

Agilent	i Spec	trum	Analy	zer - Swep	t SA								
IXI RL		1.	RF	50 Ω	AC		SE	NSE:INT	-	ALIGNAUTO	12:16:43	PM Jan 19, 2015	1 Posta los das
Cent	ter	Fre	q 5.	530000	0000 G	Hz	and and a start		#Avg	Type: RMS		CE 123456	Frequency
					0	PNO: Fast G FGain:Low	Trig: Free #Atten: 30				T\ E	PE A MWAMAN DET A P N N N N	T State
10 dB	3/div	.,	Ref 2	20.00 dE	3m			1		Mk		9 7 GHz 38 dBm	Auto Tune
Log						· · · · · · · · · · · · · · · · · · ·	-				12	1.0.00/	
10,0	-		-			-		-		-	1	1	Center Freq
0.00			-	And and a star	-		and the second class.	-	The second second	2	una non		5.530000000 GHz
-10.0			F				-				1		0.00000000000
	-		14			1		/			1	1	1
-20.0		. 10	R				-			-		man	Start Freq
-30.0	mall any		1						-			Mary Mary and a	
-40.0		and the second	×*									Manager	5.480000000 GHz
-50.0 -	1								-		P		T ASTRONOM
-60.0			_			-	-			-			Stop Freq
-70.0										_			5.580000000 GHz
										1.1	1		Construction of the
Cent	ter 5	5.53	000	GHz		1.1.1	0.25	· · · · · ·			Span '	100.0 MHz	
#Res	BV	V 1.	0 Mł	Ηz		#VB	V 3.0 MHz			Sweep		(1001 pts)	CF Step
		TOOL						1	INCTION		1 PLINET	ION VALUE	10.000000 MHz
MKB M		2	f		× E EE	7 GHz	1.38 dl		INCTION	FUNCTION WIDTH	FUNCT	IUN VALUE	<u>Auto</u> Man
		1	F			55 GHz	-7.61 di						
3													Freq Offset
4	-	-						-		1	-		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5	-	-	-								-		0 Hz
7													
8		-									-		
9	-	-	-							-			
11											-		
12		-								-	-		
MSG										In STATUS			

Frequency	M Jan 19, 2015 Е 1 2 3 4 5 6 Е А М ШИМИ Т А Р N N N N	TRAC TYP	ALIGNAUTO e: RMS	#Avg	SENSE:INT Free Run n: 30 dB		NO: Fast C	0000 G	50 Ω 53000	RF q 5.5	Fre	ter
Auto Tune	8 GHz 4 dBm	1 5.564	Mk		n. 50 aB	#	Gain:Low	63 T	0.00 0	Ref 2	/ F	B/div
Center Fred 5.530000000 GH:		1_	2	امر جان الرجمان	and a state of the		Angerten Angere ha	ويواد ما ليماللارون	al whom the	-		
Start Free 5.480000000 GH	Municipality of the second	1								T	Malata	albert (1)
Stop Free 5.58000000 GH:												
CF Step 10.000000 MH	00.0 MHz 1001 pts)		Sweep 1	1	IHz	W 3.	#VB	-		000 (0 MH		
<u>Auto</u> Mar	N VALUE	FUNCTIO	NCTION WIDTH		4 dBm 6 dBm		8 GHz 5 GHz			sel f f	1000 2 1	MODE N N
Freq Offse 0 H:				4								
					l		-					-

140 000000	18:56 PM Jan 19, 2015	LIGNAUTO		NSE:INT	SEN		AC	50 Ω	RF	1.	L
Frequency	TRACE 123456 TYPE A MWWWW DET A P N N N N	RMS	#Avg Typ		Trig: Free #Atten: 30	Z O: Fast 😱 ain:Low	0000 GH	53000	q 5.5	Fre	ter
Auto Tun	.548 4 GHz 2.46 dBm	Mkr				2.00.2.1.1	Bm	0.00 c	Ref 2	, 1	B/div
Center Fre 5.53000000 GH	~	durate and	per la serie de series	and the second second second second	and and and and the	the state of the state	~~~~~	Erifa a Madach	100		
Start Fre 5.48000000 GH	Mary My Mary Mary									hide t	Jheler
Stop Fre 5.58000000 GH											
CF Ste 10.000000 MH	an 100.0 MHz ms (1001 pts)	Sweep 1.			3.0 MHz	#VBW			8000 (.0 MH		
<u>Auto</u> Ma	UNCTION VALUE	CTION WIDTH	ICTION CON FL	Bm	2.46 dE		× 5.548 4 5.561 1		f f	2	N N N
Freq Offso 0 H					1.10 4		0.0011				
1.											
								_			_

Channel 106 (Chain B):
----------------------	----

RL		Analyzer - S RF 50	Ω AC		SENSE:IN	T	ALIGNAUTO	04:21:30	AM Jan 29, 2015	-	
Cente	r Fred	5.5300	000000 G				Type: RMS	TRA	E 123456 A MWAAWA	Frequency	
			F	PNO: Fast G Gain:Low	⊖ [–] Trig: Free Run #Atten: 30 dB			D	ET A P N N N N	1.0.0	
10 dB/d	iv R	ef 20.00) dBm	0.5			Mk	r1 5.54 2.	4 7 GHz 33 dBm	Auto Tune	
10.0						-	1		12000	Center Free	
0.00		النخصصير	- as tem and	-	with a state of the state of th	- manual	man 2	and the second second	1	5.530000000 GH	
10.0		former					0			5.530000000 GH:	
20.0				-	34			1	Sharper Will your		
-30.0	hender	1							Way	Start Free	
40.0	down -	1							- marine	5.48000000 GH	
-50.0		1					E				
-60.0	_								1	Stop Free	
70.0	_									5.58000000 GH	
		in the						1.4	1.1.1		
Center #Res E		00 GHz MHz		#VBV	V 3.0 MHz		Sweep		00.0 MHz 1001 pts)	CF Step 10.000000 MH	
MKR MOD			X	-	Y	FUNCTION	FUNCTION WIDTH	FUNCTI	ON VALUE	Auto Mai	
1 N 2 N		F F		6 GHz	2.33 dBm -7.11 dBm			-			
3 4										Freq Offse	
5										ОH	
6						-		-			
8									1		
10						_	-	-			
11 12		-					-				
ISG		-					STATUS				

Agilent Spectrum Analyzer - Swept SA				
2010 RL RF 50 Ω AC Center Freq 5.530000000 G	Hz NO: Fast	ALIGNAUTO #Avg Type: RMS	04:22:35 AM Jan 29, 2015 TRACE 1 2 3 4 5 6 TYPE A MIWAWAW DET A P N N N N	Frequency
⊪ 10 dB/div Ref 20.00 dBm	Gain:Low #Atten: 30 dB	Mk	r1 5.548 3 GHz 2.50 dBm	Auto Tune
10.0 0.00	A marine to a second provide	1	handson	Center Frec 5.530000000 GH;
-10.0 -20.0 -30.0 -40.0			Mu maybinnester	Start Free 5.48000000 GH:
-50.0				Stop Fred 5.58000000 GHz
Center 5.53000 GHz #Res BW 1.0 MHz	#VBW 3.0 MHz	Sweep *	Span 100.0 MHz 1.00 ms (1001 pts)	CF Step 10.000000 MH:
	3 GHz 2.50 dBm 9 GHz -7.08 dBm	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Mar
3 4 5 6 7				Freq Offsel 0 Hz
8 9 10 11 12				
MSG		STATUS		-

Agilent Spectrum /					
	RF 50 Ω AC 5.530000000 GHz	SENSE:INT	ALIGNAUTO #Avg Type: RMS	04:23:43 AM Jan 29, 2015 TRACE 1 2 3 4 5 6 TYPE A MWMMM	Frequency
10 dB/div R	PNO: Fast G IFGain:Low ef 20.00 dBm	#Atten: 30 dB	Mk	r1 5.548 2 GHz 2.13 dBm	Auto Tuno
Log 10.0 0.00 -10.0	porterior and in survey to low		• • • • • • • • • • • • • • • • • • •		Center Freq 5.530000000 GHz
-20.0 -20.0		- 04		human way	Start Freq 5.48000000 GHz
-50.0					Stop Freq 5.58000000 GHz
Center 5.530 #Res BW 1.0		N 3.0 MHz	Sweep	Span 100.0 MHz 1.00 ms (1001 pts)	CF Step 10.000000 MHz
MKR MODE THE S	5.548 2 GHz	2.13 dBm -7.00 dBm	UNCTION IN FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Man
2 N 1 1 3 4 5 6 7 7	3.5310 GH2	-1.00 dBm			Freq Offset 0 Hz
8 9 10 11 12					
MSG	-U		STATUS		

		a					AC	yzer - Swe	um Analy RF		gilen R I
Frequency	56 AM Jan 29, 2015 RACE 1 2 3 4 5 6 TYPE A MWWWW DET A P N N N N	0 104	ALIGNAUTO Type: RMS	-	SENSE:INT Trig: Free Run #Atten: 30 dB	IO: Fast 😱	00000 GH				
Auto Tune	08 6 GHz 1.95 dBm	lkr1 5	М		#Atten: 30 dB	Sain:Low		20.00 c	Ref	3/div	
Center Free 5.530000000 GH:	2	ويغطروه مراه	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- dia	and a second	1		trib,pestinessa	1		. og 10.0 0.00
Start Free 5.480000000 GH:	How Handward									n jihun hijud	
Stop Free 5.580000000 GH											50.0 50.0 70.0
CF Ster 10.000000 MH	n 100.0 MHz s (1001 pts)	Sp 1.00	Sweep		3.0 MHz	#VBW			53000 1.0 M		
<u>Auto</u> Mar	CTION VALUE		FUNCTION WIDT	FUNC	1.95 dBm -8.05 dBm		× 5.508 (5.552 (N 2 N 1	KB 1 2
Freq Offse 0 H											3 4 5
											6 7 9 10 11
		rus	STATU								SG

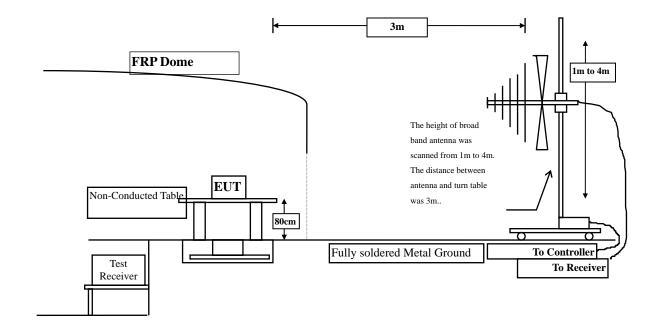
Frequency	M Jan 29, 2015 E 1 2 3 4 5 6	TRAC	ALIGNAUTO	#Avg]	ISE:INT	I SEM	17	AC	50 Q	RF		R
Based	ETAPNNNN	TYP				Trig: Free #Atten: 30	NO: Fast 🕞 Gain:Low	P		Toqu		
Auto Tur	98 GHz 81 dBm		Mk				1.1	dBm	20.00	Ref	B/div	
Center Fre 5,53000000 G		27758444×44/Jv4	1	and the Company of the		and and and	and the second second	ANN	and the West			9 0.0
	NA	- A		-	-					J		0.0 0.0
Start Fre 5.480000000 GH	Mar allow									AVANTA /	and the	0.0 0.0
Stop Fre 5.58000000 GH												0.0 0.0
CF Ste	00.0 MHz 1001 pts)	Span 1 1.00 ms (Sweep *			3.0 MHz	#VBV		0 GHz AHz	.5300 1.0 N		
<u>Auto</u> Ma	IN VALUE	FUNCTIO	INCTION WIDTH	NCTION		Y 0.81 dE	9 CH7	× 5.549		RC SCL 2 f	MODE	KR I
Freq Offs					3m	-8.92 dE		5.554		1	Ň	2345
U												5 6 7 8
												9 0 1
			STATUS				-			-	_	2 G

6. Radiated Emission

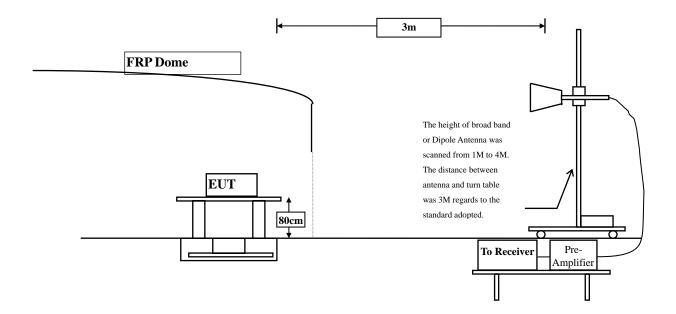
6.1. Test Equipment

The following test equipments are used during the radiated emission test:

Test Site		Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Site # 3	Х	Magnetic Loop Antenna	Teseq	HLA6121/ 37133	Sep, 2014
	Х	Bilog Antenna	Schaffner Chase	CBL6112B/ 2707	Jun, 2014
	Х	EMI Test Receiver	R&S	ESCS 30/838251/ 001	Jun, 2014
	Х	Coaxial Cable	QTK(Arnist)	RG 214/ LC003-RG	Jun, 2014
	Х	Coaxial signal switch	Arnist	MP59B/ 6200798682	Jun, 2014


Test Site		Equipment	Manufacturer	Model No./Serial No.	Last Cal.
CB # 8	Х	Spectrum Analyzer	R&S	FSP40/ 100339	Oct., 2014
	Х	Horn Antenna	ETS-Lindgren	3117/ 35205	Mar., 2014
	Х	Horn Antenna	Schwarzbeck	BBHA9170/209	Jan., 2015
	Х	Horn Antenna	TRC	AH-0801/95051	Aug., 2014
	Х	Pre-Amplifier	EMCI	EMC012630SE/980210	Jan., 2015
	Х	Pre-Amplifier	MITEQ	JS41-001040000-58-5P/153945	Jul, 2014
	Х	Pre-Amplifier	NARDA	DBL-1840N506/013	Jul, 2014

Note: 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.


2. The test instruments marked with "X" are used to measure the final test results.

6.2. Test Setup

Radiated Emission Below 1GHz

Radiated Emission Above 1GHz

6.3. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

FCC Part 15 S	Subpart C Paragraph 15	5.209(a) Limits
Frequency MHz	Field strength	Measurement distance
	(microvolts/meter)	(meter)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remarks: E field strength (dB μ V/m) = 20 log E field strength (uV/m)

6.4. Test Procedure

The EUT was setup according to ANSI C63.10: 2009 and tested according to FCC KDB-789033 test procedure for compliance to FCC 47CFR 15. 407 requirements.

The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10: 2009 on radiated measurement.

The resolution bandwidth below 30MHz setting on the field strength meter is 9kHz and 30MHz~1GHz is 120kHz and above 1GHz is 1MHz.

Radiated emission measurements below 30MHz are made using Loop Antenna and 30MHz~1GHz are made using broadband Bilog antenna and above 1GHz are made using Horn Antennas. The measurement is divided into the Preliminary Measurement and the Final Measurement. The suspected frequencies are searched for in Preliminary Measurement with the measurement antenna kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. The antenna is pointed at an angle towards the source of the emission, and the EUT is rotated in both height and polarization to maximize the measured emission. The emission is kept within the illumination area of the 3 dB bandwidth of the antenna. The worst radiated emission is measured in the Open Area Test Site on the Final Measurement.

6.5. Uncertainty

- ± 3.8 dB below 1GHz
- ± 3.9 dB above 1GHz

Product Test Item	 Wireless Access Point Harmonic Radiated Emission Data 						
Test Site	: No.3 OATS						
Test Mode			a-6Mbps) (5180MHz	z) (Internal Anten	na)		
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	dBµV/m	dB	dBµV/m		
Horizontal							
Peak Detector:							
10360.000	12.930	38.100	51.030	-22.970	74.000		
15540.000	*	*	*	*	74.000		
20720.000	*	*	*	*	74.000		
25900.000	*	*	*	*	74.000		
31080.000	*	*	*	*	74.000		
36260.000	*	*	*	*	74.000		
Average Detector:							
*	*	*	*	*	*		
Vertical							
Peak Detector:							
10360.000	13.724	37.700	51.424	-22.576	74.000		
15540.000	*	*	*	*	74.000		
20720.000	*	*	*	*	74.000		
25900.000	*	*	*	*	74.000		
31080.000	*	*	*	*	74.000		
36260.000	*	*	*	*	74.000		
Average							
Detector:							
*	*	*	*	*	*		

6.6. Test Result of Radiated Emission

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Wireless Access Point
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps) (5220MHz) (Internal Antenna)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
Peak Detector:					
10440.000	13.322	38.560	51.882	-22.118	74.000
15660.000	*	*	*	*	74.000
20880.000	*	*	*	*	74.000
26100.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*
Vertical					
Peak Detector:					
10440.000	14.245	37.880	52.125	-21.875	74.000
15660.000	*	*	*	*	74.000
20880.000	*	*	*	*	74.000
26100.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Wireless Access Point
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps) (5240MHz) (Internal Antenna)

Frequency	Correct Factor	Reading	Measurement	Margin	Limit
MII-		Level	Level	٦Ŀ	JD W/m
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
Peak Detector:					
10480.000	13.693	37.890	51.584	-22.416	74.000
15720.000	*	*	*	*	74.000
20960.000	*	*	*	*	74.000
26200.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*
Vertical					
Peak Detector:					
10480.000	14.620	37.980	52.601	-21.399	74.000
15720.000	*	*	*	*	74.000
20960.000	*	*	*	*	74.000
26200.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Wireless Access Point
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps) (5260MHz) (Internal Antenna)

Frequency	Correct Factor	Reading Level	Measurement Level	Margin	Limit
MHz	dB	dBμV	dBµV/m	dB	dBµV/m
Horizontal		٠	•		•
Peak Detector:					
10520.000	12.930	37.590	50.520	-23.480	74.000
15780.000	*	*	*	*	74.000
21040.000	*	*	*	*	74.000
26300.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*
Vertical					
Peak Detector:					
105210.000	13.724	37.980	51.704	-22.296	74.000
15780.000	*	*	*	*	74.000
21040.000	*	*	*	*	74.000
26300.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Wireless Access Point
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps) (5300MHz) (Internal Antenna)

Frequency	Correct Factor	Reading Level	Measurement Level	Margin	Limit
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
Peak Detector:					
10600.000	14.550	37.590	52.139	-21.861	74.000
15900.000	*	*	*	*	74.000
21200.000	*	*	*	*	74.000
26500.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*
Vertical					
Peak Detector:					
10600.000	14.881	38.150	53.031	-20.969	74.000
15900.000	*	*	*	*	74.000
21200.000	*	*	*	*	74.000
26500.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Wireless Access Point
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps) (5320MHz) (Internal Antenna)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
Peak Detector:					
10640.000	14.690	37.890	52.580	-21.420	74.000
15960.000	*	*	*	*	74.000
21280.000	*	*	*	*	74.000
26600.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*
Vertical					
Peak Detector:					
10640.000	15.083	37.560	52.643	-21.357	74.000
15960.000	*	*	*	*	74.000
21280.000	*	*	*	*	74.000
26600.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Wireless Access Point
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps) (5500MHz) (Internal Antenna)

Frequency	Correct Factor	Reading	Measurement	Margin	Limit
		Level	Level		
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
Peak Detector:					
11000.000	16.399	37.390	53.789	-20.211	74.000
16500.000	*	*	*	*	74.000
22000.000	*	*	*	*	74.000
27500.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*
Vertical					
Peak Detector:					
11000.000	17.132	36.810	53.942	-20.058	74.000
16500.000	*	*	*	*	74.000
22000.000	*	*	*	*	74.000
27500.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Wireless Access Point
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps) (5580MHz) (Internal Antenna)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
Peak Detector:					
11160.000	16.664	37.180	53.845	-20.155	74.000
16800.000	*	*	*	*	74.000
22400.000	*	*	*	*	74.000
28000.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*
Vertical					
Peak Detector:					
11160.000	17.643	36.350	53.993	-20.007	74.000
16800.000	*	*	*	*	74.000
22400.000	*	*	*	*	74.000
28000.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Wireless Access Point
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps) (5700MHz) (Internal Antenna)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
Peak Detector:					
11400.000	16.530	37.410	53.941	-20.059	74.000
17100.000	*	*	*	*	74.000
22800.000	*	*	*	*	74.000
28500.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*
Vertical					
Peak Detector:					
11400.000	17.138	36.710	53.848	-20.152	74.000
17100.000	*	*	*	*	74.000
22800.000	*	*	*	*	74.000
28500.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Wireless Access Point
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5180MHz) (Internal Antenna)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
Peak Detector:					
10360.000	12.930	36.150	49.080	-24.920	74.000
15540.000	*	*	*	*	74.000
20720.000	*	*	*	*	74.000
25900.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*
Vertical					
Peak Detector:					
10360.000	13.724	37.040	50.764	-23.236	74.000
15540.000	*	*	*	*	74.000
20720.000	*	*	*	*	74.000
25900.000	*	*	*	*	74.000
Average					

Note:

Detector:

1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.

*

*

*

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.

*

4. Measurement Level = Reading Level + Correct Factor.

*

- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Wireless Access Point
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5220MHz) (Internal Antenna)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
Peak Detector:					
10440.000	13.322	37.150	50.472	-23.528	74.000
15660.000	*	*	*	*	74.000
20880.000	*	*	*	*	74.000
26100.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*
Vertical					
Peak Detector:					
10440.000	14.245	37.140	51.385	-22.615	74.000
15660.000	*	*	*	*	74.000

*	*	*	*	*	*
Detector:					
Average					
26100.000	*	*	*	*	74.000
20880.000	*	*	*	*	74.000
15660.000	*	*	*	*	74.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Wireless Access Point
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5240MHz) (Internal Antenna)

Frequency	Correct Factor	Reading Level	Measurement Level	Margin	Limit
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
Peak Detector:					
10480.000	13.693	36.480	50.174	-23.826	74.000
15720.000	*	*	*	*	74.000
20960.000	*	*	*	*	74.000
26200.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*
Vertical					
Peak Detector:					
10480.000	14.620	37.150	51.771	-22.229	74.000
15720.000	*	*	*	*	74.000
20960.000	*	*	*	*	74.000
26200.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Wireless Access Point
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5260MHz) (Internal Antenna)

Frequency	Correct Factor	Reading Level	Measurement Level	Margin	Limit
MHz	dB	dBμV	dBµV/m	dB	dBµV/m
	ub	dDμ ۷	ασμν/π	цВ	dbμv/m
Horizontal					
Peak Detector:					
10520.000	14.015	37.260	51.275	-22.725	74.000
15780.000	*	*	*	*	74.000
21040.000	*	*	*	*	74.000
26300.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*
Vertical					
Peak Detector:					
10520.000	14.818	37.290	52.108	-21.892	74.000
15780.000	*	*	*	*	74.000
21040.000	*	*	*	*	74.000
26300.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Wireless Access Point
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5300MHz) (Internal Antenna)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
Peak Detector:					
10600.000	14.550	37.260	51.809	-22.191	74.000
15900.000	*	*	*	*	74.000
21200.000	*	*	*	*	74.000
26500.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*
Vertical					

Peak Detector:

i cun Detectori					
10600.000	14.881	38.140	53.021	-20.979	74.000
15900.000	*	*	*	*	74.000
21200.000	*	*	*	*	74.000
26500.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Wireless Access Point
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5320MHz) (Internal Antenna)

Frequency	Correct Factor	Reading Level	Measurement Level	Margin	Limit
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
	đĐ	dDμ ۷	αθμν/ΙΙΙ	đĐ	ασμν/π
Horizontal					
Peak Detector:					
10640.000	14.690	37.150	51.840	-22.160	74.000
15960.000	*	*	*	*	74.000
21280.000	*	*	*	*	74.000
26600.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*
Vertical					
Peak Detector:					
10640.000	15.083	37.140	52.223	-21.777	74.000
15960.000	*	*	*	*	74.000
21280.000	*	*	*	*	74.000
26600.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Wireless Access Point
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5500MHz) (Internal Antenna)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
Peak Detector:					
11000.000	16.399	36.150	52.549	-21.451	74.000
16500.000	*	*	*	*	74.000
22000.000	*	*	*	*	74.000
27500.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*
Vertical					
Peak Detector:					
11000.000	17.132	36.760	53.892	-20.108	74.000
16500.000	*	*	*	*	74.000
22000.000	*	*	*	*	74.000
27500.000	*	*	*	*	74.000
Average					
Detector:					

Note:

*

1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.

*

*

*

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.

*

4. Measurement Level = Reading Level + Correct Factor.

*

- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Wireless Access Point
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5580MHz) (Internal Antenna)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
Peak Detector:					
11160.000	16.664	36.890	53.555	-20.445	74.000
16800.000	*	*	*	*	74.000
22400.000	*	*	*	*	74.000
28000.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*
Vertical					
Peak Detector:					
11160.000	17.643	36.210	53.853	-20.147	74.000
16800.000	*	*	*	*	74.000
22400.000	*	*	*	*	74.000
28000.000	*	*	*	*	74.000
Average					
Detector:					

Note:

*

1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.

*

*

*

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.

*

4. Measurement Level = Reading Level + Correct Factor.

*

- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Wireless Access Point
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5700MHz) (Internal Antenna)

Frequency	Correct Factor	Reading Level	Measurement Level	Margin	Limit
MHz	dB			dB	$d\mathbf{D} \cup \mathbf{V}/m$
	üБ	dBµV	dBµV/m	üБ	dBµV/m
Horizontal					
Peak Detector:					
11400.000	16.530	36.020	52.551	-21.449	74.000
17100.000	*	*	*	*	74.000
22800.000	*	*	*	*	74.000
28500.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*
Vertical					
Peak Detector:					
11400.000	17.138	36.060	53.198	-20.802	74.000
17100.000	*	*	*	*	74.000
22800.000	*	*	*	*	74.000
28500.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Wireless Access Point
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n-40BW 30Mbps) (5190MHz) (Internal Antenna)

Frequency	Correct Factor	Reading Level	Measurement Level	Margin	Limit
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal			· · · ·		
Peak Detector:					
10380.000	12.939	37.290	50.229	-23.771	74.000
15570.000	*	*	*	*	74.000
20760.000	*	*	*	*	74.000
25950.000	*	*	*	*	74.000
Average Detector:					
*	*	*	*	*	*
Vertical					
Peak Detector:					
10380.000	13.796	37.530	51.326	-22.674	74.000
15570.000	*	*	*	*	74.000
20760.000	*	*	*	*	74.000
25950.000 Average Detector:	*	*	*	*	74.000

Note:

*

1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.

*

*

*

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.

*

4. Measurement Level = Reading Level + Correct Factor.

*

- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Wireless Access Point
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n-40BW 30Mbps) (5230MHz) (Internal Antenna)

Frequency	Correct Factor	Reading Level	Measurement Level	Margin	Limit
MHz	dB	dBμV	dBµV/m	dB	dBµV/m
Horizontal		•	•		•
Peak Detector:					
10460.000	13.508	37.150	50.658	-23.342	74.000
15690.000	*	*	*	*	74.000
20920.000	*	*	*	*	74.000
26150.000	*	*	*	*	74.000
Average Detector:					
*	*	*	*	*	*
Vertical					
Peak Detector:					
10460.000	14.433	37.140	51.573	-22.427	74.000
15690.000	*	*	*	*	74.000
20920.000	*	*	*	*	74.000
26150.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

-

Product	: Wireless	s Access Point					
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS						
Test Mode	: Mode 1: Transmit (802.11a-6Mbps) (5180MHz) (External Antenna)						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m		
Horizontal							
Peak Detector:							
10360.000	12.930	39.030	51.960	-22.040	74.000		
15540.000	*	*	*	*	74.000		
20720.000	*	*	*	*	74.000		
25900.000	*	*	*	*	74.000		
31080.000	*	*	*	*	74.000		
36260.000	*	*	*	*	74.000		
Average Detector:							
*	*	*	*	*	*		
Vertical							
Peak Detector:							
10360.000	13.724	38.460	52.184	-21.816	74.000		
15540.000	*	*	*	*	74.000		
20720.000	*	*	*	*	74.000		
25900.000	*	*	*	*	74.000		
31080.000	*	*	*	*	74.000		
36260.000	*	*	*	*	74.000		
Average Detector:							
*	*	*	*	*	*		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Wireless Access Point
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps) (5220MHz) (External Antenna)

Frequency	Correct Factor	Reading Level	Measurement Level	Margin	Limit
MHz	dB	dBμV	dBµV/m	dB	dBµV/m
Horizontal		·			
Peak Detector:					
10440.000	13.322	39.620	52.942	-21.058	74.000
15660.000	*	*	*	*	74.000
20880.000	*	*	*	*	74.000
26100.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*
Vertical					
Peak Detector:					
10440.000	14.245	38.640	52.885	-21.115	74.000
15660.000	*	*	*	*	74.000
20880.000	*	*	*	*	74.000
26100.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Wireless Access Point
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps) (5240MHz) (External Antenna)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
Peak Detector:					
10480.000	13.693	39.330	53.024	-20.976	74.000
15720.000	*	*	*	*	74.000
20960.000	*	*	*	*	74.000
26200.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*
Vertical					
Peak Detector:					
10480.000	14.620	43.590	58.211	-15.789	74.000
15720.000	*	*	*	*	74.000
20960.000	*	*	*	*	74.000
26200.000	*	*	*	*	74.000
Average					
Detector:					
10480.000	14.620	28.880	43.501	-10.499	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Wireless Access Point
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps) (5260MHz) (External Antenna)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
Peak Detector:					
10520.000	14.015	38.270	52.285	-21.715	74.000
15780.000	*	*	*	*	74.000
21040.000	*	*	*	*	74.000
26300.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*
Vertical					
Peak Detector:					
10520.000	14.818	37.250	52.068	-21.932	74.000
15780.000	*	*	*	*	74.000
21040.000	*	*	*	*	74.000
26300.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Wireless Access Point
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps) (5300MHz) (External Antenna)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
Peak Detector:					
10600.000	14.550	36.890	51.439	-22.561	74.000
15900.000	*	*	*	*	74.000
21200.000	*	*	*	*	74.000
26500.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*
Vertical					
Peak Detector:					
10600.000	14.881	36.810	51.691	-22.309	74.000
15900.000	*	*	*	*	74.000
21200.000	*	*	*	*	74.000
26500.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Wireless Access Point
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps) (5320MHz) (External Antenna)

Frequency	Correct Factor	Reading Level	Measurement Level	Margin	Limit
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal		·	·		
Peak Detector:					
10640.000	14.690	37.560	52.250	-21.750	74.000
15960.000	*	*	*	*	74.000
21280.000	*	*	*	*	74.000
26600.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*
Vertical					
Peak Detector:					
10640.000	15.083	36.890	51.973	-22.027	74.000
15960.000	*	*	*	*	74.000
21280.000	*	*	*	*	74.000
26600.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Wireless Access Point
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps) (5500MHz) (External Antenna)

Frequency	Correct Factor	Reading Level	Measurement Level	Margin	Limit
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
Peak Detector:					
11000.000	16.399	36.300	52.699	-21.301	74.000
16500.000	*	*	*	*	74.000
22000.000	*	*	*	*	74.000
27500.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*
Vertical					
Peak Detector:					
11000.000	17.132	36.290	53.422	-20.578	74.000
16500.000	*	*	*	*	74.000
22000.000	*	*	*	*	74.000
27500.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Wireless Access Point
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps) (5580MHz) (External Antenna)

Frequency	Correct Factor	Reading Level	Measurement Level	Margin	Limit
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
Peak Detector:					
11160.000	16.664	35.910	52.575	-21.425	74.000
16800.000	*	*	*	*	74.000
22400.000	*	*	*	*	74.000
28000.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*
Vertical					
Peak Detector:					
11160.000	17.643	36.230	53.873	-20.127	74.000
16800.000	*	*	*	*	74.000
22400.000	*	*	*	*	74.000
28000.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Wireless Access Point
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps) (5700MHz) (External Antenna)

Frequency	Correct Factor	Reading Level	Measurement Level	Margin	Limit
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
	uD	αDμ γ	αυμ // Π	uD	
Horizontal					
Peak Detector:					
11400.000	16.530	35.780	52.311	-21.689	74.000
17100.000	*	*	*	*	74.000
22800.000	*	*	*	*	74.000
28500.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*
Vertical					
Peak Detector:					
11400.000	17.138	36.040	53.178	-20.822	74.000
17100.000	*	*	*	*	74.000
22800.000	*	*	*	*	74.000
28500.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Wireless Access Point
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5180MHz) (External Antenna)

Frequency	Correct Factor	Reading Level	Measurement Level	Margin	Limit
MIL				٩D	$d\mathbf{D}_{\rm W} \mathbf{V}/m$
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
Peak Detector:					
10360.000	12.930	37.660	50.590	-23.410	74.000
15540.000	*	*	*	*	74.000
20720.000	*	*	*	*	74.000
25900.000	*	*	*	*	74.000
Average Detector:					
*	*	*	*	*	*
Vertical					
Peak Detector:					
10360.000	13.724	37.470	51.194	-22.806	74.000
15540.000	*	*	*	*	74.000
20720.000	*	*	*	*	74.000
25900.000	*	*	*	*	74.000
Average					
Detector:					

Note:

*

1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.

*

*

*

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.

*

4. Measurement Level = Reading Level + Correct Factor.

*

- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Wireless Access Point
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5220MHz) (External Antenna)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
Peak Detector:					
10440.000	13.322	37.760	51.082	-22.918	74.000
15660.000	*	*	*	*	74.000
20880.000	*	*	*	*	74.000
26100.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*
Vertical					
Peak Detector:					
10440.000	14.245	36.980	51.225	-22.775	74.000
15660.000	*	*	*	*	74.000

*	*	*	*	*	*
Detector:					
Average					
26100.000	*	*	*	*	74.000
20880.000	*	*	*	*	74.000
15660.000	*	*	*	*	/4.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Wireless Access Point
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5240MHz) (External Antenna)

Frequency	Correct Factor	Reading Level	Measurement Level	Margin	Limit
				JD	
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
Peak Detector:					
10480.000	13.693	37.210	50.904	-23.096	74.000
15720.000	*	*	*	*	74.000
20960.000	*	*	*	*	74.000
26200.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*
Vertical					
Peak Detector:					
10480.000	14.620	36.940	51.561	-22.439	74.000
15720.000	*	*	*	*	74.000
20960.000	*	*	*	*	74.000
26200.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Wireless Access Point
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5260MHz) (External Antenna)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
Peak Detector:					
10520.000	14.015	36.700	50.715	-23.285	74.000
15780.000	*	*	*	*	74.000
21040.000	*	*	*	*	74.000
26300.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*
Vertical					
Peak Detector:					
10520.000	14.818	36.890	51.708	-22.292	74.000
15780.000	*	*	*	*	74.000
21040.000	*	*	*	*	74.000
26300.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Wireless Access Point
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5300MHz) (External Antenna)

Frequency	Correct Factor	Reading Level	Measurement Level	Margin	Limit
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
Peak Detector:					
10600.000	14.550	37.020	51.569	-22.431	74.000
15900.000	*	*	*	*	74.000
21200.000	*	*	*	*	74.000
26500.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*
Vertical					
Peak Detector:					

10600.000	14.881	36.580	51.461	-22.539	74.000
15900.000	*	*	*	*	74.000
21200.000	*	*	*	*	74.000
26500.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Wireless Access Point
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5320MHz) (External Antenna)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
Peak Detector:					
10640.000	14.690	37.050	51.740	-22.260	74.000
15960.000	*	*	*	*	74.000
21280.000	*	*	*	*	74.000
26600.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*
Vertical					
Peak Detector:					
10640.000	15.083	36.540	51.623	-22.377	74.000
15960.000	*	*	*	*	74.000
21280.000	*	*	*	*	74.000
26600.000	*	*	*	*	74.000
Average					
Detector:					

Note:

*

1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.

*

*

*

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.

*

4. Measurement Level = Reading Level + Correct Factor.

*

- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Wireless Access Point
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5500MHz) (External Antenna)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
Peak Detector:					
11000.000	16.399	36.050	52.449	-21.551	74.000
16500.000	*	*	*	*	74.000
22000.000	*	*	*	*	74.000
27500.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*
Vertical					
Peak Detector:					
11000.000	17.132	36.550	53.682	-20.318	74.000
16500.000	*	*	*	*	74.000
22000.000	*	*	*	*	74.000
27500.000	*	*	*	*	74.000
Average					
Detector:					

Note:

*

1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.

*

*

*

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.

*

4. Measurement Level = Reading Level + Correct Factor.

*

- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Wireless Access Point
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5580MHz) (External Antenna)

Frequency	Correct Factor	Reading Level	Measurement Level	Margin	Limit
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal		·	· · ·		
Peak Detector:					
11160.000	16.664	35.170	51.835	-22.165	74.000
16800.000	*	*	*	*	74.000
22400.000	*	*	*	*	74.000
28000.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*
Vertical					
Peak Detector:					
11160.000	17.643	35.230	52.873	-21.127	74.000
16800.000	*	*	*	*	74.000
22400.000	*	*	*	*	74.000
28000.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Wireless Access Point
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5700MHz) (External Antenna)

Frequency	Correct Factor	Reading Level	Measurement Level	Margin	Limit
MIL				٩D	$d\mathbf{D} \cup \mathbf{V}/m$
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
Peak Detector:					
11400.000	16.530	35.670	52.201	-21.799	74.000
17100.000	*	*	*	*	74.000
22800.000	*	*	*	*	74.000
28500.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*
Vertical					
Peak Detector:					
11400.000	17.138	35.480	52.618	-21.382	74.000
17100.000	*	*	*	*	74.000
22800.000	*	*	*	*	74.000
28500.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Wireless Access Point
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n-40BW 30Mbps) (5190MHz) (External Antenna)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	$dB\mu V/m$
Horizontal					
Peak Detector:					
10380.000	12.939	36.910	49.849	-24.151	74.000
15570.000	*	*	*	*	74.000
20760.000	*	*	*	*	74.000
25950.000	*	*	*	*	74.000
Average Detector:					
*	*	*	*	*	*
Vertical					
Peak Detector:					
10380.000	13 796	36 590	50 386	-23 614	74 000

10380.000	13.796	36.590	50.386	-23.614	74.000
15570.000	*	*	*	*	74.000
20760.000	*	*	*	*	74.000
25950.000	*	*	*	*	74.000
Average Detector:					
*	*	*	*	*	*

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Wireless Access Point
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n-40BW 30Mbps) (5230MHz) (External Antenna)

Frequency	Correct Factor	Reading Level	Measurement Level	Margin	Limit
NUT				ID	
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
Peak Detector:					
10460.000	13.508	36.790	50.298	-23.702	74.000
15690.000	*	*	*	*	74.000
20920.000	*	*	*	*	74.000
26150.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*
Vertical					
Peak Detector:					
10460.000	14.433	36.710	51.143	-22.857	74.000
15690.000	*	*	*	*	74.000
20920.000	*	*	*	*	74.000
26150.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Wireless Access Point
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n-40BW 30Mbps) (5270MHz) (External Antenna)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
Peak Detector:					
10540.000	14.151	36.720	50.870	-23.130	74.000
15810.000	*	*	*	*	74.000
21080.000	*	*	*	*	74.000
26350.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*
Vertical					
Peak Detector:					
10540.000	14.829	36.680	51.508	-22.492	74.000
15810.000	*	*	*	*	74.000

*	*	*	*	*	*
Detector:					
Average					
26350.000	*	*	*	*	74.000
21080.000	*	*	*	*	74.000
13810.000		·		·	74.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

74.000

*

QuieTek

Product	:	Wireless Access Point
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n-40BW 30Mbps) (5310MHz) (External Antenna)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
Peak Detector:					
10620.000	14.623	36.320	50.943	-23.057	74.000
15930.000	*	*	*	*	74.000
21240.000	*	*	*	*	74.000
26550.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*
Vertical					
Peak Detector:					
10620.000	14.970	36.010	50.980	-23.020	74.000
15930.000	*	*	*	*	74.000
21240.000	*	*	*	*	74.000

N	ote	

26550.000 Average Detector:

1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.

*

*

*

*

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.

*

*

4. Measurement Level = Reading Level + Correct Factor.

*

*

- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Wireless Access Point
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n-40BW 30Mbps) (5510MHz) (External Antenna)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
Peak Detector:					
11020.000	16.474	35.800	52.273	-21.727	74.000
15930.000	*	*	*	*	74.000
21240.000	*	*	*	*	74.000
26550.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*

Vertical

Peak Detector:

11020.000	46.058	36.300	53.524	-20.476	74.000
15930.000	*	*	*	*	74.000
21240.000	*	*	*	*	74.000
26550.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*

Note:

1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Wireless Access Point
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n-40BW 30Mbps) (5550MHz) (External Antenna)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
Peak Detector:					
11100.000	16.681	34.720	51.401	-22.599	74.000
16770.000	*	*	*	*	74.000
22360.000	*	*	*	*	74.000
27950.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*
Vertical					
Peak Detector:					
11100.000	17.523	34.930	52.453	-21.547	74.000
16770.000	*	*	*	*	74.000

16770.000	*	*	*	*	74.000
22360.000	*	*	*	*	74.000
27950.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*

Note:

1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Wireless Access Point
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n-40BW 30Mbps) (5670MHz) (External Antenna)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
Peak Detector:					
11340.000	16.408	34.760	51.167	-22.833	74.000
17010.000	*	*	*	*	74.000
22680.000	*	*	*	*	74.000
28350.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*
Vertical					
Peak Detector:					
11340.000	17.167	35.130	52.297	-21.703	74.000
17010.000	*	*	*	*	74.000
22680.000	*	*	*	*	74.000
28350.000	*	*	*	*	74.000
Average					
Detector:					

Note:

*

1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.

*

*

*

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.

*

4. Measurement Level = Reading Level + Correct Factor.

*

- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 Wireless Access Point Harmonic Radiated Emission Data No.3 OATS Mode 4: Transmit (802.11ac-20BW-7.2Mbps) (5720MHz) (External Antenna) 					
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level	-		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m	
Horizontal						
Peak Detector:						
11440.000	16.779	34.500	51.279	-22.721	74.000	
11550.000	*	*	*	*	74.000	
17325.000	*	*	*	*	74.000	
20720.000	*	*	*	*	74.000	
25900.000	*	*	*	*	74.000	
31080.000	*	*	*	*	74.000	
36260.000	*	*	*	*	74.000	
Average						
Detector:						
*	*	*	*	*	*	
Vertical						
Peak Detector:						
11440.000	17.519	34.410	51.929	-22.071	74.000	
11550.000	*	*	*	*	74.000	
17325.000	*	*	*	*	74.000	
20720.000	*	*	*	*	74.000	
25900.000	*	*	*	*	74.000	
31080.000	*	*	*	*	74.000	
36260.000	*	*	*	*	74.000	
Average						
Detector:						
*	*	*	*	*	*	

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 Wireless Access Point Harmonic Radiated Emission Data No.3 OATS Mode 5: Transmit (802.11ac-40BW-15Mbps) (5710MHz) (External Antenna) 					
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level	-		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m	
Horizontal						
Peak Detector:						
11420.000	16.648	35.160	51.807	-22.193	74.000	
11550.000	*	*	*	*	74.000	
17325.000	*	*	*	*	74.000	
20720.000	*	*	*	*	74.000	
25900.000	*	*	*	*	74.000	
31080.000	*	*	*	*	74.000	
36260.000	*	*	*	*	74.000	
Average						
Detector:						
*	*	*	*	*	*	
Vertical						
Peak Detector:						
11420.000	17.311	35.280	52.590	-21.410	74.000	
11550.000	*	*	*	*	74.000	
17325.000	*	*	*	*	74.000	
20720.000	*	*	*	*	74.000	
25900.000	*	*	*	*	74.000	
31080.000	*	*	*	*	74.000	
36260.000	*	*	*	*	74.000	
Average						
Detector:						
*	*	*	*	*	*	

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 Wireless Access Point Harmonic Radiated Emission Data No.3 OATS Mode 6: Transmit (802.11ac-80BW-65Mbps) (5210MHz) (External Antenna) 					
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level	C		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m	
Horizontal						
Peak Detector:						
10420.000	13.135	36.640	49.775	-24.225	74.000	
11550.000	*	*	*	*	74.000	
17325.000	*	*	*	*	74.000	
20720.000	*	*	*	*	74.000	
25900.000	*	*	*	*	74.000	
31080.000	*	*	*	*	74.000	
36260.000	*	*	*	*	74.000	
Average						
Detector:						
*	*	*	*	*	*	
Vertical						
Peak Detector:						
10420.000	14.057	36.900	50.957	-23.043	74.000	
11550.000	*	*	*	*	74.000	
17325.000	*	*	*	*	74.000	
20720.000	*	*	*	*	74.000	
25900.000	*	*	*	*	74.000	
31080.000	*	*	*	*	74.000	
36260.000	*	*	*	*	74.000	
Average						
Detector:						
*	*	*	*	*	*	

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 Wireless Access Point Harmonic Radiated Emission Data No.3 OATS Mode 6: Transmit (802.11ac-80BW-65Mbps) (5290MHz) (External Antenna) 					
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level	C		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m	
Horizontal						
Peak Detector:						
10580.000	14.423	36.090	50.513	-23.487	74.000	
11550.000	*	*	*	*	74.000	
17325.000	*	*	*	*	74.000	
20720.000	*	*	*	*	74.000	
25900.000	*	*	*	*	74.000	
31080.000	*	*	*	*	74.000	
36260.000	*	*	*	*	74.000	
Average						
Detector:						
*	*	*	*	*	*	
Vertical						
Peak Detector:						
10580.000	14.849	36.380	51.229	-22.771	74.000	
11550.000	*	*	*	*	74.000	
17325.000	*	*	*	*	74.000	
20720.000	*	*	*	*	74.000	
25900.000	*	*	*	*	74.000	
31080.000	*	*	*	*	74.000	
36260.000	*	*	*	*	74.000	
Average						
Detector:						
*	*	*	*	*	*	

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 Wireless Access Point Harmonic Radiated Emission Data No.3 OATS Mode 6: Transmit (802.11ac-80BW-65Mbps) (5530MHz) (External Antenna) 					
1051 111000		11un51int (002.11			inar / interina)	
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBuV	dBuV/m	dB	dBuV/m	
Horizontal						
Peak Detector:						
11060.000	16.580	35.480	52.060	-21.940	74.000	
11550.000	*	*	*	*	74.000	
17325.000	*	*	*	*	74.000	
20720.000	*	*	*	*	74.000	
25900.000	*	*	*	*	74.000	
31080.000	*	*	*	*	74.000	
36260.000	*	*	*	*	74.000	
Average						
Detector:						
*	*	*	*	*	*	
Vertical						
Peak Detector:						
11060.000	17.375	35.430	52.805	-21.195	74.000	
11550.000	*	*	*	*	74.000	
17325.000	*	*	*	*	74.000	
20720.000	*	*	*	*	74.000	
25900.000	*	*	*	*	74.000	
31080.000	*	*	*	*	74.000	
36260.000	*	*	*	*	74.000	
Average						
Detector:						
*	*	*	*	*	*	

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 Wireless Access Point Harmonic Radiated Emission Data No.3 OATS Mode 6: Transmit (802.11ac-80BW-65Mbps) (5610MHz) (External Antenna) 						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level	C			
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
11220.000	16.589	35.280	51.870	-22.130	74.000		
11550.000	*	*	*	*	74.000		
17325.000	*	*	*	*	74.000		
20720.000	*	*	*	*	74.000		
25900.000	*	*	*	*	74.000		
31080.000	*	*	*	*	74.000		
36260.000	*	*	*	*	74.000		
Average							
Detector:							
*	*	*	*	*	*		
Vertical							
Peak Detector:							
11220.000	17.620	35.020	52.640	-21.360	74.000		
11550.000	*	*	*	*	74.000		
17325.000	*	*	*	*	74.000		
20720.000	*	*	*	*	74.000		
25900.000	*	*	*	*	74.000		
31080.000	*	*	*	*	74.000		
36260.000	*	*	*	*	74.000		
Average							
Detector:							
*	*	*	*	*	*		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 Wireless Access Point Harmonic Radiated Emission Data No.3 OATS Mode 6: Transmit (802.11ac-80BW-65Mbps) (5690MHz) (External Antenna) 						
lest mode	$\frac{1}{1000} = 0.11 \text{ anshift} (002.11 \text{ ac-00D w-05w10ps}) (50900012) (External Anteni$						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
11380.000	16.480	34.930	51.411	-22.589	74.000		
11550.000	*	*	*	*	74.000		
17325.000	*	*	*	*	74.000		
20720.000	*	*	*	*	74.000		
25900.000	*	*	*	*	74.000		
31080.000	*	*	*	*	74.000		
36260.000	*	*	*	*	74.000		
Average							
Detector:							
*	*	*	*	*	*		
Vertical							
Peak Detector:							
11380.000	17.125	34.810	51.936	-22.064	74.000		
11550.000	*	*	*	*	74.000		
17325.000	*	*	*	*	74.000		
20720.000	*	*	*	*	74.000		
25900.000	*	*	*	*	74.000		
31080.000	*	*	*	*	74.000		
36260.000	*	*	*	*	74.000		
Average							
Detector:							
*	*	*	*	*	*		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 Wireless Access Point General Radiated Emission No.3 OATS Mode 1: Transmit (802.11a-6Mbps) (5220MHz) (Internal Antenna) 						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m		
Horizontal							
Peak Detector							
111.480	-7.489	38.479	30.991	-12.509	43.500		
225.940	-9.647	41.838	32.191	-13.809	46.000		
365.620	0.382	34.910	35.292	-10.708	46.000		
577.080	3.221	26.373	29.594	-16.406	46.000		
800.180	6.417	24.352	30.769	-15.231	46.000		
932.100	7.270	23.566	30.836	-15.164	46.000		
Vertical							
Peak Detector							
111.480	-3.439	36.529	33.091	-10.409	43.500		
225.940	-6.267	30.340	24.073	-21.927	46.000		
365.620	0.282	26.684	26.966	-19.034	46.000		
538.280	1.996	24.274	26.270	-19.730	46.000		
689.600	2.302	23.109	25.411	-20.589	46.000		
842.860	2.378	23.165	25.543	-20.457	46.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	: General : No.3 O		n a-6Mbps) (5300MHz	z) (Internal Anten	na)
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	$dB\mu V/m$
Horizontal					
Peak Detector					
103.720	-8.230	39.354	31.123	-12.377	43.500
225.940	-9.647	40.542	30.895	-15.105	46.000
365.620	0.382	35.933	36.315	-9.685	46.000
633.340	1.530	28.524	30.054	-15.946	46.000
767.200	5.099	25.170	30.270	-15.730	46.000
932.100	7.270	23.581	30.851	-15.149	46.000
Vertical					
Peak Detector					
107.600	-4.027	39.753	35.726	-7.774	43.500
260.860	-4.870	29.444	24.574	-21.426	46.000
460.680	-1.930	23.479	21.549	-24.451	46.000
674.080	0.003	23.737	23.740	-22.260	46.000
838.980	1.961	23.554	25.515	-20.485	46.000
947.620	3.231	23.136	26.367	-19.633	46.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	 Wireless Access Point General Radiated Emission No.3 OATS Mode 1: Transmit (802.11a-6Mbps) (5580MHz) (Internal Antenna) 						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	dBµV/m	dB	dBµV/m		
Horizontal							
Peak Detector							
128.940	-7.390	35.248	27.858	-15.642	43.500		
266.680	-5.510	35.396	29.886	-16.114	46.000		
365.620	0.382	35.317	35.699	-10.301	46.000		
577.080	3.221	25.751	28.972	-17.028	46.000		
767.200	5.099	24.822	29.922	-16.078	46.000		
901.060	5.878	23.852	29.730	-16.270	46.000		
Vertical							
Peak Detector							
107.600	-4.027	37.659	33.632	-9.868	43.500		
229.820	-6.141	31.313	25.172	-20.828	46.000		
390.840	-0.768	25.402	24.634	-21.366	46.000		
606.180	2.246	22.612	24.858	-21.142	46.000		
782.720	2.757	24.759	27.516	-18.484	46.000		
920.460	3.272	22.667	25.939	-20.061	46.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	 Wireless Access Point General Radiated Emission No.3 OATS Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5220MHz) (Internal Antenna) 						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	dBµV/m	dB	dBµV/m		
Horizontal							
Peak Detector							
103.720	-8.230	38.413	30.182	-13.318	43.500		
262.800	-5.484	36.472	30.988	-15.012	46.000		
365.620	0.382	35.060	35.442	-10.558	46.000		
546.040	4.386	23.852	28.238	-17.762	46.000		
701.240	2.759	26.176	28.935	-17.065	46.000		
862.260	6.327	24.488	30.815	-15.185	46.000		
Vertical							
Peak Detector							
107.600	-4.027	37.668	33.641	-9.859	43.500		
225.940	-6.267	29.959	23.692	-22.308	46.000		
388.900	-0.726	24.730	24.004	-21.996	46.000		
612.000	1.943	24.032	25.974	-20.026	46.000		
786.600	2.724	24.166	26.891	-19.109	46.000		
928.220	3.640	23.392	27.032	-18.968	46.000		

Note:

-

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site		s Access Point Radiated Emissio ATS	n		
Test Mode	: Mode 2:	Transmit (802.11	n-20BW 14.4Mbps)	(5300MHz) (Inter	rnal Antenna)
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
Peak Detector					
107.600	-7.597	38.653	31.056	-12.444	43.500
258.920	-5.440	34.701	29.261	-16.739	46.000
365.620	0.382	35.092	35.474	-10.526	46.000
547.980	4.028	24.491	28.519	-17.481	46.000
701.240	2.759	26.994	29.753	-16.247	46.000
903.000	5.938	23.853	29.791	-16.209	46.000
Vertical					
Peak Detector					
107.600	-4.027	38.446	34.419	-9.081	43.500
253.100	-5.039	26.538	21.499	-24.501	46.000
472.320	-3.508	24.800	21.292	-24.708	46.000
687.660	2.292	23.148	25.440	-20.560	46.000
817.640	2.966	23.413	26.379	-19.621	46.000
889.420	1.224	23.232	24.456	-21.544	46.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	: General : No.3 OA		n n-20BW 14.4Mbps)	(5580MHz) (Inte	rnal Antenna)
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
Peak Detector					
117.300	-7.350	33.898	26.548	-16.952	43.500
225.940	-9.647	39.718	30.071	-15.929	46.000
365.620	0.382	35.835	36.217	-9.783	46.000
577.080	3.221	27.521	30.742	-15.258	46.000
800.180	6.417	25.174	31.591	-14.409	46.000
930.160	7.530	22.574	30.104	-15.896	46.000
Vertical					
Peak Detector					
43.580	-10.919	43.395	32.476	-7.524	40.000
192.960	-5.655	33.477	27.822	-15.678	43.500
379.200	0.881	23.710	24.591	-21.409	46.000
598.420	1.114	23.324	24.438	-21.562	46.000
784.660	2.736	24.840	27.576	-18.424	46.000
930.160	3.830	23.126	26.956	-19.044	46.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	 Wireless Access Point General Radiated Emission No.3 OATS Mode 3: Transmit (802.11n-40BW 30Mbps) (5190MHz) (Internal Antenna) 						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	dBµV/m	dB	dBµV/m		
Horizontal							
Peak Detector							
107.600	-7.597	35.415	27.818	-15.682	43.500		
264.740	-5.501	36.047	30.547	-15.453	46.000		
365.620	0.382	35.055	35.437	-10.563	46.000		
522.760	3.176	26.050	29.226	-16.774	46.000		
701.240	2.759	27.265	30.024	-15.976	46.000		
862.260	6.327	24.986	31.313	-14.687	46.000		
Vertical Peak Detector							
43.580	-10.919	43.530	32.611	-7.389	40.000		
192.960	-5.655	33.185	27.530	-15.970	43.500		
379.200	0.881	23.269	24.150	-21.850	46.000		
604.240	2.199	22.259	24.459	-21.541	46.000		
784.660	2.736	25.001	27.737	-18.263	46.000		
908.820	0.730	24.298	25.028	-20.972	46.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	 Wireless Access Point General Radiated Emission No.3 OATS Mode 1: Transmit (802.11a-6Mbps) (5220MHz) (External Antenna) 						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	dBµV/m	dB	dBµV/m		
Horizontal							
Peak Detector							
145.430	-7.730	36.913	29.183	-14.317	43.500		
241.460	-6.590	35.427	28.837	-17.163	46.000		
445.160	-0.432	37.977	37.545	-8.455	46.000		
593.570	3.492	33.119	36.611	-9.389	46.000		
741.980	3.892	33.271	37.163	-8.837	46.000		
890.390	6.515	28.112	34.627	-11.373	46.000		
Vertical							
Peak Detector							
102.750	-5.326	33.693	28.367	-15.133	43.500		
161.920	-4.964	32.259	27.295	-16.205	43.500		
365.620	0.282	25.641	25.923	-20.077	46.000		
593.570	-0.388	31.421	31.033	-14.967	46.000		
741.980	-0.358	33.461	33.103	-12.897	46.000		
920.460	3.272	23.324	26.596	-19.404	46.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	: General : No.3 O		n a-6Mbps) (5300MHz	y) (External Antai	112
Test Mode	. Wode I	. 11alishiit (602.11	a-owiops) (5500winz	(External Anter	111 <i>a)</i>
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	$dB\mu V/m$
Horizontal					
Peak Detector					
34.850	-0.978	30.569	29.591	-10.409	40.000
145.430	-7.730	34.236	26.506	-16.994	43.500
445.160	-0.432	37.915	37.483	-8.517	46.000
593.570	3.492	33.007	36.499	-9.501	46.000
741.980	3.892	30.197	34.089	-11.911	46.000
891.360	6.265	29.632	35.897	-10.103	46.000
Vertical					
Peak Detector					
44.550	-10.527	41.280	30.753	-9.247	40.000
161.920	-4.964	32.207	27.243	-16.257	43.500
216.240	-6.051	37.220	31.169	-14.831	46.000
593.570	-0.388	30.270	29.882	-16.118	46.000
741.980	-0.358	33.627	33.269	-12.731	46.000
890.390	1.095	29.244	30.339	-15.661	46.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	 Wireless Access Point General Radiated Emission No.3 OATS Mode 1: Transmit (802.11a-6Mbps) (5580MHz) (External Antenna) 						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	dBµV/m	dB	dBµV/m		
Horizontal							
Peak Detector							
144.460	-7.703	34.653	26.950	-16.550	43.500		
216.240	-10.271	37.192	26.921	-19.079	46.000		
445.160	-0.432	37.043	36.611	-9.389	46.000		
593.570	3.492	34.326	37.818	-8.182	46.000		
741.980	3.892	32.178	36.070	-9.930	46.000		
891.360	6.265	27.545	33.810	-12.190	46.000		
Vertical							
Peak Detector							
44.550	-10.527	41.990	31.463	-8.537	40.000		
216.240	-6.051	38.143	32.092	-13.908	46.000		
380.170	0.962	24.243	25.205	-20.795	46.000		
614.910	1.701	28.672	30.373	-15.627	46.000		
741.980	-0.358	33.918	33.560	-12.440	46.000		
891.360	0.905	27.729	28.634	-17.366	46.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	 Wireless Access Point General Radiated Emission No.3 OATS Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5220MHz) (External Antenna) 				
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
Peak Detector					
144.460	-7.703	34.773	27.070	-16.430	43.500
288.990	-5.513	33.335	27.822	-18.178	46.000
445.160	-0.432	38.121	37.689	-8.311	46.000
593.570	3.492	31.038	34.530	-11.470	46.000
741.980	3.892	33.612	37.504	-8.496	46.000
891.360	6.265	28.819	35.084	-10.916	46.000
Vertical Peak Detector					
44.550	-10.527	42.290	31.763	-8.237	40.000
108.570	-3.762	32.460	28.698	-14.802	43.500
216.240	-6.051	37.947	31.896	-14.104	46.000
614.910	1.701	28.722	30.423	-15.577	46.000
741.980	-0.358	34.128	33.770	-12.230	46.000
891.360	0.905	30.080	30.985	-15.015	46.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	: General : No.3 OA		n n-20BW 14.4Mbps)	(5300MHz) (Exte	ernal Antenna)
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
Peak Detector					
42.610	-7.561	42.379	34.818	-5.182	40.000
216.240	-10.271	37.947	27.676	-18.324	46.000
445.160	-0.432	36.090	35.658	-10.342	46.000
593.570	3.492	27.862	31.354	-14.646	46.000
741.980	3.892	34.544	38.436	-7.564	46.000
891.360	6.265	30.080	36.345	-9.655	46.000
Vertical					
Peak Detector					
62.980	-11.979	39.763	27.784	-12.216	40.000
216.240	-6.051	37.947	31.896	-14.104	46.000
445.160	-6.402	36.941	30.539	-15.461	46.000
593.570	-0.388	32.413	32.025	-13.975	46.000
692.510	1.917	28.843	30.760	-15.240	46.000
891.360	0.905	30.080	30.985	-15.015	46.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	 Wireless Access Point General Radiated Emission No.3 OATS Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5580MHz) (External Antenna) 						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	dBµV/m	dB	dBµV/m		
Horizontal							
Peak Detector							
144.460	-7.703	37.123	29.420	-14.080	43.500		
241.460	-6.590	35.733	29.143	-16.857	46.000		
445.160	-0.432	34.418	33.986	-12.014	46.000		
593.570	3.492	31.808	35.300	-10.700	46.000		
741.980	3.892	34.541	38.433	-7.567	46.000		
890.390	6.515	29.238	35.753	-10.247	46.000		
Vertical							
Peak Detector							
44.550	-10.527	40.833	30.306	-9.694	40.000		
216.240	-6.051	35.646	29.595	-16.405	46.000		
504.330	-0.055	28.707	28.652	-17.348	46.000		
614.910	1.701	28.200	29.901	-16.099	46.000		
- 11 000							

741.980

890.390

1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.

31.063

30.077

-14.937

-15.923

46.000

46.000

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.

31.421

28.982

4. Measurement Level = Reading Level + Correct Factor.

-0.358

1.095

- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	 Wireless Access Point General Radiated Emission No.3 OATS Mode 3: Transmit (802.11n-40BW 30Mbps) (5190MHz) (External Antenna) 						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	dBµV/m	dB	dBµV/m		
Horizontal							
Peak Detector							
144.460	-7.703	39.028	31.325	-12.175	43.500		
241.460	-6.590	37.311	30.721	-15.279	46.000		
445.160	-0.432	37.453	37.021	-8.979	46.000		
593.570	3.492	33.950	37.442	-8.558	46.000		
741.980	3.892	33.667	37.559	-8.441	46.000		
890.390	6.515	27.826	34.341	-11.659	46.000		
Vertical							
Peak Detector							
40.670	-12.130	45.984	33.854	-6.146	40.000		
103.720	-5.090	30.585	25.494	-18.006	43.500		
216.240	-6.051	31.295	25.244	-20.756	46.000		
405.390	-4.436	33.185	28.749	-17.251	46.000		
614.910	1.701	29.565	31.266	-14.734	46.000		
741.980	-0.358	38.351	37.993	-8.007	46.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site	 Wireless Access Point General Radiated Emission No.3 OATS 					
Test Mode			n-40BW 30Mbps) (5	270MHz) (Exterr	nal Antenna)	
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBµV	dBµV/m	dB	dBµV/m	
Horizontal						
Peak Detector						
42.610	-7.561	40.194	32.633	-7.367	40.000	
216.240	-10.271	34.759	24.488	-21.512	46.000	
364.650	0.281	26.384	26.665	-19.335	46.000	
593.570	3.492	27.744	31.236	-14.764	46.000	
741.980	3.892	25.608	29.500	-16.500	46.000	
890.390	6.515	23.843	30.358	-15.642	46.000	
Vertical						
Peak Detector						
43.580	-10.919	41.530	30.611	-9.389	40.000	
216.240	-6.051	36.008	29.957	-16.043	46.000	
370.470	-0.431	24.151	23.720	-22.280	46.000	
614.910	1.701	27.371	29.072	-16.928	46.000	
837.040	1.606	26.560	28.166	-17.834	46.000	
950.530	3.124	24.089	27.212	-18.788	46.000	

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site		s Access Point Radiated Emissio ATS	n		
Test Mode			n-40BW 30Mbps) (5	550MHz) (Extern	nal Antenna)
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
Peak Detector					
41.640	-6.175	40.862	34.688	-5.312	40.000
216.240	-10.271	36.130	25.859	-20.141	46.000
405.390	0.794	26.800	27.594	-18.406	46.000
576.110	3.127	25.293	28.420	-17.580	46.000
741.980	3.892	33.280	37.172	-8.828	46.000
891.360	6.265	28.383	34.648	-11.352	46.000
Vertical					
Peak Detector					
84.320	-4.204	31.874	27.670	-12.330	40.000
216.240	-6.051	37.206	31.155	-14.845	46.000
511.120	0.783	26.979	27.762	-18.238	46.000
741.980	-0.358	31.313	30.955	-15.045	46.000
890.390	1.095	26.644	27.739	-18.261	46.000
940.830	3.480	27.003	30.483	-15.517	46.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	: General : No.3 OA		n ac-20BW-7.2Mbps) ((5720MHz) (Exte	ernal Antenna)
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
Peak Detector					
103.720	-8.230	33.748	25.517	-17.983	43.500
241.460	-6.590	35.990	29.400	-16.600	46.000
445.160	-0.432	37.184	36.752	-9.248	46.000
593.570	3.492	34.900	38.392	-7.608	46.000
741.980	3.892	31.077	34.969	-11.031	46.000
890.390	6.515	30.232	36.747	-9.253	46.000
Vertical					
Peak Detector					
84.320	-4.204	32.854	28.650	-11.350	40.000
216.240	-6.051	37.313	31.262	-14.738	46.000
378.230	0.769	24.459	25.228	-20.772	46.000
593.570	-0.388	30.578	30.190	-15.810	46.000
741.980	-0.358	32.363	32.005	-13.995	46.000
940.830	3.480	26.738	30.218	-15.782	46.000
Noto					

Note:

1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	: General : No.3 O		n ac-40BW-15Mbps) (5710MHz) (Exte	rnal Antenna)
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
Peak Detector					
103.720	-8.230	33.292	25.061	-18.439	43.500
241.460	-6.590	36.001	29.411	-16.589	46.000
445.160	-0.432	38.900	38.468	-7.532	46.000
593.570	3.492	35.533	39.025	-6.975	46.000
741.980	3.892	34.004	37.896	-8.104	46.000
935.010	6.813	25.099	31.912	-14.088	46.000
Vertical					
Peak Detector					
102.750	-5.326	32.941	27.615	-15.885	43.500
216.240	-6.051	37.548	31.497	-14.503	46.000
374.350	0.224	26.101	26.325	-19.675	46.000
593.570	-0.388	29.926	29.538	-16.462	46.000
787.570	2.719	24.742	27.461	-18.539	46.000
890.390	1.095	29.445	30.540	-15.460	46.000

1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	: General : No.3 OA		n ac-80BW-65Mbps) (5210MHz) (Exte	rnal Antenna)
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
Peak Detector					
145.430	-7.730	35.217	27.487	-16.013	43.500
288.990	-5.513	34.018	28.505	-17.495	46.000
445.160	-0.432	35.396	34.964	-11.036	46.000
593.570	3.492	36.997	40.489	-5.511	46.000
741.980	3.892	33.645	37.537	-8.463	46.000
890.390	6.515	28.174	34.689	-11.311	46.000
Vertical					
Peak Detector					
84.320	-4.204	34.902	30.698	-9.302	40.000
126.030	-3.719	31.069	27.351	-16.149	43.500
296.750	-4.521	32.887	28.366	-17.634	46.000
445.160	-6.402	37.550	31.148	-14.852	46.000
682.810	1.817	25.857	27.674	-18.326	46.000
844.800	2.462	23.074	25.536	-20.464	46.000
Note:					

=

1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	: General : No.3 OA		n ac-80BW-65Mbps) (5290MHz) (Exte	rnal Antenna)
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
Peak Detector					
143.490	-7.665	25.649	17.984	-25.516	43.500
276.380	-6.526	35.418	28.892	-17.108	46.000
445.160	-0.432	37.276	36.844	-9.156	46.000
593.570	3.492	33.767	37.259	-8.741	46.000
741.980	3.892	33.804	37.696	-8.304	46.000
884.570	6.531	22.533	29.064	-16.936	46.000
Vertical					
Peak Detector	4.500	22 515	28.002	11.000	40.000
82.380	-4.523	33.515	28.992	-11.008	40.000
126.030	-3.719	34.442	30.724	-12.776	43.500
288.990	-5.523	33.467	27.944	-18.056	46.000
505.300	0.056	27.333	27.389	-18.611	46.000
741.980	-0.358	33.804	33.446	-12.554	46.000
891.360	0.905	30.118	31.023	-14.977	46.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	: General : No.3 OA		n ac-80BW-65Mbps) (5690MHz) (Exte	rnal Antenna)
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
Peak Detector					
126.030	-7.349	34.894	27.546	-15.954	43.500
288.990	-5.513	34.904	29.391	-16.609	46.000
445.160	-0.432	37.913	37.481	-8.519	46.000
593.570	3.492	34.947	38.439	-7.561	46.000
741.980	3.892	34.283	38.175	-7.825	46.000
891.360	6.265	28.993	35.258	-10.742	46.000
Vertical					
Peak Detector					
126.030	-3.719	34.894	31.176	-12.324	43.500
241.460	-6.000	38.481	32.481	-13.519	46.000
445.160	-6.402	38.227	31.825	-14.175	46.000
593.570	-0.388	34.947	34.559	-11.441	46.000
692.510	1.917	29.661	31.578	-14.422	46.000
891.360	0.905	29.746	30.651	-15.349	46.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

7. Band Edge

7.1. Test Equipment

RF Conducted Measurement

The following test equipments are used during the band edge tests:

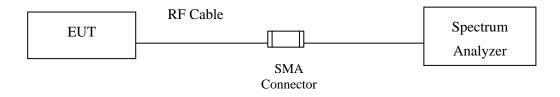
	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2014
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2014
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2014

Note:

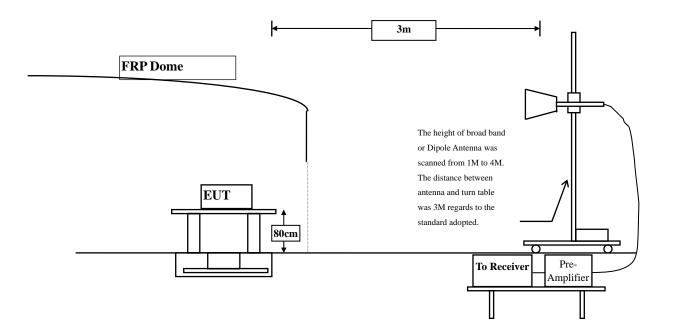
- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

RF Radiated Measurement:

The following test equipments are used during the band edge tests:


Test Site		Equipment	Manufacturer	Model No./Serial No.	Last Cal.
CB # 8	Х	Spectrum Analyzer	R&S	FSP40/ 100339	Oct., 2014
	Х	Horn Antenna	ETS-Lindgren	3117/ 35205	Mar., 2014
	Х	Horn Antenna	Schwarzbeck	BBHA9170/209	Jan., 2015
	Х	Horn Antenna	TRC	AH-0801/95051	Aug., 2014
	Х	Pre-Amplifier	EMCI	EMC012630SE/980210	Jan., 2015
	Х	Pre-Amplifier	MITEQ	JS41-001040000-58-5P/153945	Jul., 2014
	Х	Pre-Amplifier	NARDA	DBL-1840N506/013	Jul., 2014

Note: 1. All instruments are calibrated every one year.


2. The test instruments marked by "X" are used to measure the final test results.

7.2. Test Setup

RF Conducted Measurement:

RF Radiated Measurement:

7.3. Limits

The provisions of Section 15.205 of this part apply to intentional radiators operating under this section.

Radiated emissions which fall in the restricted bands, as defined in Section 15.205, must also comply with the radiated emission limits specified in Section 15.209:

FCC Part 15 Subpart C Paragraph 15.209 Limits							
Frequency MHz	uV/m @3m	dBµV/m@3m					
30-88	100	40					
88-216	150	43.5					
216-960	200	46					
Above 960	500	54					

Remarks : 1. RF Voltage $(dB\mu V) = 20 \log RF$ Voltage (uV)

2. In the Above Table, the tighter limit applies at the band edges.

3. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

7.4. Test Procedure

The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level.

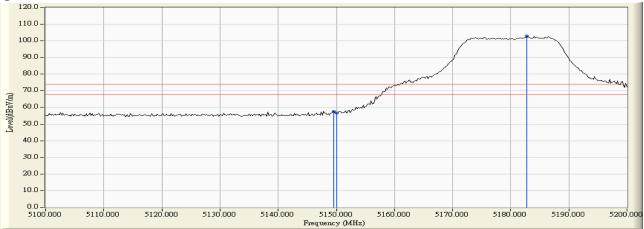
Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated according to ANSI C63.10: 2009 on radiated measurement.

The bandwidth below 1GHz setting on the field strength meter is 120 kHz, above 1GHz are 1 MHz. The EUT was setup to ANSI C63.10: 2009; tested to NII test procedure of FCC KDB-789033 section H.)5.) and section H.)6.) for compliance to FCC 47CFR Subpart E requirements.

7.5. Uncertainty

- \pm 3.8 dB below 1GHz
- ± 3.9 dB above 1GHz

7.6. Test Result of Band Edge


- Product : Wireless Access Point
- Test Item : Band Edge Data
- Test Site : No.3 OATS
- Test Mode : Mode 1: Transmit (802.11a-6Mbps)-Channel 36 (5180MHz) (Internal Antenna)

RF Radiated Measurement (Horizontal):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
	(MHz)	(dB)	(dBµV)	(dBµV/m)	$(dB\mu V/m)$	$(dB\mu V/m)$	Kesuit
36 (Peak)	5149.600	2.798	54.730	57.528	74.00	54.00	Pass
36 (Peak)	5150.000	2.796	53.886	56.682	74.00	54.00	Pass
36 (Peak)	5182.800	2.686	100.214	102.900			
36 (Average)	5150.000	2.796	40.906	43.702	74.00	54.00	Pass
36 (Average)	5185.800	2.677	88.215	90.891			

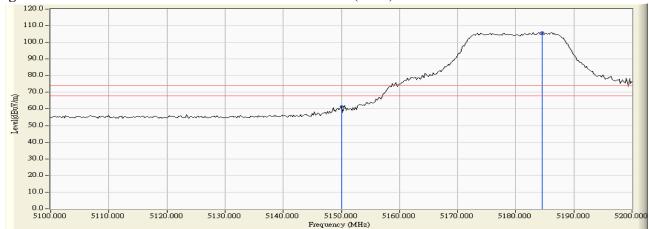
Horizontal (Peak)

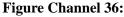
Figure Channel 36:

Horizontal (Average)

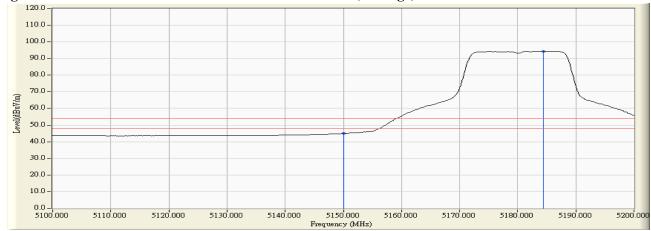
Note:1. All readings above 1GHz are performed with peak and/or average measurements as necessary.

- 2. Peak measurements: RBW = 1MHz, VBW = 3MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Product	:	Wireless Access Point
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps)-Channel 36 (5180MHz) (Internal Antenna)


RF Radiated Measurement (Vertical):

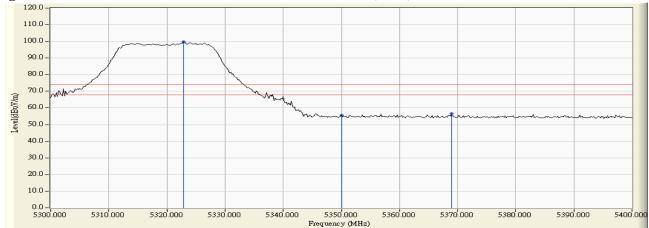
Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
	(MHz)	(dB)	(dBµV)	(dBµV/m)	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
36 (Peak)	5150.000	3.331	58.094	61.426	74.00	54.00	Pass
36 (Peak)	5184.600	3.494	102.421	105.915			
36 (Average)	5150.000	3.331	41.609	44.941	74.00	54.00	Pass
36 (Average)	5184.400	3.493	90.874	94.368			


Figure Channel 36:

Vertical (Peak)

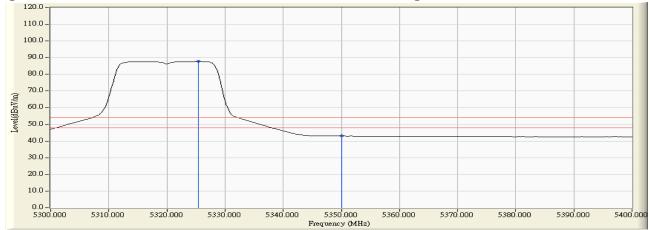
Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Product	:	Wireless Access Point
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps) -Channel 64 (5320MHz) (Internal Antenna)

RF Radiated Measurement (Horizontal):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Descult
	(MHz)	(dB)	(dBµV)	(dBµV/m)	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
64 (Peak)	5322.800	3.638	96.033	99.670			
64 (Peak)	5350.000	3.575	52.234	55.809	74.00	54.00	Pass
64 (Peak)	5369.000	3.436	53.246	56.682	74.00	54.00	Pass
64 (Average)	5325.400	3.633	84.097	87.729			
64 (Average)	5350.000	3.575	39.383	42.958	74.00	54.00	Pass

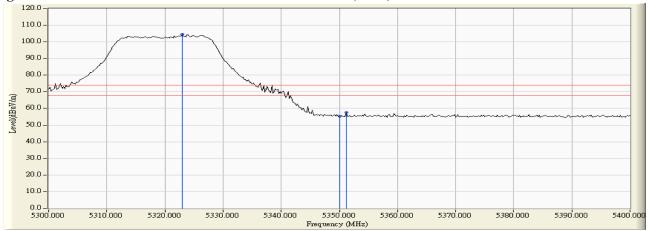

Figure Channel 64:

Horizontal (Peak)

Figure Channel 64:

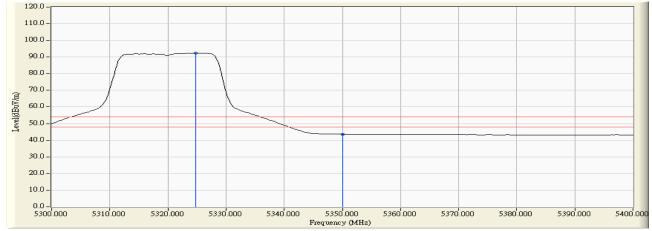
Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Product	:	Wireless Access Point
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps) -Channel 64 (5320MHz) (Internal Antenna)

RF Radiated Measurement (Vertical):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Kesult
64 (Peak)	5323.000	3.889	100.624	104.513			
64 (Peak)	5350.000	3.900	51.350	55.250	74.00	54.00	Pass
64 (Peak)	5351.200	3.901	53.638	57.538	74.00	54.00	Pass
64 (Average)	5324.800	3.890	88.484	92.375			
64 (Average)	5350.000	3.900	39.683	43.583	74.00	54.00	Pass

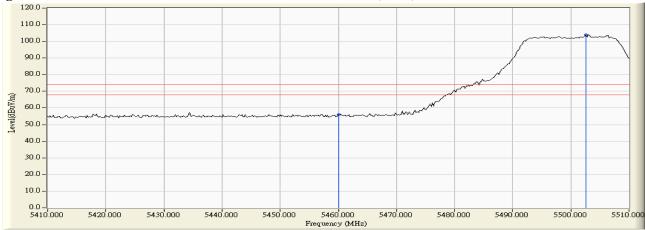

Figure Channel 64:

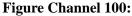
Vertical (Peak)

Figure Channel 64:

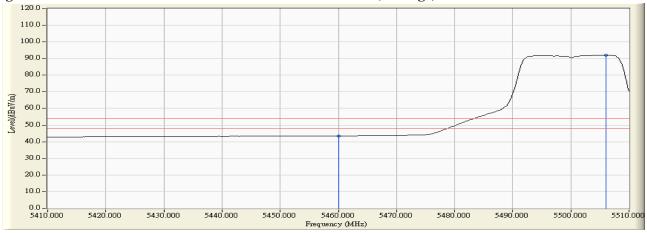
Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Test Item:Band Edge DataTest Site:No.3 OATSTest Mode:Mode 1: Transmit (802.11a-6Mbps) -Channel 100 (5500MHz) (2000000000000000000000000000000000000	
C C	Internal Antenna)
Test Item : Band Edge Data	
Product : Wireless Access Point	


RF Radiated Measurement (Horizontal):

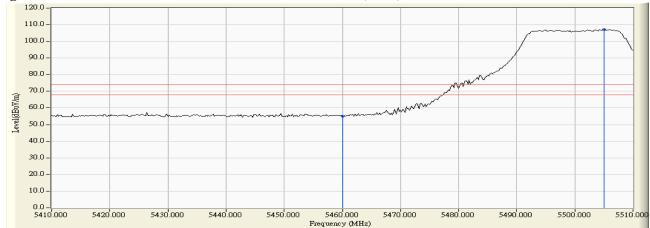
Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
100 (Peak)	5460.000	3.775	52.227	56.002	74.00	54.00	Pass
100 (Peak)	5502.600	4.513	99.463	103.977			
100 (Average)	5460.000	3.775	39.725	43.500	74.00	54.00	Pass
100 (Average)	5506.000	4.545	87.481	92.026			


Figure Channel 100:

Horizontal (Peak)

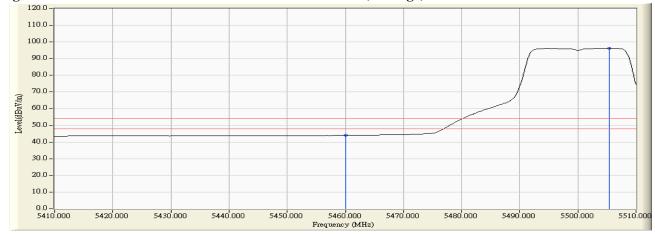
Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- Peak measurements: RBW = 1MHz, VBW = 3MHz, Sweep: Auto. 2.
- Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto. "*", means this data is the worst emission level. 3.
- 4.
- 5. Measurement Level = Reading Level + Correct Factor.
- The average measurement was not performed when the peak measured data under the limit of average 6. detection.


Product	:	Wireless Access Point
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps) -Channel 100 (5500MHz) (Internal Antenna)

RF Radiated Measurement (Vertical):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Degult
	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
100 (Peak)	5460.000	3.934	51.115	55.050	74.00	54.00	Pass
100 (Peak)	5505.000	4.511	102.689	107.200			
100 (Average)	5460.000	3.934	40.006	43.941	74.00	54.00	Pass
100 (Average)	5505.400	4.512	91.759	96.270			


Figure Channel 100:

Vertical (Peak)

Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Wireless Access Point
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps) -Channel 100 (Internal Antenna)

RF Radiated Measurement:

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Horizontal	5470.000	18.334	-66.930	-48.596	-21.596	-27.000	Pass

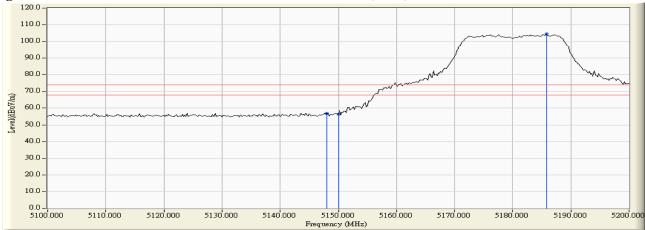
	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Vertical	5470.000	19.335	-64.400	-45.065	-18.065	-27.000	Pass

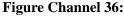
Product	:	Wireless Access Point
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps) -Channel 140 (Internal Antenna)

RF Radiated Measurement:

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Horizontal	5725.000	18.649	-68.490	-49.841	-22.841	-27.000	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Vertical	5725.000	19.372	-65.020	-45.648	-18.648	-27.000	Pass


	1 7 7	
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps) -Channel 36 (5180MHz) (Internal Antenna)
Test Site	:	No.3 OATS
Test Item	:	Band Edge Data
Product	:	Wireless Access Point


RF Radiated Measurement (Horizontal):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
	(MHz)	(dB)	(dBµV)	(dBµV/m)	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
36 (Peak)	5148.000	2.803	54.169	56.972	74.00	54.00	Pass
36 (Peak)	5150.000	2.796	53.422	56.218	74.00	54.00	Pass
36 (Peak)	5185.800	2.677	101.864	104.540			
36 (Average)	5150.000	2.796	41.076	43.872	74.00	54.00	Pass
36 (Average)	5186.400	2.673	87.687	90.361			

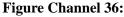
Figure Channel 36:

Horizontal (Peak)

Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.




RF Radiated	Mea	surement (Vertical):
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps) -Channel 36 (5180MHz) (Internal Antenna)
Test Site	:	No.3 OATS
Test Item	:	Band Edge Data
Product	:	Wireless Access Point

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
	(MHz)	(dB)	(dBµV)	(dBµV/m)	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
36 (Peak)	5149.600	3.330	63.153	66.483	74.00	54.00	Pass
36 (Peak)	5150.000	3.331	58.302	61.634	74.00	54.00	Pass
36 (Peak)	5185.000	3.497	105.909	109.405			
36 (Average)	5150.000	36.316	42.767	46.099	74.00	54.00	Pass
36 (Average)	5184.400	36.481	91.913	95.407			

Figure Channel 36:

Vertical (Peak)

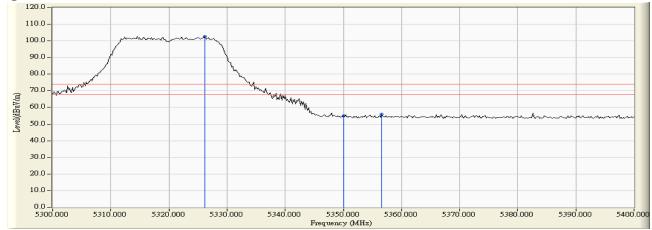
Vertical (Average)

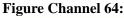
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Wireless Access Point

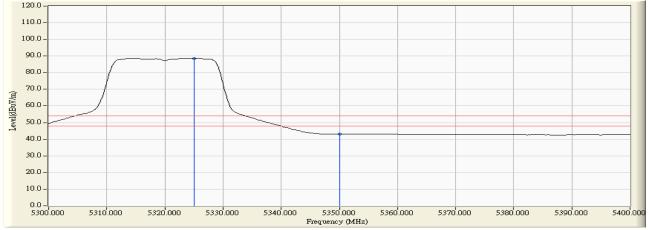
Test Item : Band Edge Data

Test Site : No.3 OATS


Test Mode : Mode 2: Transmit (802.11n-20BW 14.4Mbps) -Channel 64 (5320MHz) (Internal Antenna)


RF Radiated Measurement (Horizontal):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
	(MHz)	(dB)	(dBµV)	(dBµV/m)	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
64 (Peak)	5326.200	3.632	98.999	102.630			
64 (Peak)	5350.000	3.575	51.340	54.915	74.00	54.00	Pass
64 (Peak)	5356.600	3.534	52.361	55.894	74.00	54.00	Pass
64 (Average)	5325.000	3.634	84.976	88.609			
64 (Average)	5350.000	3.575	39.483	43.058	74.00	54.00	Pass


Figure Channel 64:

Horizontal (Peak)

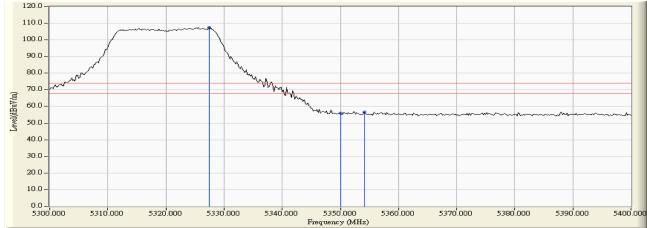
Horizontal (Average)

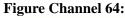
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product : Wireless Access Point	ict :	Product : Wirel	ess Access Point
---------------------------------	-------	-----------------	------------------

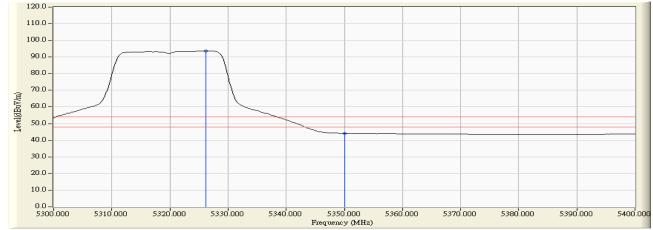
Test Item : Band Edge Data

Test Site : No.3 OATS


Test Mode : Mode 2: Transmit (802.11n-20BW 14.4Mbps) -Channel 64 (5320MHz) (Internal Antenna)


RF Radiated Measurement (Vertical):

Channal No	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Degult
Channel No.	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
64 (Peak)	5327.400	3.893	103.585	107.478			
64 (Peak)	5350.000	3.900	52.028	55.928	74.00	54.00	Pass
64 (Peak)	5354.200	3.889	52.740	56.629	74.00	54.00	Pass
64 (Average)	5326.200	3.892	89.796	93.688			
64 (Average)	5350.000	3.900	40.255	44.155	74.00	54.00	Pass


Figure Channel 64:

Vertical (Peak)

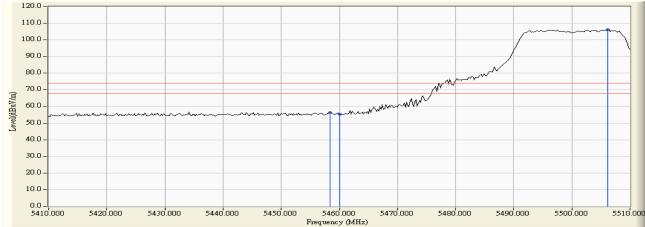
Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Wireless Access Point

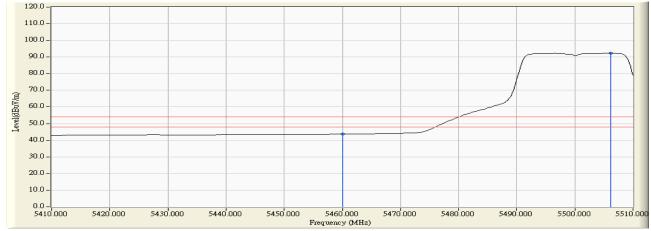
Test Item : Band Edge Data

Test Site : No.3 OATS


Test Mode : Mode 2: Transmit (802.11n-20BW 14.4Mbps) -Channel 100 (5500MHz) (Internal Antenna)

RF Radiated Measurement (Horizontal):

Channel No	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Degult
Channel No.	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
100 (Peak)	5458.400	3.745	52.717	56.461	74.00	54.00	Pass
100 (Peak)	5460.000	3.775	51.463	55.238	74.00	54.00	Pass
100 (Peak)	5506.200	4.545	101.467	106.012			
100 (Average)	5460.000	3.775	39.859	43.634	74.00	54.00	Pass
100 (Average)	5506.200	4.545	87.780	92.325			

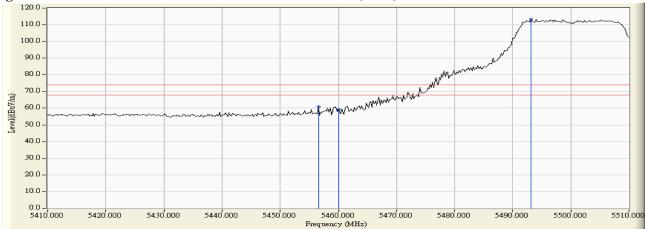

Figure Channel 100:

Horizontal (Peak)

Horizontal (Average)

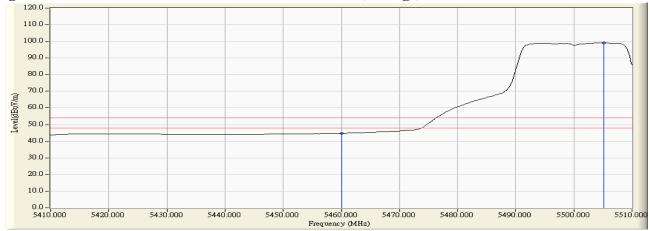
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Wireless Access Point
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS


Test Mode : Mode 2: Transmit (802.11n-20BW 14.4Mbps) -Channel 100 (5500MHz) (Internal Antenna)

RF Radiated Measurement (Vertical):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Decult
Channel No.	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
100 (Peak)	5456.600	3.885	57.051	60.937	74.00	54.00	Pass
100 (Peak)	5460.000	3.934	55.362	59.297	74.00	54.00	Pass
100 (Peak)	5493.200	4.390	108.802	113.192			
100 (Average)	5460.000	3.934	40.844	44.779	74.00	54.00	Pass
100 (Average)	5505.200	4.511	94.621	99.132			


Figure Channel 100:

Vertical (Peak)

Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Wireless Access Point
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps) -Channel 100 (Internal Antenna)

RF Radiated Measurement:

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Horizontal	5470.000	18.334	-68.410	-50.076	-23.076	-27.000	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Vertical	5470.000	19.335	-64.530	-45.195	-18.195	-27.000	Pass

Product	:	Wireless Access Point
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps) -Channel 140 (Internal Antenna)

RF Radiated Measurement:

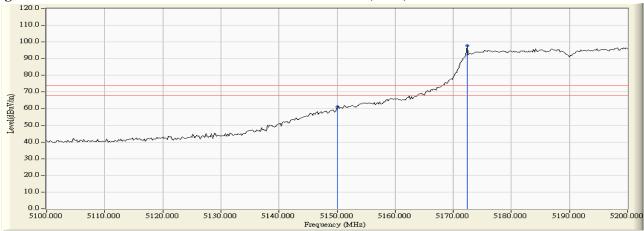
		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
]	Horizontal	5725.000	18.649	-67.580	-48.931	-21.931	-27.000	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Vertical	5725.000	19.372	-62.540	-43.168	-16.168	-27.000	Pass

Product	:	Wireless Access Point

Test Item : Band Edge Data

Test Site : No.3 OATS


Test Mode : Mode 3: Transmit (802.11n-40BW 30Mbps) -Channel 38 (5190MHz) (Internal Antenna)

RF Radiated Measurement (Horizontal):

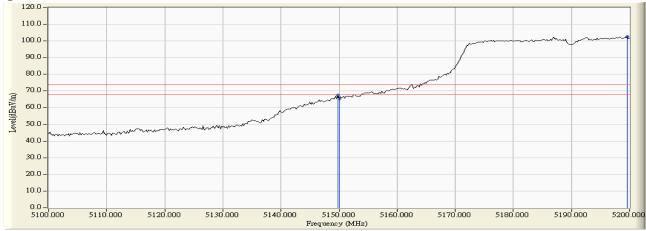
Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
38 (Peak)	5150.000	3.340	57.762	61.102	74.00	54.00	Pass
38 (Peak)	5172.400	3.262	94.645	97.907			
38 (Average)	5150.000	3.340	38.394	41.734	74.00	54.00	Pass
38 (Average)	5195.200	3.172	74.250	77.423			

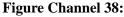
Figure Channel 38:

Horizontal (Peak)

Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.




RF Radiated Measurement (Vertical):					
Test Mode	:	Mode 3: Transmit (802.11n-40BW 30Mbps) -Channel 38 (5190MHz) (Internal Antenna)			
Test Site	:	No.3 OATS			
Test Item	:	Band Edge Data			
Product	:	Wireless Access Point			

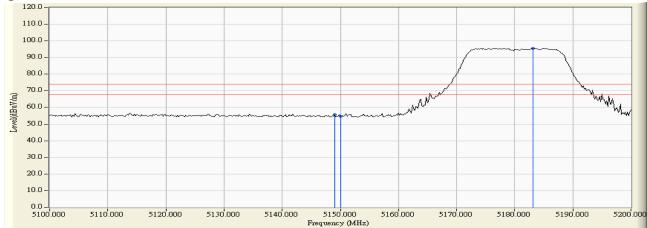
Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
	(MHz)	(dB)	(dBµV)	(dBµV/m)	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
38 (Peak)	5149.800	5.260	62.144	67.403	74.00	54.00	Pass
38 (Peak)	5150.000	5.260	60.068	65.328	74.00	54.00	Pass
38 (Peak)	5199.600	5.387	97.188	102.574			
38 (Average)	5150.000	5.260	41.586	46.846	74.00	54.00	Pass
38 (Average)	5195.200	5.375	77.490	82.866			

Figure Channel 38:

Vertical (Peak)

Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Product	:	Wireless Access Point
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps)-Channel 36 (5180MHz) (External Antenna)

RF Radiated Measurement (Horizontal):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
Channel NO.	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	(dBµV/m)	Result
36 (Peak)	5149.000	2.800	52.904	55.704	74.00	54.00	Pass
36 (Peak)	5150.000	2.796	51.890	54.686	74.00	54.00	Pass
36 (Peak)	5183.200	2.685	92.938	95.623			
36 (Average)	5150.000	2.796	40.185	42.981	74.00	54.00	Pass
36 (Average)	5175.000	2.712	82.605	85.317			

Figure Channel 36:

Horizontal (Peak)

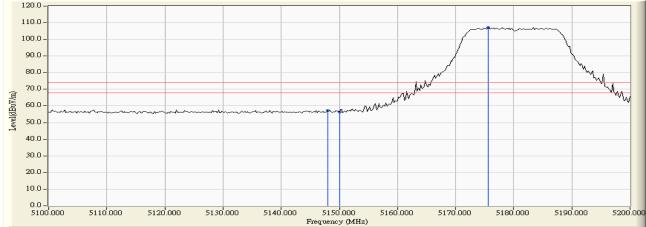
Figure Channel 36:

Horizontal (Average)

Note:1. All readings above 1GHz are performed with peak and/or average measurements as necessary.

- Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto. 2.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- The average measurement was not performed when the peak measured data under the limit of average 6. detection.

Product	:	Wireless Access Point
Test Item	:	Band Edge Data


- Test Site : No.3 OATS
- Test Mode : Mode 1: Transmit (802.11a-6Mbps)-Channel 36 (5180MHz) (External Antenna)

RF Radiated Measurement (Vertical):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
	(MHz)	(dB)	(dBµV)	(dBµV/m)	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
36 (Peak)	5148.000	3.322	53.939	57.261	74.00	54.00	Pass
36 (Peak)	5150.000	3.331	52.961	56.293	74.00	54.00	Pass
36 (Peak)	5175.600	3.452	103.769	107.221			
36 (Average)	5150.000	3.331	41.723	45.055	74.00	54.00	Pass
36 (Average)	5184.600	3.494	93.160	96.654			

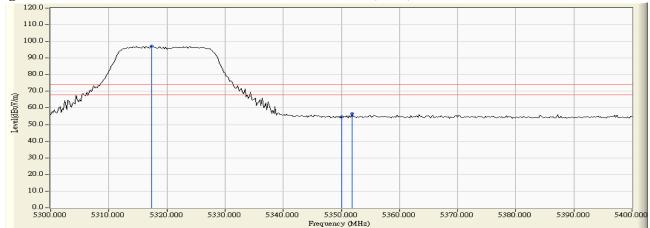
Figure Channel 36:

Vertical (Peak)

Figure Channel 36:

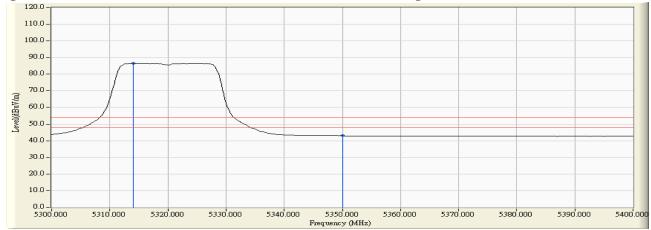
Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Product	:	Wireless Access Point
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps) -Channel 64 (5320MHz) (External Antenna)

RF Radiated Measurement (Horizontal):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Descrit
	(MHz)	(dB)	(dBµV)	(dBµV/m)	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
64 (Peak)	5317.400	3.648	93.390	97.037			
64 (Peak)	5350.000	3.575	51.102	54.677	74.00	54.00	Pass
64 (Peak)	5351.800	3.570	53.178	56.748	74.00	54.00	Pass
64 (Average)	5314.000	3.654	82.921	86.575			
64 (Average)	5350.000	3.575	39.380	42.955	74.00	54.00	Pass

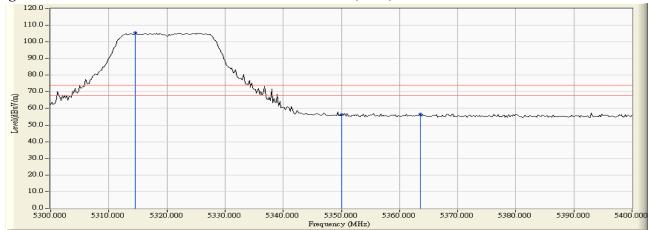

Figure Channel 64:

Horizontal (Peak)

Figure Channel 64:

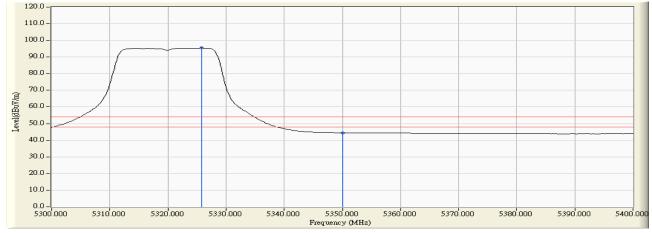
Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Product	:	Wireless Access Point
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps) -Channel 64 (5320MHz) (External Antenna)

RF Radiated Measurement (Vertical):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
Channel No.	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Kesult
64 (Peak)	5314.600	3.882	101.507	105.389			
64 (Peak)	5350.000	3.900	52.464	56.364	74.00	54.00	Pass
64 (Peak)	5363.600	3.840	52.942	56.782	74.00	54.00	Pass
64 (Average)	5325.800	3.891	91.513	95.404			
64 (Average)	5350.000	3.900	40.569	44.469	74.00	54.00	Pass

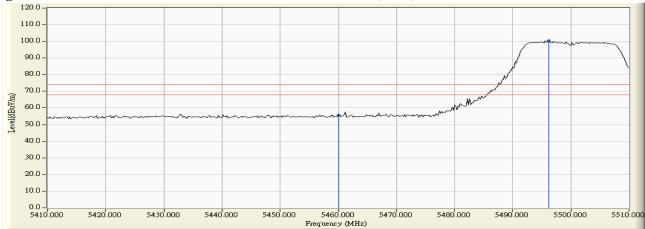

Figure Channel 64:

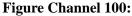
Vertical (Peak)

Figure Channel 64:

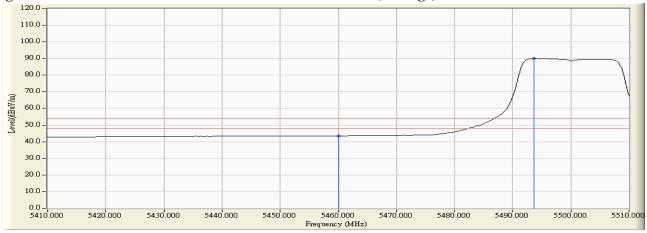
Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


	Product	:	Wireless Access Point					
	Test Item	:	Band Edge Data					
	Test Site	:	No.3 OATS					
	Test Mode	:	Mode 1: Transmit (802.11a-6Mbps) -Channel 100 (5500MHz) (External Antenna)					


RF Radiated Measurement (Horizontal):

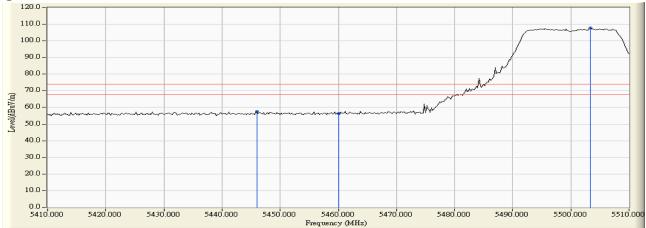
Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
Channel No.	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	
100 (Peak)	5460.000	3.775	51.913	55.688	74.00	54.00	Pass
100 (Peak)	5496.200	4.427	95.918	100.345			
100 (Average)	5460.000	3.775	39.783	43.558	74.00	54.00	Pass
100 (Average)	5493.600	4.392	85.602	89.994			


Figure Channel 100:

Horizontal (Peak)

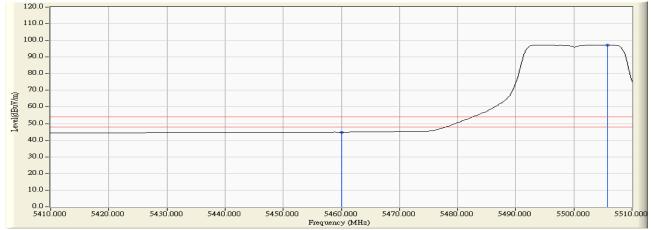
Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- Peak measurements: RBW = 1MHz, VBW = 3MHz, Sweep: Auto. 2.
- Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto. "*", means this data is the worst emission level. 3.
- 4.
- 5. Measurement Level = Reading Level + Correct Factor.
- The average measurement was not performed when the peak measured data under the limit of average 6. detection.


Product	:	Wireless Access Point
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps) -Channel 100 (5500MHz) (External Antenna)

RF Radiated Measurement (Vertical):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Degult
	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
100 (Peak)	5446.000	3.804	53.636	57.440	74.00	54.00	Pass
100 (Peak)	5460.000	3.934	52.229	56.164	74.00	54.00	Pass
100 (Peak)	5503.400	4.495	103.280	107.775			
100 (Average)	5460.000	3.934	40.916	44.851	74.00	54.00	Pass
100 (Average)	5505.800	4.511	92.797	97.308			


Figure Channel 100:

Vertical (Peak)

Figure Channel 100:

Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Wireless Access Point
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps) -Channel 100 (External Antenna)

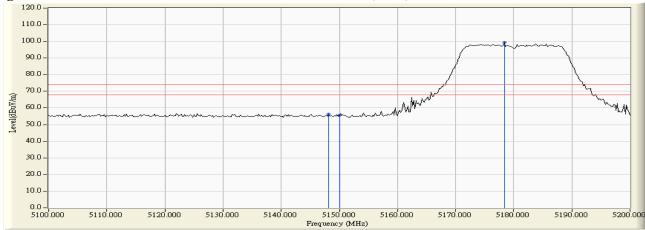
	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Horizontal	5470.000	18.334	-77.760	-59.426	-32.426	-27.000	Pass

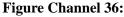
	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Vertical	5470.000	19.335	-77.460	-58.125	-31.125	-27.000	Pass

Product	:	Wireless Access Point
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps) -Channel 140 (External Antenna)

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Horizontal	5725.000	18.649	-77.960	-59.311	-32.311	-27.000	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Vertical	5725.000	19.372	-77.070	-57.698	-30.698	-27.000	Pass


DF Dadiated	Мо	osuroment (Herizentel).
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps) -Channel 36 (5180MHz) (External Antenna)
Test Site	:	No.3 OATS
Test Item	:	Band Edge Data
Product	:	Wireless Access Point

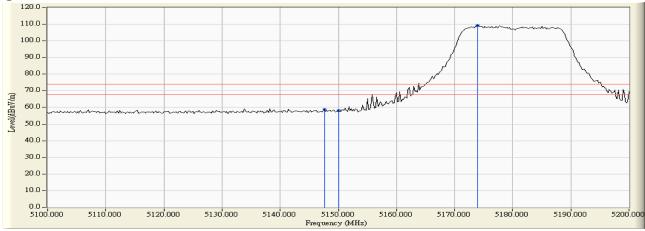

RF Radiated Measurement (Horizontal):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
	(MHz)	(dB)	(dBµV)	(dBµV/m)	$(dB\mu V/m)$	(dBµV/m)	Result
36 (Peak)	5148.200	2.802	53.492	56.294	74.00	54.00	Pass
36 (Peak)	5150.000	2.796	52.774	55.570	74.00	54.00	Pass
36 (Peak)	5178.400	2.701	96.617	99.318			
36 (Average)	5150.000	2.796	40.438	43.234	74.00	54.00	Pass
36 (Average)	5175.800	2.710	84.152	86.862			


Figure Channel 36:

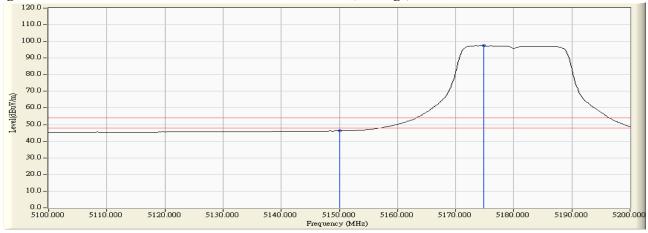
Horizontal (Peak)

Horizontal (Average)


- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

RF Radiated Measurement (Vertical):										
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps) -Channel 36 (5180MHz) (External Antenna)								
Test Site	:	No.3 OATS								
Test Item	:	Band Edge Data								
Product	:	Wireless Access Point								

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
	(MHz)	(dB)	(dBµV)	(dBµV/m)	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
36 (Peak)	5147.600	3.320	55.581	58.901	74.00	54.00	Pass
36 (Peak)	5150.000	3.331	54.796	58.128	74.00	54.00	Pass
36 (Peak)	5174.000	3.445	105.838	109.283			
36 (Average)	5150.000	3.331	42.908	46.240	74.00	54.00	Pass
36 (Average)	5174.800	3.449	93.944	97.392			


Figure Channel 36:

Vertical (Peak)

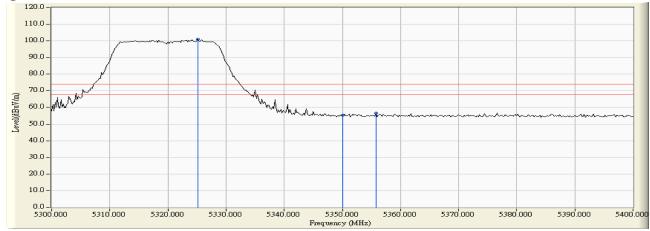
Vertical (Average)

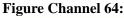
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Wireless Access Point

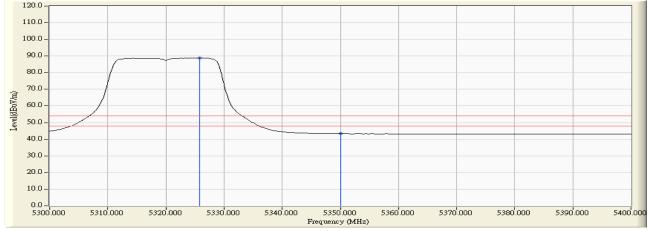
Test Item : Band Edge Data

Test Site : No.3 OATS


Test Mode : Mode 2: Transmit (802.11n-20BW 14.4Mbps) -Channel 64 (5320MHz) (External Antenna)


RF Radiated Measurement (Horizontal):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
Channel No.	(MHz)	(dB)	(dBµV)	(dBµV/m)	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
64 (Peak)	5325.200	3.633	97.481	101.114			
64 (Peak)	5350.000	3.575	51.864	55.439	74.00	54.00	Pass
64 (Peak)	5355.800	3.540	52.989	56.529	74.00	54.00	Pass
64 (Average)	5325.800	3.632	85.223	88.855			
64 (Average)	5350.000	3.575	39.746	43.321	74.00	54.00	Pass


Figure Channel 64:

Horizontal (Peak)

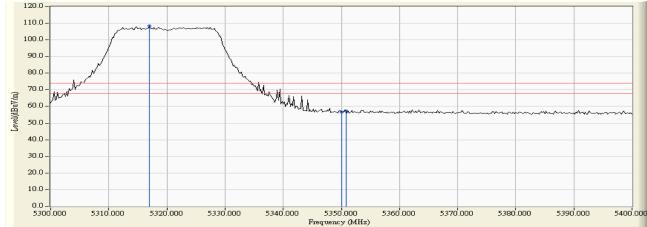
Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product :	Wireless Access Point
-----------	-----------------------

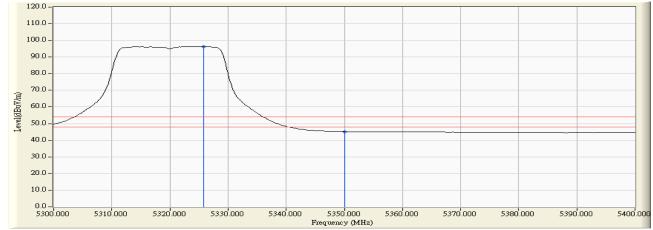
Test Item : Band Edge Data

Test Site : No.3 OATS


Test Mode : Mode 2: Transmit (802.11n-20BW 14.4Mbps) -Channel 64 (5320MHz) (External Antenna)

RF Radiated Measurement (Vertical):

Channal No	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Degult
Channel No.	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
64 (Peak)	5317.000	3.884	104.556	108.440			
64 (Peak)	5350.000	3.900	52.797	56.697	74.00	54.00	Pass
64 (Peak)	5350.800	3.900	53.479	57.379	74.00	54.00	Pass
64 (Average)	5325.800	3.891	92.434	96.325			
64 (Average)	5350.000	3.900	41.289	45.189	74.00	54.00	Pass


Figure Channel 64:

Vertical (Peak)

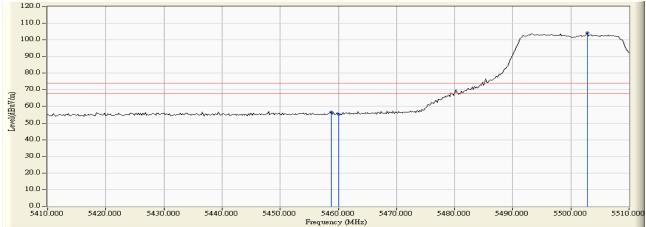
Vertical (Average)

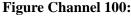
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Wireless Access Point

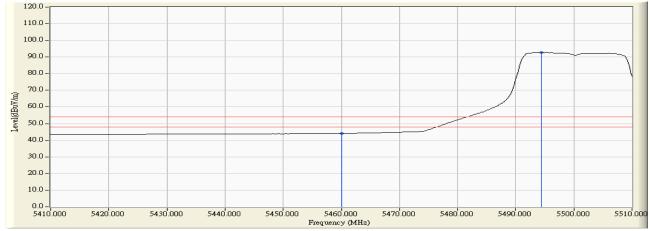
Test Item : Band Edge Data

Test Site : No.3 OATS


Test Mode : Mode 2: Transmit (802.11n-20BW 14.4Mbps) -Channel 100 (5500MHz) (External Antenna)


RF Radiated Measurement (Horizontal):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
Channel No.	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
100 (Peak)	5458.800	3.751	52.859	56.611	74.00	54.00	Pass
100 (Peak)	5460.000	3.775	51.487	55.262	74.00	54.00	Pass
100 (Peak)	5502.800	4.516	99.560	104.076			
100 (Average)	5460.000	3.775	40.374	44.149	74.00	54.00	Pass
100 (Average)	5494.400	4.403	88.327	92.730			


Figure Channel 100:

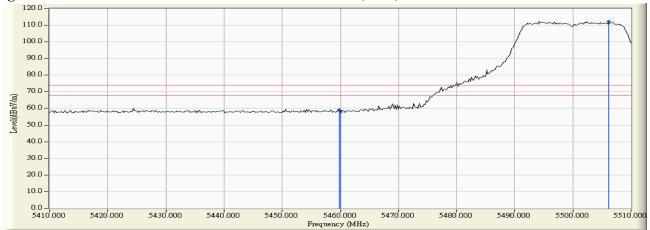
Horizontal (Peak)

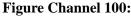
Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Wireless Access Point
Test Item	:	Band Edge Data

Test Site : No.3 OATS


Test Mode : Mode 2: Transmit (802.11n-20BW 14.4Mbps) -Channel 100 (5500MHz) (External Antenna)


RF Radiated Measurement (Vertical):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Degult
Channel No.	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
100 (Peak)	5459.800	3.932	55.340	59.272	74.00	54.00	Pass
100 (Peak)	5460.000	3.934	53.884	57.819	74.00	54.00	Pass
100 (Peak)	5506.200	4.511	107.836	112.347			
100 (Average)	5460.000	3.934	42.511	46.446	74.00	54.00	Pass
100 (Average)	5505.600	4.511	95.613	100.124			


Figure Channel 100:

Vertical (Peak)

Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Wireless Access Point
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps) -Channel 100 (External Antenna)

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Horizontal	5470.000	18.334	-77.990	-59.656	-32.656	-27.000	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Vertica	al 5470.000	19.335	-77.200	-57.865	-30.865	-27.000	Pass

Product	:	Wireless Access Point
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps) -Channel 140 (External Antenna)

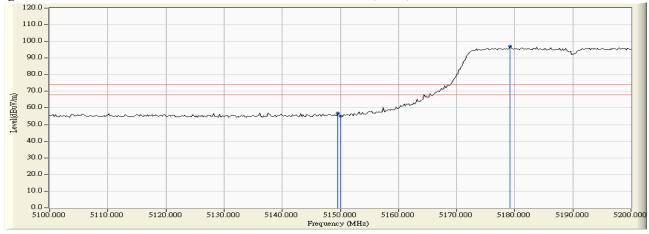
	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Horizontal	5725.000	18.649	-77.000	-58.351	-31.351	-27.000	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Vertical	5725.000	19.372	-77.200	-57.828	-30.828	-27.000	Pass

Product : whereas Access Point	Product	:	Wireless Access Point
--------------------------------	---------	---	-----------------------

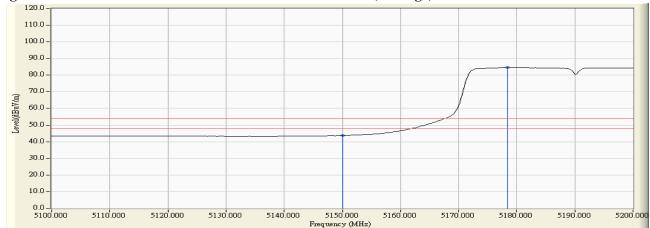
Test Item : Band Edge Data

Test Site : No.3 OATS


Test Mode : Mode 3: Transmit (802.11n-40BW 30Mbps) -Channel 38 (5190MHz) (External Antenna)

RF Radiated Measurement (Horizontal):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
38 (Peak)	5149.600	2.798	54.179	56.977	74.00	54.00	Pass
38 (Peak)	5150.000	2.796	52.341	55.137	74.00	54.00	Pass
38 (Peak)	5179.200	2.698	94.331	97.029			
38 (Average)	5150.000	2.796	40.979	43.775	74.00	54.00	Pass
38 (Average)	5178.400	2.701	81.891	84.592			


Figure Channel 38:

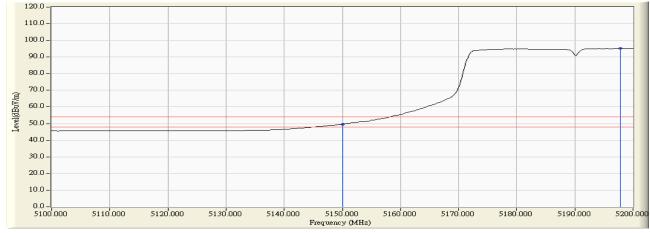
Horizontal (Peak)

Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

RF Radiated	Meas	surement (Vertical):
Test Mode	:	Mode 3: Transmit (802.11n-40BW 30Mbps) -Channel 38 (5190MHz) (External Antenna)
Test Site	:	No.3 OATS
Test Item	:	Band Edge Data
Product	:	Wireless Access Point

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
	(MHz)	(dB)	(dBµV)	(dBµV/m)	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
38 (Peak)	5150.000	3.331	59.958	63.290	74.00	54.00	Pass
38 (Peak)	5196.600	3.553	103.714	107.267			
38 (Average)	5150.000	3.331	46.309	49.641	74.00	54.00	Pass
38 (Average)	5197.800	3.559	91.649	95.208			


Figure Channel 38:

Vertical (Peak)

Vertical (Average)

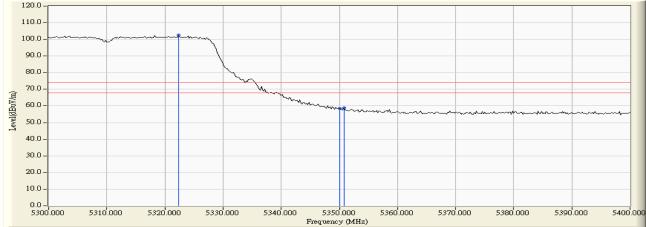
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product : Wireless Acc	ess Point
------------------------	-----------

Test Item Band Edge Data :

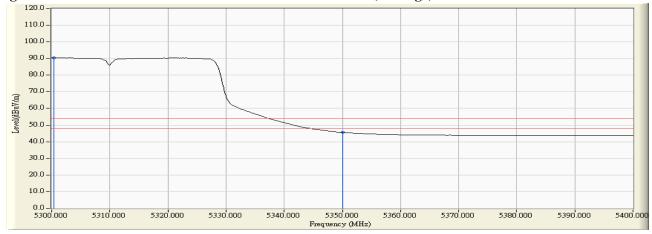
Test Site : No.3 OATS

Test Mode :


Mode 3: Transmit (802.11n-40BW 30Mbps) -Channel 62 (5310MHz) (External Antenna)

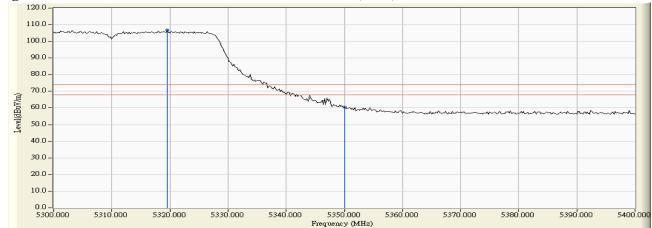
RF Radiated Measurement (Horizontal):

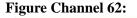
Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
	(MHz)	(dB)	(dBµV)	(dBµV/m)	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
62 (Peak)	5322.400	3.638	98.851	102.489			
62 (Peak)	5350.000	3.575	55.066	58.641	74.00	54.00	Pass
62 (Peak)	5350.800	3.572	55.284	58.857	74.00	54.00	Pass
62 (Average)	5300.400	3.674	86.718	90.392			
62 (Average)	5350.000	3.575	42.020	45.595	74.00	54.00	Pass


Figure Channel 62:

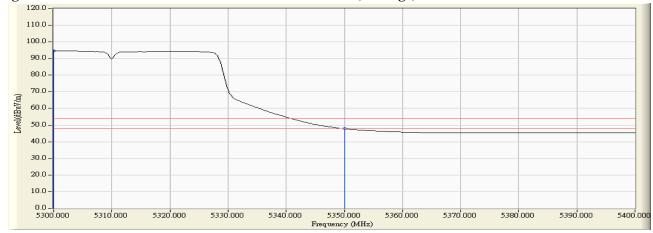
Horizontal (Peak)

Horizontal (Average)


- All readings above 1GHz are performed with peak and/or average measurements as necessary. 1.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto. 3.
- "*", means this data is the worst emission level. 4.
- Measurement Level = Reading Level + Correct Factor. 5.
- The average measurement was not performed when the peak measured data under the limit of average 6. detection.


RF Radiated	Meas	surement (Vertical):
Test Mode	:	Mode 3: Transmit (802.11n-40BW 30Mbps) -Channel 62 (5310MHz) (External Antenna)
Test Site	:	No.3 OATS
Test Item	:	Band Edge Data
Product	:	Wireless Access Point

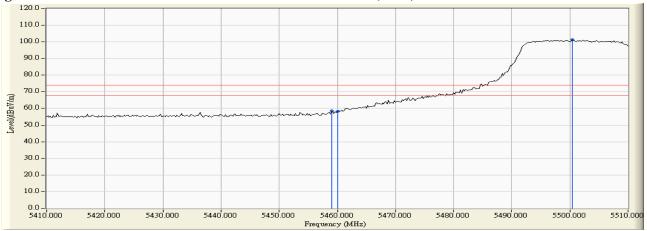
Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
	(MHz)	(dB)	(dBµV)	(dBµV/m)	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
62 (Peak)	5319.600	3.887	102.821	106.708			
62 (Peak)	5350.000	3.900	56.567	60.467	74.00	54.00	Pass
62 (Average)	5300.000	3.869	90.850	94.719			
62 (Average)	5350.000	3.900	43.905	47.805	74.00	54.00	Pass


Figure Channel 62:

Vertical (Peak)

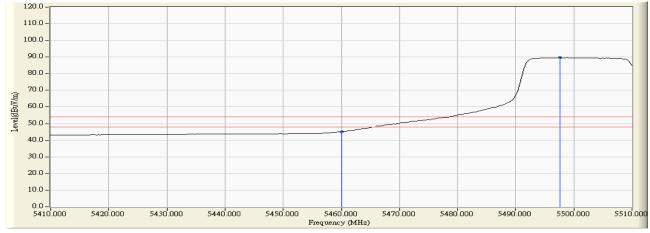
Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Product : Wireless Access Po	Dint
Test Item : Band Edge Data	
Test Site : No.3 OATS	
Test Mode : Mode 3: Transmit	(802.11n-40BW 30Mbps) -Channel 102 (5510MHz) (External Antenna)

RF Radiated Measurement (Horizontal):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Kesult
102 (Peak)	5459.000	3.755	54.945	58.701	74.00	54.00	Pass
102 (Peak)	5460.000	3.775	54.544	58.319	74.00	54.00	Pass
102 (Peak)	5500.400	4.483	96.895	101.379			
102 (Average)	5460.000	3.775	41.383	45.158	74.00	54.00	Pass
102 (Average)	5497.600	4.446	85.192	89.638			


Figure Channel 102:

Horizontal (Peak)

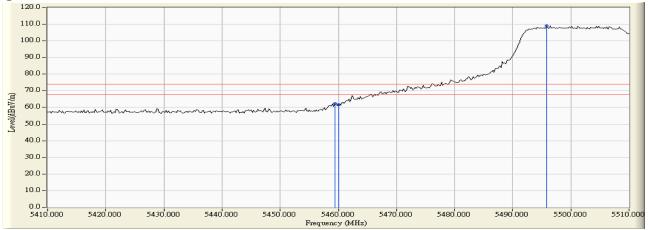
Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Wireless Access Point

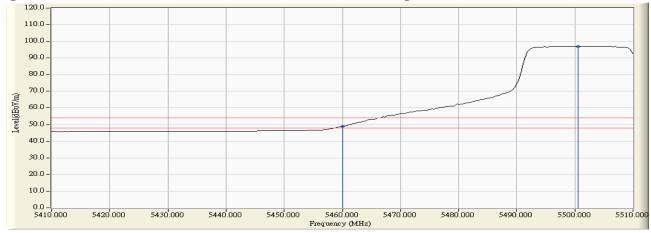
Test Item : Band Edge Data

Test Site : No.3 OATS


Test Mode : Mode 3: Transmit (802.11n-40BW 30Mbps) -Channel 102 (5510MHz) (External Antenna)

RF Radiated Measurement (Vertical):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Kesult
102 (Peak)	5459.400	3.927	58.450	62.376	74.00	54.00	Pass
102 (Peak)	5460.000	3.934	57.715	61.650	74.00	54.00	Pass
102 (Peak)	5495.800	4.417	104.513	108.930			
102 (Average)	5460.000	3.934	44.897	48.832	74.00	54.00	Pass
102 (Average)	5500.600	4.466	92.500	96.966			


Figure Channel 102:

Vertical (Peak)

Figure Channel 102:

Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Wireless Access Point
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n-40BW 30Mbps) -Channel 102 (External Antenna)

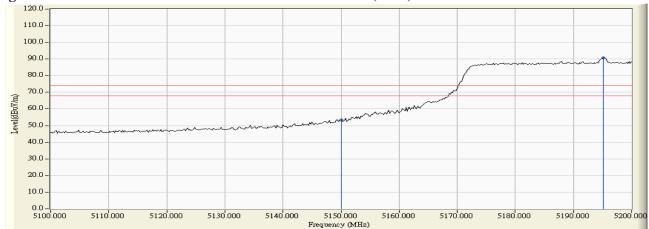
		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Horizo	ontal	5470.000	18.334	-75.140	-56.806	-29.806	-27.000	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Vertical	5470.000	19.335	-74.420	-55.085	-28.085	-27.000	Pass

Product	:	Wireless Access Point
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n-40BW 30Mbps) -Channel 134 (External Antenna)

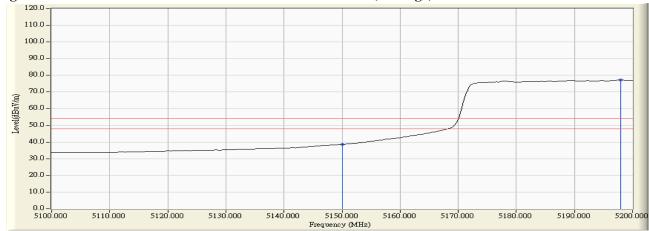
	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Horizontal	5725.000	18.649	-75.310	-56.661	-29.661	-27.000	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Vertical	5725.000	19.372	-75.270	-55.898	-28.898	-27.000	Pass


DF Dadiator	I Mo	asuramant (Harizantal).
Test Mode	:	Mode 6: Transmit (802.11ac-80BW-65Mbps) -Channel 42 (5210MHz) (External Antenna)
Test Site	:	No.3 OATS
Test Item	:	Band Edge Data
Product	:	Wireless Access Point

RF Radiated Measurement (Horizontal):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
	(MHz)	(dB)	(dBµV)	(dBµV/m)	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
42 (Peak)	5150.000	3.340	50.094	53.434	74.00	54.00	Pass
42 (Peak)	5195.200	3.172	87.477	90.650			
42 (Average)	5150.000	3.340	35.189	38.529	74.00	54.00	Pass
42 (Average)	5198.000	3.160	74.174	77.334			


Figure Channel 42:

Horizontal (Peak)

Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

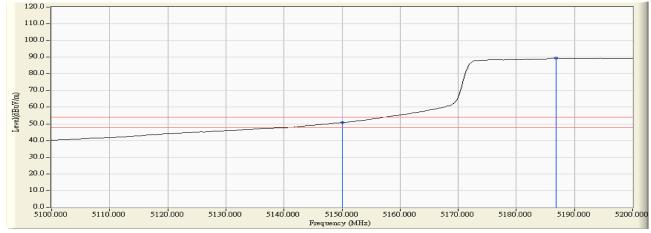
Test Item : Band Edge Data

Test Site : No.3 OATS

Test Mode : Mode 6: Transmit (802.11ac-80BW-65Mbps) -Channel 42 (5210MHz) (External Antenna)

RF Radiated Measurement (Vertical):

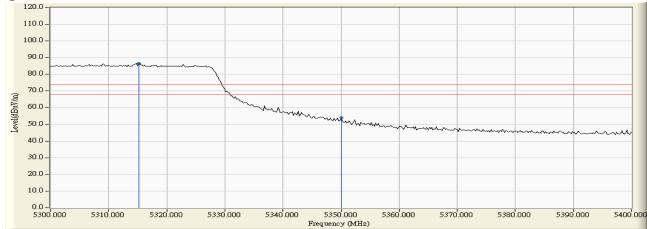
Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Kesuit
102 (Peak)	5143.800	5.243	59.441	64.684	74.00	54.00	Pass
102 (Peak)	5150.000	5.260	58.342	63.602	74.00	54.00	Pass
102 (Peak)	5197.400	5.380	97.278	102.658			
102 (Average)	5150.000	5.260	45.464	50.724	74.00	54.00	Pass
102 (Average)	5186.800	5.360	84.221	89.582			


Figure Channel 102:

Vertical (Peak)

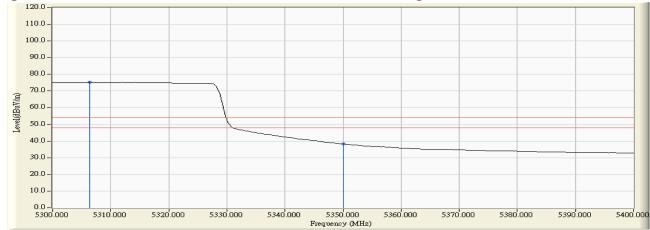
Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.



RF Radiated Measurement (Horizontal):					
	Test Mode	:	Mode 6: Transmit (802.11ac-80BW-65Mbps) -Channel 58 (5290MHz) (External Antenna)		
	Test Site	:	No.3 OATS		
	Test Item	:	Band Edge Data		
	Product	:	Wireless Access Point		

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Degult
Channel No.	(MHz)	(dB)	(dBµV)	(dBµV/m)	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
58 (Peak)	5315.200	3.827	82.824	86.652			
58 (Peak)	5350.000	3.716	50.470	54.187	74.00	54.00	Pass
58 (Average)	5306.400	3.856	71.344	75.200			
58 (Average)	5350.000	3.716	34.414	38.131	74.00	54.00	Pass


Figure Channel 58:

Horizontal (Peak)

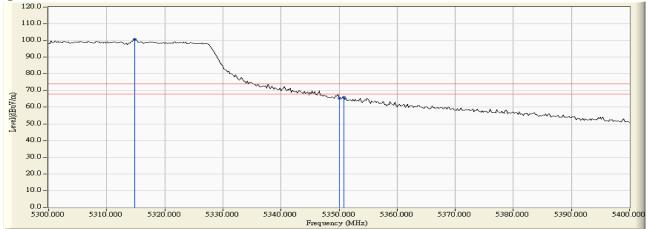
Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Wireless Access Point

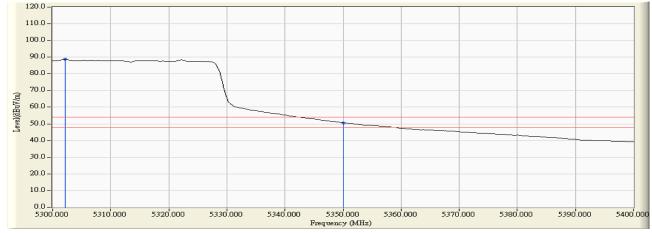
Test Item : Band Edge Data

Test Site : No.3 OATS


Test Mode : Mode 6: Transmit (802.11ac-80BW-65Mbps) -Channel 58 (5290MHz) (External Antenna)

RF Radiated Measurement (Vertical):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
Channel No.	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Kesuit
58 (Peak)	5314.800	5.736	94.842	100.578			
58 (Peak)	5350.000	5.691	59.544	65.236	74.00	54.00	Pass
58 (Peak)	5350.800	5.690	60.329	66.020	74.00	54.00	Pass
58 (Average)	5302.200	5.753	82.905	88.657			
58 (Average)	5350.000	5.691	44.878	50.570	74.00	54.00	Pass


Figure Channel 58:

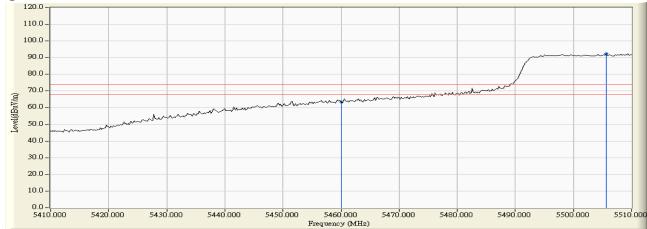
Vertical (Peak)

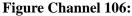
Figure Channel 58:

Vertical (Average)

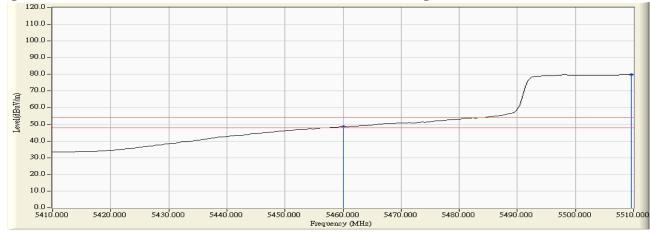
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Wireless Access Point
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 6: Transmit (802.11ac-80BW-65Mbps) -Channel 106 (5530MHz) (External Antenna)


RF Radiated Measurement (Horizontal):


.

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
Channel No.	(MHz)	(dB)	(dBµV)	(dBµV/m)	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
106 (Peak)	5460.000	4.354	59.141	63.495	74.00	54.00	Pass
106 (Peak)	5505.600	4.844	87.473	92.317			
106 (Average)	5460.000	4.354	44.155	48.509	74.00	54.00	Pass
106 (Average)	5509.600	4.812	74.979	79.791			


Figure Channel 106:

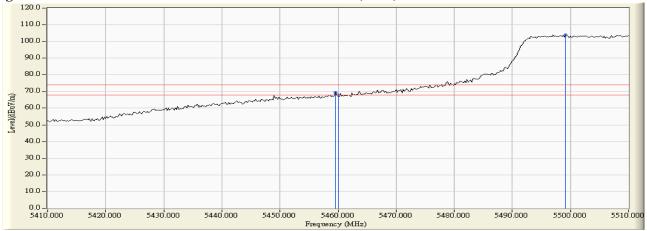
Horizontal (Peak)

Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

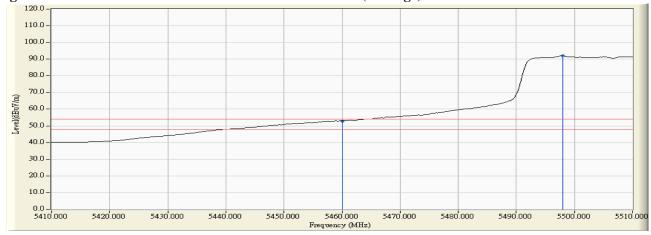
Test Item : Band Edge Data

Test Site : No.3 OATS


Test Mode : Mode 6: Transmit (802.11ac-80BW-65Mbps) -Channel 106 (5530MHz) (External Antenna)

RF Radiated Measurement (Vertical):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
Channel No.	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Kesult
106 (Peak)	5459.600	6.039	63.328	69.366	74.00	54.00	Pass
106 (Peak)	5460.000	6.041	61.735	67.776	74.00	54.00	Pass
106 (Peak)	5499.200	6.273	97.597	103.869			
106 (Average)	5460.000	6.041	46.863	52.904	74.00	54.00	Pass
106 (Average)	5498.000	6.268	85.867	92.136			


Figure Channel 106:

Vertical (Peak)

Figure Channel 106:

Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Wireless Access Point
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4: Transmit (802.11ac-20BW-7.2Mbps) -Channel 44 (External Antenna)

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Horizontal	5825.000	18.983	-78.550	-59.567	-42.567	-17.000	Pass
Horizontal	5835.000	19.106	-78.650	-59.544	-32.544	-27.000	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Vertical	5825.000	20.205	-67.920	-47.715	-30.715	-17.000	Pass
Vertical	5835.000	20.326	-78.780	-58.454	-31.454	-27.000	Pass

Product	:	Wireless Access Point
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 5: Transmit (802.11ac-40BW-15Mbps) -Channel 42 (External Antenna)

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Horizontal	5825.000	18.983	-66.330	-47.347	-30.347	-17.000	Pass
Horizontal	5835.000	19.106	-78.670	-59.564	-32.564	-27.000	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Vertical	5825.000	20.205	-78.220	-58.015	-41.015	-17.000	Pass
Vertical	5835.000	20.326	-78.050	-57.724	-30.724	-27.000	Pass

Product	:	Wireless Access Point
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 6: Transmit (802.11ac-80BW-65Mbps) -Channel 106 (External Antenna)

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Horizontal	5470.000	18.334	-74.380	-56.046	-29.046	-27.000	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Vertical	5470.000	19.335	-74.070	-54.735	-27.735	-27.000	Pass

Product	:	Wireless Access Point
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 6: Transmit (802.11ac-80BW-65Mbps) -Channel 138 (External Antenna)

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Horizontal	5825.000	18.983	-75.980	-56.997	-39.997	-17.000	Pass
Horizontal	5835.000	19.106	-77.060	-57.954	-30.954	-27.000	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Vertical	5825.000	20.205	-76.020	-55.815	-38.815	-17.000	Pass
Vertical	5835.000	20.326	-77.080	-56.754	-29.754	-27.000	Pass

Product	:	Wireless Access Point
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps) (Internal Antenna)

Test Frequency	Measurement Level (20dB BW)	Limit	Result
(MHz)	(MHz)	(MHz)	
5580	5590.30	<5600	PASS
5660	5650.10	>5650	PASS

NOTE: The 5600~5650MHz band is not used in accordance with 15.215 requirement.

				556						
Frequency	12:02:34 PM 3an09, 2015 IIIMCL 1 2 3 4 5 6 TVR: MWWWWW DET P NNNNN	ALIGNAUTO ype: Log-Pwr		Trig: Free Run	HZ NO: Fast G	00000 GH		1. 0	u –	Ø B
GHz dBm Center Freq 5.55000000 GHz 5.555000000 GHz Start Freq 5.55500000 GHz 5.55500000 GHz	Mkr2 5.590 30 GHz d6/div Ref 20.00 dBm -19.38 dBm									
				0 ¹	-				-	00 100
	-10.00 dBm	2			1					10.0
	tomat a strange	- And				~	-	and the second	New Mark	20.0 30.0 40.0
										50.0 50.0 70.0
CF Ste 5.000000 MH	Span 50.00 MHz 500 ms (1001 pts)	#Sweep		1.0 MHz	#VBV		00 GHz kHz	5.5800 W 300		
Auto Ma	FUNCTION VALUE	FUNCTION WIDTH	FUNCTION	2.00 dBm	0 GHz	5.575 9		THE SU	N	1
Freq Offse				-19,38 dBm	0 GHz	5.590 3		1 f	N	3456
									-	7 8 9 10 11
		Costatus.		1			1		-	12

5580MHz

		-	/01/11/12	000							
							lyzar Su		pentre		
Frequency	12:04:45 PM Jan D9, 2015 IRACL 1:2 3:4 5:6 TYPE MWWWWW	Type: Log-Pwr	Avg	Trig: Free Run	Hz	00000 G	.6600	eq 5	r Fre		er Cer
Auto Tur	DET M N N N N N			#Atten: 30 dB	PNO: Fast 🕞 FGain:Low						
Auto Tu	2 5.650 10 GHz -18.96 dBm	Mkr2	-			dBm	20.00	Ref	liv	B/d	0 d
Center Fre			-		0			-		11	10.0
5.66000000 GH		1			2		-	+	_		0 00 10 0
1.00	-18.47 dam	2			€ ²			-			10 0
Start Fre 5.635000000 GH		-	-			and the second second	import	-	-	-	30.0
0.000000000	- Hallweighter bert	-					-	-	-	1.5	10,0 50,0
Stop Fr											50.0
5.685000000 GH		-		-		-	_	-	_	1	70.0
CF Ste 5.000000 MH	Span 50.00 MHz 500 ms (1001 pts)	#Sweep		1.0 MHz	#VBW) GHz (Hz	6000 300 k			
Auto Ma	FUNCTION VALUE	FUNCTION WIDTH	FUNCTION	1.58 dBm	40 GHz	5.654		f	TE TRO	N	1
Freq Offs 0 F			_	-18.96 dBm	10 GHz	5.650	_	f	1	N	3456
			_					H	-	-	78
					-				-	-	9
		-	_	-					1		11 12
		Costants.								1	su

Product	:	Wireless Access Point
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps) (Internal Antenna)

Chain A

Test Frequency	Measurement Level (20dB BW)	Limit	Result
(MHz)	(MHz)	(MHz)	
5580	5590.50	<5600	PASS
5660	5650.50	>5650	PASS

NOTE: The 5600~5650MHz band is not used in accordance with 15.215 requirement. 5580MHz

BL I 00 500 AC	_	EBEE:MT	ALIGNAUTO		Frequency	
enter Freq 5.580000000 GHz PNO: IFGain	Fast (+)	Trig: Free Run #Atten: 30 dB	Avg Type: Log-Pwr	TYPE MUMANIN	Frequency	
0 dB/div Ref 20.00 dBm			Mki	2 5.590 50 GHz -18.42 dBm	Auto Tun	
	-01				Center Fre	
0.00	2				5.58000000 GH	
10,0	_		¢ ²	-17 bil dBm	-	
20.0 30.0 40.0				and the second s	Start Fre 5.555000000 GH	
ອນຍ່ ອັນຍຸ	_	_			Stop Fre	
20.0		-	1 1 1 1		5.605000000 GH	
Center 5.58000 GHz Res BW 300 kHz	#VBW 1	.0 MHz	#Sweep	Span 50.00 MHz 500 ms (1001 pts)	CF Ste 5.000000 MH	
1 N T F 5.573 75 G	Hz	2.20 dBm	UNCTION FUNCTION WIDTH	FUNCTION VALUE	Auto Ma	
2 N 1 f 5.590 50 G 3 4 5 5 6	Hz	-18.42 dBm		-	Freq Offse 0 H	
8 9	-	_				
10						
14. I I I			Castan			

								pi 5A	yanı Swa	n Anal		ni-Spe	giler
				SINT)	3815	-	. I.			10	1		₿
MWWWW MNNNN	TYP	100/100	Avg Type Avg[Hold:				NO: Fast	1	150000	65	2.5	ker	lar
		Mkra				-	annico (*		20.00 4	Def		File:	
	- 1.4C		_	2	1	1	-	Bm	20.00 0	Ref	/	Bian	og
		_	1		-	+	-		_	+	_	-	10.0
-			40.000			1	and her			+	-	-	103
-			mund		acrea las	1	12		-	+	-	-	0.0
-20.91 (Drs				-	-	+		-	-	+	_	-	20,0
		March 1	_		-	+	1	- track the bar		-	_	-	50,0
tala in	and manuality	-www.		_	-	+		Wite	an wanter	NILES.	Marth	-	10,0
Mark Mark				_	-	+				1	Max	Mic/Y	0.0
					-	+	-			-	_		ao
			_		_	+				-			70.0
	(Co	2	÷		-	1	(S	1		1	_		
		Burnen			UILL-								
	and a second	1000		-	VIELZ	1.1	#VBW	_	n2				-
N VALUE	FUNCTIO	CTION WIDTH	TUN FU		00 dDa		O CHa	E CCE					1
F		-			33 dBn	4	O GHZ	5.650		f	1		2
	-			-		-			-	-	-		34
			2		_						_	_	5
	-			-	_	-							7
				-	_	_				-	-	_	8
				-	_							-	10
	-	-	-	-		-	-		_	-		-	12
	123456 10 NANANA 50 GHz 33 dBm 	-21.433 dBm	Ltop-Per 100/100 MKr2 1:2:3:4:5 cf WKr2 5:650 50 GHz -21.433 dBm -21.433 dBm -21.433 dBm -21.433 dBm -21.433 dBm -21.433 dBm -21.433 dBm -21.433 dBm	Avg Type: Log-Pwr Avg[Heid>100/100 TMACE [1:2:3:4:5:0] Det[#101/101 Mkr2 5.650 50 GHz -21.433 dBm 1 <	Avg Type: Log-Per Avg[Heid>100/100 TIME(]: 2 4 5 6 Det // 141/141 Mkr2 5.650 50 GHz -21.433 dBm 1 1 1 1 1 1 1 1 1 1 1 1 1	Arg Type: Log-Pur ArgB/1403>100/100 Trick [1:2:3:4:5:0 Tric: Free Run Atten: 30 dB Mkr2 1:00/100 Trick [1:2:3:4:5:0 Mkr2 5.650 50 GHz -21.433 dBm Start 1:00/100 Trick [1:2:3:4:5:0 Mkr2 1:00/100 Trick [1:2:3:4:5:0 Start 1:00/100 Mkr2 5.650 50 GHz -21.433 dBm -21.433 dBm Mkr2 5.650 50 GHz -21.433 dBm Start 1:00/100 Mkr2 5.650 50 GHz -21.433 dBm Start 1:00/100 Mkr2 5.650 50 GHz -20.00 MHz Start 1:00/100 MHz #Sweep 500 ms (1001 pts) ONHz Austron Manual Antonio Manual Anton	Avg Type: Log-Per Arg: Free Run Atten: 30 dB Mix Type: Log-Per Avg/Hold> Mix Cl [1:2:4:5:6] Per Mix Mix Mix Per Mix Mix Mix Per Mix Mix Per Mix Mix Per Mix Mix Per Mix Mix Per Mix Mix Mix Per Mix Mix Per Mix Mix Mix Per Mix Mix Mix Mix Per Mix Mix Mix Per Mix Mix Mix Mix Mix Mix Mix Mix Per Mix	HZ Trig: Free Run MiD: Fail 1: 20 45 50 Gain:Low Trig: Free Run Atten: 30 dB Mkr2 5.650 50 GHz -21.433 dBm 1 Mkr2 5.650 50 GHz -21.433 dBm 4 4 4 4 4 4 4 4 4 4 4 4 4	International International International International Avg Type Log-Pur Avg Type L	Stor Arg Trig: Free Run BEGaind.ow Arg Trig: Free Run Arg/Heid>100/000 1151/4494 Incl. 20.405 PRO: Fast BEGaind.ow Trig: Free Run Arg/Heid>100/000 Arg Trig: Free Run Arg/Heid>100/100 Trig: Free Run Arg/Heid>100/100 Trig: Free Run Run Arg/Heid>100/100 Trig: Free Run Arg/Heid>100/100 Trig: Free Run Run Arg/Heid>100/100 Trig: Free Run	Stur Stur <th< td=""><td>2 5.565050000000 GHz PRCF Fast</td><td>Ker 2 5.650500000000 GHz Trig: Free Run Areg Type: Log-Pur AvgType: Log-Pur AvgType:</td></th<>	2 5.565050000000 GHz PRCF Fast	Ker 2 5.650500000000 GHz Trig: Free Run Areg Type: Log-Pur AvgType:

Product	:	Wireless Access Point
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps) (Internal Antenna)

Chain B

Test Frequency	Measurement Level (20dB BW)	Limit	Result
(MHz)	(MHz)	(MHz)	
5580	5590.70	<5600	PASS
5660	5650.35	>5650	PASS

NOTE: The 5600~5650MHz band is not used in accordance with 15.215 requirement.

111Z
ALIGY AUTO 02:32:25 PM 3ar189, 2015 Avg Type: Log-Pwr 19Act 1: 2:3:4:5:6 Frequency
DET IN N N N N
Mkr2 5.590 70 GHz -18.42 dBm
Center Fre
5.58000000 GH
-17.54 dBm
Start Free
0.000000000
Stop Fre
5.60500000 GH
Span 50.00 MHz #Sweep 500 ms (1001 pts) 5.000000 MH
TON FUNCTION WIDTH FUNCTION VALUE
Freq Offse
Garanes

5580MHz

Marker	11:53:46 PM lan 29, 2015 IMACL 1 2 3 4 5 6	Log-Pwr	Avg Type	SERGENT	1 march		00000 GH	035000	2 5.65		B ar
Select Marker	DET P NNNNN	100/100	Avg Hold:	Free Run n: 30 dB	+ Atten: 3	NO: Fast C Gain:Low	PA				
2	5.650 35 GHz -22.236 dBm		0.00				iBm	20.00 0	Ref	B/div	
Norm		-	01	-	-			<	-	-	000
100			montimber	and more when	webnih-sheedin	pushernh 2					10,0
Delt	28.00	Manager I.	7	-	-	7	Contra march of				20 0 50 0
	many the second strategy and the	- Santaniy					Landon Martin	tu/phonester	annes and	WHEN	40,0
Fixed				-	-			-	-		60.0 70 D
	Span 50.00 MHz	5					-	GHz	.6600	ter 5	
0	00 ms (1001 pts)	Sweep 50			W 1.0 MH	#VB	_	KHZ	100	-	
				4 dBm	-2.064 (-22.236 (0 GHz 5 GHz	5.667 5 5.650 3	_	1 f 1 f	N	1
Properties						-		_	-		345
				-	-	-		_	-	-	6 7 8
Mor			-	_					-	-	9 10 11
								_			12

Product	:	Wireless Access Point
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n-40BW 30Mbps) (Internal Antenna)

Chain A

Test Frequency	Measurement Level (20dB BW)	Limit	Result
(MHz)	(MHz)	(MHz)	
5230	5249.10	<5250	PASS

NOTE: The 5600~5650MHz band is not used in accordance with 15.215 requirement.

Item Spectrom Analyzen: Swept SA Stock and yzen: Swept SA enter Freq 5.2300000000 GHz Trig: Free Run IfFGaind.ow Avg Type: Log-Pwv AvgHeid>100/100 D2/14/94 PM ab 00, 2015 PR0: Fast Cur IfFGaind.ow Trig: Free Run Atten: 30 dB Avg Type: Log-Pwv AvgHeid>100/100 D2/14/94 PM ab 00, 2015 D dB/div Ref 20.00 dBm -27.268 dBm Auto 00 -27.268 dBm -27.268 dBm 00 -27.268 dBm Start 00 -27.268 dBm Start <th>Tune</th>	Tune
Enter Freq 5.23000000 GHz PHO: Fast Freq Enn IFGainLow Avg Type: Log-Pwr AvgIHeid>100/100 MACE [::::::::::::::::::::::::::::::::::::	Tune
PRO Less Trig: Free Run Avginates 100/100 Trig: Free Run Avginates	Tun
b dB/div Ref 20,00 dBm -27.268 dBm 00 -27.268 dBm Center 01 -1 52300000 00 1000000 51000000 00 1000000 1000000 00 100000000 1000000 00 10000000000 10000000 00 1000000000000 10000000000000 000 1000000000000000000000000000000000000	Free
00 00 00 00 00 00 00 00 00 00	
100 100 100 100 100 100 100 100	
52300000 00 00 00 00 00 00 00 00	O GH
Start Start Start Start S.1800000 Start S.1800000	_
Start Start Start S.1800000 Start S.1800000	
000 5.1800000 5.1800000	Fre
10 Januaria Marking Carta and Carta	0 GH
10 determine	_
at Stop	Era
5.28000000	
enter 5.23000 GHz Span 100.0 MHz CF Res BW 100 kHz #VBW 1.0 MHz Sweep 9.27 ms (1001 pts) 10.00000	Ste
TRUNCTION AUTO AUTO	Ma
1 N f 5,241 3 GHz -6,457 dBm 2 N f 5,249 1 GHz -27,268 dBm	_
3 Freq C	offse
4 5 6	OH
6	
9	
0	
2	
a Hanas	

Product	:	Wireless Access Point
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n-40BW 30Mbps) (Internal Antenna)

Chain B

Test Frequency	Measurement Level (20dB BW)	Limit	Result
(MHz)	(MHz)	(MHz)	
5230	5249.00	<5250	PASS

NOTE: The 5600~5650MHz band is not used in accordance with 15.215 requirement.

				0 -0	UTITIE			
Indiani Spectru								
		AC AC	I.	3215274		#L104 #UTO	02:16:13 PMFeb 03, 2019	
Center Fre	9q 5.2300	PNO: Fast LT Trig: Free Run Avgilleid>100/100 Prio: Fast LT Trig: Free Run Avgilleid>100/100 Prio: File N.N.H.N.N.						
0 dB/div	Ref 20.00	dPm		-		Mk	r2 5.249 0 GHz -25.838 dBm	Auto Tune dBm Center Free 5.23000000 GH: Start Free 5.18000000 GH: Stop Free 5.28000000 GH: Stop Free 5.28000000 GH:
og	Rei 20.00	UDIII		1	10	T	1	-
10.0	-		_		at	-		Center Fre
0.03	-				- 12	-		5.230000000 GH
10,0	-		Arably	Monthly als	- energianes			
20,0	-		1	4	-	*	33.0m	Start Ero
30,0	1	1				X		
40.0	dia My	aller				march	Manda	S. Ideotoco di
SID Warth	www.www.W9						and a sublempt	Contraction of the
60.0	-	-			-	-		Stop Fre
70.0	-	-	-			-		5.280000000 GH
Center 5.2	3000 GHz	-	1.1		-	-	Span 100.0 MHz	
Res BW 1	00 kHz	1. A	#VBW	1.0 MHz		Sweep	9.27 ms (1001 pts)	CF Ste 10.000000 MH
MARE MODE THE	501			T T	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	Auto Ma
1 N	f	5,242 5 5,249 0		-5.247 dBm -25.838 dBm				
3		5,2450	Griz	20.000 0011				Freq Offse
4								OH
5 6 7			_		-			-
8								
9			-					
11	_							
1.2.1				1				1
tsu						ATATLS	-	

Product	:	Wireless Access Point
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps) (External Antenna)

Test Frequency	Measurement Level (20dB BW)	Limit	Result
(MHz)	(MHz)	(MHz)	
5580	5589.90	<5600	PASS
5660	5650.05	>5650	PASS

NOTE: The 5600~5650MHz band is not used in accordance with 15.215 requirement.

		558	UMINZ	5					
Agileni Spectrom Analyzer PI Center Freq 5.58	5012 AC 00000000 GHz PN0: East C	Trig: Free Run		ALIGNAUTO Type: Log-Pwr		Frequency			
o dB/div Ref 20.	Mkr2 5.589 90 GHz								
		01				Center Fre			
10.0	/			2	-163@	5.580000000 GH			
30.0 40.0	- And			-	and the second	Start Fre 5.555000000 GH			
800						Stop Fre			
enter 5.58000 Gł Res BW 300 kHz		W 1.0 MHz		#Sweep	Span 50.00 MH 500 ms (1001 pts				
	5,575 40 GHz 5,589 90 GHz	1.71 dBm -18.75 dBm	TUNCTION	FUNCTION WIDT	H FUNCTION VALUE	Auto Ma			
3 4 5 6						Freq Offse			
7 8 9 10									
11 12 50				(atan	18				

5580MHz

				2000						
							Analyzar 5	ectron		
Frequency	11:46:53 AM Jan 19, 2015	Log-Pwr	Ave Te	SERVER	CUE	00 40		1		8
12 3 4 5 6 Frequency 12 3 4 5 6 Frequency 12 3 4 5 6 Auto Tune 6 dBm Center Freq 5.66000000 GHz 5.65000000 GHz -17 20 db Start Freq 5.655000000 GHz 5.655000000 GHz 5.655000000 GHz 5.655000000 GHz 0.00 MHz CF Step 0.00 MHz CF Step	DET MUNNIN	Log-rwr	Avgity	Trig: Free Run #Atten: 30 dB	PRO: Fast	0000000	q 5.6600	Fre	nter	er
	Mkr2 5.650 05 GHz -20.36 dBm -20.36 dBm									
C Street.			1	1			1			go
			0.							10.0
5.66000000 GH			V		1.1		1	_		0.00
	-17.90 dBm		1 3		2	1	1			0.0
Start Fre		-			1	-	1	_		0.0
	~	-				Lin	and.			30.0
	and the second		-				- wooded	Jun	4	10,0
1 2005	- ALS				-		1			50.0
		_	-		-	-	1	-		60.0
5.685000000 GF					-		1	-		0.0
CE Cto	Span 50.00 MHz	diam.		a+6407	store to a	2	000 GHz			
	0 ms (1001 pts)	#Sweep 5		1.0 MHz	#VBW	_	00 kHz	W 30	S B	Re
Auto Ma	FUNCTION VALUE	CTION WIDTH	RETION			×		TRE		
			-	2.10 dBm -20.36 dBm	4 80 GHz 0 05 GHz	5.664	F	1	NN	1
Freq Offs							-			34
01			-				_		-	56
	-		-		-		-		-	67
	-		-				_		_	8
		-					-		-	10
			-				-		-	11
		Costanus.						-	1	SUL
		-0							_	~

Product	:	Wireless Access Point
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps) (External Antenna)

Chain A

Test Frequency	Measurement Level (20dB BW)	Limit	Result
(MHz)	(MHz)	(MHz)	
5580	5590.50	<5600	PASS
5660	5650.40	>5650	PASS

NOTE: The 5600~5650MHz band is not used in accordance with 15.215 requirement. 5580MHz

Frequency	03:33:00 PM Jan 19, 2015	ALIGN AUTO	IT	TRIES I		NC .		1 0		∎ ₿
Frequency Auto Tune Center Freq	TYPE MWWWWW DET MNNNN	Avg Type: Log-Pwr		Trig: Free Run #Atten: 30 dB	HZ NO: Fast 😱 Gain:Low	5.58000	Freq	nter	Cer	
	2 5.590 50 GHz -19.68 dBm	Mkr2		10 dB/div Ref 20.00 dBm						
		1		17	1 1		1 20.00	v ne		og
and the second sec			1	0			-			10.0
5.58000000 GH		1			17			-		0.00
	-17.57 dDm	1 ²	- 1		1		_	-		10.0
Start Fre		The second se			-	/				20.0
5.555000000 GH	may	-				-	-		3	30.0
	The states						-	1-200	1 agest	40,0
I PARONE:							-	-		50.0
Stop Fre 5.605000000 GH			-				-	-	1 - I	60.0
5.60500000 GF			-						0	70.0
CF Ste	Span 50.00 MHz 500 ms (1001 pts)	#Sween		1.0 MHz	#VRW		O GHz	5.5800 W 300		
5.000000 MH			-	1.0 10112	#VDVV				-	-
Auto Ma	FUNCTION VALUE	FUNCTION WIDTH	FUNC	2.03 dBm	5 GHz	5.581 3		TRE SU	N	1
			_	-19.68 dBm	60 GHz	5.590 6	-	1 f	N	3
Freq Offse		1	_							4
01			-		-		-	-	-	56
			_				-			78
	-								-	9
			-							10 11
			_					100	_	12
		Lo STATUS								10

					0001							
									alyzer Swe			
Marker	AM Jan 30, 2015		1 no.Pwr	Ave Tune	ISSEMT	1 38	l l	AC	5040000	2 6 6		B
Select Marker 2 Normal	ET P NNNN	TVPE NUMANINA		Avg Type: Log-Pwr Avg Hold>100/100		Trig: Free Run Atten: 30 dB		P IF	5040000	2 3,0	Kel	Mar
	40 GHz 12 dBm		Mkra					Bm	f 20.00 d	Pr	B/div	
				1.000	-	1		Ditt	20.00 0	- 14		go.
Norm		-					01					10.0
, as the				andlowling	milmiliada	whenter	muntin	10.0				0.00
	21.15.050	-		1		_	2		1			10,0
		-	W.						1			0.0
Det			"and white					100monthe added				90,0 40,0
	144 March -	MAN MANA			-			-	howthereast	antimo		910 910
											Pm	a.o
Fixed			1 1									70.0
		C	2000	12 1			2	1		-		
	0.00 MHz								O GHz	5.660 N 100		
0	1001 pts)		-		-	1.0 MHz	#VBW	_		1.00	-	-
-	DN WALKE	FUNCTION	CTION WIDTH	NETION FU		-1.156 df	0 GHz	5.6537		1 F	NODE	1
r	h		-	-	3m	-1.156 df -21.712 df	0 GHz	5.650 4	-	1 f	N	23
Properties	1				_		_		-		_	4
and store			_	- 1			_		-	-	-	56
		-			-		-		-	-		78
Mo	-			-	-		-		-	_	_	9
1 of 2		_	-								_	10 11
			-	-	_	_	-			1		12
			TATLE							_		50

Product	:	Wireless Access Point
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps) (External Antenna)

Chain B

Test Frequency	Measurement Level (20dB BW)	Limit	Result
(MHz)	(MHz)	(MHz)	
5580	5590.65	<5600	PASS
5660	5650.50	>5650	PASS

NOTE: The 5600~5650MHz band is not used in accordance with 15.215 requirement.

		550				
Agleni Spectrom Analyzer 3 8 81 5 Center Freq 5,580	- 34 IZ	THESE A		PLICHAUTO	03:38:11 PM Jan 19, 20 IMACE 1 2 3 4 5	Frequency
senter rreq aloos	PNO: Fast G	#Atten: 30 dB			DET MINNIN	NN
0 dB/div Ref 20.00) dBm			Mkr	2 5.590 65 GH -16.41 dB	
0g		1				Center Fre
0.00	1			12		5.58000000 GH
0.0	1				-1610 d	Bm
30.0	North Contraction of the Contrac					Start Fre 5.555000000 GH
40.0				-		5.55500000 GH
30.0						Stop Fre
70.0						5.605000000 GH
Center 5.58000 GHz Res BW 300 kHz		V 1.0 MHz		#Sweep	Span 50.00 Mi 500 ms (1001 pt	CF Ste
	X COLOR		FUNCTION	FUNCTION WIDTH	FUNCTION WALUE	5.000000 MH
2 N 1 f	5.575 15 GHz 5.590 65 GHz	3.92 dBm -16.41 dBm	_			
4 5 6						Freq Offse
7 8						
9					-	
11		-				
SU				Co STATLS		

5580MHz

Marker	12:08:29 AM Jan 30, 2015 MACE 1:7 3:4 5:6	Log-Pwr	Avg Type	TWEER	1	1	00000 GH		256		B
Select Marker	DET PNNNNN		Avg Hold:		Trig: Free Atten: 30 d	NO: Fast G	P	505000	2 3,0	Ker	ar
2	5.650 50 GHz -20.228 dBm	Mkr2			-		IBm	ef 20.00 c	v Re	B/div	
Norma			Q'		molentarias -					-	00 10.0
_	-20.47 (Brit				1	¢ ²				-	0.0
Delt	Yesperartinen and an	and and the second		1		1	and the print of the	مرد میں والدوں رو			0.0
	- Martines Constraints			-				-	himmon		
Fixed	1			_							50.0
0	Span 50.00 MHz 00 ms (1001 pts)	#Sweep 50			1.0 MHz	#VBW			W 100	s Bl	Re
	FUNCTION VALUE	CTION WIDTH	NETTON TOP	3m	-0.465 dB	5 GHz	5.666 2		TRE SO	N	1
-				sm	-20.228 dB	OGHZ	5.650 5	-		N	3
Properties	-			-		_		-			5
Properties Mor											4 5 6 7 8 9 0 1

Product	:	Wireless Access Point
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n-40BW 30Mbps) (External Antenna)

Chain A

Test Frequency	Measurement Level (20dB BW)	Limit	Result
(MHz)	(MHz)	(MHz)	
5550	5569.60	<5600	PASS
5670	5650.80	>5650	PASS

NOTE: The 5600~5650MHz band is not used in accordance with 15.215 requirement.

Agileni-Spectrum Analy	and Report PA				
BL 1 05	550000000 GHz PRO: Fast	Trig: Free Run #Atten: 30 dB	Avg Type: Log-Pwr	05:05:21 PM Jan 19, 2015 FRACE 1 2 3 4 5 6 FYRE MWWWWWW DET M N N N N	Frequency
	IFGain:Low	#Aπen: 30 dB	M	r2 5.569 6 GHz	Auto Tun
0 dB/div Ref	20.00 dBm			-19.07 dBm	
10.0					Center Fre
0.00			V		5.550000000 GH
0.0	1	-	2-	-1903-091	
20.0				-1403 091	Start Fre
40.0	And and a second s			the more marine	5.50000000 G
00				- In	-
60.0					Stop Fre
70.0			-		5.60000000 GH
Center 5.55000	GHz	1 1		Span 100.0 MHz	
Res BW 300 k	Hz #VE	SW 1.0 MHz	#Sweep	500 ms (1001 pts)	CF Ste 10.000000 MH
1 N 1 F	5,558 3 GHz	0.97 dBm	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	Auto Ma
2 N 1 f	5.569 6 GHz	-19.07 dBm			
34					Freq Offse
5 6 7					OH
8					
9				1	
11 12		-			
50			Lostan:		

5550MHz

						-						
									nalyzen Swe			
Marker	1 an 30, 2015	IBACI	Log-Pwr	Ava Typ	SEANT	1 38			5080000	256		B B
Select Marke	PNNNNN	TYPE DE		Avg Hold		Trig: Free Atten: 30	NO: Fast 😱 Sain:Low	PI	5080000	2 0,0	Kei	naj
	8 GHz 7 dBm	-24.92	Mk			-		Bm	ef 20.00 d	Re	Bidiv	0 0
				1								0g
Norm				1	~							0.00
				marker	- Wenter	which had an		10.11				10.0
						-	2		1			10.0
Del	~2000 (Ben)			1			y	1	1			51.0
De			- the told					Andrew verter	a site			100
	Andel	and the state of t	No. optimised and a second						- and farming the for	mailwe	lui	50.0
	and the							1.1	1.1.1			50.0
Fixed	1.1.1								1.7.1		V	70.0
		100000	2 2	1			5	1.00	-	-	1	
	0.0 MHz		#Sweep			1.0 MHz			DO GHZ	5.670 W 100		
0		and a second	100 million (100 million)	-	_	1.0 10172	#VBW			-	_	-
	A MALUE	FUNCTIO	SCTION WIDTH	TION FU		-3.933 dE	7 GHz	5.678		TRC 50		1
r	h		-	-	Im	-24.927 dE	8 GHz	5,650		1	NN	3
Properties	1	-					_					4
		1			-		_		-		-	56
					-		-		-		-	78
Mo									-	_	-	9
1 0				-	-		-		-			10 11
-						_			1	1.1		12
			TATLE									su

Product	:	Wireless Access Point
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n-40BW 30Mbps) (External Antenna)

Chain B

Test Frequency	Measurement Level (20dB BW)	Limit	Result
(MHz)	(MHz)	(MHz)	
5550	5570.30	<5600	PASS
5670	5650.80	>5650	PASS

NOTE: The 5600~5650MHz band is not used in accordance with 15.215 requirement.

						-			
Agileni Speck	um Analyzer								
BL I		50 12 AC	-	THE R		ALIGN AUTO	05:09:07 PM Jan 19, 2015		
Center F	req 5.550	0000000 GH	Z IO: Fast G Sain:Low	Trig: Free Rui #Atten: 30 dB	n	Type: Log-Pwr	TYPE MWWWWWW DET P NNNN		
0 dB/div	Ref 20.0	0 dBm				Mk	r2 5.570 3 GHz -18.62 dBm		
go		1			14			1 Same	
10.0					0			Center Fre	
0.03	-	-	1	the state		1		5.550000000 GH	
10.0		-	1	1	_	2	-10.00 dBm		
20.0	- Annah		-			the second secon	-	Start Fre	
-30.0	say forman						and the second	5.50000000 G	
40,0	-	-						0.0000000000	
50.0	-	-							
60.0	-	-						Stop Fre	
70.0	-	_						5.60000000 GH	
			-	1 1		4 2 3		-	
#Res BW	55000 GH 300 kHz	2	#VBV	1.0 MHz	1.1.1	#Sweep	Span 100.0 MHz 500 ms (1001 pts)		
NKH MODE T		~		Ŷ	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	Auto Ma	
1 N	1	5.561	3 GHZ	1.92 dBm -18.62 dBm				1	
3		0.0101	O OTTA	-TO OL GENT				Freq Offse	
4 5			-			-		OH	
6									
7 8			-						
9						1			
11									
12						1			
U.S.C.						LA STATLS			

5550MHz

	00000 GHz	SERVERS	Avg Type: Log-Pwr	12:09:45 AM Jan 30:2015 MACE 1 2 3 4 5 6	Marker
	PNO: Fast IFGain:Low	Atten: 30 dB	Avg Hold: 59/100	Det MNNNN	Select Marker
0 dB/div Ref 20.00	dBm		Mk	r2 5.650 8 GHz -23.781 dBm	2
00		Q1			Norma
20.0	ىدىدىر 2	and should am for be here	whentreality	32.00	-
50.0 40.0 51.0 mennenenenenenenen			Verinterior	Womanial and a life	Delta
60.0				- market whether have	Fixed
Center 5.67000 GHz				Span 100.0 MHz	
Res BW 100 kHz		W 1.0 MHz	#Sweep икспом политим мотн	500 ms (1001 pts)	or
	5,661 3 GHz 5,650 8 GHz	-3.230 dBm -23.781 dBm			
3					Properties
4 5 6				1	
4					Mon

Product	:	Wireless Access Point
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 6: Transmit (802.11ac-80BW-65Mbps) (External Antenna)

Chain A

Test Frequency	Measurement Level (20dB BW)	Limit	Result
(MHz)	(MHz)	(MHz)	
5530	5569.20	<5600	PASS
5690	5650.60	>5650	PASS

NOTE: The 5600~5650MHz band is not used in accordance with 15.215 requirement.

	AM Jan 30, 2015	12/16/05	INTO AUTO		NCE-TVT			AF	501/	1 - 12	1 - 1	B
Marker	6123456	111/	: Log-Pwr	Avg Typ		The second	lz	0000 GH				
Select Marker	ET PNNNNN	PRO: Fast Trig: Free Run Avg[Heid: 94/100 PRO: Fast Free Run Avg[Heid: 94/100 PRO: Fast Free Run Avg[Heid: 94/100 PRO: Free										
2	9 2 GHz 73 dBm		Mk					Bm	f 20.00 d	Re	B/div	0 di
-		_	-	1			-	1.12				0g
Norma		-		_		01	_		_		-	103
	-	-			aleman	willistation.				-	-	0.0
-	-17.45 dBm	-	2	1 0					-	-	-	20 0
Delta	1.1		Lamateria		-		100	a Margaret	- L.			50,0 10,0
	Angener I.	Antonitau .	- and						and the second second	white	1.000	510
6 A 4		1.1							1		r	50.0
Fixed	_	_		-	_	-	_	_	_	_	-	70.0
	200.0 MHz							-	GHz			
0	(1001 pts)	_			-	W 1.0 MHz	#VB	_		/ 100		-
	OW VALUE	PUNCT	ICTION WIDTH	NEITON P	Bm	-7.490 di	GHZ	5.5150		TRU 50	NN	1
A			-	-	Bm	-27.973 di	GHz	5.569 2	-	f	N	3
Properties					-		-		-	-		4
						_	-				-	6
Mor			_		-	-	-		-	-	-	8
1 of					-				-	-	-	10
-				1	-					A. 8		2

5	69	0N	Лŀ	Ηz
\mathcal{I}	$\overline{\mathbf{v}}$	O1	11	12

	M Jan 30, 2015		STUMPTO	- der	HER MIT	128	L.		102	1 R.		₿
Marker	TYPE MUMANANY		Avg Type: Log-Pwr MMCE 1.7 3. e Run Avg/Hold: 91/100 Tyte: MWWA		Trig: Free	HZ NO: Fast G	0000 G	6060000	2 5,65	ker 2	lar	
Select Marker	MNNNN	68		1.1.4		Atten: 30	GaintLow	16				
2	0 6 GHz 66 dBm		Mki					Bm	20.00 d	Ref	B/div	0 4
		-	-	10.000	-	-				14-2	-	.og
Norm					.1							10.0
	1 million (1997)		1		w. Lun	unand	1	10.00				10.0
	-	-		- statement	- margaritan		5					20.0
Delt	-37 50 cBm	-				_	•					30.0
Den			Mary	1			1	- Aller				40.0
	S. 1.	annada	- Andrewson		_				presidentes and	-	Lak	510
	montermoute	- M	Malanda and					1.11		12	-	60.0
Fixed		2.23			-						-	70.0
		C		1			2				1	
	00.0 MHz		#Sweep			1.0 MHz	#1/81			.6900 (100 k		
0				_	-	1.0 10112	#VBI		N/12	_		-
	IN WELLE	FUNCTIO	RCTION WIDTH	CHON P	Bm	-7.589 di	8 GHz	5,698		THE SEL	NZ	1
					3m	-28.166 di	6 GHz	5.650	_	1	N	23
Properties					_				-			4
							-			-	-	56
					-		-		-	-	-	78
Mo				-	-		-			-	-	9
Mo		-							_	-	-	9 10 11

Product	:	Wireless Access Point
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 6: Transmit (802.11ac-80BW-65Mbps) (External Antenna)

Chain B

Test Frequency	Measurement Level (20dB BW)	Limit	Result
(MHz)	(MHz)	(MHz)	
5530	5569.80	<5600	PASS
5690	5650.60	>5650	PASS

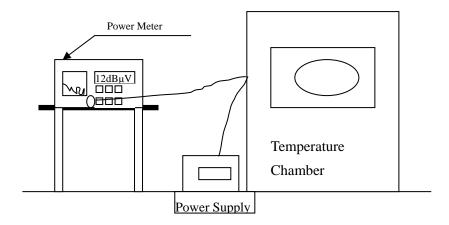
NOTE: The 5600~5650MHz band is not used in accordance with 15.215 requirement.

									nalyzer Swe			Agiler
Marker		Avg Type: Log-Pwr IIIAct 2345		12112	-		CODOOO			8		
Select Marker	DET MINNINN		rig: Free Run Avg Hold>100/100 IVPE		Trig: Free Run Atten: 30 dB		569800000000 GHz PNO: Fast			rker	Mar	
2	8 GHz 7 dBm	2 5.569	Mk					Bm	ef 20.00 d	Re	B/div	0.4
		1		-			1	Entre I	1 20.00 0	14		.og
Norma					- 61			0 1 1 1				10.0
	1			Manteres	munites	amun .		10 - 1				10.0
	-2635 abri	-	¢ ²	-						-		20,0
Delt	200	· Anorena	monteret					Contraction and Contraction	Administration of the state			30,0 40,0
	- aller									and the second second	and a	50,0
Fixed	_	-	-		_	_				_		60.0
Fixed	_	_	-		_		-			-	1	70.0
-	00.0 MHz			-	-	30.34.5	2.00		0 GHz			
0			#Sweep		_	1.0 MHz	#VBW	-		N 100		-
	N VALUE	PUNCTION	NCTION WIDTH	TON	FUNC	-6.349 dBm	GHZ	5.545 0		TRC 50		1
ō				-	n	-27.237 dBm	BGHZ	5.569 8		f	NN	3
Properties					-		_		-	_	-	4
	_		_	- 1	-		_		-	_	_	567
Mor				-	-		_		-			8 9
1 of							-		-	-		10
							1.1			1. 1		12
	-		TATLS									su

5530MHz

									alyzer Swe			
Marker	AM Jan 30, 2015	FILAC	Log-Pwr	Avg Type Avg Hold:	EERIT	Terrare and		00000 G		2 5,65		ar lar
Select Marke	ET MNNNN	62	00/100	Avginoia		Atten: 30	Gain:Low	P IE				
	0 6 GHz 80 dBm		Mk					IBm	f 20.00 c	Ref	Bidiv	0 di
		-			_	-				-	-	0g
Norm		-				0 ¹		-		-	-	0 63
	-			will inter	nt.lution.l.m	alling alide	2	L				0.0
Del	-26 52 dbm			1	_		2	-	_	-	-	50,0
		1.	- serenter	-		-		A for the star	AL-LE-LOPICH			10.0
1. C.N.	an heaterthe	and the second					1	1 1 1			Party of	0.0
Fixed	1						-					70.0
	00.0 MHz	Span 2		12 - 1				-	GHz	.6900	ter 5	en
	1001 pts)		#Sweep	-		1.0 MHz	#VB			V 100 H		
_	UN VALUE	FUNCTION	CTION WIDTH	UTON FUI		-6.521 di	8 GHz	5.673		TRE SEL	N	1
()					3m	-27.780 di	6 GHz	5.650		f	N	3
Properties		-		1	-		-		-			4
		-				_					-	67
Mo		_		-	-					-	-	8
10		_		1	-		_					10 11 12
		-	STATLS	1	1						-	121

8. Frequency Stability


8.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun., 2014
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun., 2014
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2014

Note:

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

8.2. Test Setup

8.3. Limits

Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified

8.4. Test Procedure

The EUT was tested to procedure of ANSI C63.10: 2009 Section 6.8 for compliance to FCC 47CFR Subpart E requirements.

8.5. Uncertainty

± 150 Hz

8.6. Test Result of Frequency Stability

Product	:	Wireless Access Point
Test Item	:	Frequency Stability
Test Site	:	Temperature Chamber
Test Mode	:	Carrier Wave (Internal Antenna)

Chain A

Test Co	onditions	Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
		36	5180.0000	5180.1400	-0.1400
		38	5190.0000	5190.0060	-0.0060
		44	5220.0000	5220.0080	-0.0080
		46	5230.0000	5230.0060	-0.0060
		48	5240.0000	5240.0060	-0.0060
Tnom (20) °C	Vnom (120)V	52	5260.0000	5260.1200	-0.1200
		60	5300.0000	5300.0080	-0.0080
		64	5320.0000	5320.1200	-0.1200
		100	5500.0000	5500.1100	-0.1100
		116	5580.0000	5580.0080	-0.0080
		140	5700.0000	5700.0110	-0.0110
		36	5180.0000	5179.9840	0.0160
		38	5190.0000	5189.9860	0.0140
		44	5220.0000	5219.9880	0.0120
		46	5230.0000	5229.9840	0.0160
		48	5240.0000	5239.9840	0.0160
Tmax (50) °C	Vmax (138)V	52	5260.0000	5259.9860	0.0140
		60	5300.0000	5299.9880	0.0120
		64	5320.0000	5319.9840	0.0160
		100	5500.0000	5499.9880	0.0120
		116	5580.0000	5579.9860	0.0140
		140	5700.0000	5699.9840	0.0160

		36	5180.0000	5179.9840	0.0160
		38	5190.0000	5189.9860	0.0140
		44	5220.0000	5219.9880	0.0120
		46	5230.0000	5229.9840	0.0160
		48	5240.0000	5239.9840	0.0160
Tmax (50) °C	Vmin (102)V	52	5260.0000	5259.9860	0.0140
		60	5300.0000	5299.9880	0.0120
		64	5320.0000	5319.9840	0.0160
		100	5500.0000	5499.9880	0.0120
		116	5580.0000	5579.9860	0.0140
		140	5700.0000	5699.9840	0.0160
		36	5180.0000	5180.0110	-0.0110
		38	5190.0000	5190.0120	-0.0120
		44	5220.0000	5220.0110	-0.0110
		46	5230.0000	5230.0120	-0.0120
		48	5240.0000	5240.0130	-0.0130
Tmin (-10) °C	Vmax (138)V	52	5260.0000	5260.0110	-0.0110
		60	5300.0000	5300.0120	-0.0120
		64	5320.0000	5320.0120	-0.0120
		100	5500.0000	5500.0120	-0.0120
		116	5580.0000	5580.0120	-0.0120
		140	5700.0000	5700.0120	-0.0120

		36	5180.0000	5180.0120	-0.0120
		38	5190.0000	5190.0120	-0.0120
		44	5220.0000	5220.0110	-0.0110
		46	5230.0000	5230.0120	-0.0120
		48	5240.0000	5240.0130	-0.0130
Tmin (-10) °C	Vmin (102)V	52	5260.0000	5260.0110	-0.0110
		60	5300.0000	5300.0120	-0.0120
		64	5320.0000	5320.0120	-0.0120
		100	5500.0000	5500.0120	-0.0120
		116	5580.0000	5580.0120	-0.0120
		140	5700.0000	5700.0120	-0.0120

Product	:	Wireless Access Point
Test Item	:	Frequency Stability
Test Site	:	Temperature Chamber
Test Mode	:	Carrier Wave (External Antenna)

Chain A

Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
		36	5180.0000	5180.0120	-0.0120
		38	5190.0000	5190.0130	-0.0130
		44	5220.0000	5220.0110	-0.0110
		46	5230.0000	5230.0090	-0.0090
		48	5240.0000	5240.0110	-0.0110
		52	5260.0000	5260.0080	-0.0080
		54	5270.0000	5270.0120	-0.0120
Tnom (20) oC	Vnom (120)V	60	5300.0000	5300.0090	-0.0090
1110111 (20) OC	V HOIII (120) V	62	5310.0000	5310.0060	-0.0060
		64	5320.0000	5320.0080	-0.0080
		100	5500.0000	5500.0090	-0.0090
		102	5510.0000	5510.0110	-0.0110
		110	5550.0000	5550.0120	-0.0120
		116	5580.0000	5580.0060	-0.0060
		134	5670.0000	5670.0080	-0.0080
		140	5700.0000	5700.0110	-0.0110
		36	5180.0000	5179.9840	0.0160
		38	5190.0000	5189.9860	0.0140
		44	5220.0000	5219.9840	0.0160
		46	5230.0000	5229.9830	0.0170
		48	5240.0000	5239.9860	0.0140
		52	5260.0000	5259.9840	0.0160
		54	5270.0000	5269.9820	0.0180
$T_{max}(50) \circ C$	V_{max} (129) V	60	5300.0000	5299.9860	0.0140
Tmax (50) oC	Vmax (138)V	62	5310.0000	5309.9840	0.0160
		64	5320.0000	5319.9850	0.0150
		100	5500.0000	5499.9860	0.0140
		102	5510.0000	5509.9840	0.0160
		110	5550.0000	5549.9860	0.0140
		116	5580.0000	5579.9840	0.0160
		134	5670.0000	5669.9860	0.0140
		140	5700.0000	5699.9850	0.0150

		36	5180.0000	5179.9840	0.0160
		38	5190.0000	5189.9860	0.0140
		44	5220.0000	5219.9840	0.0160
		46	5230.0000	5229.9830	0.0170
		48	5240.0000	5239.9860	0.0140
		52	5260.0000	5259.9840	0.0160
		54	5270.0000	5269.9840	0.0160
$T_{max}(50)$ ⁹ C	V_{min} (102) V	60	5300.0000	5299.9860	0.0140
Tmax (50) °C	Vmin (102)V	62	5310.0000	5309.9840	0.0160
		64	5320.0000	5319.9850	0.0150
		100	5500.0000	5499.9840	0.0160
		102	5510.0000	5509.9840	0.0160
		110	5550.0000	5549.9860	0.0140
		116	5580.0000	5579.9840	0.0160
		134	5670.0000	5669.9860	0.0140
		140	5700.0000	5699.9840	0.0160
		36	5180.0000	5180.1600	-0.1600
		38	5190.0000	5190.1500	-0.1500
		44	5220.0000	5220.1700	-0.1700
		46	5230.0000	5230.1600	-0.1600
		48	5240.0000	5240.1500	-0.1500
		52	5260.0000	5260.1600	-0.1600
		54	5270.0000	5270.1700	-0.1700
Tmin (-10) °C	Vmov (129)V	60	5300.0000	5300.1800	-0.1800
1 mm (-10) C	Vmax (138)V	62	5310.0000	5310.1600	-0.1600
		64	5320.0000	5320.1500	-0.1500
		100	5500.0000	5500.1600	-0.1600
		102	5510.0000	5510.1800	-0.1800
		110	5550.0000	5550.1600	-0.1600
		116	5580.0000	5580.1800	-0.1800
		134	5670.0000	5670.1500	-0.1500
		140	5700.0000	5700.1600	-0.1600

-					
		36	5180.0000	5180.1600	-0.1600
		38	5190.0000	5190.1500	-0.1500
		44	5220.0000	5220.1700	-0.1700
		46	5230.0000	5230.1600	-0.1600
		48	5240.0000	5240.1500	-0.1500
		52	5260.0000	5260.1600	-0.1600
	Vmin (102)V	54	5270.0000	5270.1700	-0.1700
Tmin (-10) °C		60	5300.0000	5300.1800	-0.1800
111111 (-10) C		62	5310.0000	5310.1600	-0.1600
		64	5320.0000	5320.1500	-0.1500
		100	5500.0000	5500.1600	-0.1600
		102	5510.0000	5510.1800	-0.1800
		110	5550.0000	5550.1600	-0.1600
		116	5580.0000	5580.1800	-0.1800
		134	5670.0000	5670.1500	-0.1500
		140	5700.0000	5700.1600	-0.1600

Product	:	Wireless Access Point
Test Item	:	Frequency Stability
Test Site	:	Temperature Chamber
Test Mode	:	Carrier Wave (External Antenna)

Chain A

Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	∆F (MHz)
		42ac80	5210.0000	5210.0120	-0.0120
		58ac80	5290.0000	5290.0080	-0.0080
	V. (120)V.	106ac80	5530.0000	5530.0080	-0.0080
Tnom (20) °C	Vnom (120)V	138ac80	5690.0000	5690.0100	-0.0100
		142F	5710.0000	5710.0080	-0.0080
		144	5720.0000	5720.0060	-0.0060
Test C	onditions	Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
	Vmax (138)V	42ac80	5210.0000	5209.9840	0.0160
		58ac80	5290.0000	5289.9860	0.0140
T		106ac80	5530.0000	5529.9840	0.0160
Tmax (50) °C		138ac80	5690.0000	5689.9840	0.0160
		142	5710.0000	5709.9860	0.0140
		144	5720.0000	5719.9840	0.0160
Test C	Test Conditions		Frequency (MHz)	Frequency (MHz)	∆F (MHz)
		42ac80	5210.0000	5209.9840	0.0160
		58ac80	5290.0000	5289.9860	0.0140
Tmax (50) °C	V_{min} (102) V_{min}	106ac80	5530.0000	5529.9840	0.0160
1 max (30) C	Vmin (102)V	138ac80	5690.0000	5689.9840	0.0160
		142	5710.0000	5709.9860	0.0140
		144	5720.0000	5719.9840	0.0160

Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
		42ac80	5210.0000	5210.0160	-0.0160
		58ac80	5290.0000	5290.0170	-0.0170
T · (10) 00	V (120)V	106ac80	5530.0000	5530.0170	-0.0170
Tmin (-10) °C	Vmax (138)V	138ac80	5690.0000	5690.0170	-0.0170
		142F	5710.0000	5710.0160	-0.0160
		144	5720.0000	5720.0150	-0.0150
Test C	Test Conditions		Frequency (MHz)	Frequency (MHz)	△F (MHz)
		42ac80	5210.0000	5210.0160	-0.0160
		58ac80	5290.0000	5290.0170	-0.0170
T_{min} (10) ^{9}C		106ac80	5530.0000	5530.0170	-0.0170
Tmin (-10) °C	Vmin (102)V	138ac80	5690.0000	5690.0170	-0.0170
		142F	5710.0000	5710.0160	-0.0160
		144	5720.0000	5720.0150	-0.0150

Product	:	Wireless Access Point
Test Item	:	Frequency Stability
Test Site	:	Temperature Chamber
Test Mode	:	Carrier Wave (Internal Antenna)

Chain B

Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
		36	5180.0000	5180.0120	-0.0120
		38	5190.0000	5190.0110	-0.0110
		44	5220.0000	5220.0130	-0.0130
		46	5230.0000	5230.0130	-0.0130
		48	5240.0000	5240.0110	-0.0110
Tnom (20) °C	Vnom (120)V	52	5260.0000	5260.0160	-0.0160
		60	5300.0000	5300.0160	-0.0160
		64	5320.0000	5320.0080	-0.0080
		100	5500.0000	5500.0120	-0.0120
		116	5580.0000	5580.0060	-0.0060
		140	5700.0000	5700.0110	-0.0110
		36	5180.0000	5179.9840	0.0160
		38	5190.0000	5189.9880	0.0120
		44	5220.0000	5219.9860	0.0140
		46	5230.0000	5229.9840	0.0160
		48	5240.0000	5239.9840	0.0160
Tmax (50) °C	Vmax (138)V	52	5260.0000	5259.9860	0.0140
		60	5300.0000	5299.9880	0.0120
		64	5320.0000	5319.9840	0.0160
		100	5500.0000	5499.9860	0.0140
		116	5580.0000	5579.9860	0.0140
		140	5700.0000	5699.9880	0.0120

		36	5180.0000	5179.9840	0.0160
		38	5190.0000	5189.9840	0.0160
		44	5220.0000	5219.9860	0.0140
		46	5230.0000	5229.9840	0.0160
		48	5240.0000	5239.9840	0.0160
Tmax (50) °C	Vmin (102)V	52	5260.0000	5259.9860	0.0140
		60	5300.0000	5299.9880	0.0120
		64	5320.0000	5319.9840	0.0160
		100	5500.0000	5499.9860	0.0140
		116	5580.0000	5579.9880	0.0120
		140	5700.0000	5699.9880	0.0120
		36	5180.0000	5180.0110	-0.0110
		38	5190.0000	5190.0120	-0.0120
		44	5220.0000	5220.0110	-0.0110
		46	5230.0000	5230.0110	-0.0110
		48	5240.0000	5240.0120	-0.0120
Tmin (-10) °C	Vmax (138)V	52	5260.0000	5260.0120	-0.0120
		60	5300.0000	5300.0110	-0.0110
		64	5320.0000	5320.0110	-0.0110
		100	5500.0000	5500.0120	-0.0120
		116	5580.0000	5580.0110	-0.0110
		140	5700.0000	5700.0120	-0.0120

		36	5180.0000	5180.0110	-0.0110
		38	5190.0000	5190.0110	-0.0110
		44	5220.0000	5220.0110	-0.0110
		46	5230.0000	5230.0110	-0.0110
Tmin (-10) °C Vmin (Vmin (102)V	48	5240.0000	5240.0120	-0.0120
		52	5260.0000	5260.0120	-0.0120
		60	5300.0000	5300.0110	-0.0110
		64	5320.0000	5320.0110	-0.0110
		100	5500.0000	5500.0120	-0.0120
		116	5580.0000	5580.0120	-0.0120
		140	5700.0000	5700.0110	-0.0110

Product	:	Wireless Access Point
Test Item	:	Frequency Stability
Test Site	:	Temperature Chamber
Test Mode	:	Carrier Wave (External Antenna)

Chain B

Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	∆F (MHz)
		36	5180.0000	5180.0100	-0.0100
		38	5190.0000	5190.0100	-0.0100
		44	5220.0000	5220.0060	-0.0060
		46	5230.0000	5230.0080	-0.0080
		48	5240.0000	5240.0080	-0.0080
		52	5260.0000	5260.0100	-0.0100
		54	5270.0000	5270.0060	-0.0060
Tnom (20) °C	Vnom (120)V	60	5300.0000	5300.0050	-0.0050
1110111 (20) C	v nom (120) v	62	5310.0000	5310.0060	-0.0060
		64	5320.0000	5320.0080	-0.0080
		100	5500.0000	5500.0100	-0.0100
		102	5510.0000	5510.0080	-0.0080
		110	5550.0000	5550.0060	-0.0060
		116	5580.0000	5580.0070	-0.0070
		134	5670.0000	5670.0060	-0.0060
		140	5700.0000	5700.0080	-0.0080
		36	5180.0000	5179.9840	0.0160
		38	5190.0000	5189.9860	0.0140
		44	5220.0000	5219.9880	0.0120
		46	5230.0000	5229.9840	0.0160
		48	5240.0000	5239.9860	0.0140
		52	5260.0000	5259.9840	0.0160
		54	5270.0000	5269.9880	0.0120
Tmax (50) °C	Vmax (138)V	60	5300.0000	5299.9860	0.0140
$1 \max(50)$ C	v max (156) v	62	5310.0000	5309.9860	0.0140
		64	5320.0000	5319.9840	0.0160
		100	5500.0000	5499.9880	0.0120
		102	5510.0000	5509.9860	0.0140
		110	5550.0000	5549.9860	0.0140
		116	5580.0000	5579.9840	0.0160
		134	5670.0000	5669.9840	0.0160
		140	5700.0000	5699.9840	0.0160

		36	5180.0000	5179.9840	0.0160
		38	5190.0000	5189.9860	0.0140
		44	5220.0000	5219.9880	0.0120
		46	5230.0000	5229.9840	0.0160
		48	5240.0000	5239.9860	0.0140
		52	5260.0000	5259.9840	0.0160
		54	5270.0000	5269.9880	0.0120
T (50) 90	N (100)N	60	5300.0000	5299.9860	0.0140
Tmax (50) °C	Vmin (102)V	62	5310.0000	5309.9860	0.0140
		64	5320.0000	5319.9840	0.0160
		100	5500.0000	5499.9880	0.0120
		102	5510.0000	5509.9860	0.0140
		110	5550.0000	5549.9860	0.0140
		116	5580.0000	5579.9840	0.0160
		134	5670.0000	5669.9840	0.0160
		140	5700.0000	5699.9840	0.0160
	Vmax (138)V	36	5180.0000	5180.1500	-0.1500
		38	5190.0000	5190.1600	-0.1600
		44	5220.0000	5220.1500	-0.1500
		46	5230.0000	5230.1400	-0.1400
		48	5240.0000	5240.1600	-0.1600
		52	5260.0000	5260.1500	-0.1500
		54	5270.0000	5270.1800	-0.1800
T_{min} (10) ^{0}C		60	5300.0000	5300.1600	-0.1600
Tmin (-10) °C		62	5310.0000	5310.1800	-0.1800
		64	5320.0000	5320.1500	-0.1500
		100	5500.0000	5500.1600	-0.1600
		102	5510.0000	5510.1800	-0.1800
		110	5550.0000	5550.1800	-0.1800
		116	5580.0000	5580.1600	-0.1600
		116 134	5580.0000 5670.0000	5580.1600 5670.1800	-0.1600 -0.1800

		36	5180.0000	5180.1500	-0.1500
		38	5190.0000	5190.1600	-0.1600
		44	5220.0000	5220.1500	-0.1500
		46	5230.0000	5230.1400	-0.1400
	Vmin (102)V	48	5240.0000	5240.1600	-0.1600
		52	5260.0000	5260.1500	-0.1500
		54	5270.0000	5270.1800	-0.1800
Tmin (-10) °C		60	5300.0000	5300.1600	-0.1600
111111 (-10) C		62	5310.0000	5310.1800	-0.1800
		64	5320.0000	5320.1500	-0.1500
		100	5500.0000	5500.1600	-0.1600
		102	5510.0000	5510.1800	-0.1800
		110	5550.0000	5550.1800	-0.1800
		116	5580.0000	5580.1600	-0.1600
		134	5670.0000	5670.1800	-0.1800
		140	5700.0000	5700.1500	-0.1500

Product	:	Wireless Access Point
Test Item	:	Frequency Stability
Test Site	:	Temperature Chamber
Test Mode	:	Carrier Wave (External Antenna)

Chain B

Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
		42ac80	5210.0000	5210.0080	-0.0080
		58ac80	5290.0000	5290.0120	-0.0120
T	V	106ac80	5530.0000	5530.0120	-0.0120
Tnom (20) °C	Vnom (120)V	138ac80	5690.0000	5690.0080	-0.0080
		142F	5710.0000	5710.0060	-0.0060
		144	5720.0000	5720.0060	-0.0060
Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
	Vmax (138)V	42ac80	5210.0000	5209.9840	0.0160
		58ac80	5290.0000	5289.9860	0.0140
T (50) %		106ac80	5530.0000	5529.9860	0.0140
Tmax (50) °C		138ac80	5690.0000	5689.9840	0.0160
		142F	5710.0000	5709.9840	0.0160
		144	5720.0000	5719.9860	0.0140
Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
	Vmin (102)V	42ac80	5210.0000	5209.9840	0.0160
		58ac80	5290.0000	5289.9860	0.0140
Tmax (50) °C		106ac80	5530.0000	5529.9860	0.0140
1 max (50) C		138ac80	5690.0000	5689.9840	0.0160
		142F	5710.0000	5709.9840	0.0160
		144	5720.0000	5719.9860	0.0140

Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
		42ac80	5210.0000	5210.1600	-0.1600
		58ac80	5290.0000	5290.1400	-0.1400
T · (10) %	V (120)V	106ac80	5530.0000	5530.1600	-0.1600
Tmin (-10) °C	Vmax (138)V	138ac80	5690.0000	5690.1600	-0.1600
		142F	5710.0000	5710.1400	-0.1400
		144	5720.0000	5720.1700	-0.1700
Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
	Vmin (102)V	42ac80	5210.0000	5210.1600	-0.1600
		58ac80	5290.0000	5290.1400	-0.1400
Tmin (-10) ℃		106ac80	5530.0000	5530.1600	-0.1600
		138ac80	5690.0000	5690.1600	-0.1600
		142F	5710.0000	5710.1400	-0.1400
		144	5720.0000	5720.1700	-0.1700

9. EMI Reduction Method During Compliance Testing

No modification was made during testing.

Attachment 1: EUT Test Photographs

Attachment 2: EUT Detailed Photographs