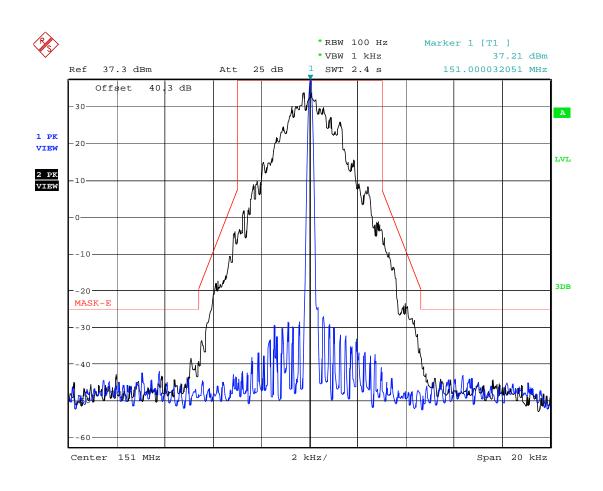
Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>

File #: 20ICOM520_FCC90 February 25, 2020

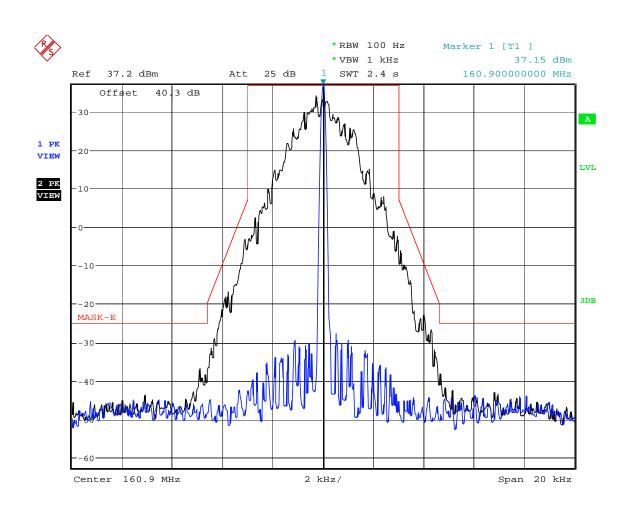


5.8.3.34. Configuration: Mask E, 173.3MHz, 6.25 KHz, Digital, High power

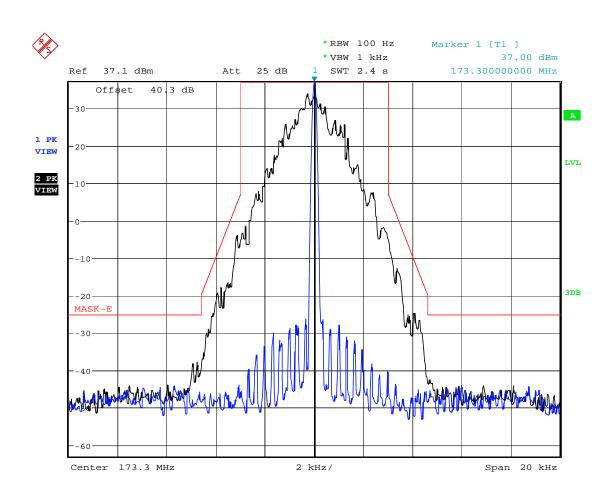
Date: 31.JAN.2020 14:58:44


ULTRATECH GROUP OF LABS 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u> File #: 20ICOM520_FCC90 February 25, 2020

Low Power


5.8.3.35. Configuration: Mask E, 138.1MHz, 6.25 KHz, Digital, Low power

Date: 31.JAN.2020 15:04:46


5.8.3.36. Configuration: Mask E, 151.0MHz, 6.25 KHz, Digital, Low power

Date: 31.JAN.2020 15:07:37

5.8.3.37. Configuration: Mask E, 160.9MHz, 6.25 KHz, Digital, Low power

Date: 31.JAN.2020 15:10:32

5.8.3.38. Configuration: Mask D, 173.3MHz, 6.25 KHz, Digital, Low power

Date: 31.JAN.2020 15:13:31

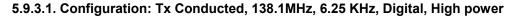
5.9. TRANSMITTER ANTENNA POWER SPURIOUS/HARMONIC CONDUCTED EMISSIONS [§ 2.1051, 2.1057, 22.359, 80.211(f)(3) & 90.210] [RSS-119 § 5.8]

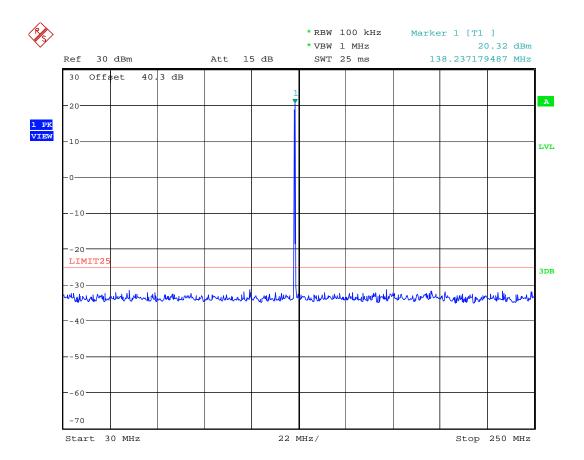
5.9.1. Limits

Emissions shall be attenuated below the mean output power of the transmitter as follows:

FCC Rules	Attenuation Limit (dBc)	
§ 22.359	At least 43 + 10 log (P) dB.	
§ 80.211(f)(3),	At least 43 +10log ₁₀ (mean power in watts) dB	
§ 90.210(b)	At least 43 + 10 log (P) dB	
§ 90.210(d)	At least 50 + 10 log (P) dB or 70 dB, whichever is the lesser attenuation.	
§ 90.210(e)	At least 55 + 10 log (P) or 65 dB, whichever is the lesser attenuation.	

RSS-119, Issue 12 Table 8	Frequency Range	Attenuation Limit (dBc)
Mask E	30 MHz or lowest radio frequency signal generated in the device to the tenth harmonic of the highest fundamental frequency.	At least 55 + 10 log (P) dB or 57 dB, whichever is the lesser attenuation.

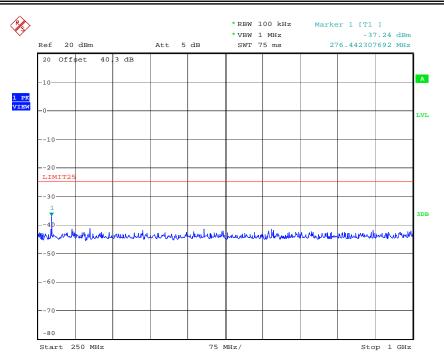

5.9.2. Method of Measurements


Refer to Section 8.5 of this report for measurement details

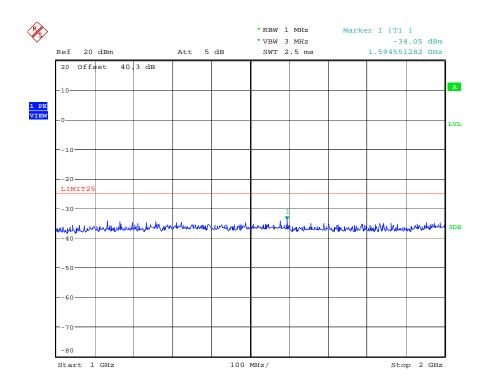
5.9.3. Test Data

<u>Note</u>: There was no difference in spurious/harmonic emissions for different channel spacing and modulation types. Therefore, the rf spurious/harmonic emissions in this section would be performed for Digital modulation with 6.25 kHz channel spacing.

High Power



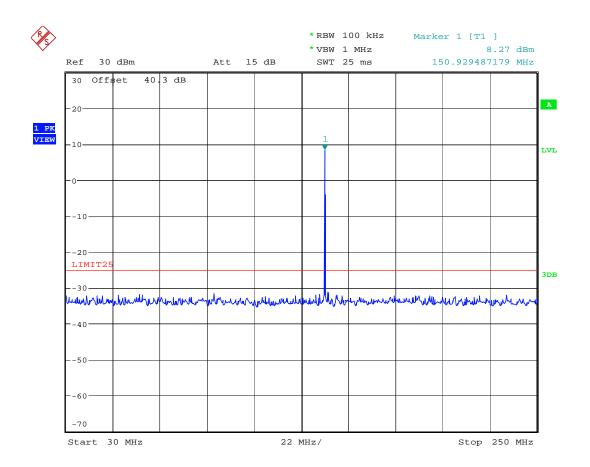
Date: 3.FEB.2020 09:23:07


Note: The above measurement was with a Band Reject filter (3TNF-100/200-N) to suppress the fundamental to confirm that all spurious/harmonic emissions does comply -25 dBm limit as shown below

ULTRATECH GROUP OF LABS 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>

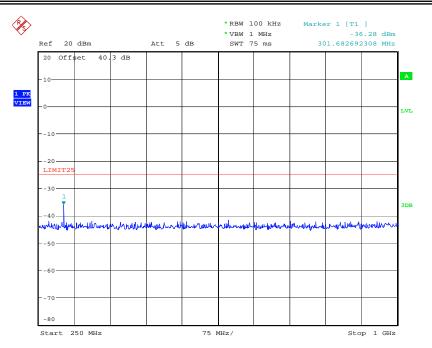
File #: 20ICOM520_FCC90 February 25, 2020

Date: 3.FEB.2020 09:42:18

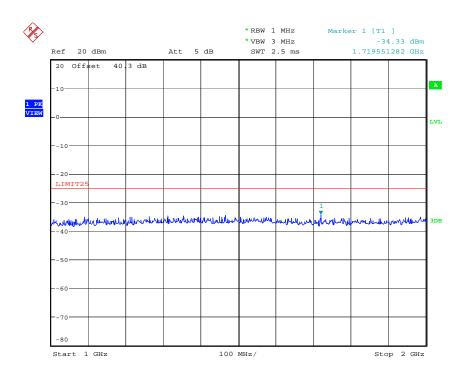


Date: 3.FEB.2020 09:53:14

ULTRATECH GROUP OF LABS

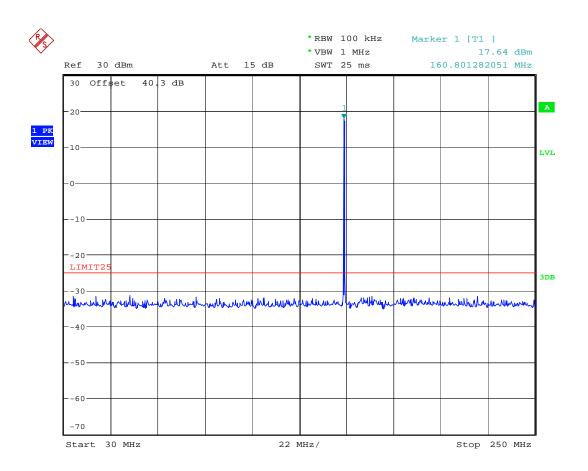

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u> File #: 20ICOM520_FCC90 February 25, 2020

5.9.3.2. Configuration: Tx Conducted, 151.0MHz, 6.25 KHz, Digital, High power



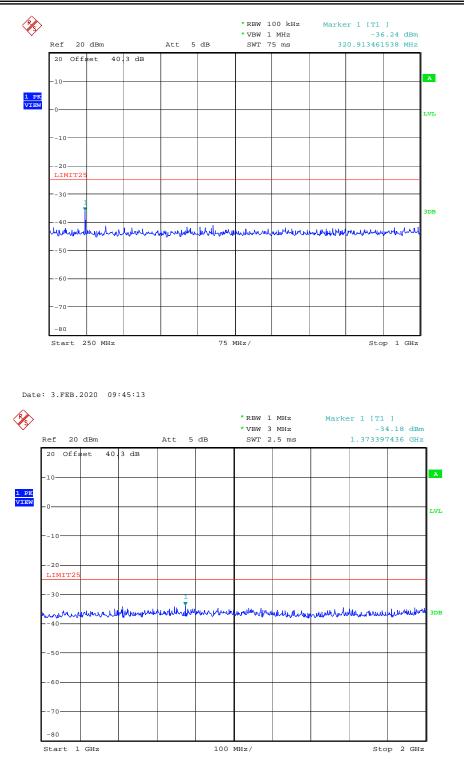
Date: 3.FEB.2020 09:30:04

Note: The above measurement was with a Band Reject filter (3TNF-100/200-N) to suppress the fundamental to confirm that all spurious/harmonic emissions does comply -25 dBm limit as shown below


Date: 3.FEB.2020 09:43:18

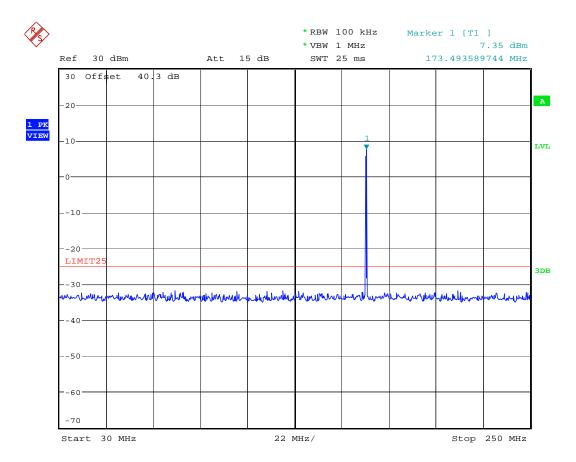
Date: 3.FEB.2020 09:54:07

ULTRATECH GROUP OF LABS


3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u> File #: 20ICOM520_FCC90 February 25, 2020

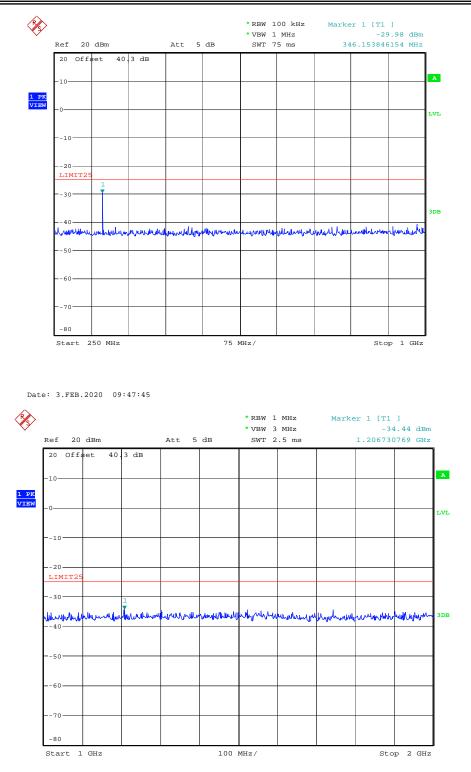
5.9.3.3. Configuration: Tx Conducted, 160.9MHz, 6.25 KHz, Digital, High power

Date: 3.FEB.2020 09:32:11


Note: The above measurement was with a Band Reject filter (3TNF-100/200-N) to suppress the fundamental to confirm that all spurious/harmonic emissions does comply -25 dBm limit as shown below

Date: 3.FEB.2020 09:54:57

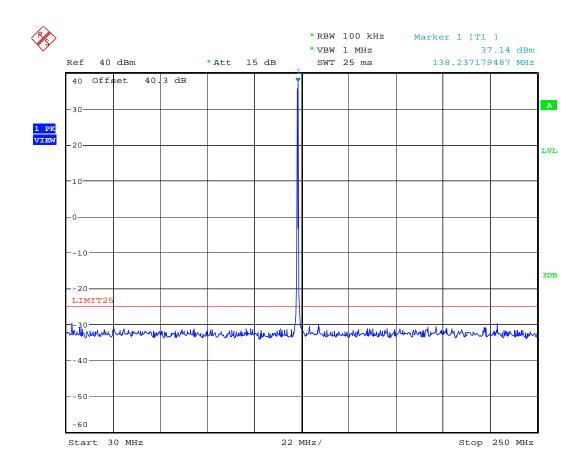
ULTRATECH GROUP OF LABS


3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u> File #: 20ICOM520_FCC90 February 25, 2020

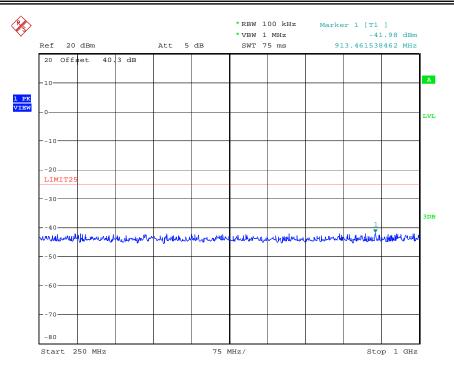
5.9.3.4. Configuration: Tx Conducted, 173.3MHz, 6.25 KHz, Digital, High power

Date: 3.FEB.2020 09:33:53

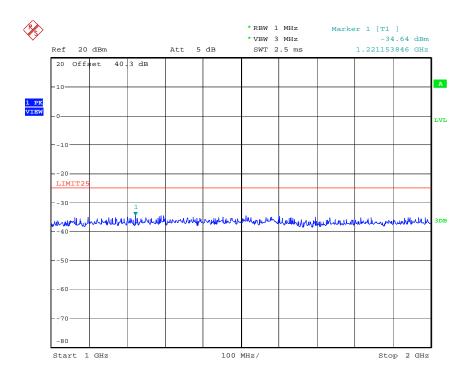
Note: The above measurement was with a Band Reject filter (3TNF-100/200-N) to suppress the fundamental to confirm that all spurious/harmonic emissions does comply -25 dBm limit as shown below


Date: 3.FEB.2020 09:55:41

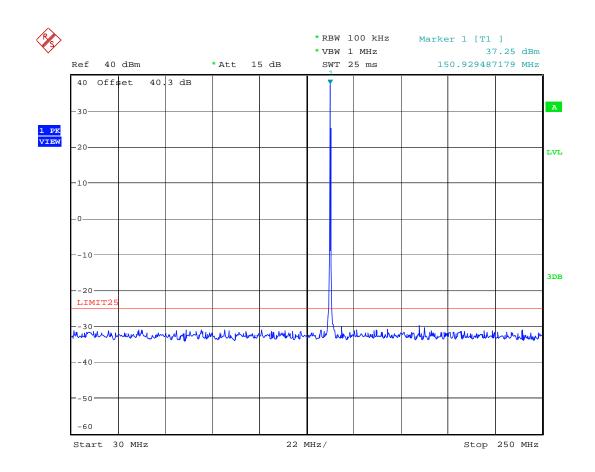
ULTRATECH GROUP OF LABS


3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u> File #: 20ICOM520_FCC90 February 25, 2020

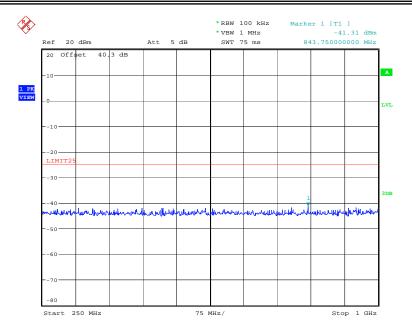
Low Power


5.9.3.5. Configuration: Tx Conducted, 138.1MHz, 6.25 KHz, Digital, Low power

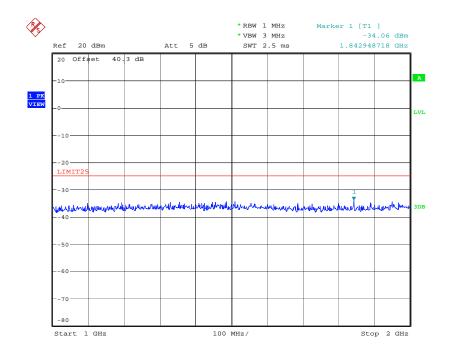
Date: 3.FEB.2020 09:36:49



Date: 3.FEB.2020 09:48:24

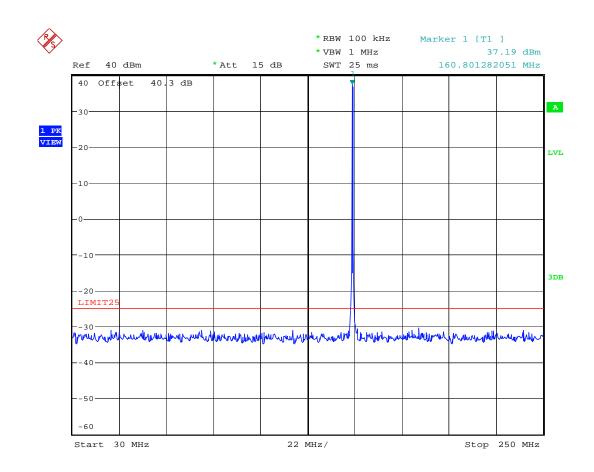

Date: 3.FEB.2020 09:56:26

File #: 20ICOM520_FCC90 February 25, 2020

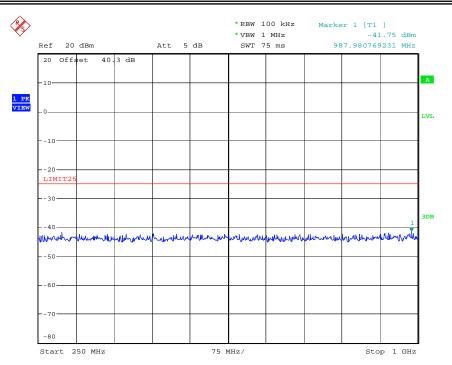


5.9.3.6. Configuration: Tx Conducted, 151.0MHz, 6.25 KHz, Digital, Low power

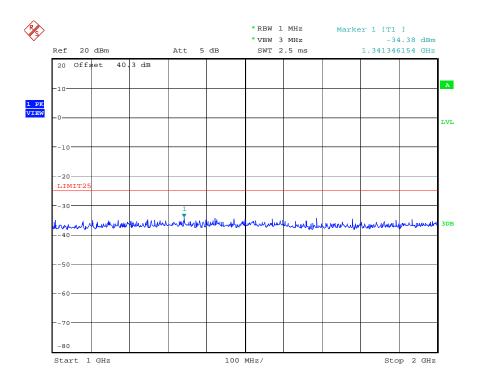
Date: 3.FEB.2020 09:37:29


Date: 3.FEB.2020 09:48:58

Date: 3.FEB.2020 09:57:07


ULTRATECH GROUP OF LABS

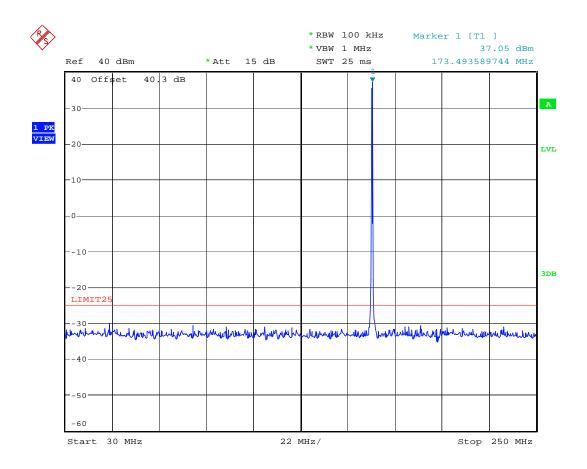
3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>



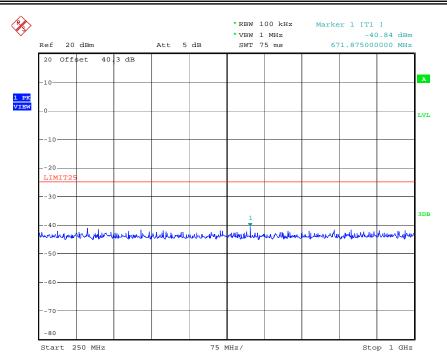
5.9.3.7. Configuration: Tx Conducted, 160.9MHz, 6.25 KHz, Digital, Low power

Date: 3.FEB.2020 09:38:11

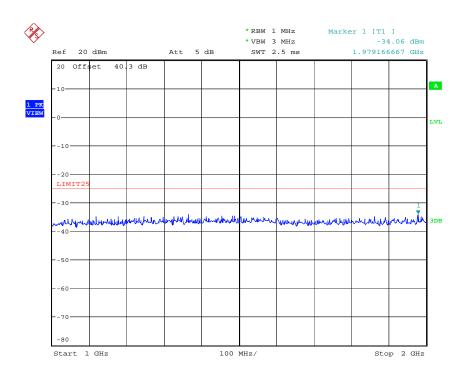
Date: 3.FEB.2020 09:49:38



Date: 3.FEB.2020 09:58:06


ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>


5.9.3.8. Configuration: Tx Conducted, 173.3MHz, 6.25 KHz, Digital, Low power

Date: 3.FEB.2020 09:38:58

Date: 3.FEB.2020 09:50:17

Date: 3.FEB.2020 09:58:58

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>

5.10. TRANSMITTER SPURIOUS/HARMONIC RADIATED EMISSIONS [§§ 2.1053, 2.1057, 22.359, 80.211(f)(3) & 90.210] [RSS-119, § 5.5 & 5.8]

5.10.1. Limits

Emissions shall be attenuated below the mean output power of the transmitter as follows:

FCC Rules	Attenuation Limit (dBc)
§ 22.359	At least 43 + 10 log (P) dB.
§ 80.211(f)(3),	At least 43 +10log ₁₀ (mean power in watts) dB
§ 90.210(b)	At least 43 + 10 log (P) dB
§ 90.210(d)	At least 50 + 10 log (P) dB or 70 dB, whichever is the lesser attenuation.
§ 90.210(e)	At least 55 + 10 log (P) or 65 dB, whichever is the lesser attenuation.

RSS-119, Issue 12	Frequency Range	Attenuation Limit (dBc)
Mask E	30 MHz or lowest radio frequency signal generated in the device to the tenth harmonic of the highest fundamental frequency.	At least 55 + 10 log (P) dB or 65 dB, whichever is the lesser attenuation.

5.10.2. Method of Measurements

The spurious/harmonic ERP measurements are using substitution method specified in Section 8.2 of this report.

5.10.3. Test Data

Remarks:

- The RF spurious/harmonic emission characteristics for different channel spacing are indistinguishable. Therefore, the following radiated emissions were performed at digital 6.25 kHz channel spacing operation, and the results were compared with the for the worst-case.
- The radiated emissions were performed with high power setting (50 Watts) at 3 m distance to represents the worst-case test configuration.
- The emissions were scanned from 30 MHz to 10th harmonics ; all spurious emissions that are in excess of 20dB below the specified limit shall be recorded.

5.10.3.1. Near Lowest Frequency (138.1 MHz)

Test Frequency (MHz):	138.1			
Power Setting	High			
Limit (dBm): -25				
All emissions found are more than 20 dB below the limit.				

5.10.3.2. Near Middle Frequency (151.1 MHz)

Test Frequency (MHz):	151.1		
Power Setting	High		
Limit (dBm):	-25		
All emissions found are more than 20 dB below the limit.			

5.10.3.3. Near Middle Frequency (160.9 MHz)

Test Frequency (MHz):	160.9			
Power Setting	High			
Limit (dBm): -25				
All emissions found are more than 20 dB below the limit.				

5.10.3.4. Near Highest Frequency (173.3 MHz)

Test Frequency (MHz):	173.3			
Power Setting	High			
Limit (dBm): -25				
All emissions found are more than 20 dB below the limit.				

5.11. FREQUENCY STABILITY [§§ 2.1055, 22.355, 74.464, 80.209 & 90.213] [RSS-119 § 5.3]

5.11.1. Limits

§ 90.213 Transmitters used must have minimum frequency stability as specified in the following table.

		Frequency Tolerance (ppm)			
Frequency Range (MHz)	Channel Bandwidth (KHz)	Fixed and Base Stations	Mobile Stations		
			> 2 W	<u><</u> 2 W	
150-174 MHz	6.25 12.5 25	1.0 2.5 5.0	2.0 5.0 5.0	2.0 5.0 50.0*	
421-512 MHz	6.25 12.5 25	0.5 1.5 2.5	1.0 2.5 5.0	1.0 2.5 5.0	

• Stations operating in the 154.45 to 154.49 MHz or the 173.2 to 173.4 MHz bands must have a frequency stability of 5 ppm.

• Paging transmitters operating on paging-only frequencies must operate with frequency stability of 5 ppm in the 150-174 MHz band and 2.5 ppm in the 421-512 MHz band.

§ 22.355 Transmitters used must have minimum frequency stability as specified in the following table.

Frequency range (MHz)	Base, fixed (ppm)	Mobile ≤3 watts (ppm)	Mobile ≤3 watts (ppm)
25 to 50	20.0	20.0	50.0
50 to 450	5.0	5.0	50.0
450 to 512	2.5	5.0	5.0
821 to 896	1.5	2.5	2.5
928 to 929	5.0	n/a	n/a
929 to 960	1.5	n/a	n/a
2110 to 2220	10.0	n/a	n/a

TABLE C-1—FREQUENCY TOLERANCE FOR TRANSMITTERS IN THE PUBLIC MOBILE SERVICES

§ 74.464 - For operations on frequencies above 25 MHz using authorized bandwidths up to 30 kHz, the licensee of a remote pickup broadcast station or system shall maintain the operating frequency of each station in compliance with the frequency tolerance requirements of §90.213 of this chapter. For all other operations, the licensee of a remote pickup broadcast station or system shall maintain the operating frequency of each station in accordance with the following:

	Tolerance (percent)	
Frequency range	Base sta- tion	Mobile sta- tion
25 to 30 MHz:		
3 W or less	.002	.005
Over 3 W	.002	.002
30 to 300 MHz:		
3 W or less	.0005	.005
Over 3 W	.0005	.0005
300 to 500 MHz, all powers	.00025	.0005

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>

[RSS-119 § 5.3]

The carrier frequency shall not depart from the reference frequency in excess of the values given in Table 1.

	Authorized Bandwidth	Frequency Stability (ppm)		
Frequency Band (MHz)		n	Mobile Station	
	(kHz)	Base/Fixed	>2 watts	≤ 2 watts
	30	5	5	5
138-174	15	2.5	5	5
	7.4	1	2	5
	25(Note 2)	0.5	1	1
406 1 420 and 450 470 (Nota 6)	25	2.5	5	5
406.1-430 and 450-470 (Note 6)	12.5	1.5	2.5	2.5
	6.25	0.5	1	1

Table 1 - Transmitter Frequency Stability

5.11.2. Method of Measurements

Refer to Section 8.3 of this report for measurement details

5.11.3. Test Data

Test Frequency:		151 MHz			
Full Power Level:		48.42W	48.42W		
Frequency Toleran	ce Limit:	<u>+</u> 1.0 ppm or <u>+</u> 151 Hz			
Max. Frequency To	elerance Measured:	69 Hz or 0.46 ppm			
Input Voltage Ratir	ng:	13.6 VDC (nominal)			
		Frequency Drift (Hz)			
Ambient Temperature (°C)	Supply Voltage (Nominal) 13.6 VDC	Supply Voltage (-15%) 11.56 VDC	Supply Voltage (+15%) 15.64 VDC		
-30	55				
-20	42				
-10	53				
0	49				
10	48				
20	51	50	53		
30	57				
40	59				
50	68				
60	69				

5.12. TRANSIENT FREQUENCY BEHAVIOR [§ 90.214 & 74.462(c)] [RSS-119 § 5.9]

5.12.1. Limits

Transient frequencies must be within the maximum frequency difference limits during the time intervals indicated:

Time intervals ^{1, 2}	Maximum frequency	All equipment			
	difference ³	150 to 174 MHz	421 to 512MHz		
-	cy Behavior for Equipment D	esigned to Operate on 28	5 KHz Channels		
t ₁ ⁴	± 25.0 KHz	5.0 ms	10.0 ms		
t ₂	± 12.5 KHz	20.0 ms	25.0 ms		
t ₃ ⁴	± 25.0 KHz	5.0 ms	10.0 ms		
Transient Frequency Behavior for Equipment Designed to Operate on 12.5 KHz Channels					
t ₁ ⁴	± 12.5 KHz	5.0 ms	10.0 ms		
t ₂	± 6.25 KHz	20.0 ms	25.0 ms		
t ₃ ⁴	± 12.5 KHz	5.0 ms	10.0 ms		
Transient Frequency Behavior for Equipment Designed to Operate on 6.25 KHz Channels					
t_1^4 t_2	±6.25 KHz ±3.125 KHz	5.0 ms 20.0 ms	10.0 ms 25.0 ms		
 t ₃ ⁴	±6.25 KHz	5.0 ms	10.0 ms		

1. t_{on} is the instant when a 1 kHz test signal is completely suppressed, including any capture time due to phasing. t_1 is the time period immediately following t_{on} .

 t_2 is the time period immediately following t_1 .

 $t_{\rm 3}$ is the time period from the instant when the transmitter is turned off until $t_{\rm off.}$

t_{off} is the instant when the 1 kHz test signal starts to rise.

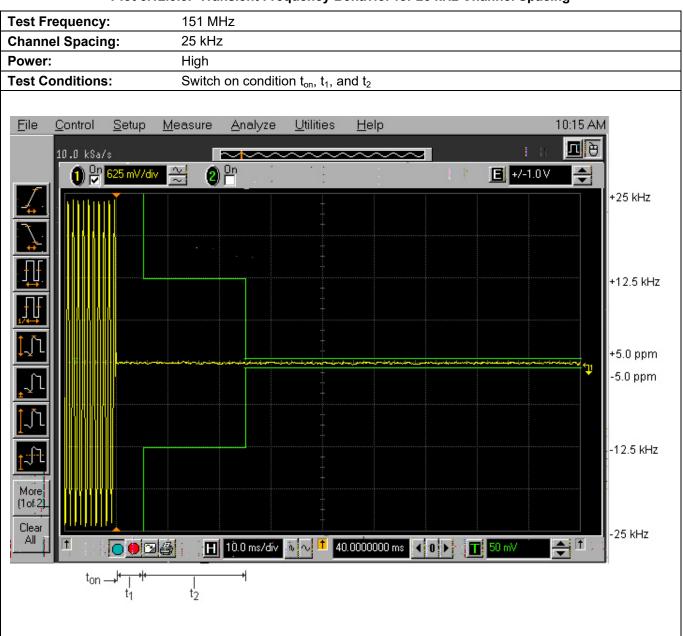
- 2. During the time from the end of t_2 to the beginning of t_3 , the frequency difference must not exceed the limits specified in § 90.213.
- 3. Difference between the actual transmitter frequency and the assigned transmitter frequency.
- 4. If the transmitter carrier output power rating is 6 Watts or less, the frequency difference during this time period may exceed the maximum frequency difference for this time period.

5.12.2. Method of Measurements

Refer to Section Error! Reference source not found. of this test report and ANSI/TIA/EIA-603-E, Section 2.

5.12.3. Test Data

Channel Spacing: 12.5 kHz Power: High Test Conditions: Switch on condition t _{on} , t ₁ , and t ₂ Elle Control Setup Measure Analyze Utilities Help 10.10 AM Image: Setup Measure Analyze Utilities Help Image: Setup Image: Setup Image: Setup Image: Setup Image: Setup Image: Setup Image: Setup Image: Setup Image: Setup Image: Setup Image: Setup Image: Setup Image: Setup Image: Setup Image: Setup	Test Frequency:	151 MHz	
Test Conditions: Switch on condition t _{on} , t ₁ , and t ₂ Elle Control Setup Measure Analyze Utilities Help 10:10 AM Image: Setup Measure Analyze Utilities Help	Channel Spacing:	12.5 kHz	
Ele Control Setup Measure Analyze Utilities Help 10:10 AM 10.0 kSa/s Image: Control interval inte	Power:	High	
10.0 k8a/s Image: Constraint of the second of the sec	Test Conditions:	Switch on condition t_{on} , t_1 , and t_2	
All I D ms/div 10 10 10 ms/div 10 10 10 ms 4 0 1 50 mV	Eile Control Setup 10.0 k8a/s 10.0 % 315 mV/div 10.0 % 315 mV/div	Measure Analyze Utilities Help	► +/-1.0V ► +/-1.0V +12.5 kHz +6.25 kHz -5.25 ppm -5.25 ppm -5.25 kHz
	ton → ^{J+} → ^{J+} t ₁	t ₂	

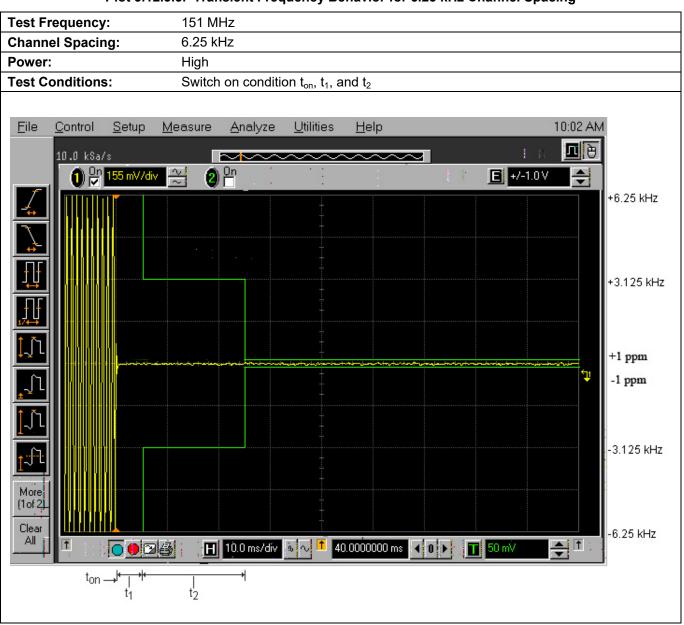

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>

Test Frequ	uency:	151 MI	Ηz				
Channel S	pacing:	12.5 kł	Hz				
Power:		High					
Test Cond	litions:	Switch	off conditio	n t ₃ , t _{off}			
<u>F</u> ile <u>C</u> o	introl <u>S</u> etup	<u>M</u> easure	<u>A</u> nalyze	<u>U</u> tilities	<u>H</u> elp	10:12 AM	I
10	.0 kSa/s		~~~~	~~~~	$\sim \sim \sim \sim$		
	1) 🖓 315 mV/d	⊠ ≳ 2) <mark>On</mark>	• • •	2	E +/-1.0V	
\mathcal{I}				÷		+12.5 kHz	2
H						+6.25 kHz	
							-
						······	
1							
	ماروروا حدان يستيت سلندنية مرم والاستياس		çından okumlarında kalanda	and and an and an and an and an	anter the state of		
ŢŢ						-2.5 ppm	
ŢŢ							
						-6.25 kHz	
<u>†</u> -∫-1						-0.23 KH2	
More							
(1of.2]							
Clear All		Jale 1		-!.!	0 000000	-12.5 kHz	-
╞╼╼╾╃┚║╚			10.0 ms/div	<u>⊪</u> ~ -4			
						l←+t _{off}	
						t3	

Plot 5.12.3.2. Transient Frequency Behavior for 12.5 kHz Channel Spacing

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>



Plot 5.12.3.3. Transient Frequency Behavior for 25 kHz Channel Spacing

	ranoionerroq	acticy Benavic	or for 25 KHZ Cr	iannoi opaoing	
Test Frequency: 15	l MHz				
Channel Spacing: 25	kHz				
Power: Hig	h				
Test Conditions: Sw	itch off conditior	n t ₃ , t _{off}			
<u>File Control S</u> etup <u>M</u> eas	ure <u>A</u> nalyze	<u>U</u> tilities <u>H</u> e	lp	10:13	AM
10.0 kSa/s	~~~~	~~~~~		1 II 🔟	Ð
1 0n 625 mV/div 😤	2 ^{On}	• •		E +/-1.0V	
					⊐ +25 kHz
					- LO IN IL
					+12.5 kHz
<u>†</u> _Jī1					
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	an fan de fan	── <b>⋎</b> ──∤र <b>०</b> ╞──└─── [─] ─  ── <del>╞</del> ╼╄╍╞╍ [┯]	<del>┶╍╤╍╤</del> ╍╍╼ <mark>╴╔╻┊╢</mark> ╢╢╢╢╢	+5.0 ppm
					-5.0 ppm
<u></u>					
					-12.5 kHz
More					
(1of.2]					
Clear All 1					-25 kHz
	H 10.0 ms/div	<u>∿</u>	0000 ms < 0 🕨	1 50 mV ♦ 1	
				l←→l _← t _{off}	
				t3	

Plot 5.12.3.4. Transient Frequency Behavior for 25 kHz Channel Spacing

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>



#### Plot 5.12.3.5. Transient Frequency Behavior for 6.25 kHz Channel Spacing

	E.0.0. ITulio	lone roq				opuonig	
Test Frequency:	151 MH	Z					
Channel Spacing:	6.25 kH	Z					
Power:	High						
Test Conditions:	Switch c	off condition	on t ₃ , t _{off}				
<u>File Control S</u> etup	<u>M</u> easure	<u>A</u> nalyze	<u>U</u> tilities	<u>H</u> elp		10:01	AM
10 0 10-7-					E.		両
10.0 kSa/s		Jn	~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
i 0 0n 155 mV/di	<u>∼</u> 2¦					+/-1.0 V	
							+6.25 kHz
						la on na na n	
							+3.125 kHz
+ $+$							
							+1 ppm
			and particular designed and		┶╌┽╍╍┾╍╍┼╌╵┥╌╍┪╍╍╬╍╍╬		u
							-1 ppm
							-3.125 kHz
More							-
(1of 2)							
Clear All T							-6.25 kHz
		10.0 ms/div	à∿ <mark>↑</mark> -4	0.0000000 ms ┥ (	D 🕨 🔳 50 m	1	
					+	+lt _{off}	
						t3	

Plot 5.12.3.6. Transient Frequency Behavior for 6.25 kHz Channel Spacing

# 5.13. RF EXPOSURE REQUIREMENTS [§§ 1.1310 & 2.1091] [RSS Gen Sec 5.6 & RSS-102]

#### 5.13.1. Limits

§ **1.1310:** The criteria listed in the following table shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in 1.1307(b).

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)		
(A) Limits for Occupational/Controlled Exposures						
0.3-3.0	614	1.63	*(100)	6		
3.0-30	1842/f	4.89/f	*(900/f ² )	6		
30-300	61.4	0.163	1.0	6		
300-1500			f/300	6		
1500-100,000			5	6		

#### Limits for Maximum Permissible Exposure (MPE)

f = frequency in MHz

* = Plane-wave equivalent power density

Note 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

Note 2: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure.

[RSS Gen Sec 5.6 & RSS-102]

#### **RF Field Strength Limits for Controlled Use Devices (Controlled Environment)**

<b>Frequency Range</b>	<b>Electric Field</b>	<b>Magnetic Field</b>	<b>Power Density</b>	<b>Reference</b> Period			
(MHz)	(V/m rms)	(A/m rms)	$(W/m^2)$	(minutes)			
100-6000	$15.60 f^{0.25}$	$0.04138 f^{0.25}$	$0.6455 f^{0.5}$	6			
<b>Note:</b> <i>f</i> is frequency in MHz.							

Note 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient

#### 5.13.2. Method of Measurements

#### Calculation Method of RF Safety Distance:

$$S = \frac{PG}{4\pi \cdot r^2} = \frac{EIRP}{4\pi \cdot r^2}$$

Where,

P: power input to the antenna in mW
EIRP: Equivalent (effective) isotropic radiated power.
S: power density mW/cm²
G: numeric gain of antenna relative to isotropic radiator
r: distance to centre of radiation in cm

$$r = \sqrt{\frac{PG}{4\pi \cdot S}} = \sqrt{\frac{EIRP}{4\pi \cdot S}}$$

FCC radio frequency exposure limits may be exceeded at distances closer than r cm from the antenna of this device.

## 5.13.3. Evaluation of RF Exposure Compliance Requirements

Note: EUT is specified OCCUPATION ENVIRONMENT ONLY no intended for general population/uncontrolled environment.

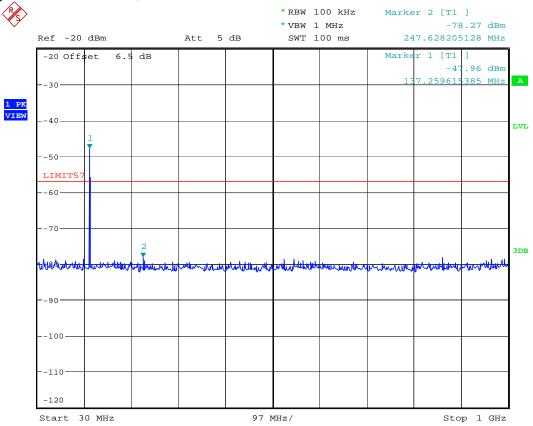
Maximum RF Power conducted, P _{conducted} [W]:	50
Maximum Antenna Gain, <b>G[dBi]</b> :	0
Maximum EIRP, <b>P_{EIRP}[W]</b> :	50
User-based time-average for PTT	50%
FCC MPE Limit for Occupational/Controlled Exposure, <b>S</b> _{controlled} [ <b>mW/cm</b> ² ]:	1.0
ISED MPE Limit for Occupational/Controlled Exposure, $S_{controlled}$ [mW/cm ² ]: 0.6455 $f^{0.5}$	0.75277
Min Calculated RF Safety Distance for Occupational/Controlled Exposure, <b>r</b> safety controlled[ <b>cm</b> ]: FCC	45
Min Calculated RF Safety Distance for Occupational/Controlled Exposure, <b>r</b> safety controlled [m]: ISED	0.52

User manual specified distance=60cm

Calculated power density S for this distance=0.552 mW/Cm² (5.52 W/m²)

# 5.14. RECEIVER ANTENNA POWER SPURIOUS/HARMONIC CONDUCTED EMISSIONS [RSS-119 § 5.11, RSS-Gen §§ 4.10 & 6]

#### 5.14.1. Limits

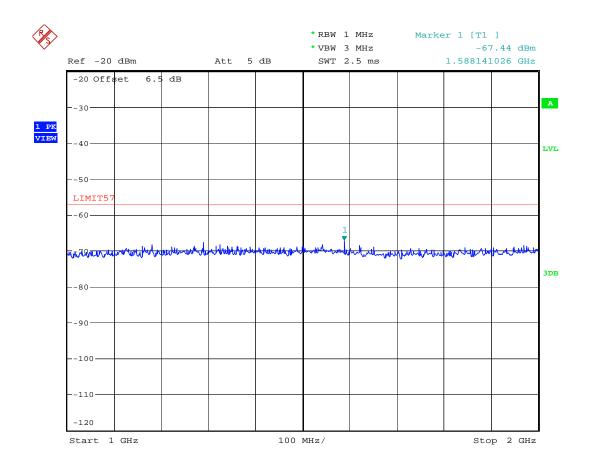

No spurious output signals appearing at the antenna terminals shall exceed 2 nanowatts per any 4 kHz spurious frequency in the band 30-1000 MHz, or 5 nanowatts above 1 GHz.

#### 5.14.2. Method of Measurements

Refer to Industry Canada RSS-119, Issue 9 and ANSI C63.4.

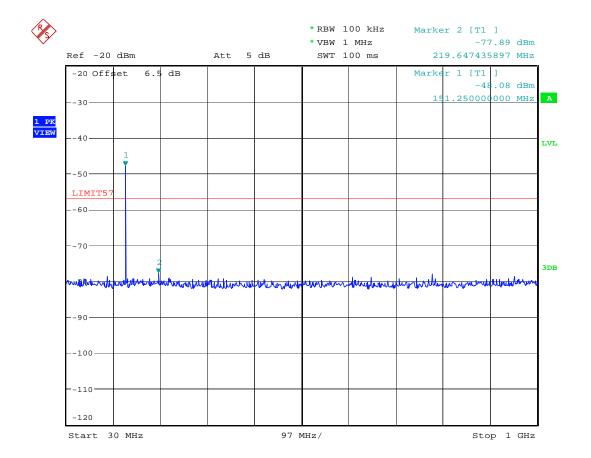
## 5.14.3. Test Data

Configuration: Rx Conducted, 138.1MHz




Date: 3.FEB.2020 10:34:17

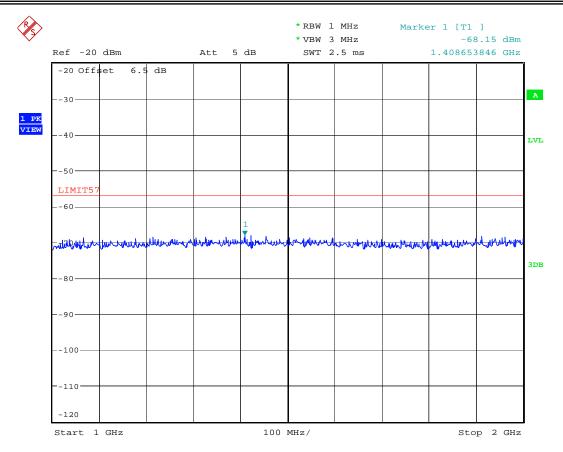
Highest peak is Rx Signal input (1mV rms)


# ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>



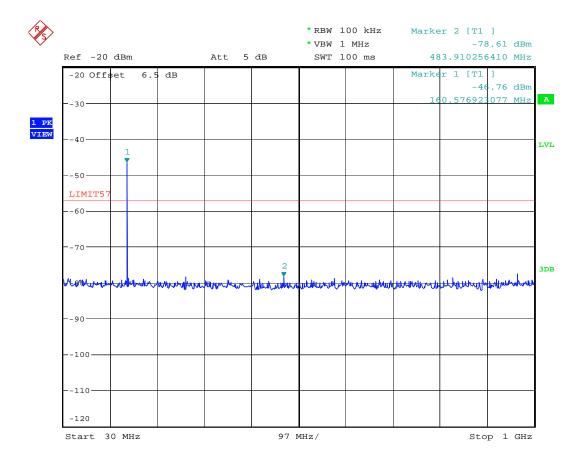
Date: 3.FEB.2020 10:43:33


Configuration: Rx Conducted, 151.0MHz



Date: 3.FEB.2020 10:35:56

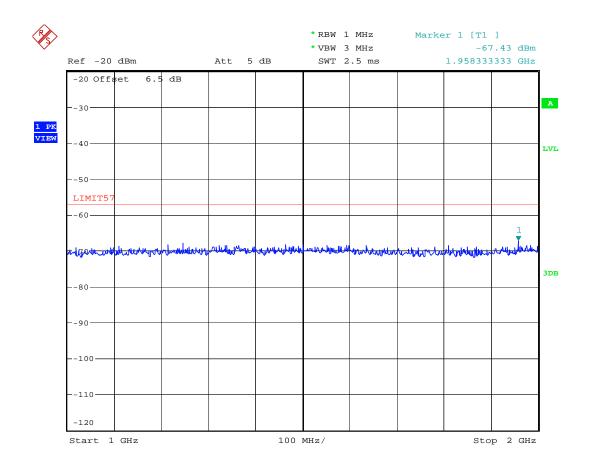
Highest peak is Rx Signal input (1mV rms)


# FCC Parts 2, 22, 74, 80 and 90 Subpart I, RSS-119 VHF DIGITAL REPEATER



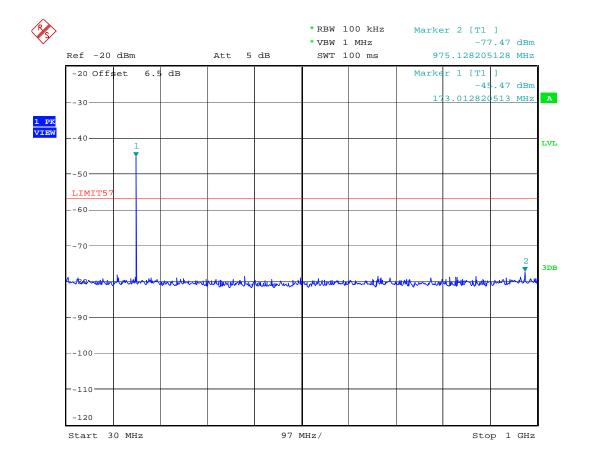
Date: 3.FEB.2020 10:42:43

ULTRATECH GROUP OF LABS 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>


#### Configuration: Rx Conducted, 160.9MHz



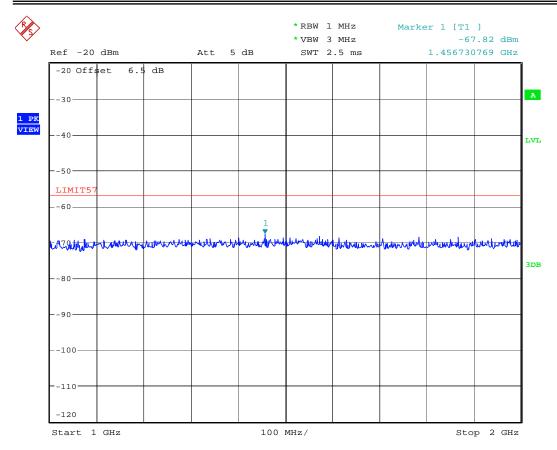
Date: 3.FEB.2020 10:38:12


Highest peak is Rx Signal input (1mV rms)

ULTRATECH GROUP OF LABS 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>



Date: 3.FEB.2020 10:41:51


Configuration: Rx Conducted, 173.3MHz



Date: 3.FEB.2020 10:39:33

Highest peak is Rx Signal input (1mV rms)

# FCC Parts 2, 22, 74, 80 and 90 Subpart I, RSS-119 VHF DIGITAL REPEATER



Date: 3.FEB.2020 10:40:44

ULTRATECH GROUP OF LABS 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>

# 5.15. RECEIVER SPURIOUS EMISSIONS (RADIATED) [RSS-119 § 5.11, RSS-Gen §§ 4.10 & 6]

#### 5.15.1. Limits

The equipment shall meet the limits of the following table:

Spurious Frequency	Field Strength at 3 mete	rs
(MHz)	(μV/m)	(dBµV/m)
30 – 88	100	40.0
88 – 216	150	43.5
216 – 960	200	46.0
Above 960	500	54.0

#### 5.15.2. Method of Measurements

RSS-Gen and ANSI C63.4

(IF=49.95 MHz)

#### Lowest Frequency (138.1 MHz)

	The emissions were scanned from 30 MHz to 2.0 GHz at 3 Meters distance and all emissions less than 20								
dB below the I	dB below the limits were recorded.								
	RF DETECTOR ANTENNA								
FREQUENCY	LEVEL	USED	PLANE	LIMIT	MARGIN	PASS/			
(MHz)	(dBuV/m)	(PEAK/QP)	(H/V)	(dBuV/m)	(dB)	FAIL			
The emissions were scanned from 30 MHz to 1.0 GHz. All emissions found were more than 20 dB below the									
permissible lim	permissible limits.								

#### Near Middle Frequency (151.0 MHz)

FREQUENCY (MHz)	RF LEVEL (dBuV/m)	DETECTOR USED (PEAK/QP)	ANTENNA PLANE (H/V)	LIMIT (dBuV/m)	MARGIN (dB)	PASS/ FAIL	
602.850	26.9	PEAK	Н	46	-19.1	PASS	
The emissions were scanned from 30 MHz to 2.0 GHz. All emissions found were more than 20 dB below the permissible limits.							

#### Near Highest Frequency (160.9 MHz)

	RF	DETECTOR	ANTENNA					
FREQUENCY	LEVEL	USED	PLANE	LIMIT	MARGIN	PASS/		
(MHz)	(dBuV/m)	(PEAK/QP)	(H/V)	(dBuV/m)	(dB)	FAIL		
The emissions were scanned from 30 MHz to 2.0 GHz. All emissions found were more than 20 dB below the								
permissible lim	permissible limits.							

# Near Highest Frequency (173.3 MHz)

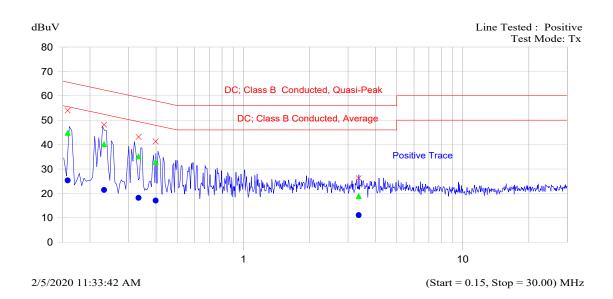
	RF	DETECTOR	ANTENNA						
FREQUENCY	LEVEL	USED	PLANE	LIMIT	MARGIN	PASS/			
(MHz)	(dBuV/m)	(PEAK/QP)	(H/V)	(dBuV/m)	(dB)	FAIL			
The emissions were scanned from 30 MHz to 2.0 GHz. All emissions found were more than 20 dB below the permissible limits.									

# 5.16. POWER LINE CONDUCTED EMISSIONS [ICES-003, RSS-Gen § 7.2.2]

#### 5.16.1. Limit(s)

The equipment shall meet the limits of the following table:

Frequency of emission	Conducted Limits (dBµV)		
(MHz)	Quasi-peak	Average	
0.15–0.5	66 to 56*	56 to 46*	
0.5–5	56	46	
5-30	60	50	


*Decreases with the logarithm of the frequency

#### 5.16.2. Method of Measurements

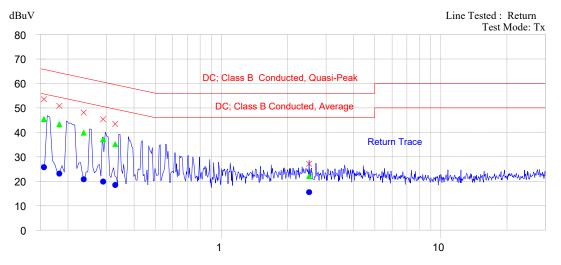
Refer to Ultratech Test Procedures ULTR-P001-2004 & ANSI C63.4 for method of measurements.

#### 5.16.3. Test Data

Description: Line Voltage: 13.6 Vdc, Postive Tx



Frequency MHz	Peak dBuV	QP dBuV	Avg dBuV	Avg-Avg Limit dB	Trace Name
0.158 0.232	54.0 48.2	44.8 40.2	 25.3 21.4		Positive Trace Positive Trace

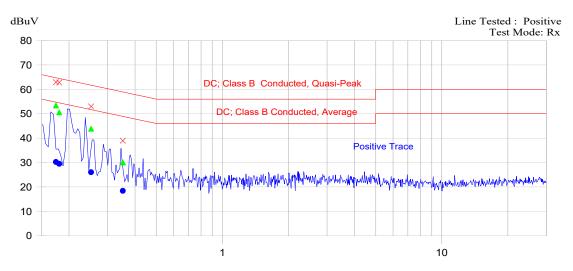

# **ULTRATECH GROUP OF LABS**

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

File #: 20ICOM520_FCC90 February 25, 2020

#### Description: Line Voltage: 13.6 Vdc, Negative Tx




2/5/2020 1:15:35 PM

(Start = 0.15, Stop = 30.00) MHz

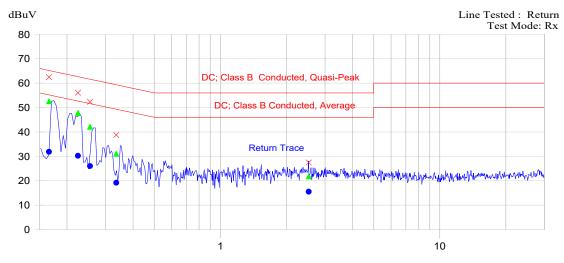
Frequency MHz	Peak dBuV		Qp-Qp Limit dB	Avg dBuV	Avg-Avg Limit dB	Trace Name
0.155	53.5	45.4	-20.3	25.7	-30.0	Return Trace
0.183	50.8	43.3	-21.0	23.1	-31.2	Return Trace

Description: Line Voltage: 13.6 Vdc, Postive Rx



2/5/2020 1:41:34 PM

(Start = 0.15, Stop = 30.00) MHz


Frequency MHz	Peak dBuV		Qp-Qp Limit dB	Avg dBuV	Avg-Avg Limit dB	Trace Name
0.174	62.9	50.6	-11.3	30.3	-24.5	Positive Trace
0.180	62.8		-13.9	29.5	-25.0	Positive Trace
0.252	53.0		-17.8	26.0	-25.6	Positive Trace

#### **ULTRATECH GROUP OF LABS**

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

#### Description: Line Voltage: 13.6 Vdc, Negative Rx



2/5/2020 1:32:37 PM

(Start = 0.15, Stop = 30.00) MHz

Frequency	Peak	QP	Qp-Qp Limit	Avg	Avg-Avg Limit	Trace Name
MHz	dBuV	dBuV	dB	dBuV	dB	
0.165	62.4	47.8	-12.6	31.9	-23.3	Return Trace
0.224	56.0		-14.8	30.3	-22.4	Return Trace
0.255	52.4		-19.5	26.0	-25.6	Return Trace

# 5.17. RADIATED EMISSIONS FROM UNINTENTIONAL RADIATORS [ICES-003]

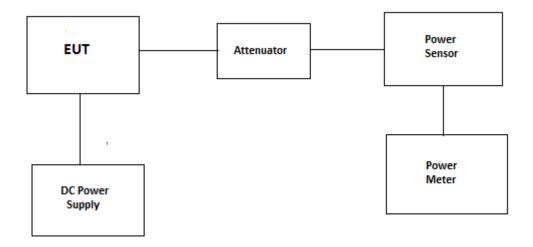
#### 5.17.1. Limits

The equipment shall meet the limits of the following table:

Frequency of emission	Class B Limits				
(MHz)	(dBµV/m at 3 m)	(dBµV/m at 10 m)			
30 – 88	40.0	29.5			
88 – 216	43.5	33.1			
216 – 960	46.0	35.6			
Above 960	54.0	43.5			

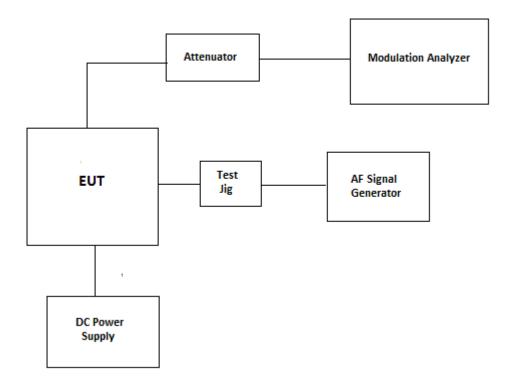
#### 5.17.2. Method of Measurements

Refer to Ultratech Test Procedures ULTR-P001-2004 & ANSI C63.4 for method of measurements.


#### 5.17.3. Test Data

The emissions were scanned from 30 MHz to 2.0 GHz. All emissions found above than 20 dB below the permissible limits were recorded

	RF	DETECTOR	ANTENNA						
FREQUENCY	LEVEL	USED	PLANE	LIMIT	MARGIN	PASS/			
(MHz)	(dBuV/m)	(PEAK/QP)	(H/V)	(dBuV/m)	(dB)	FAIL			
120.16	23.85	PEAK	v	43.5	-19.65	PASS			
400	36.76	PEAK	v	46	-9.24	PASS			
400	35.49	PEAK	н	46	-10.51	PASS			

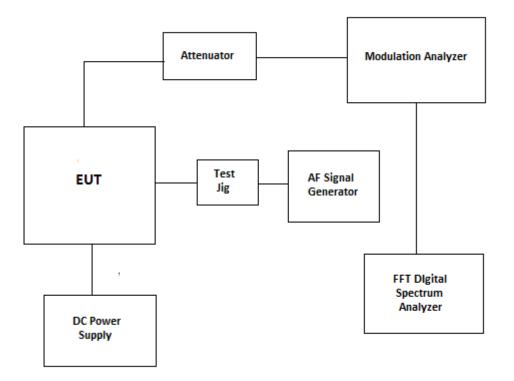

# EXHIBIT 6. TEST SETUP AND EQUIPMENT LIST

# 6.1. Conducted Power



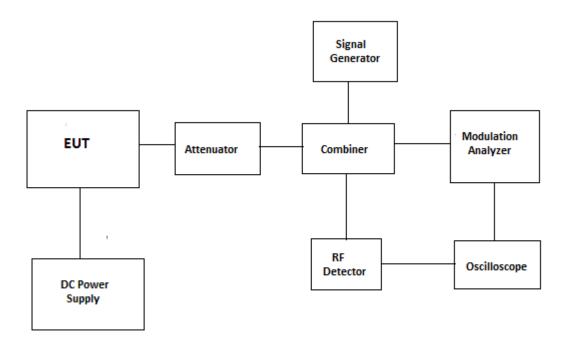
Test Instrument	Manufacturer	Model No	Serial No	Frequency Range	Cal Due date
Power Meter	HP	436A	2016A07747	100KHz-sensor	29 Mar 2020
				dependant	
Power Sensor	HP	8482A	MY44175182	10MHz-4.2GHz	15 Nov 2020
Attenuator(20dB)	Weinschel	WA 35-	A164	DC-8.5GHz	Cal on use
		20-33			
Attenuator(20dB)	Aeroflex\Weinsc	23-20-34	BH7876	DC-18GHz	Cal on use
	hel				
Power supply	Pyramid	PS-36KX		12-15 Vdc, 35A	
Multimeter	Fluke	8842A	4142058		05 Sep 2020

#### 6.2. Modulation Limit




Test Instrument	Manufacturer	Model No	Serial No	Frequency Range	Cal Due date
Modulation	HP	HP-8901B	3226A04606	150KHz-1300MHz	23 Mar 2020
Analyzer					
AF Signal	HP	HP-8920B	US39064699	30MHz-1GHz	20 Mar 2020
Generator					
Digital Voltmeter	HP	3456A	2015A04523		21 Jan 2022
Attenuator(20dB)	Weinschel	WA 35-20-	A164	DC-8.5GHz	Cal on use
		33			
Attenuator(20dB)	Aeroflex\Weinsc	23-20-34	BH7876	DC-18GHz	Cal on use
	hel				
Power supply	Pyramid	PS-36KX		12-15 Vdc, 35A	
Multimeter	Fluke	8842A	4142058		05 Sep 2020

#### ULTRATECH GROUP OF LABS 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>

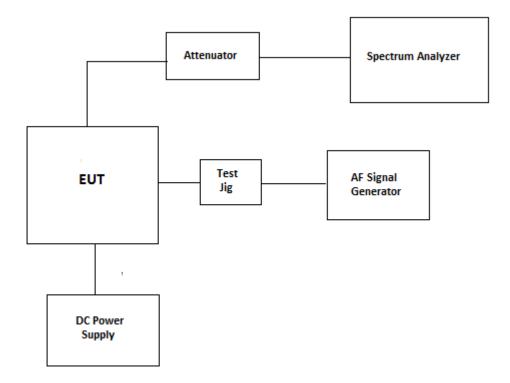

File #: 20ICOM520_FCC90 February 25, 2020

# 6.3. Audio Frequency Response



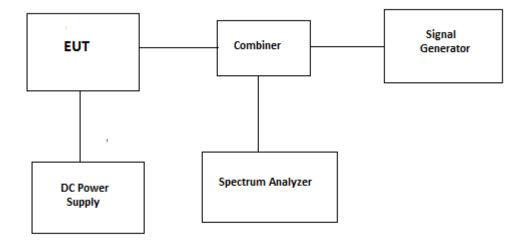
Test Instrument	Manufacturer	Model No	Serial No	Frequency Range	Cal Due date
Modulation	HP	HP-8901B	3226A04606	150KHz-1300MHz	23 Mar 2020
Analyzer					
AF Signal	HP	HP-8920B	US39064699	30MHz-1GHz	20 Mar 2020
Generator					
Digital Voltmeter	HP	3456A	2015A04523		21 Jan 2022
FFT Digital	Advantest	R9211E	8202336	10MHz-100KHz	12 Sep 2020
Spectrum Analyzer					
Attenuator(20dB)	Weinschel	WA 35-20- 33	A164	DC-8.5GHz	Cal on use
Attenuator(20dB)	Aeroflex\Weinsc hel	23-20-34	BH7876	DC-18GHz	Cal on use
Power supply	Pyramid	PS-36KX		12-15 Vdc, 35A	
Multimeter	Fluke	8842A	4142058		05 Sep 2020

### 6.4. Transient Frequency Behavior



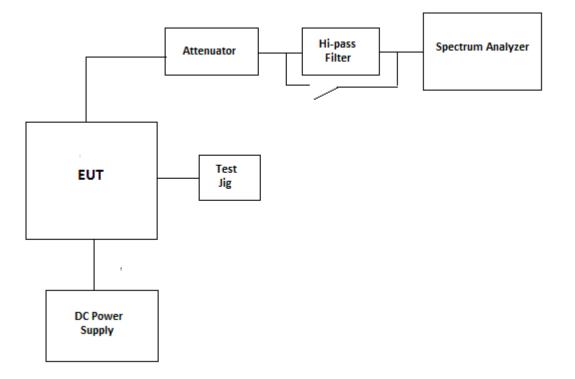

Test Instrument	Manufacturer	Model No	Serial No	Frequency Range	Cal Due date
Modulation	HP	HP-8901B	3226A04606	150KHz-1300MHz	23 Mar 2020
Analyzer					
Signal Generator	Marconi	2024	112255/164	9KHz-2.4GHz	19 Sep 2021
Combiner	Mini-Circuit	ZFSC-3-4	15542	1MHz-1GHz	Cal on use
RF Detector	Pasternack	PE8000-50		10MHz-1GHz	Cal on use
Attenuator(20dB)	Weinschel	WA 35-20-	A164	DC-8.5GHz	Cal on use
		33			
Attenuator(10dB)	Weinschel	46-10-34	BS4336	DC-18GHz	Cal on use
Oscilloscope	HP	54801A	US38380192	DC-500MHz	20 Sep 2021
Power supply	Pyramid	PS-36KX		12-15 Vdc, 35A	
Multimeter	Fluke	8842A	4142058		05 Sep 2020

# ULTRATECH GROUP OF LABS


3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>

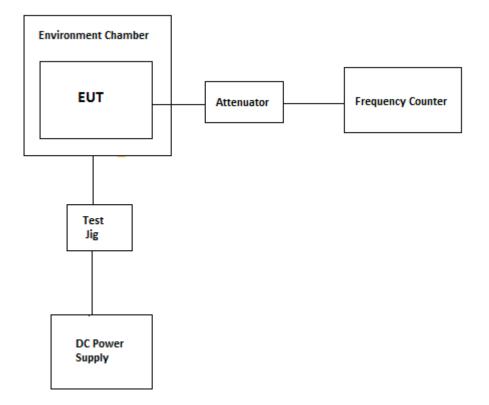
### 6.5. 99% OBW and Mask




Test Instrument	Manufacturer	Model No	Serial No	Frequency Range	Cal Due date
Spectrum Analyzer	Rohde &	FSU	100398	20Hz-26.5GHz	23 Oct 2021
	Schwarz				
AF Signal	HP	HP-8920B	US39064699	30MHz-1GHz	20 Mar 2020
Generator					
Digital Voltmeter	HP	3456A	2015A04523		21 Jan 2022
Attenuator(20dB)	Weinschel	WA 35-20-	A164	DC-8.5GHz	Cal on use
		33			
Attenuator(20dB)	Aeroflex\Weinsc	23-20-34	BH7876	DC-18GHz	Cal on use
	hel				
Power supply	Pyramid	PS-36KX		12-15 Vdc, 35A	
Multimeter	Fluke	8842A	4142058		05 Sep 2020

### 6.6. Rx Conducted Emission




Test Instrument	Manufacturer	Model No	Serial No	Frequency Range	Cal Due date
Spectrum Analyzer	Rohde &	FSU	100398	20Hz-26.5GHz	23 Oct 2021
	Schwarz				
Signal Generator	Marconi	2024	112255/164	9KHz-2.4GHz	19 Sep 2021
Combiner	Weinschel	1515	PS119	DC-18GHz	Cal on use
	93458				
Power supply	Pyramid	PS-36KX		12-15 Vdc, 35A	
Multimeter	Fluke	8842A	4142058		05 Sep 2020

# 6.7. Tx Conducted Emission



Test Instrument	Manufacturer	Model No	Serial No	Frequency Range	Cal Due date
Spectrum Analyzer	Rohde & Schwarz	FSU	100398	20Hz-26.5GHz	23 Oct 2021
Hi-pass filter	Mini-Circuit	SHP-250		Cut off 250MHz	Cal on use
Tunable filter	K&L	3TNF- 100/200-N	UW316-1	100-200MHz	Cal on use
Attenuator(20dB)	Weinschel	WA 35-20- 33	A164	DC-8.5GHz	Cal on use
Attenuator(20dB)	Aeroflex\Weinsch el	23-20-34	BH7876	DC-18GHz	Cal on use
Power supply	Pyramid	PS-36KX		12-15 Vdc, 35A	
Multimeter	Fluke	8842A	4142058		05 Sep 2020

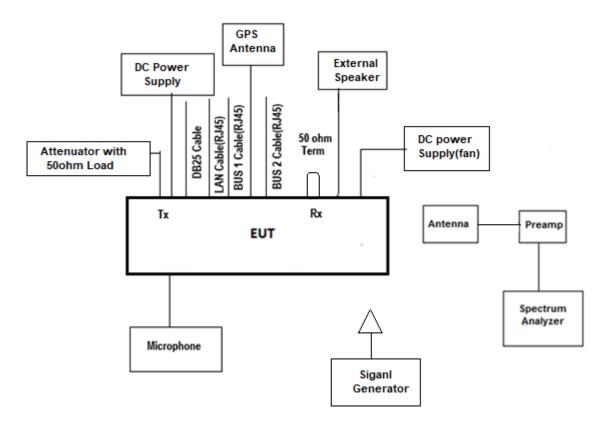
### 6.8. Frequency Stability



Test Instrument	Manufacturer	Model No	Serial No	Frequency Range	Cal Due date
Environmental	Envirotronics	SSH32C	11994847-S-	-60 to 177° C	10 Jun 2021
Chamber			11059		
Frequency Counter	EIP	545A	2683	10MHz-1GHz	07 Aug 2020
Attenuator(20dB)	Aeroflex\Weinsc	34-20-34	BP6023	DC-18GHz	Cal on use
	hel				
Attenuator(20dB)	Narda	26298	A577	DC-1GHz	Cal on use
Power Supply	XANTREX	XKW 60-50		1-60V, DC 50A	
Multimeter	Fluke	8842A	4142058		05 Sep 2020

### 6.9. Tx Radiated




Test Instrument	Manufacturer	Model No	Serial No	Frequency Range	Cal Due date
Spectrum Analyzer	Rohde &	FSU	100398	20Hz-26.5GHz	23 Oct 2021
	Schwarz				
Biconilog Antenna	EMCO	3142B	1575	26-2000MHz	10 May 2020
Log Periodic	ETS	3148	00023845	200-2000MHz	02 Aug 2020
Antenna					
Horn Antenna	ETS	3117	00119425	1-18GHz	25 Jul 2021
Horn Antenna	ETS	3115	5061	1-18GHz	30 Apr 2020
Preamplifier	Com-Power	PAM-118A	551016	500MHz-18GHz	18 Mar 2020
Preamplifier	Com-Power	PA-103	161040	1-1000MHz	12 Apr 2020
Hi-pass filter	Mini-Circuit	SHP-250		Cut off 250MHz	Cal on use
Attenuator(20dB)	Weinschel	WA 35-20-33	A164	DC-8.5GHz	Cal on use
Attenuator(20dB)	Aeroflex\Weinsc	23-20-34	BH7876	DC-18GHz	Cal on use
	hel				
Load(50ohm)	Db products			DC-18GHz(15W)	Cal on use
Load(50ohm)	Db products			DC-18GHz(15W)	Cal on use
Power supply	Pyramid	PS-36KX		12-15 Vdc, 35A	
Multimeter	Fluke	8842A	4142058		05 Sep 2020

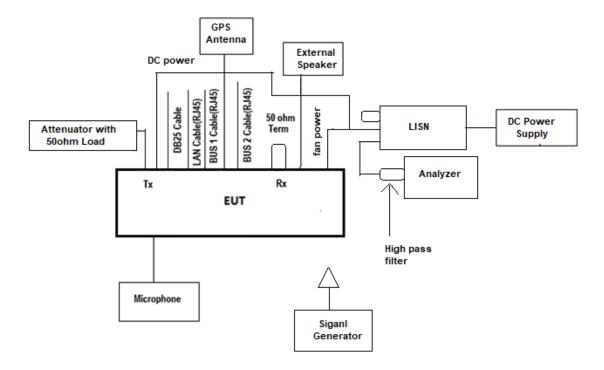
### ULTRATECH GROUP OF LABS 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

File #: 20ICOM520_FCC90 February 25, 2020

### 6.10. Rx Radiated




Test Instrument	Manufacturer	Model No	Serial No	Frequency Range	Cal Due date
Spectrum Analyzer	Rohde & Schwarz	FSU	100398	20Hz-26.5GHz	23 Oct 2021
Biconilog Antenna	EMCO	3142B	1575	26-2000MHz	10 May 2020
Log Periodic Antenna	ETS	3148	00023845	200-2000MHz	02 Aug 2020
Horn Antenna	ETS	3117	00119425	1-18GHz	25 July 2021
Horn Antenna	ETS	3115	5061	1-18GHz	30 Apr 2020
Preamplifier	Com-Power	PAM-118A	551016	500MHz-18GHz	18 Mar 2020
Preamplifier	Com-Power	PA-103	161040	1-1000MHz	12 Apr 2020
Signal Generator	Marconi	2024	112255/164	9KHz-2.4GHz	19 Sep 2021
Attenuator(20dB)	Weinschel	WA 35-20- 33	A164	DC-8.5GHz	Cal on use
Attenuator(20dB)	Aeroflex\Weinsc hel	23-20-34	BH7876	DC-18GHz	Cal on use
Load(50ohm)	Db products			DC-18GHz(15W)	Cal on use
Load(50ohm)	Db products			DC-18GHz(15W)	Cal on use
Power supply	Pyramid	PS-36KX		12-15 Vdc, 35A	
Multimeter	Fluke	8842A	4142058		05 Sep 2020

### ULTRATECH GROUP OF LABS 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>

File #: 20ICOM520_FCC90 February 25, 2020

### 6.11. Power Line Conducted Emission



Test Instrument	Manufacturer	Model No	Serial No	Frequency Range	Cal Due date
Analyzer	HP	8593EM	3710A00223	9KHz-2GHz	13 May 2020
Attenuator	Rhode&Schwarz	EZ-25	830164/006	150KHz-30MHz	07 Jun 2020
LISN	UEL	ULTLISN	ULT02&03	150KHz-30MHz	25 Nov 2020
Signal Generator	Marconi	2024	112255/164	9KHz-2.4GHz	19 sep 2021
Power supply	Pyramid	PS-36KX		12-15 Vdc, 35A	
Multimeter	Fluke	8842A	4142058		05 Sep 2020

# EXHIBIT 7. MEASUREMENT UNCERTAINTY

The measurement uncertainties stated were calculated in accordance with the requirements of CISPR 16-4-2 @ IEC:2003 and JCGM 100:2008 (GUM 1995) – Guide to the Expression of Uncertainty in Measurement.

# 7.1. LINE CONDUCTED EMISSION MEASUREMENT UNCERTAINTY (0.15-30 MHz)

	Line Conducted Emission Measurement Uncertainty (9 kHz – 30 MHz):	Measured	Limit
Uc	Combine <u>d standa</u> rd uncertainty: $u_c(y) = \sqrt{\underset{l=1}{\overset{m}{\sum}}u_i^2(y)}$	<u>+</u> 1.44	<u>+</u> 1.8
U	Expanded uncertainty U: U = 2u _c (y)	<u>+</u> 2.89	<u>+</u> 3.6

# 7.2. RADIATED EMISSION MEASUREMENT UNCERTAINTY

	Radiated Emission Measurement Uncertainty @ 3m, Horizontal (30-1000 MHz):	Measured	Limit
Uc	Combine <u>d standa</u> rd uncertainty: $u_c(y) = \sqrt{\underset{i=1}{\overset{m \sum}{}} u_i^2(y)}$	<u>+</u> 2.15	<u>+</u> 2.6
U	Expanded uncertainty U: U = 2u _c (y)	<u>+</u> 4.30	<u>+</u> 5.2

	Radiated Emission Measurement Uncertainty @ 3m, Vertical (30-1000 MHz):	Measured	Limit
Uc	Combine <u>d standa</u> rd uncertainty: $u_c(y) = \sqrt{\sum_{i=1}^{m} u_i^2(y)}$	<u>+</u> 2.14	<u>+</u> 2.6
U	Expanded uncertainty U: U = 2u _c (y)	<u>+</u> 4.29	<u>+</u> 5.2

	Radiated Emission Measurement Uncertainty @ 3 m, Horizontal & Vertical (1 – 18 GHz):	Measured	Limit
u _c	Combine <u>d standa</u> rd uncertainty: $u_c(y) = \sqrt{\underset{i=1}{^{m}\Sigma}u_i^2(y)}$	<u>+</u> 1.52	Under consideration
U	Expanded uncertainty U: U = 2u _c (y)	<u>+</u> 3.04	Under consideration

# **EXHIBIT 8. MEASUREMENT METHODS**

# 8.1. CONDUCTED POWER MEASUREMENTS

- The following shall be applied to the combination(s) of the radio device and its intended antenna(e).
- If the RF level is user adjustable, all measurements shall be made with the highest power level available to the user for that combination.
- The following method of measurement shall apply to both conducted and radiated measurements.
- The radiated measurements are performed at the Ultratech Calibrated Open Field Test Site.
- The measurement shall be performed using normal operation of the equipment with modulation.

Test procedure shall be as follows:

**Step 1**: Duty Cycle measurements if the transmitter's transmission is transient

- Using a EMI Receiver with the frequency span set to 0 Hz and the sweep time set at a suitable value to capture the envelope peaks and the duty cycle of the transmitter output signal;
- The duty cycle of the transmitter, x = Tx on / (Tx on + Tx off) with 0<x<1, is measure and recorded in the test report. For the purpose of testing, the equipment shall be operated with a duty cycle that is equal or more than 0.1.</p>

Step 2: Calculation of Average EIRP. See Figure 1

- The average output power of the transmitter shall be determined using a wideband, calibrated RF average power meter with the power sensor with an integration period that exceeds the repetition period of the transmitter by a factor 5 or more. The observed value shall be recorded as "A" (in dBm);
- The e.i.r.p. shall be calculated from the above measured power output "A", the observed duty cycle x, and the applicable antenna assembly gain "G" in dBi, according to the formula:

### EIRP = A + G + 10log(1/x)

{X = 1 for continuous transmission  $\Rightarrow$  10log(1/x) = 0 dB}

### Figure 1.



#### 8.2. **RADIATED POWER MEASUREMENTS (ERP & EIRP) USING SUBSTITUTION METHOD**

### 8.2.1. MAXIMIZING RF EMISSION LEVEL (E-FIELD)

- (a) The measurements were performed with full rf output power and modulation.
- (b) Test was performed at listed 3m open area test site (listed with FCC, IC, ITI, NVLAP, ACA & VCCI).
- (c) The transmitter under test was placed at the specified height on a non-conducting turntable (80 cm height)
- (d) The BICONILOG antenna (20 MHz to 1 GHz) or HORN antenna (1 GHz to 18 GHz) was used for measuring.
- (e) Load an appropriate correction factors file in EMI Receiver for correcting the field strength reading level

Total Correction Factor recorded in the EMI Receiver = Cable Loss + Antenna Factor  $E (dB\mu V/m) = Reading (dB\mu V) + Total Correction Factor (dB/m)$ 

(f) Set the EMI Receiver and #2 as follows:

Center Frequency:	test frequency
Resolution BW:	100 KHz
Video BW:	same
Detector Mode:	positive
Average:	off
Span:	3 x the signal bandwidth

- (g) The test antenna was lowered or raised from 1 to 4 meters until the maximum signal level was detected.
   (h) The transmitter was rotated through 360° about a vertical axis until a higher maximum signal was received.
- (i) The test antenna was lowered or raised again from 1 to 4 meters until a maximum was obtained. This level was recorded.
- (i) The recorded reading was corrected to the true field strength level by adding the antenna factor, cable loss and subtracting the pre-amplifier gain.
- (k) The above steps were repeated with both transmitters' antenna and test receiving antenna placed in vertical and horizontal polarization. Both readings with the antennas placed in vertical and horizontal polarization shall be recorded.
- (I)Repeat for all different test signal frequencies.

### 8.2.2. Measuring the EIRP of Spurious/Harmonic Emissions using Substitution Method

(a) Set the EMI Receiver (for measuring E-Field) and Receiver #2 (for measuring EIRP) as follows:

Center Frequency:	equal to the signal source
Resolution BW:	100 KHz
Video BW:	VBW > RBW
Detector Mode:	positive
Average:	off
Span:	3 x the signal bandwidth

(b) Load an appropriate correction factors file in EMI Receiver for correcting the field strength reading level

Total Correction Factor recorded in the EMI Receiver = Cable Loss + Antenna Factor E (dBuV/m) = Reading (dBuV) + Total Correction Factor (dB/m)

- (c) Select the frequency and E-field levels obtained in the Section 8.2.1 for ERP/EIRP measurements.
- (d) Substitute the EUT by a signal generator and one of the following transmitting antenna (substitution antenna):
  - DÍPOLE antenna for frequency from 30-1000 MHz or ٠
    - HORN antenna for frequency above 1 GHz }.
- (e) Mount the transmitting antenna at 1.5 meter high from the ground plane.
- Use one of the following antenna as a receiving antenna:
  - DIPOLE antenna for frequency from 30-1000 MHz or
  - HORN antenna for frequency above 1 GHz }.
- (g) If the DIPOLE antenna is used, tune it's elements to the frequency as specified in the calibration manual.
- (h) Adjust both transmitting and receiving antenna in a VERTICAL polarization.
- (i) Tune the EMI Receivers to the test frequency.
- (j) Lower or raise the test antenna from 1 to 4 meters until the maximum signal level was detected.
- $(\check{k})$  The transmitter was rotated through 360° about a vertical axis until a higher maximum signal was received.
- Lower or raise the test antenna from 1 to 4 meters until the maximum signal level was detected.
- (m) Adjust input signal to the substitution antenna until an equal or a known related level to that detected from the transmitter was obtained in the test receiver.
- (n) Record the power level read from the Average Power Meter and calculate the ERP/EIRP as follows:

### P = P1 - L1 = (P2 + L2) - L1 = P3 + A + L2 - L1EIRP = P + G1 = P3 + L2 - L1 + A + G1

### ERP = EIRP - 2.15 dB

Total Correction factor in EMI Receiver # 2 = L2 – L1 + G1

- Where: P: Actual RF Power fed into the substitution antenna port after corrected.
  - P1: Power output from the signal generator
  - P2: Power measured at attenuator A input
  - P3: Power reading on the Average Power Meter
  - EIRP: EIRP after correction
  - ERP: ERP after correction
- (o) Adjust both transmitting and receiving antenna in a HORIZONTAL polarization, then repeat step (k) to (o)
- (p) Repeat step (d) to (o) for different test frequency
- (q) Repeat steps (c) to (j) with the substitution antenna oriented in horizontal polarization. (r) Actual gain of the EUT's antenna is the difference of the measured EIRP and measured RF power at the (r) RF port. Correct the antenna gain if necessary.

**ULTRATECH GROUP OF LABS** 

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com



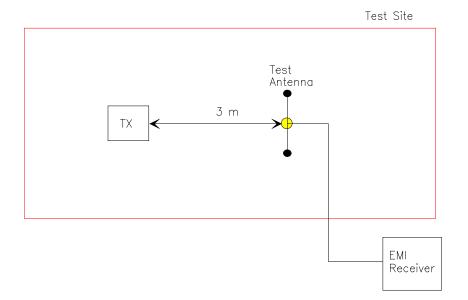
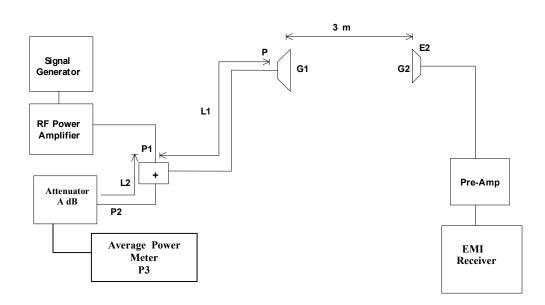




Figure 3



All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

# 8.3. FREQUENCY STABILITY

Refer to FCC @ 2.1055.

- (a) The frequency stability shall be measured with variation of ambient temperature as follows: From -30 to +50 centigrade except that specified in subparagraph (2) & (3) of this paragraph.
- (b) Frequency measurements shall be made at extremes of the specified temperature range and at intervals of not more than 10 centigrade through the range. A period of time sufficient to stabilize all of the components of the oscillator circuit at each temperature level shall be allowed prior to frequency measurement. The shortterm transient effects on the frequency of the transmitter due to keying (except for broadcast transmitters) and any heating element cycling normally occurring at each ambient temperature level also shall be shown. Only the portion or portions of the transmitter containing the frequency determining and stability circuitry need be subjected to the temperature variation test.
- (d) The frequency stability supply shall be measured with variation of primary supply voltage as follows:
  - (1) Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.
  - (2) For hand carried, battery powered equipment, reduce primary supply voltage to the battery operating end point which shall be specified by the manufacturer.
  - (3) The supply voltage shall be measured at the input to the cable normally provide with the equipment, or at the power supply terminals if cables are not normally provided. Effects on frequency of transmitter keying (except for broadcast transmitters) and any heating element cycling at the nominal supply voltage and at each extreme also shall be shown.
- (e) When deemed necessary, the Commission may require tests of frequency stability under conditions in addition to those specifically set out in paragraphs (a), (b), (c) and (d) of this section. (For example, measurements showing the effect of proximity to large metal objects, or of various types of antennas, may be required for portable equipment).

# 8.4. EMISSION MASK

<u>Voice or Digital Modulation Through a Voice Input Port @ 2.1049(c)(i)</u>:- The transmitter was modulated by a 2.5 KHz tone signal at an input level 16 dB greater than that required to produce 50% modulation (e.g.: <u>+</u>2.5 KHz peak deviation at 1 KHz modulating frequency). The input level was established at the frequency of maximum response of the audio modulating circuit.

**Digital Modulation Through a Data Input Port @ 2.1049(h)**:- Transmitters employing digital modulation techniques - when modulated by an input signal such that its amplitude and symbol rate represent the maximum rated conditions under which the equipment will be operated. The signal shall be applied through any filter networks, pseudo-random generators or other devices required in normal service. Additionally, the Emission Masks shall be shown for operation with any devices used for modifying the spectrum when such devices are operational at the discretion of the user.

The following EMI Receiver bandwidth shall be used for measurement of Emission Mask/Out-of-Band Emission Measurements:

- (1) For 25 KHz Channel Spacing: RBW = 300 Hz
- (2) For 12.5 KHz or 6.25 KHz Channel Spacings: RBW = 100 Hz

The all cases the Video Bandwidth shall be equal or greater than the measuring bandwidth.

# 8.5. SPURIOUS EMISSIONS (CONDUCTED)

With transmitter modulation characteristics described in Out-of-Band Emissions measurements @ 2.1049, the transmitter spurious and harmonic emissions were scanned. The spurious and harmonic emissions were measured with the EMI Receiver controls set as RBW = 30 KHz minimum, VBW  $\geq$  RBW and SWEEP TIME = AUTO). The transmitter was operated at a full rated power output, and modulated as follows:

**FCC 47 CFR 2.1057 - Frequency spectrum to be investigated:** The spectrum was investigated from the lowest radio generated in the equipment up to at least the 10th harmonic of the carrier frequency or to the highest frequency practicable in the present state of the art of measuring techniques, whichever is lower. Particular attention should be paid to harmonics and subharmonics of the carrier frequency. Radiation at the frequencies of multiplier stages should be checked. The

amplitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be reported.

**FCC 47 CFR 2.1051 - Spurious Emissions at Antenna Terminal:** The radio frequency voltage or powers generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna. Curves or equivalent data shall show the magnitude of the harmonic and other spurious emission that can be detected when the equipment is operated under the conditions specified in 2.1049 as appropriate. The magnitude of spurious emissions, which are attenuated more than 20 dB below the permissible value, need not be specified.

# 8.6. TRANSIENT FREQUENCY BEHAVIOR

- 1. Connect the transmitter under tests as shown in the above block diagram
- 2. Set the signal generator to the assigned frequency and modulate with a 1 KHz tone at <u>+</u>12.5 KHz deviation and its output level to be 50 dB below the transmitter rf output at the test receiver end.
- Set the horizontal sweep rate on the storage scope to 10 milliseconds per division and adjust the display to continuously view the 1000 Hz tone from the Demodulator Output Port (DOP) of the Test Receiver. Adjust the vertical scale amplitude control of the scope to display the 1000 Hz at <u>+</u>4 divisions vertical Center at the display.
- 4. Adjust the scope so it will trigger on an increasing magnitude from the RF trigger signal of the transmitter under test when the transmitter was turned on. Set the controls to store the display.
- 5. The output at the DOP, due to the change in the ratio of the power between the signal generator input power and transmitter output power will, because of the capture effect of the test receiver, produce a change in display: For the first part of the sweep it will show the 1 KHz test signal. Then once the receiver's demodulator has been captured by the transmitter power, the display will show the frequency difference from the assigned frequency to the actual transmitter frequency versus time. The instant when the 1 KHz test signal is completely suppressed (including any capture time due to phasing) is considered to be t_{on}. The trace should be maintained within the allowed divisions during the period t₁ and t₂.
- 6. During the time from the end of  $t_2$  to the beginning of  $t_3$  the frequency difference should not exceed the limits set by the FCC in Part 90.214 and the outlined in the Carrier Frequency Stability sections. The allowed limit is equal to FCC frequency tolerance limits specified in FCC 90.213.
- 7. Repeat the above steps when the transmitter was turned off for measuring  $t_3$ .