ENGINEERING TEST REPORT

UHF Transceivers

Model No.: IC-F4101D FCC ID: AFJ332902 IC: 202D-332902

Tested For

ICOM Incorporated

1-1-32, Kamiminami, Hirano-ku Osaka, Japan, 547-0003

In accordance with

SAR (Specific Absorption Rate) Requirements using guidelines established in IEEE C95.1-1992, FCC OET Bulletin 65 (Supplement C) and Industry Canada RSS-102 (Issue 4)

UltraTech's File No.: ICOM-272Q-SAR

This Test report is Issued under the Authority of

Tri M. Luu, BASc

Vice President of Engineering

UltraTech Group of Labs

Date: June 28, 2011

Report Prepared by:
Steven Lu

Issued Date:

June 28, 2011

Tested by:
Steven Lu

Test Dates:
June 07~24, 2011

The results in this Test Report apply only to the sample(s) tested, which has been randomly selected.

UltraTech Group of Labs

3000 Bristol Circle, Oakville, Ontario, Canada, L6H 6G4 Tel.: (905) 829-1570 Fax.: (905) 829-8050

Website: www.ultratech-labs.com, Email: vic@ultratech-labs.com, Email: tri@ultratech-labs.com

FCC

91038

1309

46390-2049

NVLAP Lab Code 200093-0 SL2-IN-E-1119R

INTRODUCTION

EVUIDIT 4

TABLE OF CONTENTS

	1
1.1. SCOPE	
1.2. REFERENCES	
EXHIBIT 2. PERFORMANCE ASSESSMENT	2
2.1. CLIENT AND MANUFACTURER INFORMATION	
2.2. DEVICE UNDER TEST (D.U.T.) DESCRIPTION	
2.2.1. Photograph of D.U.T	
2.3. LIST OF D.U.T.'S ACCESSORIES: 2.3.1. Li-ion Chargeable Battery (M/N: BP-265)	
2.3.2. Ni-MH Chargeable Battery (M/N: BP-264)	
2.3.3. BP-263 Alkaline Battery Case for 6*AA (LR6)	
2.3.4. Belt-clip (M/N: MB-124)	
2.3.5. Antennas: FA-SC57U (Red Ring)	
2.3.6. Antennas: FA-SC72U (Blue Ring)	
2.3.7. Stubby Antenna: FA-SC73US (Red Ring)	
2.3.8. Cut Antenna: FA-SC61UC (White Ring)	
2.3.10. Speaker-microphone (M/N: HM-159L)	
2.3.11. Handset (M/N: HS-94) + Plug Adapter Cable (M/N: OPC-2004)	
2.3.12. Tube Earphone (MN: SP-27)	9
2.4. SPECIAL CHANGES ON THE D.U.T.'S HARDWARE/SOFTWARE FOR TEST	
2.5. ANCILLARY EQUIPMENT	
2.6. Specific Operating Conditions	10
EXHIBIT 3. SUMMARY OF TEST RESULTS	11
3.1. LOCATION OF TESTS	11
3.2. APPLICABILITY & SUMMARY OF SAR RESULTS	
3.3. SUMMARY OF MEASUREMENT RESULTS	
3.3.1. Head Configuration Results of Part 1: Antennas (FA-SC57U, FA-SC72U and	
3.3.2. Head Configuration Results of Part 2: Cut Antenna (FA-SC61UC)	
3.3.4. Body Configuration Results of Part 2: FA-SC61UC Cutting Antenna	
· · · · · · · · · · · · · · · · · · ·	
EXHIBIT 4. SAR SYSTEM CONFIGURATION	
4.1. DASY5 SYSTEM OVERVIEW	
4.1.1. DASY5 System Specification	
4.1.2. DASY5 SAR SYSTEM block diagram	
4.2.1. SAM Twin Phantom	
4.2.2. ELI 4.0 Phantom	
EXHIBIT 5. SAR DATA ACQUISITION METHODOLOGY	
5.1. SAR MEASUREMENT PROCEDURE	
5.1.2. Averaging and Determination of Spatial Peak SAR	
5.1.3. Evaluation Errors	
EXHIBIT 6. MEASUREMENTS, EXAMINATIONS & TEST DATA	26

ULTRATECH GROUP OF LABS

6.1. TEST CONFIGURATIONS	26
6.2. GENERAL TEST SETUP	27
6.2.1. Equipment Configuration	
6.2.2. Exercising Equipment	
6.3. PHOTOGRAPHS OF TISSUE DEPTH	
6.4. PHOTOGRAPHS OF D.U.T. POSITION	
6.4.1. Prescans	
6.4.2. Head Configuration	
6.4.3. Body Configuration	
6.5. SAR MEASUREMENT DATA	
6.5.1. Prescans	
6.5.2. Head Configuration Result of Part 1: FA-SC57U, FA-SC72U and FA-SC736.5.3. Head Configuration Result of Part 2: FA-SC61UC Cut Antenna	
6.5.4. Body Configuration Result of Part 1: FA-SC57U, FA-SC72U and FA-SC73	
6.5.5. Body Configuration Result of Part 2: FA-SC61UC Cut Antenna	
· · · ·	
EXHIBIT 7. SAR MEASUREMENT SYSTEM VERIFICATION	159
7.1. STANDARD SOURCE	159
7.2. STANDARD SOURCE INPUT POWER MEASUREMENT	
7.3. System Validation Procedure	
7.4. VERIFICATION RESULTS	
7.4.1. Reference SAR values at 450 MHz*	
7.4.2. Verification at 450 MHz	
EXHIBIT 8. D.U.T. POWER MEASUREMENT	
8.1.1. RF conducted output power measurement	
8.1.2. SAR drift measurement	
EXHIBIT 9. TISSUE DIELECTRIC PARAMETER CALIBRATION	
9.1. SIMULATED TISSUE	170
9.2. MEASUREMENT OF ELECTRICAL CHARACTERISTICS OF SIMULATED TISSUE	
9.2.1. Equipment set-up	
9.2.2. Measurement procedure	
9.3. SIMULATED TISSUE MEASUREMENT RESULTS	
9.3.1. 450 MHz Brain Tissue	
9.3.2. 450 MHz Muscle Tissue	
EXHIBIT 10. SAR MEASUREMENT UNCERTAINTY	174
10.1. Measurement Uncertainty evaluation for SAR test	174
EXHIBIT 11. ADDITIONAL TEST INSTRUMENTS LIST	
EXHIBIT 12. PROBE CALIBRATION CERTIFICATE	
EXHIBIT 13. VALIDATION DIPOLE CALIBRATION CERTIFICATE	

EXHIBIT 1. INTRODUCTION

1.1. SCOPE

Reference:	SAR (Specific Absorption Rate) Requirements
	IEEE C95.1-1992,
	FCC OET Bulletin 65 (Supplement C Edition 01-01)
	Industry Canada RSS-102 (Issue 4).
Title	Safety Levels with respect to human exposure to Radio Frequency Electromagnetic Fields
	Guideline for Evaluating the Environmental Effects of Radio Frequency Radiation
Purpose of Test:	To verify compliance with Federal regulated SAR requirements in Canada and the US.
Method of Measurements:	IEEE C95.1-1992, FCC OET Bulletin 65 (Supplement C Edition 01-01) and Industry Canada
	RSS-102 (Issue 4)
Device Category	Portable
Exposure Category	Occupational/Controlled

1.2. REFERENCES

The methods and procedures used for the measurements contained in this report are details in the following reference standards:

Publications	Year	Title
IEEE Std. 1528	2003	Draft Recommended practice for determining the Peak Spatial-Average Specific Absorption rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques.
Industry Canada RSS-102	2010	"Evaluation Procedure for Mobile and Portable Radio Transmitters with respect to Health Canada's Safety Code 6 for Exposure of Humans to Radio Frequency Fields"
NCRP Report No.86	1986	"Biological Effects and Exposure Criteria for radio Frequency Electromagnetic Fields"
FCC OET Bulletin 65	2001	"Evaluating Compliance with FCC Guidelines for Human Exposure to radio Frequency Fields"
ANSI/IEEE C95.3	2002	"Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave"
ANSI/IEEE C95.1	2005	"Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3kHz to 300GHz"
IEC 62209-2	2010	Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures – Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)
Health Canada's Safety Code 6	2009	Limits of Human Exposure to Radiofrequency Electromagnetic Energy in the Frequency Range from 3 kHz to 300 GHz

ULTRATECH GROUP OF LABS

FCC ID: AFJ332902, IC: 202D-332902

EXHIBIT 2. PERFORMANCE ASSESSMENT

2.1. CLIENT AND MANUFACTURER INFORMATION

APPLICANT:	
Name:	ICOM Incorporated
Address:	1-1-32, Kamiminami,
	Hirano-ku, Osaka
	Japan, 547-0003
Contact Person:	Mr. Takayuki Watanabe
	Phone #: +81-66-793-5302
	Fax #: +81-66-793-0013
	Email Address: export@icom.co.jp

MANUFACTURER:	
Name:	ICOM Incorporated
Address:	1-1-32, Kamiminami,
	Hirano-ku, Osaka
	Japan, 547-0003
Contact Person:	Mr. Takayuki Watanabe
	Phone #: +81-66-793-5302
	Fax #: +81-66-793-0013
	Email Address: export@icom.co.jp

File #: ICOM-272Q-SAR

2.2. DEVICE UNDER TEST (D.U.T.) DESCRIPTION

The following is the information provided by the applicant.

Trade Name	ICOM Inc.
Type/Model Number	IC-F4101D
Type of Equipment	Licensed Non-Broadcast Transceiver
Serial Number	21000201-0
Transmitter Frequency Band	450 ~ 512 MHz
Rated RF Power	4 Watts conducted (High)
	1 Watt conducted (Low)
Modulation Employed	FM
Antenna	¹ / ₄ Helical whip antenna (M/N: FA-SC72U, 470-520 MHz, -1.9dBi, blue ring)
	¹ / ₄ Helical whip antenna (M/N: FA-SC57U, 430-470 MHz, -3.0dBi, red ring)
	1/4 Helical whip stubby antenna (M/N: FA-SC73US, 450-490 MHz, -10.4dBi, red ring)
	¹ / ₄ Helical whip cut antenna (M/N: FA-SC61UC, 360-520 MHz, -1.3dBi, white ring)
Power Supply	Rechargeable Li-Ion battery pack (M/N: BP-265, 7.4 V, 1900mAh)
	Rechargeable Ni-MH battery pack (M/N: BP-264, 7.2 V, 1400mAh)
	Battery Case (M/N: BP-263) for AA (LR6) * 6 alkaline
Primary User Functions of D.U.T.	UHF Transceivers

2.2.1. Photograph of D.U.T

< D.U.T.'s front and rear view without battery and antenna >

2.3. LIST OF D.U.T.'S ACCESSORIES:

2.3.1. Li-ion Chargeable Battery (M/N: BP-265)

UHF Transceiverss M/N: IC-F4101D

< BP-265 Li-ion Battery >

2.3.2. Ni-MH Chargeable Battery (M/N: BP-264)

< BP-264 Ni-MH Battery >

2.3.3. BP-263 Alkaline Battery Case for 6*AA (LR6)

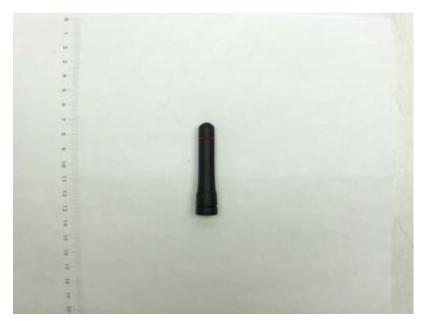
< BP-263 Battery Case >

2.3.4. Belt-clip (M/N: MB-124)

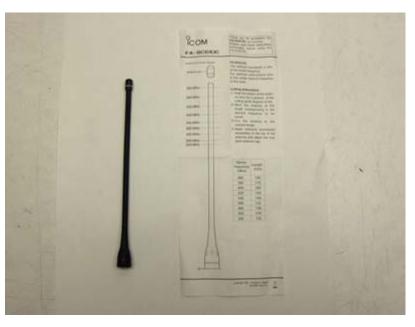
< MB-124 Belt-clip >

2.3.5. Antennas: FA-SC57U (Red Ring)

UHF Transceiverss M/N: IC-F4101D


< FA-SC57U (Red Ring) >

2.3.6. Antennas: FA-SC72U (Blue Ring)


< FA-SC72U (Blue Ring) >

2.3.7. Stubby Antenna: FA-SC73US (Red Ring)

< FA-SC73US (Red Ring) >

2.3.8. Cut Antenna: FA-SC61UC (White Ring)

< FA-SC61UC cut antenna (White Ring) >

2.3.9. Earphone-microphone (M/N: HM-171GP)

< HM-171GP Earphone-Microphone>

2.3.10. Speaker-microphone (M/N: HM-159L)

< HM-159L Speaker-Microphone >

2.3.11. Handset (M/N: HS-94) + Plug Adapter Cable (M/N: OPC-2004)

< HS-94 Handset + OPC-2004 Plug Adapter Cable>

2.3.12. Tube Earphone (MN: SP-27)

< SP-27 Tube Earphone>

File #: ICOM-272Q-SAR

2.4. SPECIAL CHANGES ON THE D.U.T.'S HARDWARE/SOFTWARE FOR TESTING PURPOSES

N/A

2.5. ANCILLARY EQUIPMENT

N/A

2.6. SPECIFIC OPERATING CONDITIONS

N/A

ULTRATECH GROUP OF LABS

File #: ICOM-272Q-SAR June 28, 2011

EXHIBIT 3. SUMMARY OF TEST RESULTS

3.1. LOCATION OF TESTS

UHF Transceiverss M/N: IC-F4101D

All of the measurements described in this report were performed at UltraTech Group of Labs located at:

3000 Bristol Circle, in the city of Oakville, Province of Ontario, Canada.

All measurements were performed in UltraTech's shielded chamber, 16' x 13' x 8'.

3.2. APPLICABILITY & SUMMARY OF SAR RESULTS

The maximum peak spatial - average SAR measured was found to be **4.27** W/Kg for head configuration and **5.90** W/Kg for body configuration with 50% usage-based time-averaging applied for PTT device.

For body configuration tests, all the supplied body-worn accessories were checked through pre-scans and confirmed that those options were not affecting SAR compliance. Therefore the final evaluation for body configuration was performed only with M/N: MB-124 Belt Clip, M/N: HM-159L Speaker Microphone with SP-27 Tube Earphone and M/N: BP-265 Li-ion rechargeable battery pack.

3.3. SUMMARY OF MEASUREMENT RESULTS*

3.3.1. Head Configuration Results of Part 1: Antennas (FA-SC57U, FA-SC72U and FA-SC73US)

#	Configuration	Antenna Position	Frequency [MHz]	Channel	MAX SAR _{1g} [W/Kg]
*	Occupational/Controlled Ex	oosure Category	y Limit		8.0
07	1/4 helical whip antenna (M/N: FA-SC57U, 430~470 MHz, red ring)	FIX	450	Low	1.65
08	50% duty cycle for PTT	FIX	460	Middle	1.99
09		FIX	470	High	2.04
10	1/4 helical whip antenna (M/N: FA-SC72U, 470~520 MHz, blue ring)	FIX	470	Low	1.56
11	50% duty cycle for PTT	FIX	490	Middle	2.35
12		FIX	512	High	4.23
13	1/4 helical whip antenna (M/N: FA-SC73US, 450~490 MHz, red ring)	FIX	450	Low	1.16
14	50% duty cycle for PTT	FIX	470	Middle	1.52
15		FIX	490	High	0.96

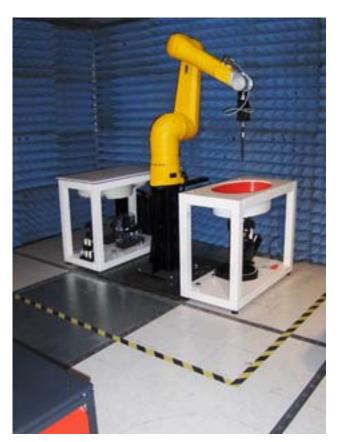
^{*} Cut antenna test plan is established according to PBA responses (tracking number:133795 and 598241) from FCC, following FCC PBA procedure.

3.3.2. Head Configuration Results of Part 2: Cut Antenna (FA-SC61UC)

#	Configuration	Antenna Position	Frequency [MHz]	Channel	MAX SAR _{1g} [W/Kg]
*	Occupational/Controlled Exp	oosure Category	Limit		8.0
16	1/4 helical whip cut antenna (M/N: FA-SC61UC, 360~520 MHz, white ring)	FIX	460	Low	2.34
17	50% duty cycle for PTT	FIX	486	Middle	2.87
18	Antenna Length=142mm	FIX	512	High	2.80
19	1/4 helical whip antenna (M/N: FA-SC61UC, 360~520 MHz, white ring) 50% duty cycle for PTT Antenna Length=136mm	FIX	450	Low	1.45
20		FIX	480	Middle	1.70
21		FIX	512	High	4.08
22	1/4 helical whip antenna (M/N: FA-SC61UC, 360~520 MHz, white ring)	FIX	450	Low	1.05
23	50% duty cycle for PTT Antenna Length=129mm	FIX	500	Middle	2.93
24		FIX	512	High	4.27
25		FIX	475	Option	-

3.3.3. Body Configuration Results of Part 1: Antennas (FA-SC57U, FA-SC72U and FA-SC73US)

#	Configuration	Antenna Position	Frequency [MHz]	Channel	MAX SAR _{1g} [W/Kg]
*	Occupational/Controlled Ex	posure Category	y Limit		8.0
26	1/4 helical whip antenna (M/N: FA-SC57U, 430~470 MHz, red ring)	FIX	450	Low	2.49
27	50% duty cycle for PTT	FIX	460	Middle	3.03
28	MB-124 Clip, HM-159L Speaker Mic with SP-27 Tube Earphone	FIX	470	High	3.55
29	1/4 helical whip antenna (M/N: FA-SC72U, 470~520 MHz, blue ring)	FIX	470	Low	2.73
30	50% duty cycle for PTT	FIX	490	Middle	4.51
31	MB-124 Clip, HM-159L Speaker Mic with SP-27 Tube Earphone	FIX	512	High	5.60
32	1/4 helical whip antenna (M/N: FA-SC73US, 450~490 MHz, red ring)	FIX	450	Low	2.12
33	50% duty cycle for PTT	FIX	470	Middle	2.44
34	MB-124 Clip, HM-159L Speaker Mic with SP-27 Tube Earphone	FIX	490	High	1.36


3.3.4. Body Configuration Results of Part 2: FA-SC61UC Cutting Antenna

#	Configuration	Antenna Position	Frequency [MHz]	Channel	MAX SAR _{1g} [W/Kg]
*	Occupational/Controlled Exposi	ure Categor	y Limit		8.0
35	1/4 helical whip cut antenna (M/N: FA-SC61UC, 360~520 MHz, white ring)	FIX	460	Low	3.69
36	50% duty cycle for PTT; Antenna Length=142mm MB-124 Clip, HM-159L Speaker Mic with SP-27	FIX	486	Middle	4.67
37	Tube Earphone	FIX	512	High	3.39
38	1/4 helical whip antenna (M/N: FA-SC61UC, 360~520 MHz, white ring)	FIX	450	Low	2.28
39	50% duty cycle for PTT; Antenna Length=136mm	FIX	480	Middle	4.17
40	MB-124 Clip, HM-159L Speaker Mic with SP-27 Tube Earphone	FIX	512	High	4.95
41	1/4 helical whip antenna (M/N: FA-SC61UC, 360~520 MHz, white ring)	FIX	450	Low	1.64
42	50% duty cycle for PTT; Antenna Length=129mm	FIX	500	Middle	4.65
43	MB-124 Clip, HM-159L Speaker Mic with SP-27 Tube Earphone	FIX	512	High	5.90
44		FIX	475	Option	2.48

FCC ID: AFJ332902, IC: 202D-332902

EXHIBIT 4. SAR SYSTEM CONFIGURATION

4.1. DASY5 SYSTEM OVERVIEW

4.1.1. DASY5 System Specification

Positioning Equipment	Computer
DASAY5 Measurement Server	Type: HP Compaq dc7800p Convertible
Data Acquisition Electronics (DAE)	CPU : Intel® Core™ 2 Duo E8500
Light Beam Unit	Memory: 2GB RAM
Device Holder	Operating System: Windows XP Professional
Robot (STAUBLI TX90)	Monitor: HP L1950g LCD

4.1.1.1. DASY5 Measurement Server

The DASY5 measurement server is based on a PC/104 CPU board with a 400MHz Intel ULV Celeron, 128MB chipdisk and 128MB RAM. The necessary circuits for communication with the DAE4 (or DAE3) electronics box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY5 I/O board, which is directly connected to the PC/104 bus of the CPU board.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4
Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

File #: ICOM-272Q-SAR June 28, 2011 The measurement server performs all real-time data evaluation of field measurements and surface detection, controls robot movements and handles safety operation. The PC operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with an expansion port which is reserved for future applications. Please note that this expansion port does not have a standardized pinout, and therefore only devices provided by SPEAG can be connected. Devices from any other supplier could seriously damage the measurement server.

4.1.1.2. Data Acquisition Electronics

The data acquisition electronics (DAE4 or DAE3) consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of both the DAE4 as well as of the DAE3 box is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

4.1.1.3. Dosimetric Probes

These probes are specially designed and calibrated for use in liquids with high permittivity. They should not be used in air, since the spherical isotropy in air is poor (-2 dB). The dosimetric probes have special calibrations in various liquids at different frequencies.

4.1.1.3.1. ES3DV3 Isotropic E-Filed Probe

Construction Symmetrical design with triangular core

Interleaved sensors

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, e.g., DGBE)

Calibration Basic Broad Band Calibration in air

Conversion Factors (CF) for HSL 900 and HSL 1750 $\,$

Additional CF for other liquids and frequencies

Frequency 10 MHz to 4 GHz

Linearity \pm 0.2 dB (30 MHz to 4 GHz)

Directivity $\pm 0.2 \text{ dB in HSL (rotation around probe axis)}$

 \pm 0.3 dB in tissue material (rotation normal to probe axis)

Dynamic Range $5 \mu W/g \text{ to} > 100 \text{ mW/g}$

Linearity: $\pm 0.2 \text{ dB}$

Dimensions Overall length: 330 mm (Tip: 20 mm)

Tip diameter: 3.9 mm (Body: 12 mm)

Distance from probe tip to dipole centers: 2.0 mm

4.1.1.3.2. EX3DV4 Isotropic E-Filed Probe

Construction Symmetrical design with triangular core

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, e.g., DGBE)

Calibration Basic Broad Band Calibration in air

Conversion Factors (CF) for HSL 900 and HSL 1750

Additional CF for other liquids and frequencies

Frequency 10 MHz to > 6 GHz

Linearity: \pm 0.2 dB (30 MHz to 6 GHz)

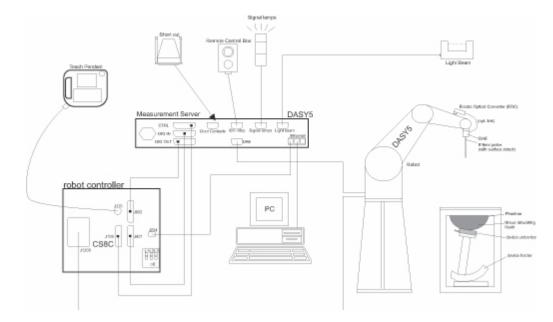
Directivity ± 0.3 dB in HSL (rotation around probe axis)

 \pm 0.5 dB in tissue material (rotation normal to probe axis)

Dynamic Range $10 \mu \text{W/g to} > 100 \text{ mW/g}$

Linearity: ± 0.2 dB (noise: typically $< 1 \mu W/g$)

Dimensions Overall length: 330 mm (Tip: 20 mm)


Tip diameter: 2.5 mm (Body: 12 mm)

Typical distance from probe tip to dipole centers: 1 mm

File #: ICOM-272Q-SAR June 28, 2011

4.1.2. DASY5 SAR SYSTEM block diagram

UHF Transceiverss M/N: IC-F4101D

4.2. SAR TEST PHANTOMS

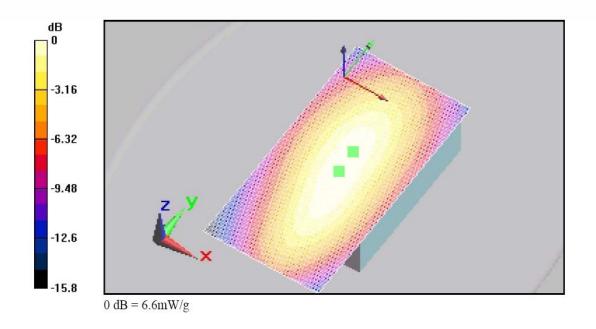
4.2.1. SAM Twin Phantom

For Head mounted devices placed next to the ear, the phantom used in the evaluation of the RF exposure of the user of the wireless device is an IEEE P1528 compliant SAM Twin phantom, shaped like a human head and filled with a mixture simulating the dielectric characteristics of the brain. A left sided head and a right sided head are evaluated to determine the worst case orientation for SAR.

4.2.2. ELI 4.0 Phantom

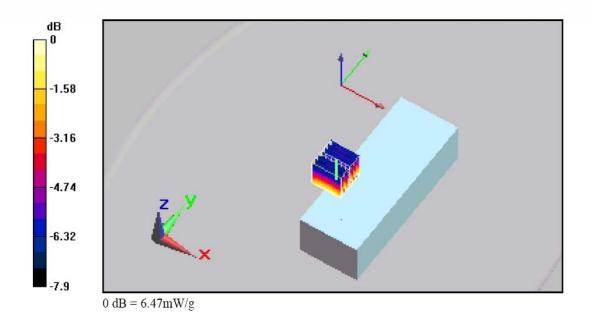
For body mounted and frontal held push-to-talk devices, an IEC 62209-2 compliant Oval Flat Phantom (ELI 4.0) with a base plate thickness of 2mm is used.

File #: ICOM-272Q-SAR


June 28, 2011

FCC ID: AFJ332902, IC: 202D-332902

EXHIBIT 5. SAR DATA ACQUISITION METHODOLOGY


5.1. SAR MEASUREMENT PROCEDURE

The goal of the measurement process is to scan the phantom over a selected area in order to find the region of highest levels of RF energy and then to obtain a single value for the peak spatial-average of SAR over a volume that would contain one gram (in the shape of a cube) of biological tissue. The test procedure, of course, measures SAR in the simulated tissue.

< Area scan >

The software requests the user to move the probe to locations at two extreme corners of a rectangle that encloses the area to be scanned. An arbitrary origin and the spatial resolution for the scan are also specified. Under program control, the scan is performed automatically by the robot-guided probe.

< Zoom Scan >

The DASY5 software includes all numerical procedures necessary to evaluate the spatial peak SAR values.

Based on the Draft: SCC-34, SC-2, WG-2 - Computational Dosimetry, IEEE P1529/D0.0 (Draft Recommended Practice for Determining the Spatial-Peak Specific Absorption Rate (SAR) Associated with the Use of Wireless Handsets - Computational Techniques), a new algorithm has been implemented. The spatial-peak SAR can be computed over any required mass.

The base for the evaluation is a "cube" measurement in a volume of (30mm)3 (7x7x7 points). The measured volume must include the 1 g and 10 g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan. If the 10g cube or both cubes are not entirely inside the measured volumes, the system issues a warning regarding the evaluated spatial peak values within the postprocessing engine (SEMCAD X). This means that if the measured volume is shifted, higher values might be possible. To get the correct values you can use a finer measurement grid for the area scan. In complicated field distributions, a large grid spacing for the area scan might miss some details and give an incorrectly interpolated peak location.

The entire evaluation of the spatial peak values is performed within the postprocessing engine (SEMCAD X). The system always gives the maximum values for the 1 g and 10 g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- 1. extraction of the measured data (grid and values) from the Zoom Scan
- 2. calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- 3. generation of a high-resolution mesh within the measured volume
- 4. interpolation of all measured values from the measurement grid to the high-resolution grid
- 5. extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

File #: ICOM-272Q-SAR June 28, 2011

6. calculation of the averaged SAR within masses of 1 g and 10 g

The significant parts are outlined in more detail within the following sections.

5.1.1. Interpolation, Extrapolation and Detection of Maxima

The probe is calibrated at the center of the dipole sensors which is located 1 to 2.7mm away from the probe tip. During measurements, the probe stops shortly above the phantom surface, depending on the probe and the surface detecting system. Both distances are included as parameters in the probe configuration file. The software always knows exactly how far away the measured point is from the surface. As the probe cannot directly measure at the surface, the values between the deepest measured point and the surface must be extrapolated.

In DASY5, the choice of the coordinate system defining the location of the measurement points has no influence on the uncertainty of the interpolation, Maxima Search and extrapolation routines. The interpolation, extrapolation and maximum search routines are all based on the modified Quadratic Shepard's method.

Thereby, the interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation. The DASY5 routines construct a once-continuously differentiable function that interpolates the measurement values as follows:

- For each measurement point a trivariate (3-D) / bivariate (2-D) quadratic is computed. It interpolates the measurement values at the data point and forms a least-square fit to neighboring measurement values.
- The spatial location of the quadratic with respect to the measurement values is is attenuated by an inverse distance weighting. This is performed since the calculated quadratic will fit measurement values at nearby points more accurate than at points located further away.
- After the quadratics are calculated for at all measurement points, the interpolating function is calculated as a weighted average of the quadratics.

There are two control parameters that govern the behavior of the interpolation method. One specifies the number of measurement points to be used in computing the least-square fits for the local quadratics. These measurement points are the ones nearest the input point for which the quadratic is being computed. The second parameter specifies the number of measurement points that will be used in calculating the weights for the quadratics to produce the final function. The input data points used there are the ones nearest the point at which the interpolation is desired. Appropriate defaults are chosen for each of the control parameters

The trivariate quadratics that have been previously computed for the 3-D interpolation and whose input data are at the closest distance from the phantom surface, are used in order to extrapolate the fields to the surface of the phantom.

In order to determine all the field maxima in 2-D (Area Scan) and 3-D (Zoom Scan), the measurement grid is refined by a default factor of 10 and the interpolation function is used to evaluate all field values between corresponding measurement points. Subsequently, a linear search is applied to find all the candidate maxima. In a last step, non physical maxima are removed and only those maxima which are within 2 dB of the global maximum value are retained.

Important: To be processable by the interpolation/extrapolation scheme, the Area Scan requires at least 6 measurement points. The Cube Scan requires at least 10 measurement points to allow an application of these algorithms.

In the Area Scan, the gradient of the interpolation function is evaluated to find all the extrema of the SAR distribution. The uncertainty on the locations of the extrema is less than 1/20 of the grid size. Only local maxima within -2 dB of the global maximum are searched and passed for the Cube Scan measurement.

ULTRATECH GROUP OF LABS

In the Cube Scan, the interpolation function is used to extrapolate the Peak SAR from the lowest measurement points to the inner phantom surface (the extrapolation distance). The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5mm.

5.1.2. Averaging and Determination of Spatial Peak SAR

The interpolated data is used to average the SAR over the 1g and 10g cubes by spatially discretizing the entire measured volume. The resolution of this spatial grid used to calculate the averaged SAR is 1mm or about 42875 interpolated points. The resulting volumes are defined as cubical volumes containing the appropriate tissue parameters that are centered at the location. The location is defined as the center of the incremental volume (voxel).

The spatial-peak SAR must be evaluated in cubical volumes containing a mass that is within 5% of the required mass. The cubical volume centered at each location, as defined above, should be expanded in all directions until the desired value for the mass is reached, with no surface boundaries of the averaging volume extending beyond the outermost surface of the considered region. In addition, the cubical volume should not consist of more than 10% of air. If these conditions are not satisfied then the center of the averaging volume is moved to the next location. Otherwise, the exact size of the final sampling cube is found using an inverse polynomial approximation algorithm, leading to results with improved accuracy. If one boundary of the averaging volume reaches the boundary of the measured volume during its expansion, it will not be evaluated at all. Reference is kept of all locations used and those not used for averaging the SAR. All average SAR values are finally assigned to the centered location in each valid averaging volume.

All locations included in an averaging volume are marked to indicate that they have been used at least once. If a location has been marked as used, but has never been assigned to the center of a cube, the highest averaged SAR value of all other cubical volumes which have used this location for averaging, is assigned to this location. Only those locations that are not part of any valid averaging volume should be marked as unused. For the case of an unused location, a new averaging volume must be constructed which will have the unused location centered at one surface of the cube. The remaining five surfaces are expanded evenly in all directions until the required mass is enclosed, regardless of the amount of included air. Of the six possible cubes with one surface centered on the unused location, the smallest cube is used, which still contains the required mass.

If the final cube containing the highest averaged SAR touches the surface of the measured volume, an appropriate warning is issued within the postprocessing engine.

5.1.3. Evaluation Errors

5.1.3.1. *Cube shape*

The mentioned procedures search for the maximum averaged 1g and 10g volumes of cubical shape according to the ANSII and ICNIRP standard. A density of 1000 kg/m3 is used to represent the head tissue density and not the tissue simulating liquid density.

5.1.3.2. Extrapolation

For the extrapolation the distance must be specified in the Area Scan and Zoom Scan Jobs. The distance is defined as the distance between the probe sensor center and the phantom surface. The recommended distance is 4-5 mm.

FCC ID: AFJ332902, IC: 202D-332902

5.1.3.3. Boundary effects

The dosimetric probes are calibrated in a gradient field with energy flow and decay in direction of the probe axis. During calibration the probe tip is completely surrounded by the simulating solution. If the probe is used in the immediate vicinity of a media boundary, the field in the probe is altered due to interaction with the field in the boundary and the probe sensitivity changes. The influence of the boundary effect depends on the probe construction, the media parameters and the probe orientation with respect to the boundary. It disappears at a distance of 1mm (E1D-probe) to 5mm (ET3D-probes) between the probe tip and the boundary. The boundary effect must be considered in the extrapolation to the surface.

EXHIBIT 6. MEASUREMENTS, EXAMINATIONS & TEST DATA

6.1. TEST CONFIGURATIONS

D.U.T. Information		Condition	
Product Name	UHF Trarnsceiver	Robot Type	6 Axis
Model Number	IC-F4101D	Scan Type	SAR – Area/Zoom/Att. Vs Depth
Serial Number	21000201-0	Measured Field	Е
Frequency Band [MHz]	450 ~ 512	Phantom Type	2 _{mm} base Flat Phantom
Frequency Tested [MHz]	450,460,470,475,480,486,490,500,512	Phantom Position	Waist
Rated Conducted Power [W]	4W (High power mode)	Room Temperature [°C]	24.0 ± 1
Antenna Type	ICOM Helical whip antenna (M/N: FA-SC57U, 430-470 MHz, red ring) ICOM Helical whip antenna (M/N: FA-SC72U, 470-520 MHz, blue ring) ICOM Helical whip stubby antenna (M/N: FA-SC73US, 450-490 MHz, red ring) ICOM helical whip cut antenna (M/N: FA-SC61UC, 360~520 MHz, white ring)	Room Humidity [%]	40 ± 10
Modulation	FM	Tissue Temperature [°C]	23.0 ± 1
Worst Case Duty Cycle	50 %		
Duty Cycle Tested	100 %		
Source(or Usage)-Based Time-Average Factor	0.5 (mechanical PTT button)		

Type of Tissue	Brain	Muscle
Test Frequency [MHz]	450	450
Target Conductivity [S/m]	0.87	0.94
Measured Conductivity [S/m]	0.86 (-0.8 %)	0.94 (-0.4 %)
Target Dielectric Constant	43.5	56.7
Measured Dielectric Constant	43.6 (0.3 %)	56.3 (-0.8 %)
Penetration Depth (Plane Wave Excitation) [mm]	43.3	44.6
Probe Model Number	EX3DV4	EX3DV4
Probe Serial Number	3673	3673
Probe Orientation	Isotropic	Isotropic
Probe Sensor Offset [mm]	1	1
Probe Tip Diameter [mm]	2.5	2.5
Conversion Factor (γ)	9.20 (+/- 13.3%)	9.80 (+/- 13.3%)

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

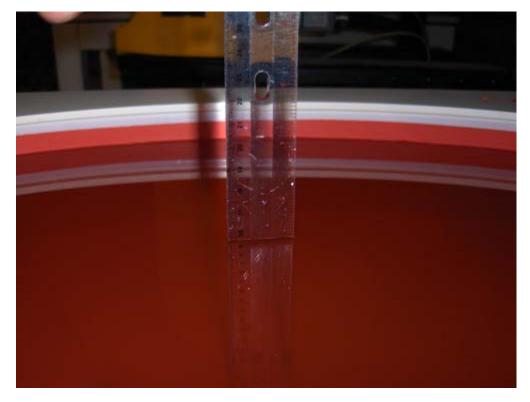
All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

6.2. GENERAL TEST SETUP

6.2.1. Equipment Configuration

Power and signal distribution, grounding, interconnecting cabling and physical placement of equipment of a test system shall simulate the typical application and usage in so far as is practicable, and shall be in accordance with the relevant product specifications of the manufacturer.

The configuration that tends to maximize the D.U.T's emission or minimize its immunity is not usually intuitively obvious and in most instances selection will involve some trial and error testing. For example, interface cables may be moved or equipment re-orientated during initial stages of testing and the effects on the results observed.


Only configurations within the range of positions likely to occur in normal use need to be considered.

The configuration selected shall be fully detailed and documented in the test report, together with the justification for selecting that particular configuration.

6.2.2. Exercising Equipment

The exercising equipment and other auxiliary equipment shall be sufficiently decoupled from the D.U.T. so that the performance of such equipment does not significantly influence the test results.

6.3. PHOTOGRAPHS OF TISSUE DEPTH

The tissue liquid level, both head tissue and body tissue, in the phantom is remained 150mm $\pm\,5\text{mm}$ during the SAR test.

6.4. PHOTOGRAPHS OF D.U.T. POSITION

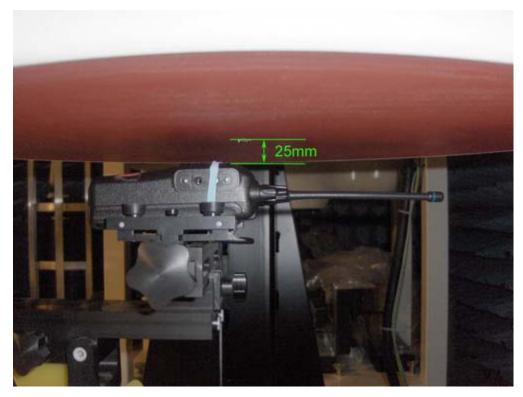
6.4.1. Prescans

6.4.1.1. Batteries

Back side of EUT in parallel to the phantom with the belt-clip (M/N: MB-124) in contact using FA-SC57U antenna; attached 3 different- type batteries separately.

6.4.1.2. Headset Accessories

Back side of EUT in parallel to the phantom with the belt-clip (M/N: MB-124) in contact, attached 3 different- type Speaker-microphone separately


6.4.2. Head Configuration

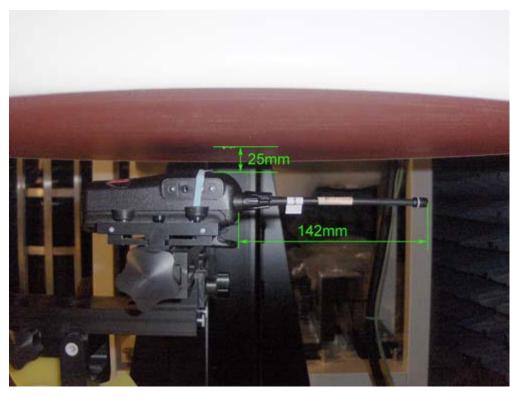
6.4.2.1. Head-front Part 1: FA-SC57U, FA-SC72U and FA-SC73US Antennas

< FA-SC57U: 430MHz~470MHz; Red Ring >

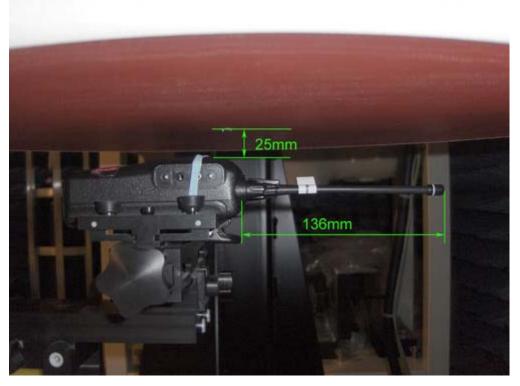
Remark: Distance between EUT and phantom = 25 mm

< FA-SC72U: 470MHz~520MHz; Blue Ring>

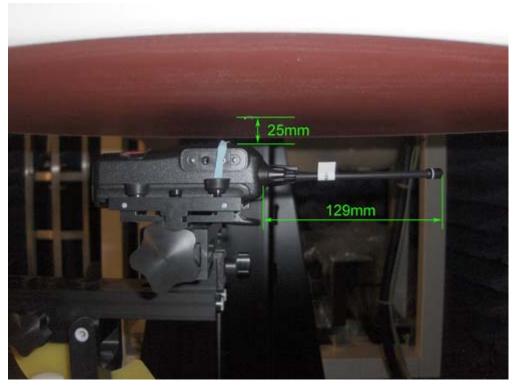
Remark: Distance between EUT and phantom = 25 mm


File #: ICOM-272Q-SAR

< FA-SC73US: 450MHz~490MHz; Red Ring>


Remark: Distance between EUT and phantom = 25 mm

6.4.2.2. Head-front Part 2: FA-SC61UC Cut Antenna


< FA-SC61UC cut antenna with the length of 142mm >

Remark: Distance between EUT and phantom = 25 mm

< FA-SC61UC cut antenna with the length of 136mm >

Remark: Distance between EUT and phantom = 25 mm

< FA-SC61UC cut antenna with the length of 129mm >

Remark: Distance between EUT and phantom = 25 mm

6.4.3. Body Configuration

6.4.3.1. Body-worn Part 1: FA-SC57U, FA-SC72U and FA-SC73US Antennas

Back side of EUT in parallel to the phantom with the belt-clip in contact, Belt-clip (M/N: MB-124) and Speaker-microphone (M/N: HM-159L) with Tube Earphone (M/N: SP-27)

< FA-SC57U: 430MHz~470MHz; Red Ring >

< FA-SC72U: 470MHz~520MHz; Blue Ring >


< FA-SC73US: 450MHz~490MHz; Red Ring >

6.4.3.2. Body-worn Part 2: FA-SC61UC Cut Antenna

Back side of EUT in parallel to the phantom with the belt-clip in contact, Belt-clip (M/N: MB-124) and Speaker-microphone (M/N: HM-159L) with Tube Earphone (M/N: SP-27)

< FA-SC61UC cut antenna with the length of 142mm >

< FA-SC61UC cut antenna with the length of 136mm >

Remark: Belt clip touch the phantom bottom

< FA-SC61UC cut antenna with the length of 129mm >

Remark: Belt clip touch the phantom bottom

6.5. SAR MEASUREMENT DATA

6.5.1. Prescans

• <u>Batteries</u>

#	Configuration	Antenna Position	Frequency [MHz]	SAR _{1g} [W/Kg]	MAX SAR _{1g} [W/Kg]	
*	Occupational/Controlled Exposure Category Limit					
01	1/4 helical whip antenna (M/N: FA-SC57U, 430~470 MHz, red ring) 50% duty cycle for PTT BP-265 Li-Ion Chargeable Battery	FIX	460	3.03	3.03	
02	 1/4 helical whip antenna (M/N: FA-SC57U, 430~470 MHz, red ring) 50% duty cycle for PTT BP-264 Ni-MH Chargeable Battery 	FIX	460	2.91		
03	1/4 helical whip antenna (M/N: FA-SC57U, 430~470 MHz, red ring)50% duty cycle for PTTBP-263 Battery Case	FIX	460	2.51		

• Headset Accessories

#	Configuration	Antenna Position	Frequency [MHz]	SAR _{1g} [W/Kg]	MAX SAR _{1g}
*	Occupational/Controlled Exposure Category Limit				
04	 1/4 helical whip antenna (M/N: FA-SC57U, 430~470 MHz, red ring) 50% duty cycle for PTT MB-124 Clip, HM-171GP Earphone Mic. 	FIX	460	2.94	
05	 1/4 helical whip antenna (M/N: FA-SC57U, 430~470 MHz, red ring) 50% duty cycle for PTT MB-124 Clip, HM-159L Speaker Microphone with SP-27 Tube Earphone 	FIX	460	3.03	3.03
06	1/4 helical whip antenna (M/N: FA-SC57U, 430~470 MHz, red ring) 50% duty cycle for PTT MB-124 Clip, HS-94 Headset + OPC-2004	FIX	460	2.89	

6.5.2. Head Configuration Result* of Part 1: FA-SC57U, FA-SC72U and FA-SC73US Antennas

#	Configuration	Antenna Position	Frequency [MHz]	Channel	MAX SAR _{1g} [W/Kg]
*	Occupational/Controlled Exposure Category Limit				
07	430~470 MHz, red ring) 50% duty cycle for PTT	FIX	450	Low	1.65
08		FIX	460	Middle	1.99
09		FIX	470	High	2.04
10	1/4 helical whip antenna (M/N: FA-SC72U, 470~520 MHz, blue ring) 50% duty cycle for PTT	FIX	470	Low	1.56
11		FIX	490	Middle	2.35
12		FIX	512	High	4.23
13	1/4 helical whip antenna (M/N: FA-SC73US, 450~490 MHz, red ring) 50% duty cycle for PTT	FIX	450	Low	1.16
14		FIX	470	Middle	1.52
15		FIX	490	High	0.96

6.5.2.1. ¹/₄ helical whip antenna (M/N: FA-SC57U), 450 MHz; #07

File Name: ICOM-272Q FA-SC57U Head 450MHz(Lf)-n.da52

DUT: ICOM UHF Transceiver; Type: IC-F4101D; Serial: 21000201-0

Communication System: CW; Frequency: 450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 450 MHz; $\sigma = 0.863$ mho/m; $\varepsilon_r = 43.623$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3673; ConvF(9.2, 9.2, 9.2); Calibrated: 2/23/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn874; Calibrated: 2/17/2009
- Phantom: ELI 4.0; Type: QD OVA 001 BB; Serial: 1057
- -; SEMCAD X Version 14.4.5 (3634)

Configuration_Head_FA-SC57U_Lf/Front Face, d=25mm, Pin=4W(EX-Probe)/Zoom Scan (5x5x7) (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

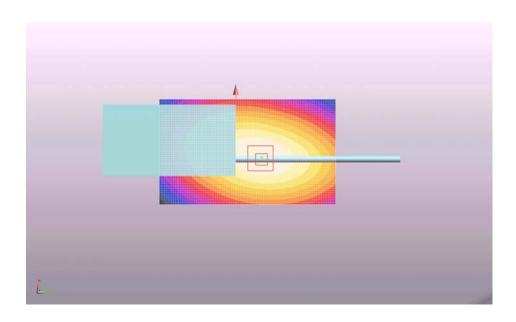
Reference Value = 67.462 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 4.277 W/kg

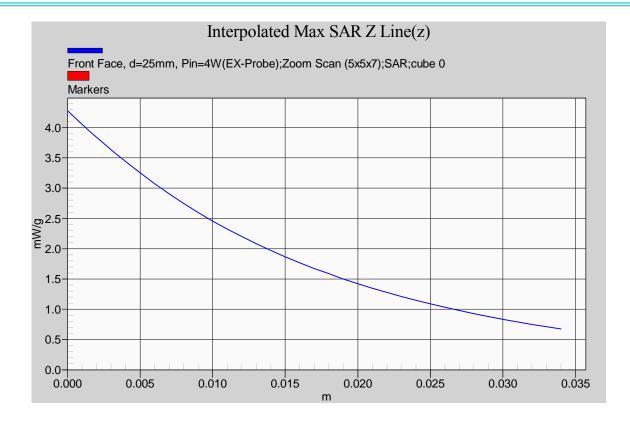
SAR(1 g) = 3.29 mW/g; SAR(10 g) = 2.45 mW/g

(SAR corrected for target medium)

Maximum value of SAR (measured) = 3.438 mW/g


Configuration_Head_FA-SC57U_Lf/Front Face, d=25mm, Pin=4W(EX-Probe)/Area Scan (61x101x1): Measurement

grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 3.825 mW/g

Configuration_Head_FA-SC57U_Lf/Front Face, d=25mm, Pin=4W(EX-Probe)/FindMax (11x41x1): Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 3.423 mW/g

ULTRATECH GROUP OF LABS

6.5.2.2. ¹/₄ helical whip antenna (M/N: FA-SC57U), 460 MHz; #08

File Name: ICOM-272Q FA-SC57U Head 460MHz(Mf)-n.da52

DUT: ICOM UHF Transceiver; Type: IC-F4101D; Serial: 21000201-0

Communication System: CW; Frequency: 460 MHz; Duty Cycle: 1:1

Medium parameters used: f = 460 MHz; $\sigma = 0.873 \text{ mho/m}$; $\varepsilon_r = 43.362$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3673; ConvF(9.2, 9.2, 9.2); Calibrated: 2/23/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn874; Calibrated: 2/17/2009
- Phantom: ELI 4.0; Type: QD OVA 001 BB; Serial: 1057
- -; SEMCAD X Version 14.4.5 (3634)

Configuration_Head_FA-SC57U_Mf/Front Face, d=25mm, Pin=4W(EX-Probe)/Zoom Scan (5x5x7) (7x7x7)/Cube 0:

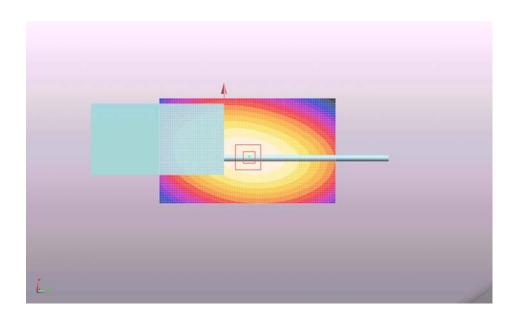
Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 73.686 V/m; Power Drift = -0.07 dB

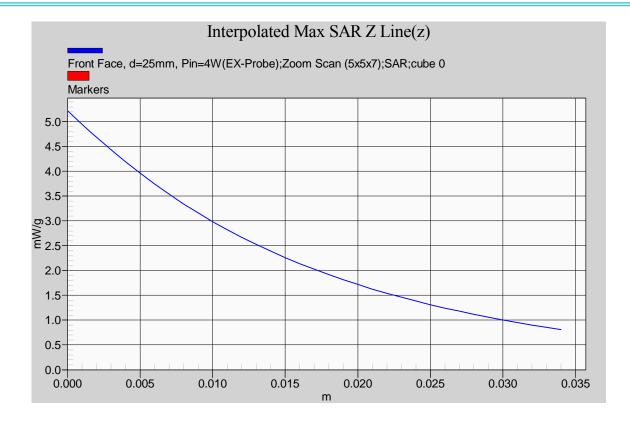
Peak SAR (extrapolated) = 5.219 W/kg

SAR(1 g) = 3.97 mW/g; SAR(10 g) = 2.96 mW/g

(SAR corrected for target medium)


Maximum value of SAR (measured) = 4.198 mW/g

Configuration_Head_FA-SC57U_Mf/Front Face, d=25mm, Pin=4W(EX-Probe)/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 4.586 mW/g

Configuration_Head_FA-SC57U_Mf/Front Face, d=25mm, Pin=4W(EX-Probe)/FindMax (11x41x1): Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 4.182 mW/g

ULTRATECH GROUP OF LABS

6.5.2.3. \(\frac{1}{4} \) helical whip antenna (M/N: FA-SC57U), 470 MHz; #09

File Name: ICOM-272Q FA-SC57U Head 470MHz(Hf)-n.da52

DUT: ICOM UHF Transceiver; Type: IC-F4101D; Serial: 21000201-0

Communication System: CW; Frequency: 470 MHz; Duty Cycle: 1:1

Medium parameters used: f = 470 MHz; $\sigma = 0.882 \text{ mho/m}$; $\varepsilon_r = 43.079$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3673; ConvF(9.2, 9.2, 9.2); Calibrated: 2/23/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn874; Calibrated: 2/17/2009
- Phantom: ELI 4.0; Type: QD OVA 001 BB; Serial: 1057
- -; SEMCAD X Version 14.4.5 (3634)

Configuration_Head_FA-SC57U_Hf/Front Face, d=25mm, Pin=4W(EX-Probe)/Zoom Scan (5x5x7) (7x7x7)/Cube 0:

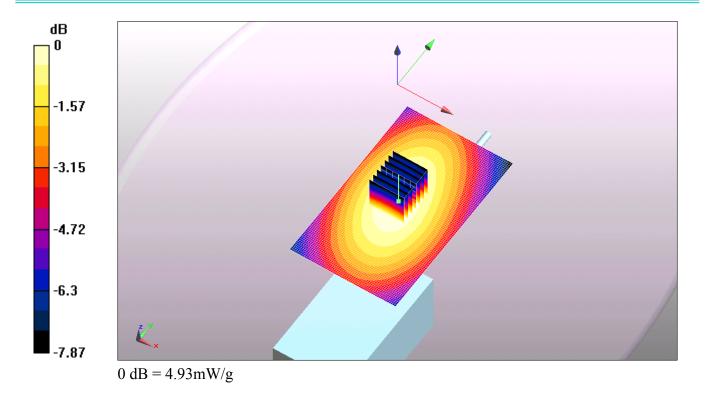
Measurement grid: dx=5mm, dy=5mm, dz=5mm

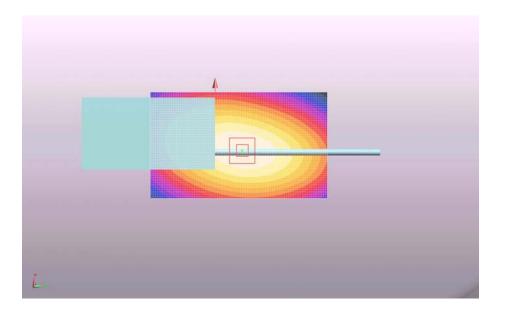
Reference Value = 76.219 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 5.444 W/kg

SAR(1 g) = 4.08 mW/g; SAR(10 g) = 3.04 mW/g

(SAR corrected for target medium)


Maximum value of SAR (measured) = 4.353 mW/g


Configuration_Head_FA-SC57U_Hf/Front Face, d=25mm, Pin=4W(EX-Probe)/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 4.929 mW/g

Configuration_Head_FA-SC57U_Hf/Front Face, d=25mm, Pin=4W(EX-Probe)/FindMax (11x41x1): Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 4.427 mW/g

File #: ICOM-272Q-SAR June 28, 2011

6.5.2.4. ¹/₄ helical whip antenna (M/N: FA-SC72U), 470 MHz; #10

File Name: ICOM-272Q FA-SC72U Head 470MHz(Lf)-n.da52

DUT: ICOM UHF Transceiver; Type: IC-F4101D; Serial: 21000201-0

Communication System: CW; Frequency: 470 MHz; Duty Cycle: 1:1

Medium parameters used: f = 470 MHz; $\sigma = 0.882 \text{ mho/m}$; $\varepsilon_r = 43.079$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3673; ConvF(9.2, 9.2, 9.2); Calibrated: 2/23/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn874; Calibrated: 2/17/2009
- Phantom: ELI 4.0; Type: QD OVA 001 BB; Serial: 1057
- -; SEMCAD X Version 14.4.5 (3634)

Configuration_Head_FA-SC72U_Lf/Front Face, d=25mm, Pin=4W(EX-Probe)/Zoom Scan (5x5x7) (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

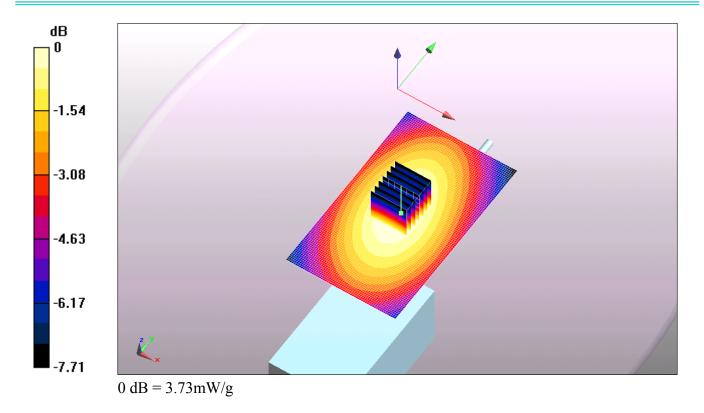
Reference Value = 65.419 V/m; Power Drift = 0.09 dB

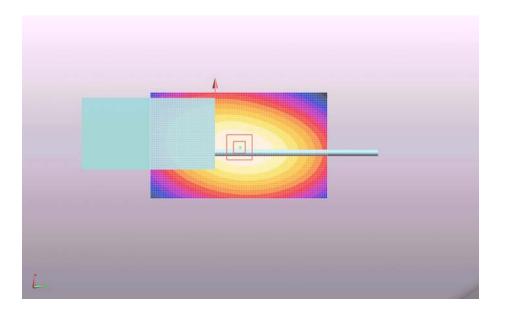
Peak SAR (extrapolated) = 4.168 W/kg

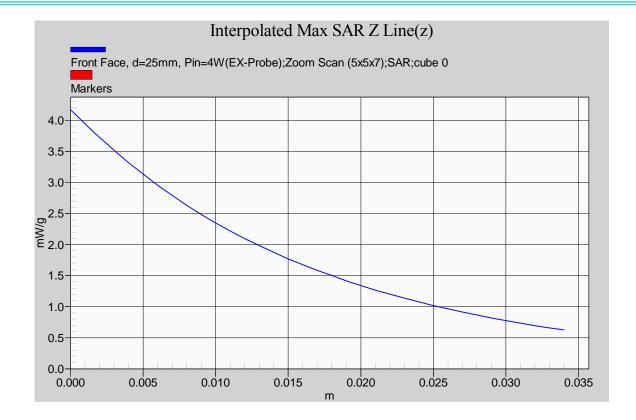
SAR(1 g) = 3.12 mW/g; SAR(10 g) = 2.32 mW/g

(SAR corrected for target medium)

Maximum value of SAR (measured) = 3.322 mW/g


Configuration_Head_FA-SC72U_Lf/Front Face, d=25mm, Pin=4W(EX-Probe)/Area Scan (61x101x1): Measurement


grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 3.734 mW/g

Configuration_Head_FA-SC72U_Lf/Front Face, d=25mm, Pin=4W(EX-Probe)/FindMax (11x41x1): Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 3.647 mW/g

File #: ICOM-272Q-SAR June 28, 2011

6.5.2.5. ¹/₄ helical whip antenna (M/N: FA-SC72U), 490 MHz; #11

File Name: ICOM-272O FA-SC72U Head 490MHz(Mf)-n.da52

DUT: ICOM UHF Transceiver; Type: IC-F4101D; Serial: 21000201-0

Communication System: CW; Frequency: 490 MHz; Duty Cycle: 1:1

Medium parameters used: f = 490 MHz; $\sigma = 0.902 \text{ mho/m}$; $\varepsilon_r = 42.685$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3673; ConvF(9.2, 9.2, 9.2); Calibrated: 2/23/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn874; Calibrated: 2/17/2009
- Phantom: ELI 4.0; Type: QD OVA 001 BB; Serial: 1057
- -; SEMCAD X Version 14.4.5 (3634)

Configuration_Head_FA-SC72U_Mf/Front Face, d=25mm, Pin=4W(EX-Probe)/Zoom Scan (5x5x7) (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

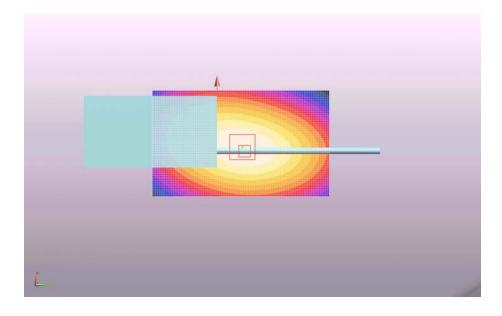
Reference Value = 79.260 V/m; Power Drift = 0.09 dB

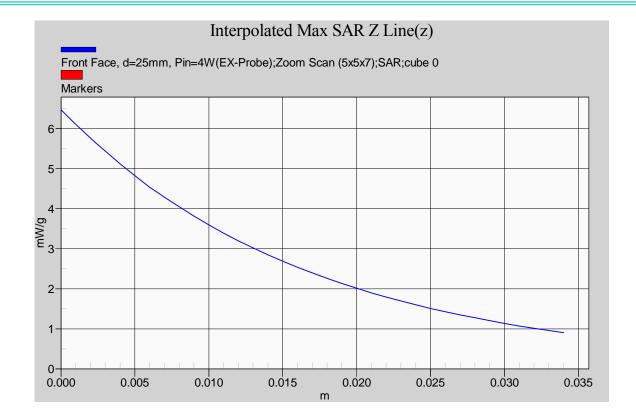
Peak SAR (extrapolated) = 6.470 W/kg

SAR(1 g) = 4.7 mW/g; SAR(10 g) = 3.49 mW/g

(SAR corrected for target medium)

Maximum value of SAR (measured) = 5.104 mW/g


Configuration Head FA-SC72U Mf/Front Face, d=25mm, Pin=4W(EX-Probe)/Area Scan (61x101x1): Measurement


grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 5.670 mW/g

Configuration_Head_FA-SC72U_Mf/Front Face, d=25mm, Pin=4W(EX-Probe)/FindMax (11x41x1): Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 4.910 mW/g

6.5.2.6. 1/4 helical whip antenna (M/N: FA-SC72U), 512 MHz; #12

File Name: ICOM-272Q FA-SC72U Head 512MHz(Hf)-n.da52

DUT: ICOM UHF Transceiver; Type: IC-F4101D; Serial: 21000201-0

Communication System: CW; Frequency: 512 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 512 MHz; $\sigma = 0.919$ mho/m; $\varepsilon_r = 42.161$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3673; ConvF(9.2, 9.2, 9.2); Calibrated: 2/23/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn874; Calibrated: 2/17/2009
- Phantom: ELI 4.0; Type: QD OVA 001 BB; Serial: 1057
- -; SEMCAD X Version 14.4.5 (3634)

Configuration_Head_FA-SC72U_Hf/Front Face, d=25mm, Pin=4W(EX-Probe)/Zoom Scan (5x5x7) (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 108.7 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 11.623 W/kg

SAR(1 g) = 8.46 mW/g; SAR(10 g) = 6.25 mW/g

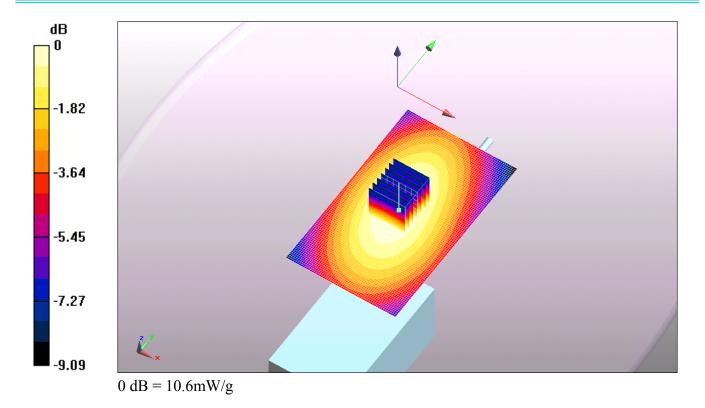
(SAR corrected for target medium)

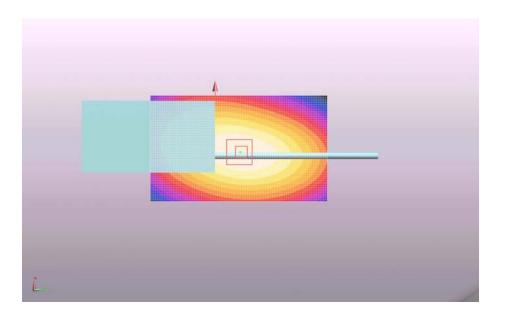
Info: Interpolated medium parameters used for SAR evaluation.

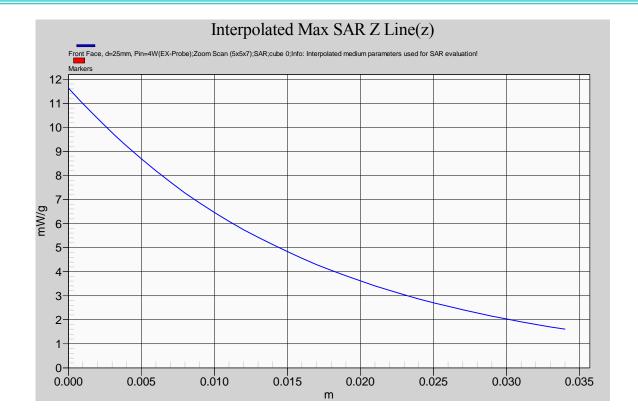
Maximum value of SAR (measured) = 9.235 mW/g

Configuration_Head_FA-SC72U_Hf/Front Face, d=25mm, Pin=4W(EX-Probe)/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.


Maximum value of SAR (interpolated) = 10.591 mW/g


Configuration_Head_FA-SC72U_Hf/Front Face, d=25mm, Pin=4W(EX-Probe)/FindMax (11x41x1): Measurement grid: dx=20mm, dy=20mm


Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 9.366 mW/g

File #: ICOM-272Q-SAR June 28, 2011

6.5.2.7. ¹/₄ helical whip stubby antenna (M/N: FA-SC73US), 450 MHz; #13

File Name: ICOM-272Q FA-SC73US Head 450MHz(Lf)-n.da52

DUT: ICOM UHF Transceiver; Type: IC-F4101D; Serial: 21000201-0

Communication System: CW; Frequency: 450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 450 MHz; $\sigma = 0.863$ mho/m; $\varepsilon_r = 43.623$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3673; ConvF(9.2, 9.2, 9.2); Calibrated: 2/23/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn874; Calibrated: 2/17/2009
- Phantom: ELI 4.0; Type: QD OVA 001 BB; Serial: 1057
- -; SEMCAD X Version 14.4.5 (3634)

Configuration_Head_FA-SC73US_Lf/Front Face, d=25mm, Pin=4W(EX-Probe)/Zoom Scan (5x5x7) (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

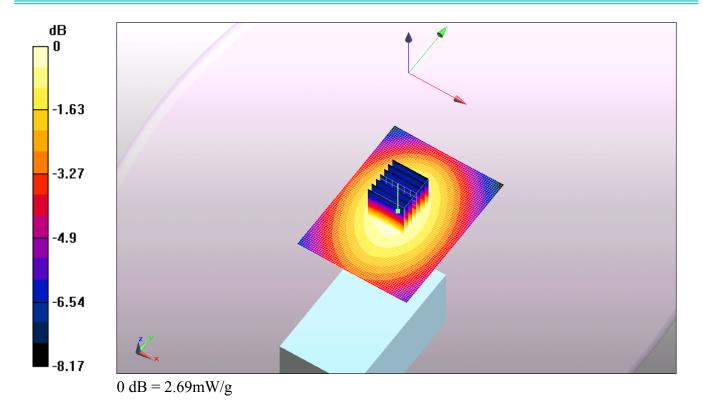
Reference Value = 55.088 V/m; Power Drift = 0.13 dB

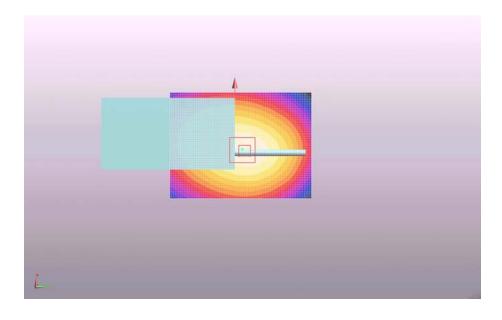
Peak SAR (extrapolated) = 3.014 W/kg

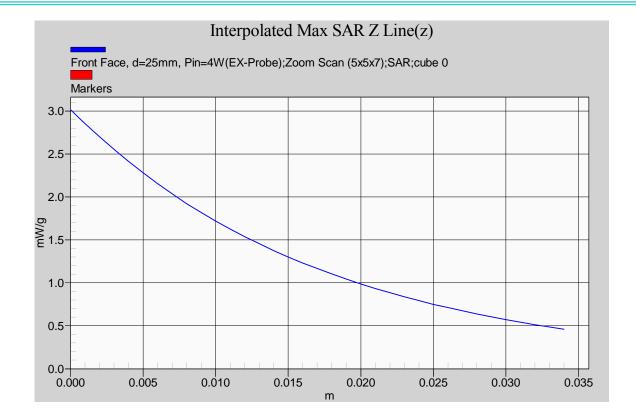
SAR(1 g) = 2.31 mW/g; SAR(10 g) = 1.71 mW/g

(SAR corrected for target medium)

Maximum value of SAR (measured) = 2.408 mW/g


Configuration_Head_FA-SC73US_Lf/Front Face, d=25mm, Pin=4W(EX-Probe)/Area Scan (61x81x1): Measurement


grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 2.689 mW/g

Configuration_Head_FA-SC73US_Lf/Front Face, d=25mm, Pin=4W(EX-Probe)/FindMax (11x41x1): Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 2.323 mW/g

6.5.2.8. 1/4 helical whip stubby antenna (M/N: FA-SC73US), 470 MHz; #14

File Name: ICOM-272Q FA-SC73US Head 470MHz(Mf)-n.da52

DUT: ICOM UHF Transceiver; Type: IC-F4101D; Serial: 21000201-0

Communication System: CW; Frequency: 470 MHz; Duty Cycle: 1:1

Medium parameters used: f = 470 MHz; $\sigma = 0.882$ mho/m; $\varepsilon_r = 43.079$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3673; ConvF(9.2, 9.2, 9.2); Calibrated: 2/23/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn874; Calibrated: 2/17/2009
- Phantom: ELI 4.0; Type: QD OVA 001 BB; Serial: 1057
- -; SEMCAD X Version 14.4.5 (3634)

Configuration_Head_FA-SC73US_Mf/Front Face, d=25mm, Pin=4W(EX-Probe)/Zoom Scan (5x5x7) (7x7x7)/Cube 0:

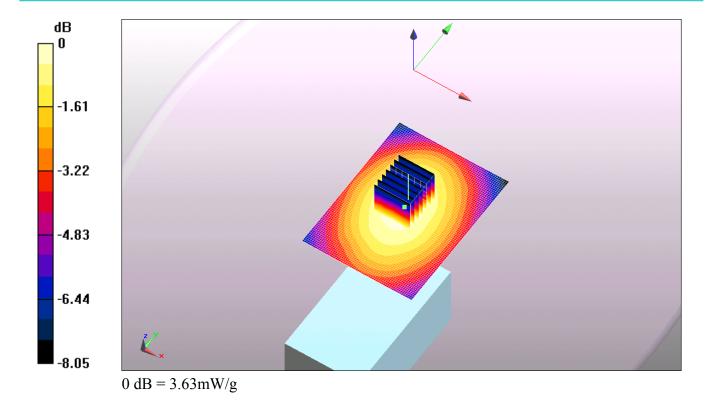
Measurement grid: dx=5mm, dy=5mm, dz=5mm

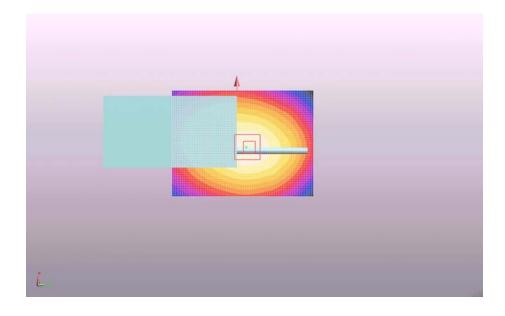
Reference Value = 66.581 V/m; Power Drift = 0.01 dB

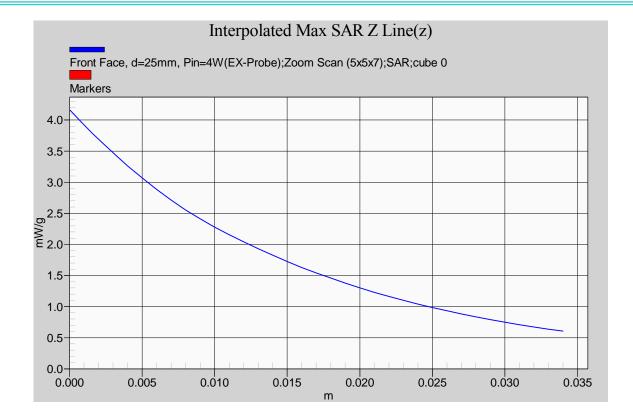
Peak SAR (extrapolated) = 4.164 W/kg

SAR(1 g) = 3.04 mW/g; SAR(10 g) = 2.26 mW/g

(SAR corrected for target medium)


Maximum value of SAR (measured) = 3.264 mW/g


Configuration_Head_FA-SC73US_Mf/Front Face, d=25mm, Pin=4W(EX-Probe)/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 3.631 mW/g

Configuration_Head_FA-SC73US_Mf/Front Face, d=25mm, Pin=4W(EX-Probe)/FindMax (11x41x1): Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 3.428 mW/g

6.5.2.9. ¹/₄ helical whip stubby antenna (M/N: FA-SC73US), 490 MHz; #15

File Name: ICOM-272Q FA-SC73US Head 490MHz(Hf)-n.da52

DUT: ICOM UHF Transceiver; Type: IC-F4101D; Serial: 21000201-0

Communication System: CW; Frequency: 490 MHz; Duty Cycle: 1:1

Medium parameters used: f = 490 MHz; $\sigma = 0.902 \text{ mho/m}$; $\varepsilon_r = 42.685$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3673; ConvF(9.2, 9.2, 9.2); Calibrated: 2/23/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn874; Calibrated: 2/17/2009
- Phantom: ELI 4.0; Type: QD OVA 001 BB; Serial: 1057
- -; SEMCAD X Version 14.4.5 (3634)

Configuration_Head_FA-SC73US_Hf/Front Face, d=25mm, Pin=4W(EX-Probe)/Zoom Scan (5x5x7) (7x7x7)/Cube 0:

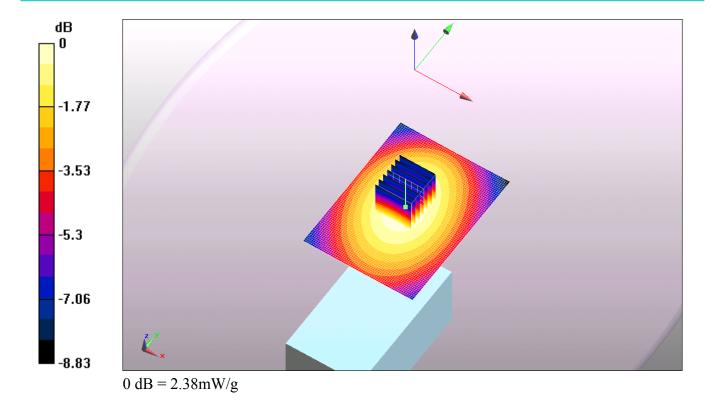
Measurement grid: dx=5mm, dy=5mm, dz=5mm

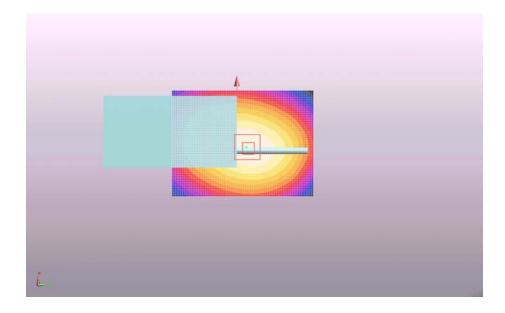
Reference Value = 51.311 V/m; Power Drift = -0.06 dB

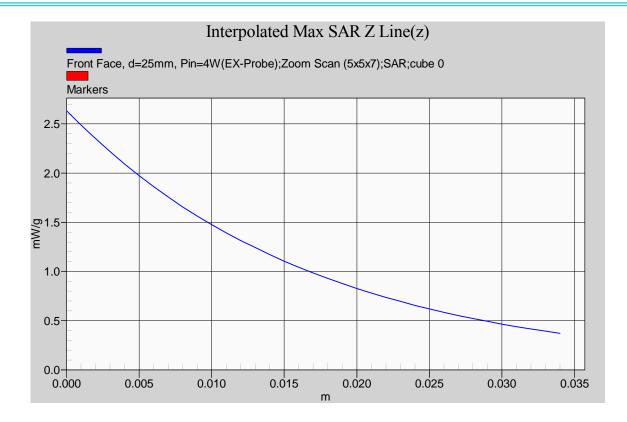
Peak SAR (extrapolated) = 2.633 W/kg

SAR(1 g) = 1.92 mW/g; SAR(10 g) = 1.42 mW/g

(SAR corrected for target medium)


Maximum value of SAR (measured) = 2.094 mW/g


Configuration_Head_FA-SC73US_Hf/Front Face, d=25mm, Pin=4W(EX-Probe)/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 2.375 mW/g

Configuration_Head_FA-SC73US_Hf/Front Face, d=25mm, Pin=4W(EX-Probe)/FindMax (11x41x1): Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 2.120 mW/g

6.5.3. Head Configuration Result* of Part 2: FA-SC61UC Cut Antenna

#	Configuration	Antenna Position	Frequency [MHz]	Channel	MAX SAR _{1g} [W/Kg]	
*	Occupational/Controlled Exposure Category Limit					
16	1/4 helical whip cut antenna (M/N: FA-SC61UC, 360~520 MHz, white ring) 50% duty cycle for PTT Antenna Length=142mm	FIX	460	Low	2.34	
17		FIX	486	Middle	2.87	
18		FIX	512	High	2.80	
19	1/4 helical whip antenna (M/N: FA-SC61UC, 360~520 MHz, white ring)	FIX	450	Low	1.45	
20	50% duty cycle for PTT Antenna Length=136mm	FIX	480	Middle	1.70	
21		FIX	512	High	4.08	
22	360~520 MHz, white ring) 50% duty cycle for PTT Antenna Length=120mm	FIX	450	Low	1.05	
23		FIX	500	Middle	2.93	
24		FIX	512	High	4.27	
25		FIX	475	Option	-	

^{*} Cut antenna test plan is established according to PBA responses (tracking number:133795 and 598241) from FCC, following FCC PBA procedure.

6.5.3.1. ¹/₄ helical whip cut antenna (M/N: FA-SC61UC), length=142mm; 460 MHz; #16

File Name: ICOM-272Q FA-SC61UC(142mm) Head 460MHz(Lf)-n.da52

DUT: ICOM UHF Transceiver; Type: IC-F4101D; Serial: 21000201-0

Communication System: CW; Frequency: 460 MHz; Duty Cycle: 1:1

Medium parameters used: f = 460 MHz; $\sigma = 0.873 \text{ mho/m}$; $\varepsilon_r = 43.362$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3673; ConvF(9.2, 9.2, 9.2); Calibrated: 2/23/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn874; Calibrated: 2/17/2009
- Phantom: ELI 4.0; Type: QD OVA 001 BB; Serial: 1057
- -; SEMCAD X Version 14.4.5 (3634)

Configuration_Head_FA-SC61UC-142mm_Lf/Front Face, d=25mm, Pin=4W(EX-Probe)/Zoom Scan (5x5x7)

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 79.639 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 6.163 W/kg

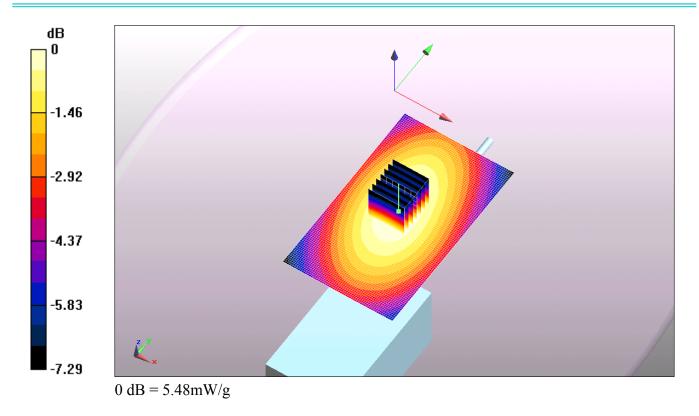
SAR(1 g) = 4.67 mW/g; SAR(10 g) = 3.49 mW/g

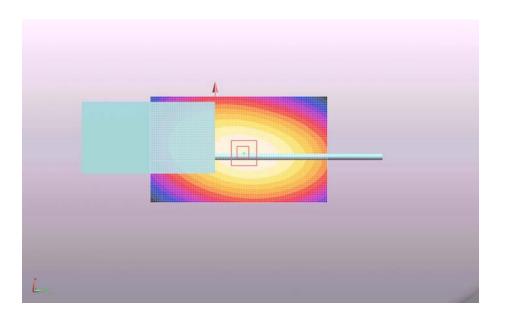
(SAR corrected for target medium)

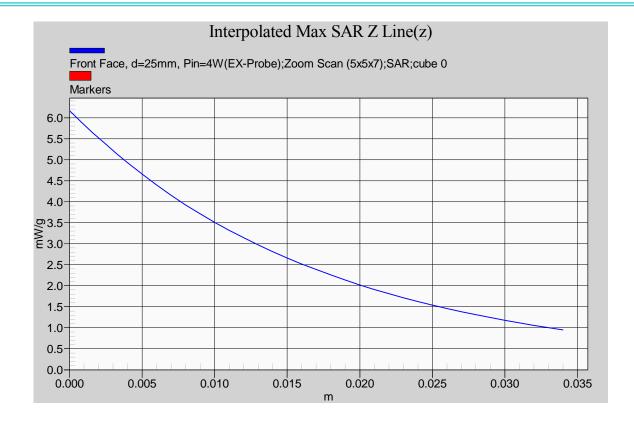
Maximum value of SAR (measured) = 4.929 mW/g

Configuration Head FA-SC61UC-142mm Lf/Front Face, d=25mm, Pin=4W(EX-Probe)/Area Scan (61x101x1):

Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 5.481 mW/g


Configuration_Head_FA-SC61UC-142mm_Lf/Front Face, d=25mm, Pin=4W(EX-Probe)/FindMax (11x41x1):


Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 4.729 mW/g

June 28, 2011

6.5.3.2. ¹/₄ helical whip cut antenna (M/N: FA-SC61UC), length=142mm; 486 MHz; #17

File Name: ICOM-272Q FA-SC61UC(142mm) Head 486MHz(Mf)-n.da52

DUT: ICOM UHF Transceiver; Type: IC-F4101D; Serial: 21000201-0

Communication System: CW; Frequency: 486 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 486 MHz; $\sigma = 0.898 \text{ mho/m}$; $\varepsilon_r = 42.753$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3673; ConvF(9.2, 9.2, 9.2); Calibrated: 2/23/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn874; Calibrated: 2/17/2009
- Phantom: ELI 4.0; Type: QD OVA 001 BB; Serial: 1057
- -; SEMCAD X Version 14.4.5 (3634)

Configuration_Head_FA-SC61UC-142mm_Mf/Front Face, d=25mm, Pin=4W(EX-Probe)/Zoom Scan (5x5x7)

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 87.975 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 7.818 W/kg

SAR(1 g) = 5.74 mW/g; SAR(10 g) = 4.25 mW/g

(SAR corrected for target medium)

Info: Interpolated medium parameters used for SAR evaluation.

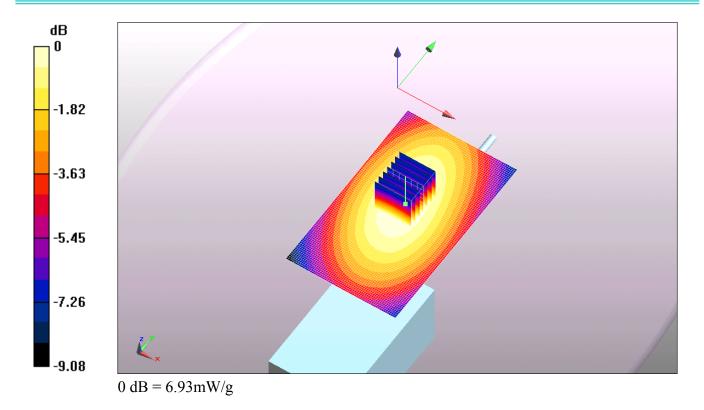
Maximum value of SAR (measured) = 6.218 mW/g

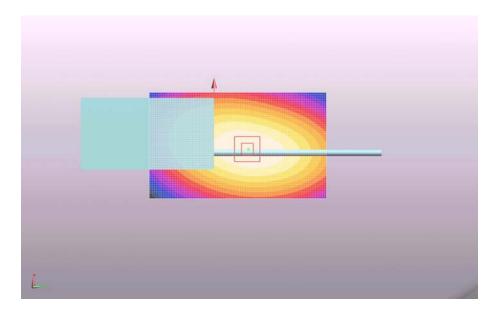
Configuration_Head_FA-SC61UC-142mm_Mf/Front Face, d=25mm, Pin=4W(EX-Probe)/Area Scan (61x101x1):

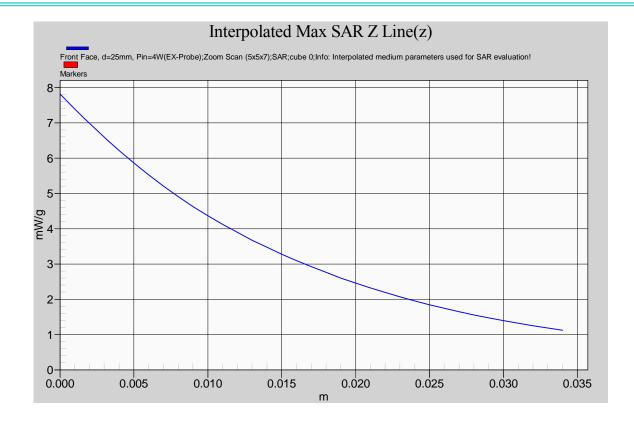
Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 6.933 mW/g


Configuration_Head_FA-SC61UC-142mm_Mf/Front Face, d=25mm, Pin=4W(EX-Probe)/FindMax (11x41x1):


Measurement grid: dx=20mm, dy=20mm


Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 5.993 mW/g

File #: ICOM-272Q-SAR June 28, 2011

6.5.3.3. ¹/₄ helical whip cut antenna (M/N: FA-SC61UC), length=142mm; 512 MHz; #18

File Name: ICOM-272Q FA-SC61UC(142mm) Head 512MHz(Hf)-n.da52

DUT: ICOM UHF Transceiver; Type: IC-F4101D; Serial: 21000201-0

Communication System: CW; Frequency: 512 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 512 MHz; $\sigma = 0.919$ mho/m; $\varepsilon_r = 42.161$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3673; ConvF(9.2, 9.2, 9.2); Calibrated: 2/23/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn874; Calibrated: 2/17/2009
- Phantom: ELI 4.0; Type: QD OVA 001 BB; Serial: 1057
- -; SEMCAD X Version 14.4.5 (3634)

Configuration_Head_FA-SC61UC-142mm_Hf/Front Face, d=25mm, Pin=4W(EX-Probe)/Zoom Scan (5x5x7)

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 88.111 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 7.695 W/kg

SAR(1 g) = 5.6 mW/g; SAR(10 g) = 4.16 mW/g

(SAR corrected for target medium)

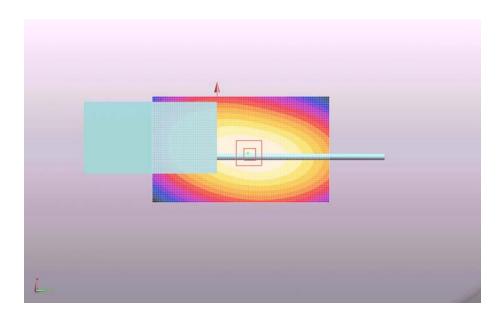
Info: Interpolated medium parameters used for SAR evaluation.

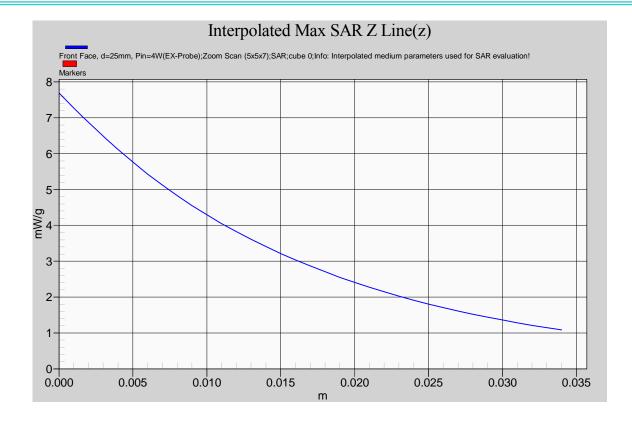
Maximum value of SAR (measured) = 6.114 mW/g

Configuration_Head_FA-SC61UC-142mm_Hf/Front Face, d=25mm, Pin=4W(EX-Probe)/Area Scan (61x101x1):

Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.


Maximum value of SAR (interpolated) = 6.988 mW/g


Configuration_Head_FA-SC61UC-142mm_Hf/Front Face, d=25mm, Pin=4W(EX-Probe)/FindMax (11x41x1):

Measurement grid: dx=20mm, dy=20mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 6.136 mW/g

6.5.3.4. 4 helical whip cut antenna (M/N: FA-SC61UC), length=136mm; 450 MHz; #19

File Name: ICOM-272Q FA-SC61UC(136mm) Head 450MHz(Lf)-n.da52

DUT: ICOM UHF Transceiver; Type: IC-F4101D; Serial: 21000201-0

Communication System: CW; Frequency: 450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 450 MHz; $\sigma = 0.863 \text{ mho/m}$; $\varepsilon_r = 43.623$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3673; ConvF(9.2, 9.2, 9.2); Calibrated: 2/23/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn874; Calibrated: 2/17/2009
- Phantom: ELI 4.0; Type: QD OVA 001 BB; Serial: 1057
- -; SEMCAD X Version 14.4.5 (3634)

Configuration_Head_FA-SC61UC-136mm_Lf/Front Face, d=25mm, Pin=4W(EX-Probe)/Zoom Scan (5x5x7)

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 63.934 V/m; Power Drift = -0.05 dB

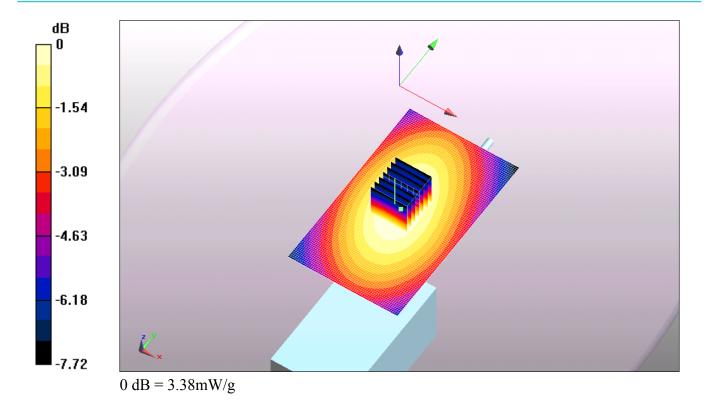
Peak SAR (extrapolated) = 3.770 W/kg

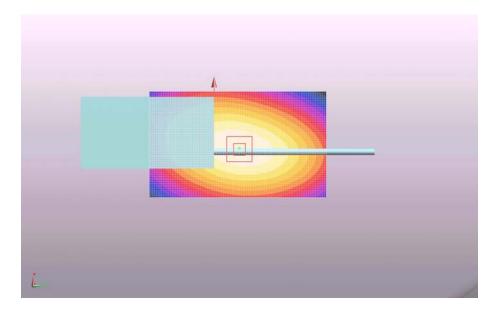
SAR(1 g) = 2.9 mW/g; SAR(10 g) = 2.16 mW/g

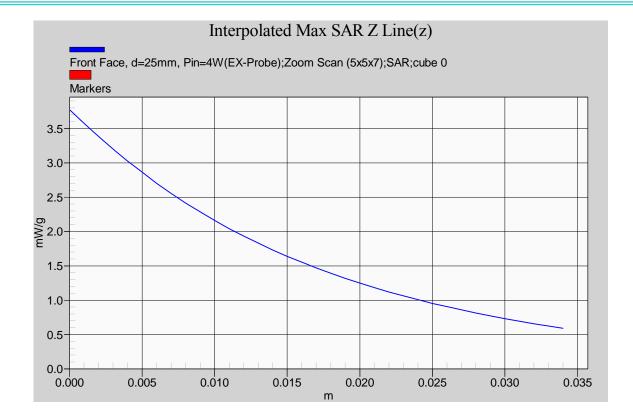
(SAR corrected for target medium)

Maximum value of SAR (measured) = 3.017 mW/g

Configuration Head FA-SC61UC-136mm Lf/Front Face, d=25mm, Pin=4W(EX-Probe)/Area Scan (61x101x1):


Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 3.383 mW/g


Configuration_Head_FA-SC61UC-136mm_Lf/Front Face, d=25mm, Pin=4W(EX-Probe)/FindMax (11x41x1):

Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 3.167 mW/g

6.5.3.5. ¹/₄ helical whip cut antenna (M/N: FA-SC61UC), length=136mm; 480 MHz; #20

File Name: ICOM-272Q FA-SC61UC(136mm) Head 480MHz(Mf)-n.da52

DUT: ICOM UHF Transceiver; Type: IC-F4101D; Serial: 21000201-0

Communication System: CW; Frequency: 480 MHz; Duty Cycle: 1:1

Medium parameters used: f = 480 MHz; $\sigma = 0.891 \text{ mho/m}$; $\varepsilon_r = 42.855$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3673; ConvF(9.2, 9.2, 9.2); Calibrated: 2/23/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn874; Calibrated: 2/17/2009
- Phantom: ELI 4.0; Type: QD OVA 001 BB; Serial: 1057
- -; SEMCAD X Version 14.4.5 (3634)

Configuration_Head_FA-SC61UC-136mm_Mf/Front Face, d=25mm, Pin=4W(EX-Probe)/Zoom Scan (5x5x7)

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 67.799 V/m; Power Drift = 0.09 dB

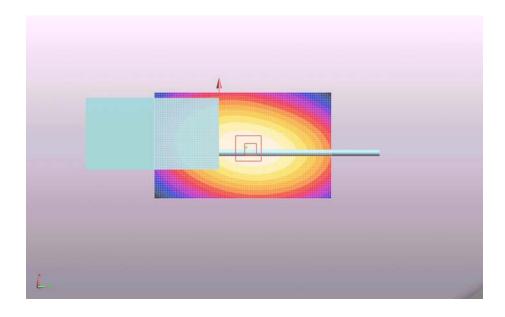
Peak SAR (extrapolated) = 4.595 W/kg

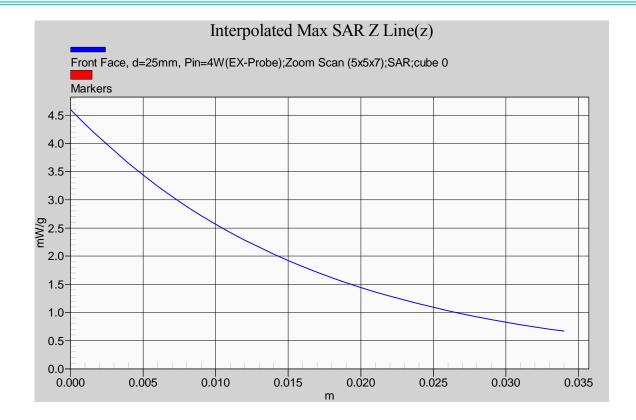
SAR(1 g) = 3.39 mW/g; SAR(10 g) = 2.51 mW/g

(SAR corrected for target medium)

Maximum value of SAR (measured) = 3.644 mW/g

Configuration Head FA-SC61UC-136mm Mf/Front Face, d=25mm, Pin=4W(EX-Probe)/Area Scan (61x101x1):


Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 4.091 mW/g

Configuration_Head_FA-SC61UC-136mm_Mf/Front Face, d=25mm, Pin=4W(EX-Probe)/FindMax (11x41x1):

Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 3.833 mW/g

6.5.3.6. ¹/₄ helical whip cut antenna (M/N: FA-SC61UC), length=136mm; 512 MHz; #21

File Name: ICOM-272Q FA-SC61UC(136mm) Head 512MHz(Hf)-n.da52

DUT: ICOM UHF Transceiver; Type: IC-F4101D; Serial: 21000201-0

Communication System: CW; Frequency: 512 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 512 MHz; $\sigma = 0.919$ mho/m; $\varepsilon_r = 42.161$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3673; ConvF(9.2, 9.2, 9.2); Calibrated: 2/23/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn874; Calibrated: 2/17/2009
- Phantom: ELI 4.0; Type: QD OVA 001 BB; Serial: 1057
- -; SEMCAD X Version 14.4.5 (3634)

Configuration_Head_FA-SC61UC-136mm_Hf/Front Face, d=25mm, Pin=4W(EX-Probe)/Zoom Scan (5x5x7)

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 104.9 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 11.279 W/kg

SAR(1 g) = 8.16 mW/g; SAR(10 g) = 6.05 mW/g

(SAR corrected for target medium)

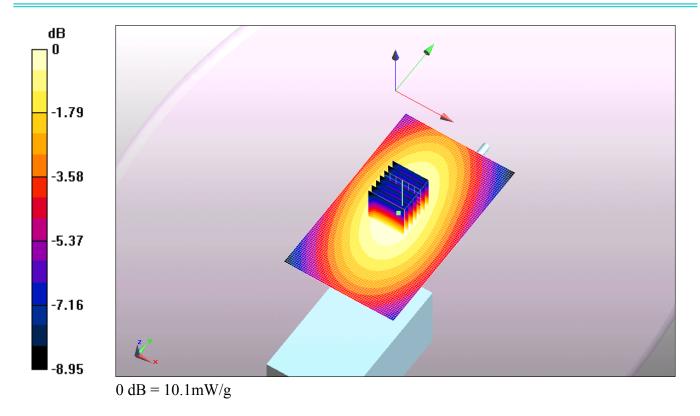
Info: Interpolated medium parameters used for SAR evaluation.

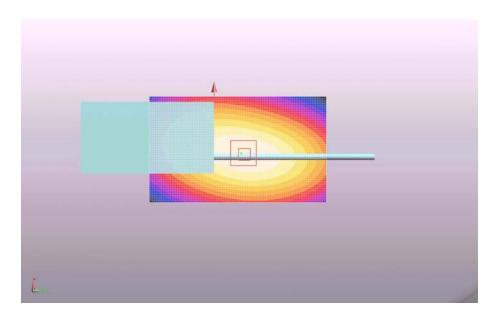
Maximum value of SAR (measured) = 8.928 mW/g

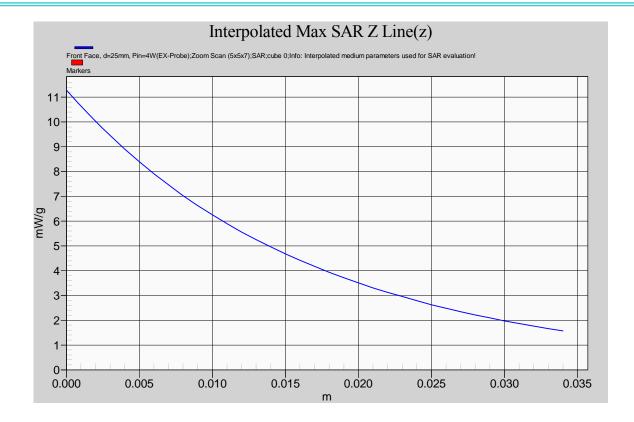
Configuration_Head_FA-SC61UC-136mm_Hf/Front Face, d=25mm, Pin=4W(EX-Probe)/Area Scan (61x101x1):

Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.


Maximum value of SAR (interpolated) = 10.123 mW/g


Configuration_Head_FA-SC61UC-136mm_Hf/Front Face, d=25mm, Pin=4W(EX-Probe)/FindMax (11x41x1):


Measurement grid: dx=20mm, dy=20mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 8.563 mW/g

6.5.3.7. ¹/₄ helical whip cut antenna (M/N: FA-SC61UC), length=129mm; 450 MHz; #22

File Name: ICOM-272Q FA-SC61UC(129mm) Head 450MHz(Lf)-n.da52

DUT: ICOM UHF Transceiver; Type: IC-F4101D; Serial: 21000201-0

Communication System: CW; Frequency: 450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 450 MHz; $\sigma = 0.863 \text{ mho/m}$; $\varepsilon_r = 43.623$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3673; ConvF(9.2, 9.2, 9.2); Calibrated: 2/23/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn874; Calibrated: 2/17/2009
- Phantom: ELI 4.0; Type: QD OVA 001 BB; Serial: 1057
- -; SEMCAD X Version 14.4.5 (3634)

Configuration_Head_FA-SC61UC-129mm_Lf/Front Face, d=25mm, Pin=4W(EX-Probe)/Zoom Scan (5x5x7)

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.226 V/m; Power Drift = 0.03 dB

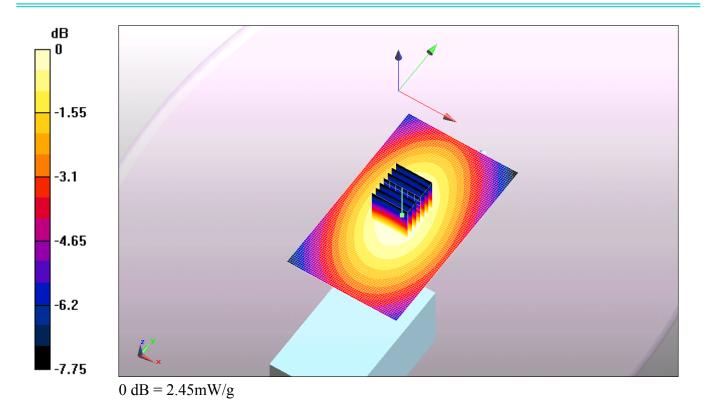
Peak SAR (extrapolated) = 2.726 W/kg

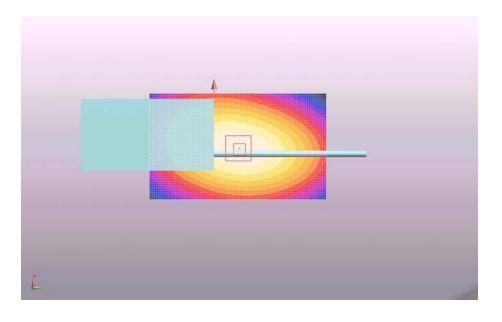
SAR(1 g) = 2.1 mW/g; SAR(10 g) = 1.57 mW/g

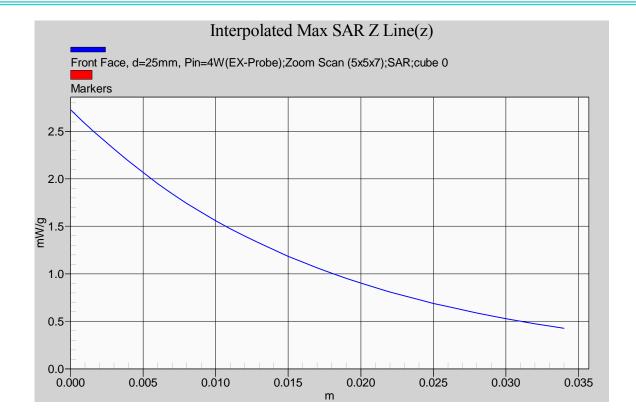
(SAR corrected for target medium)

Maximum value of SAR (measured) = 2.186 mW/g

Configuration Head FA-SC61UC-129mm Lf/Front Face, d=25mm, Pin=4W(EX-Probe)/Area Scan (61x101x1):


Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 2.451 mW/g


Configuration_Head_FA-SC61UC-129mm_Lf/Front Face, d=25mm, Pin=4W(EX-Probe)/FindMax (11x41x1):

Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 2.224 mW/g

6.5.3.8. 44 helical whip cut antenna (M/N: FA-SC61UC), length=129mm; 500 MHz; #23

File Name: ICOM-272Q FA-SC61UC(129mm) Head 500MHz(Mf)-n.da52

DUT: ICOM UHF Transceiver; Type: IC-F4101D; Serial: 21000201-0

Communication System: CW; Frequency: 500 MHz; Duty Cycle: 1:1

Medium parameters used: f = 500 MHz; $\sigma = 0.911$ mho/m; $\varepsilon_r = 42.422$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3673; ConvF(9.2, 9.2, 9.2); Calibrated: 2/23/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn874; Calibrated: 2/17/2009
- Phantom: ELI 4.0; Type: QD OVA 001 BB; Serial: 1057
- -; SEMCAD X Version 14.4.5 (3634)

Configuration_Head_FA-SC61UC-129mm_Mf/Front Face, d=25mm, Pin=4W(EX-Probe)/Zoom Scan (5x5x7)

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 90.501 V/m; Power Drift = -0.02 dB

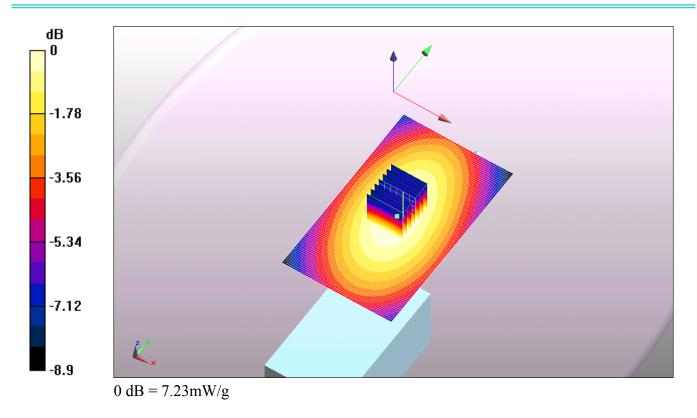
Peak SAR (extrapolated) = 8.042 W/kg

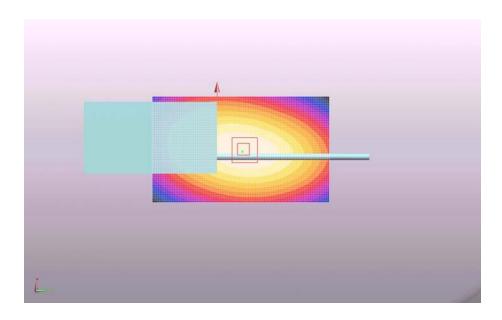
SAR(1 g) = 5.86 mW/g; SAR(10 g) = 4.35 mW/g

(SAR corrected for target medium)

Maximum value of SAR (measured) = 6.365 mW/g

Configuration Head FA-SC61UC-129mm Mf/Front Face, d=25mm, Pin=4W(EX-Probe)/Area Scan (61x101x1):


Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 7.232 mW/g

Configuration_Head_FA-SC61UC-129mm_Mf/Front Face, d=25mm, Pin=4W(EX-Probe)/FindMax (11x41x1):

Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 6.334 mW/g

6.5.3.9. ¹/₄ helical whip cut antenna (M/N: FA-SC61UC), length=129mm; 512 MHz; #24

File Name: ICOM-272Q FA-SC61UC(129mm) Head 512MHz(Hf)-n.da52

DUT: ICOM UHF Transceiver; Type: IC-F4101D; Serial: 21000201-0

Communication System: CW; Frequency: 512 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 512 MHz; $\sigma = 0.919 \text{ mho/m}$; $\varepsilon_r = 42.161$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3673; ConvF(9.2, 9.2, 9.2); Calibrated: 2/23/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn874; Calibrated: 2/17/2009
- Phantom: ELI 4.0; Type: QD OVA 001 BB; Serial: 1057
- -; SEMCAD X Version 14.4.5 (3634)

Configuration_Head_FA-SC61UC-129mm_Hf/Front Face, d=25mm, Pin=4W(EX-Probe)/Zoom Scan (5x5x7)

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 108.4 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 11.910 W/kg

SAR(1 g) = 8.53 mW/g; SAR(10 g) = 6.3 mW/g

(SAR corrected for target medium)

Info: Interpolated medium parameters used for SAR evaluation.

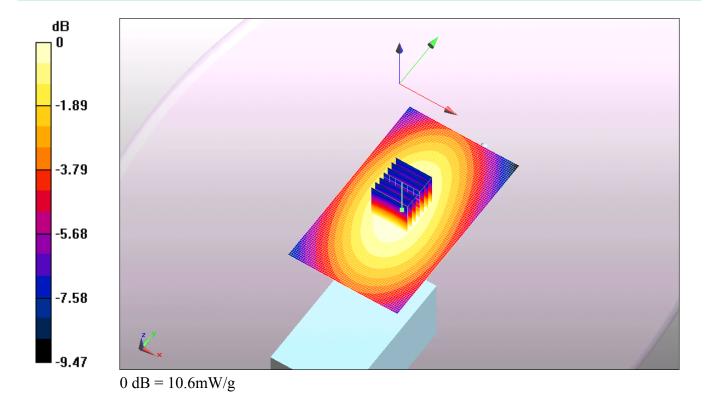
Maximum value of SAR (measured) = 9.375 mW/g

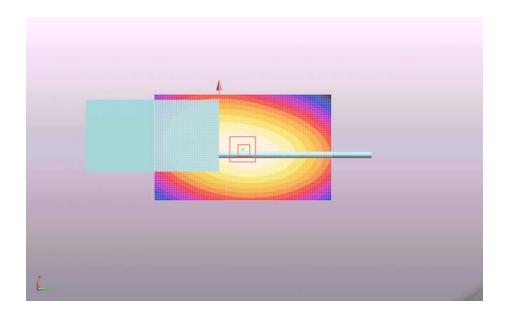
Configuration_Head_FA-SC61UC-129mm_Hf/Front Face, d=25mm, Pin=4W(EX-Probe)/Area Scan (61x101x1):

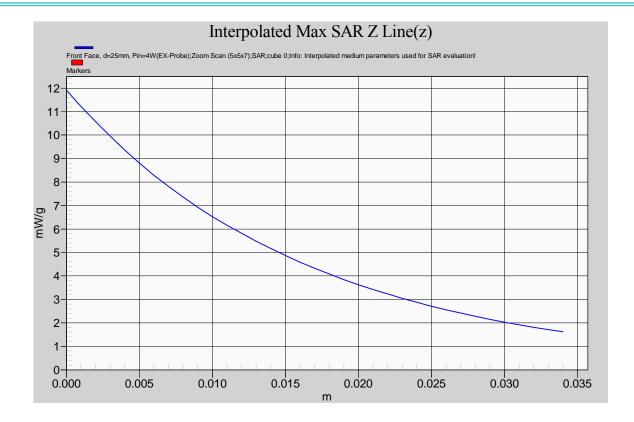
Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 10.650 mW/g


Configuration_Head_FA-SC61UC-129mm_Hf/Front Face, d=25mm, Pin=4W(EX-Probe)/FindMax (11x41x1):


Measurement grid: dx=20mm, dy=20mm


Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 9.238 mW/g

File #: ICOM-272Q-SAR June 28, 2011

6.5.4. Body Configuration Result* of Part 1: FA-SC57U, FA-SC72U and FA-SC73US Antennas

#	Configuration	Antenna Position	Frequency [MHz]	Channel	MAX SAR _{1g} [W/Kg]	
*	Occupational/Controlled Exposure Category Limit					
26	1/4 helical whip antenna (M/N: FA-SC57U, 430~470 MHz, red ring)	FIX	450	Low	2.49	
27	50% duty cycle for PTT	FIX	460	Middle	3.03	
28	MB-124 Clip, HM-159L Speaker Mic with SP-27 Tube Earphone	FIX	470	High	3.55	
29	1/4 helical whip antenna (M/N: FA-SC72U, 470~520 MHz, blue ring)	FIX	470	Low	2.73	
30	50% duty cycle for PTT	FIX	490	Middle	4.51	
31	MB-124 Clip, HM-159L Speaker Mic with SP-27 Tube Earphone	FIX	512	High	5.60	
32	¹ / ₄ helical whip antenna (M/N: FA-SC73US, 450~490 MHz, red ring)	FIX	450	Low	2.12	
33	50% duty cycle for PTT	FIX	470	Middle	2.44	
34	MB-124 Clip, HM-159L Speaker Mic with SP-27 Tube Earphone	FIX	490	High	1.36	

ULTRATECH GROUP OF LABS

File #: ICOM-272Q-SAR June 28, 2011

6.5.4.1. ¹/₄ helical whip antenna (M/N: FA-SC57U); Belt Clip (M/N: MB-124), Speaker Microphone (M/N: HM-159L) with Tube Earphone (M/N: SP-27); 450 MHz; #26

File Name: ICOM-272Q FA-SC57U Body 450MHz(Lf).da52

DUT: ICOM UHF Transceiver; Type: IC-F4101D; Serial: 21000201-0

Communication System: CW; Frequency: 450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 450 MHz; $\sigma = 0.936 \text{ mho/m}$; $\varepsilon_r = 56.254$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3673; ConvF(9.8, 9.8, 9.8); Calibrated: 2/23/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn874; Calibrated: 2/17/2009
- Phantom: ELI 4.0; Type: QD OVA 001 BB; Serial: 1057
- -; SEMCAD X Version 14.4.5 (3634)

Configuration_Body_FA-SC57U_Lf/Body Back, d=0mm, Pin=4W(EX-Probe)/Zoom Scan (5x5x7) (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 77.691 V/m; Power Drift = 0.16 dB

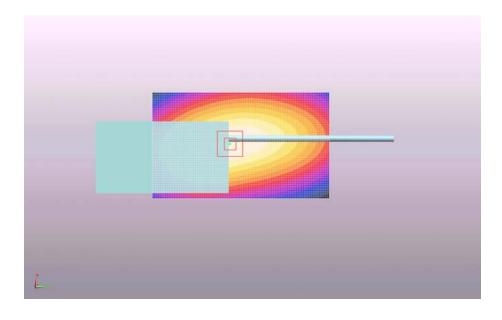
Peak SAR (extrapolated) = 6.635 W/kg

SAR(1 g) = 4.98 mW/g; SAR(10 g) = 3.66 mW/g

(SAR corrected for target medium)

Maximum value of SAR (measured) = 5.245 mW/g

Configuration_Body_FA-SC57U_Lf/Body Back, d=0mm, Pin=4W(EX-Probe)/Area Scan (61x101x1): Measurement grid:


dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 5.961 mW/g

Configuration_Body_FA-SC57U_Lf/Body Back, d=0mm, Pin=4W(EX-Probe)/FindMax (11x41x1): Measurement grid:

dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 4.960 mW/g

UHF Transceiverss M/N: IC-F4101D

FCC ID: AFJ332902, IC: 202D-332902

6.5.4.2. ¹/₄ helical whip antenna (M/N: FA-SC57U); Belt Clip (M/N: MB-124), Speaker Microphone (M/N: HM-159L) with Tube Earphone (M/N: SP-27); 460 MHz; #27

File Name: ICOM-272Q FA-SC57U Body 460MHz(Mf).da52

DUT: ICOM UHF Transceiver; Type: IC-F4101D; Serial: 21000201-0

Communication System: CW; Frequency: 460 MHz; Duty Cycle: 1:1

Medium parameters used: f = 460 MHz; $\sigma = 0.947 \text{ mho/m}$; $\varepsilon_r = 56.074$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3673; ConvF(9.8, 9.8, 9.8); Calibrated: 2/23/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn874; Calibrated: 2/17/2009
- Phantom: ELI 4.0; Type: QD OVA 001 BB; Serial: 1057
- -; SEMCAD X Version 14.4.5 (3634)

Configuration_Body_FA-SC57U_Mf/Body Back, d=0mm, Pin=4W(EX-Probe)/Zoom Scan (5x5x7) (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 85.155 V/m; Power Drift = 0.09 dB

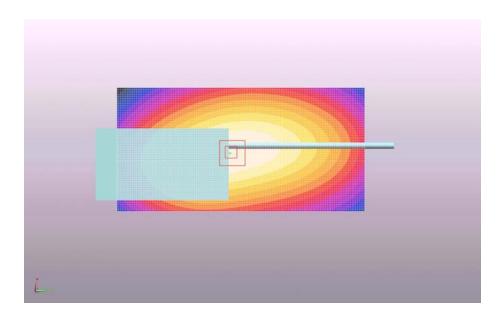
Peak SAR (extrapolated) = 8.135 W/kg

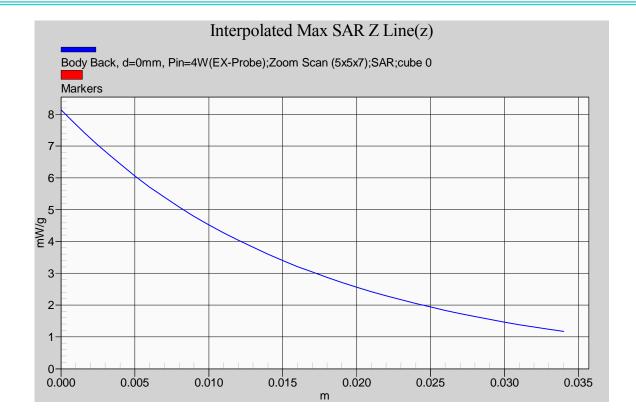
SAR(1 g) = 6.06 mW/g; SAR(10 g) = 4.45 mW/g

(SAR corrected for target medium)

Maximum value of SAR (measured) = 6.435 mW/g

Configuration_Body_FA-SC57U_Mf/Body Back, d=0mm, Pin=4W(EX-Probe)/Area Scan (71x141x1): Measurement grid:


dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 7.390 mW/g

Configuration_Body_FA-SC57U_Mf/Body Back, d=0mm, Pin=4W(EX-Probe)/FindMax (11x41x1): Measurement grid:

dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 6.295 mW/g

6.5.4.3. ¹/₄ helical whip antenna (M/N: FA-SC57U); Belt Clip (M/N: MB-124), Speaker Microphone (M/N: HM-159L) with Tube Earphone (M/N: SP-27); 470 MHz; #28

File Name: ICOM-272Q FA-SC57U Body 470MHz(Hf).da52

DUT: ICOM UHF Transceiver; Type: IC-F4101D; Serial: 21000201-0

Communication System: CW; Frequency: 470 MHz; Duty Cycle: 1:1

Medium parameters used: f = 470 MHz; $\sigma = 0.957 \text{ mho/m}$; $\varepsilon_r = 55.836$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3673; ConvF(9.8, 9.8, 9.8); Calibrated: 2/23/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn874; Calibrated: 2/17/2009
- Phantom: ELI 4.0; Type: QD OVA 001 BB; Serial: 1057
- -; SEMCAD X Version 14.4.5 (3634)

Configuration_Body_FA-SC57U_Hf/Body Back, d=0mm, Pin=4W(EX-Probe)/Zoom Scan (5x5x7) (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 93.727 V/m; Power Drift = 0.07 dB

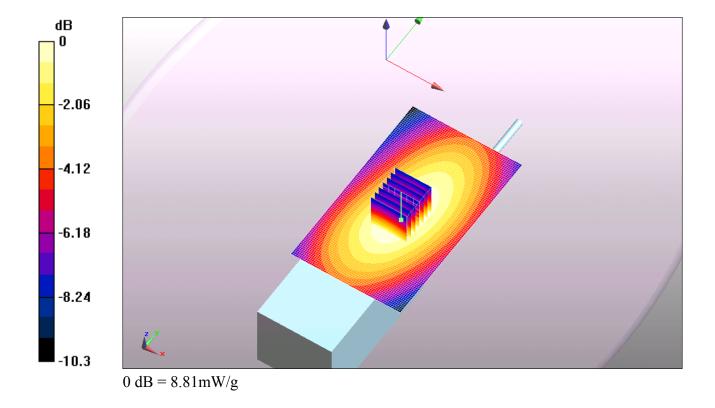
Peak SAR (extrapolated) = 9.708 W/kg

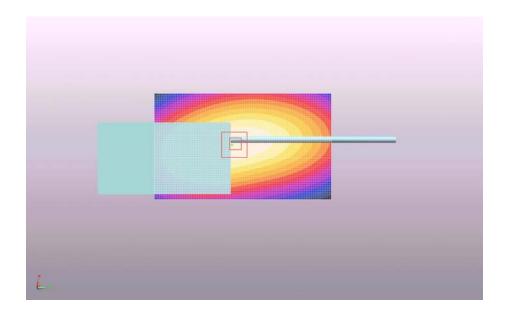
SAR(1 g) = 7.1 mW/g; SAR(10 g) = 5.2 mW/g

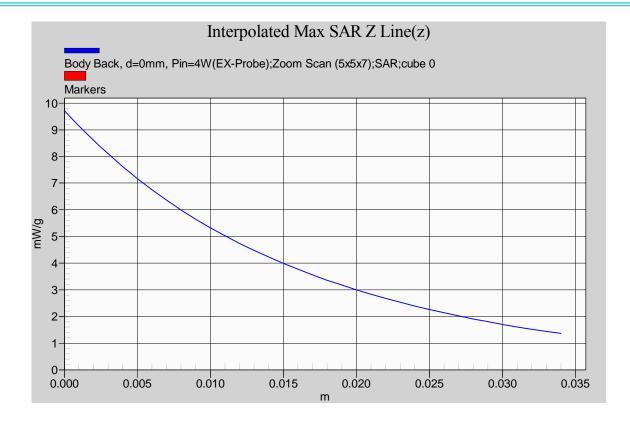
(SAR corrected for target medium)

Maximum value of SAR (measured) = 7.617 mW/g

Configuration_Body_FA-SC57U_Hf/Body Back, d=0mm, Pin=4W(EX-Probe)/Area Scan (61x101x1): Measurement grid:


dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 8.809 mW/g


Configuration_Body_FA-SC57U_Hf/Body Back, d=0mm, Pin=4W(EX-Probe)/FindMax (11x41x1): Measurement grid:

dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 7.291 mW/g

File #: ICOM-272Q-SAR

FCC ID: AFJ332902, IC: 202D-332902

6.5.4.4. ¼ helical whip antenna (M/N: FA-SC72U); Belt Clip (M/N: MB-124), Speaker Microphone (M/N: HM-159L) with Tube Earphone (M/N: SP-27); 470 MHz; #29

File Name: ICOM-272Q FA-SC72U Body 470MHz(Lf).da52

DUT: ICOM UHF Transceiver; Type: IC-F4101D; Serial: 21000201-0

Communication System: CW; Frequency: 470 MHz; Duty Cycle: 1:1

Medium parameters used: f = 470 MHz; $\sigma = 0.957 \text{ mho/m}$; $\varepsilon_r = 55.836$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3673; ConvF(9.8, 9.8, 9.8); Calibrated: 2/23/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn874; Calibrated: 2/17/2009
- Phantom: ELI 4.0; Type: QD OVA 001 BB; Serial: 1057
- -; SEMCAD X Version 14.4.5 (3634)

Configuration_Body_FA-SC72U_Lf/Body Back, d=0mm, Pin=4W(EX-Probe)/Zoom Scan (5x5x7) (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 83.548 V/m; Power Drift = -0.06 dB

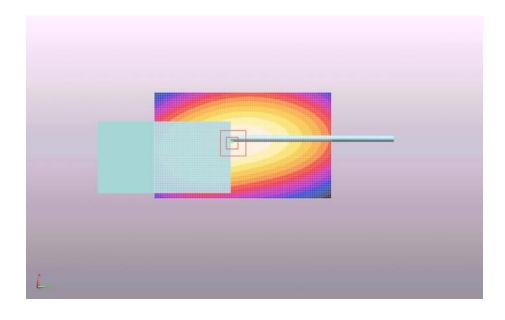
Peak SAR (extrapolated) = 7.444 W/kg

SAR(1 g) = 5.46 mW/g; SAR(10 g) = 4.01 mW/g

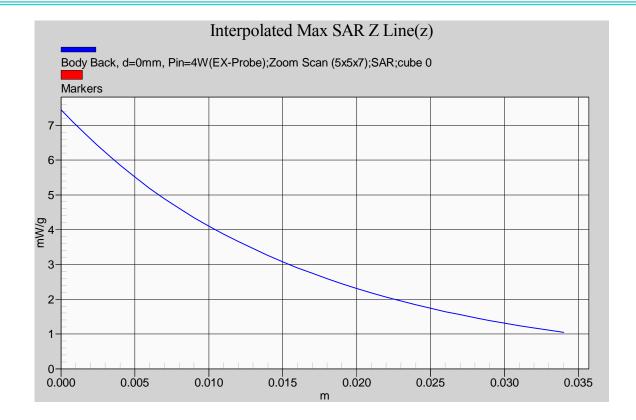
(SAR corrected for target medium)

Maximum value of SAR (measured) = 5.857 mW/g

Configuration Body FA-SC72U Lf/Body Back, d=0mm, Pin=4W(EX-Probe)/Area Scan (61x101x1): Measurement grid:


dx=15mm, dv=15mm

Maximum value of SAR (interpolated) = 6.759 mW/g


Configuration_Body_FA-SC72U_Lf/Body Back, d=0mm, Pin=4W(EX-Probe)/FindMax (11x41x1): Measurement grid:

dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 6.196 mW/g

ULTRATECH GROUP OF LABS

6.5.4.5. ¼ helical whip antenna (M/N: FA-SC72U); Belt Clip (M/N: MB-124), Speaker Microphone (M/N: HM-159L) with Tube Earphone (M/N: SP-27); 490 MHz; #30

File Name: ICOM-272Q FA-SC72U Body 490MHz(Mf).da52

DUT: ICOM UHF Transceiver; Type: IC-F4101D; Serial: 21000201-0

Communication System: CW; Frequency: 490 MHz; Duty Cycle: 1:1

Medium parameters used: f = 490 MHz; $\sigma = 0.977 \text{ mho/m}$; $\varepsilon_r = 55.577$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3673; ConvF(9.8, 9.8, 9.8); Calibrated: 2/23/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn874; Calibrated: 2/17/2009
- Phantom: ELI 4.0; Type: QD OVA 001 BB; Serial: 1057
- -; SEMCAD X Version 14.4.5 (3634)

Configuration_Body_FA-SC72U_Mf/Body Back, d=0mm, Pin=4W(EX-Probe)/Zoom Scan (5x5x7) (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 105.7 V/m; Power Drift = 0.03 dB

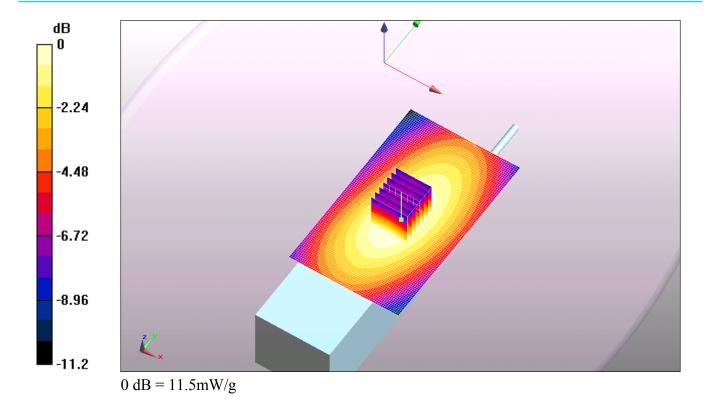
Peak SAR (extrapolated) = 12.463 W/kg

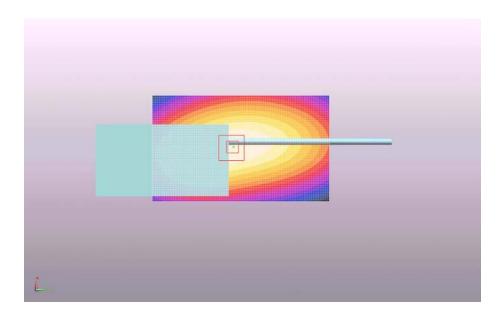
SAR(1 g) = 9.01 mW/g; SAR(10 g) = 6.64 mW/g

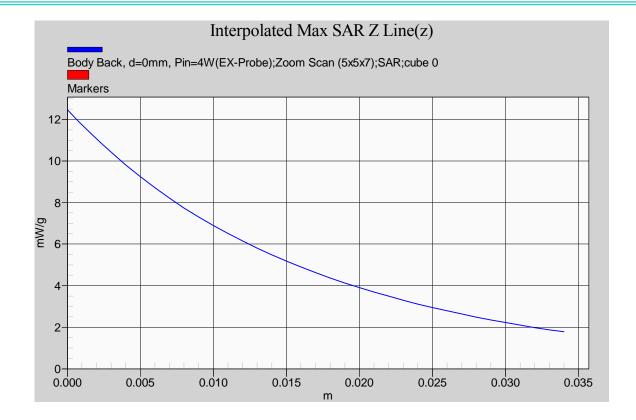
(SAR corrected for target medium)

Maximum value of SAR (measured) = 9.830 mW/g

Configuration Body FA-SC72U Mf/Body Back, d=0mm, Pin=4W(EX-Probe)/Area Scan (61x101x1): Measurement grid:


dx=15mm, dv=15mm


Maximum value of SAR (interpolated) = 11.540 mW/g


Configuration_Body_FA-SC72U_Mf/Body Back, d=0mm, Pin=4W(EX-Probe)/FindMax (11x41x1): Measurement grid:

dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 9.744 mW/g

UHF Transceiverss M/N: IC-F4101D

FCC ID: AFJ332902, IC: 202D-332902

6.5.4.6. ¹/₄ helical whip antenna (M/N: FA-SC72U); Belt Clip (M/N: MB-124), Speaker Microphone (M/N: HM-159L) with Tube Earphone (M/N: SP-27); 512 MHz; #31

File Name: ICOM-272Q FA-SC72U Body 512MHz(Hf).da52

DUT: ICOM UHF Transceiver; Type: IC-F4101D; Serial: 21000201-0

Communication System: CW; Frequency: 512 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 512 MHz; $\sigma = 0.994$ mho/m; $\varepsilon_r = 55.197$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3673; ConvF(9.8, 9.8, 9.8); Calibrated: 2/23/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn874; Calibrated: 2/17/2009
- Phantom: ELI 4.0; Type: QD OVA 001 BB; Serial: 1057
- -; SEMCAD X Version 14.4.5 (3634)

Configuration_Body_FA-SC72U_Hf/Body Back, d=0mm, Pin=4W(EX-Probe)/Zoom Scan (5x5x7) (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 117.7 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 15.709 W/kg

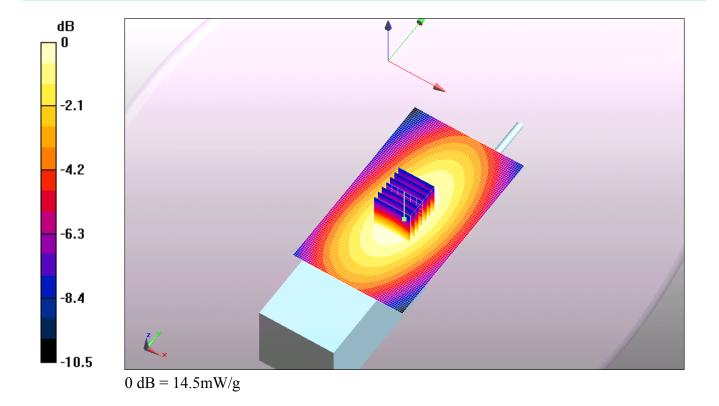
SAR(1 g) = 11.2 mW/g; SAR(10 g) = 8.26 mW/g

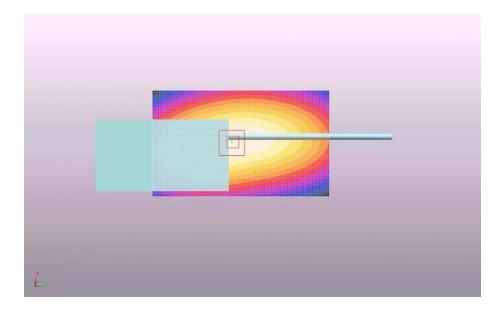
(SAR corrected for target medium)

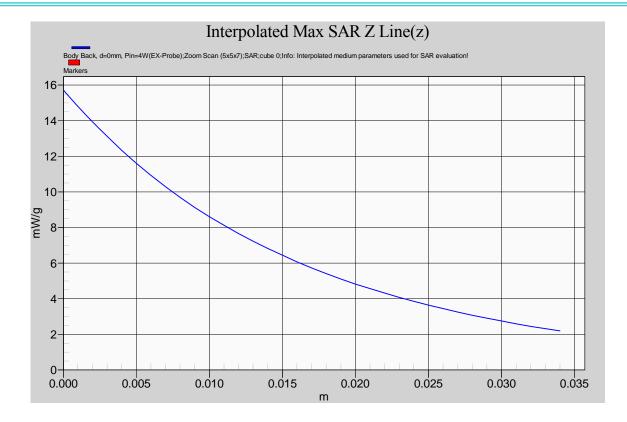
Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 12.341 mW/g

Configuration_Body_FA-SC72U_Hf/Body Back, d=0mm, Pin=4W(EX-Probe)/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm


Info: Interpolated medium parameters used for SAR evaluation.


Maximum value of SAR (interpolated) = 14.528 mW/g


 $\label{lem:configuration_Body_FA-SC72U_Hf/Body Back, d=0mm, Pin=4W(EX-Probe)/FindMax (11x41x1): $$ Measurement grid: $$ dx=20mm, dy=20mm $$$

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 12.552 mW/g

6.5.4.7. ¹/₄ helical whip stubby antenna (M/N: FA-SC73US); Belt Clip (M/N: MB-124), Speaker Microphone (M/N: HM-159L) with Tube Earphone (M/N: SP-27); 450 MHz; #32

File Name: ICOM-272Q FA-SC73US Body 450MHz(Lf).da52

DUT: ICOM UHF Transceiver; Type: IC-F4101D; Serial: 21000201-0

Communication System: CW; Frequency: 450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 450 MHz; $\sigma = 0.936 \text{ mho/m}$; $\varepsilon_r = 56.254$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3673; ConvF(9.8, 9.8, 9.8); Calibrated: 2/23/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn874; Calibrated: 2/17/2009
- Phantom: ELI 4.0; Type: QD OVA 001 BB; Serial: 1057
- -; SEMCAD X Version 14.4.5 (3634)

Configuration_Body_FA-SC73US_Lf/Body Back, d=0mm, Pin=4W(EX-Probe)/Zoom Scan (5x5x7) (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 72.285 V/m; Power Drift = -0.01 dB

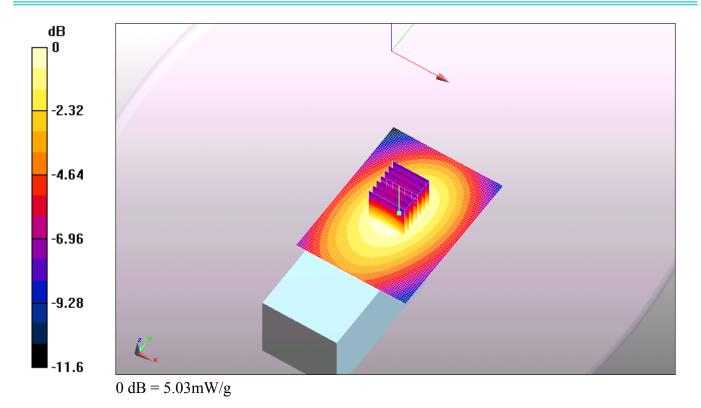
Peak SAR (extrapolated) = 5.626 W/kg

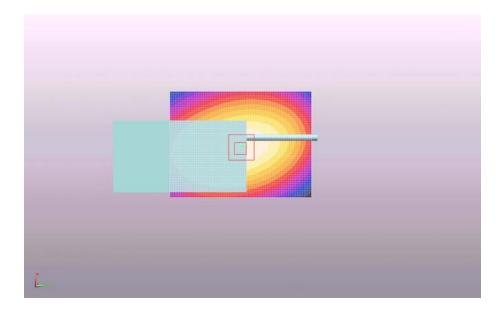
SAR(1 g) = 4.24 mW/g; SAR(10 g) = 3.1 mW/g

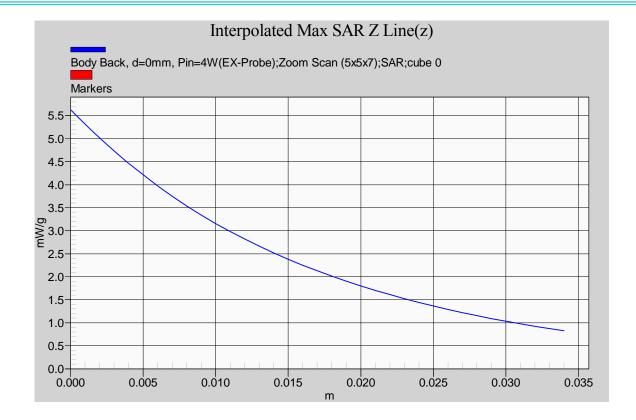
(SAR corrected for target medium)

Maximum value of SAR (measured) = 4.463 mW/g

Configuration_Body_FA-SC73US_Lf/Body Back, d=0mm, Pin=4W(EX-Probe)/Area Scan (61x81x1): Measurement grid:


dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 5.034 mW/g


Configuration_Body_FA-SC73US_Lf/Body Back, d=0mm, Pin=4W(EX-Probe)/FindMax (11x41x1): Measurement grid:

dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 4.528 mW/g

6.5.4.8. 4/4 helical whip stubby antenna (M/N: FA-SC73US); Belt Clip (M/N: MB-124), Speaker Microphone (M/N: HM-159L) with Tube Earphone (M/N: SP-27); 470 MHz; #33

File Name: ICOM-272Q FA-SC73US Body 470MHz(Mf).da52

DUT: ICOM UHF Transceiver; Type: IC-F4101D; Serial: 21000201-0

Communication System: CW; Frequency: 470 MHz; Duty Cycle: 1:1

Medium parameters used: f = 470 MHz; $\sigma = 0.957 \text{ mho/m}$; $\varepsilon_r = 55.836$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3673; ConvF(9.8, 9.8, 9.8); Calibrated: 2/23/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn874; Calibrated: 2/17/2009
- Phantom: ELI 4.0; Type: QD OVA 001 BB; Serial: 1057
- -; SEMCAD X Version 14.4.5 (3634)

Configuration_Body_FA-SC73US_Mf/Body Back, d=0mm, Pin=4W(EX-Probe)/Zoom Scan (5x5x7) (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 77.041 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 6.647 W/kg

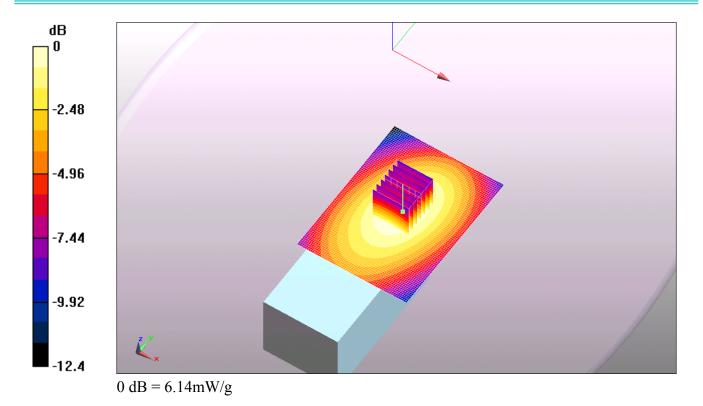
SAR(1 g) = 4.88 mW/g; SAR(10 g) = 3.57 mW/g

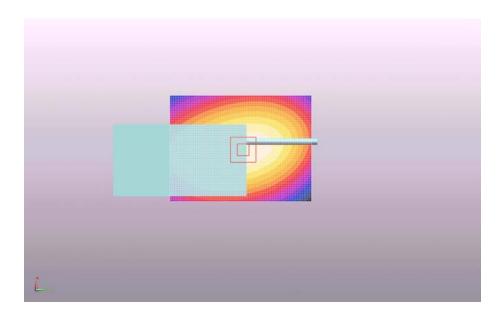
(SAR corrected for target medium)

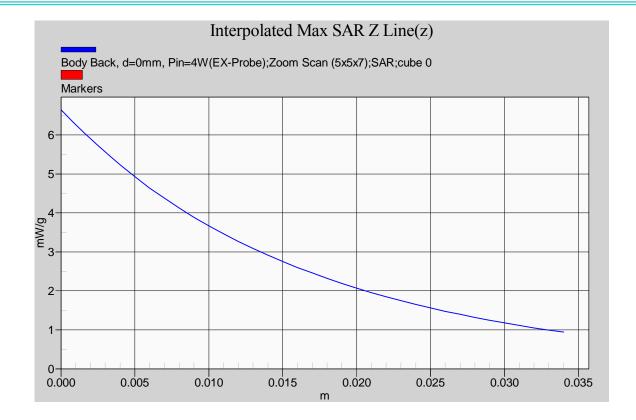
Maximum value of SAR (measured) = 5.239 mW/g

Configuration_Body_FA-SC73US_Mf/Body Back, d=0mm, Pin=4W(EX-Probe)/Area Scan (61x81x1): Measurement grid:

dx=15mm, dv=15mm


Maximum value of SAR (interpolated) = 6.136 mW/g


Configuration_Body_FA-SC73US_Mf/Body Back, d=0mm, Pin=4W(EX-Probe)/FindMax (11x41x1): Measurement grid:


dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 5.317 mW/g

June 28, 2011

6.5.4.9. 1/4 helical whip stubby antenna (M/N: FA-SC73US); Belt Clip (M/N: MB-124), Speaker Microphone (M/N: HM-159L) with Tube Earphone (M/N: SP-27); 490 MHz; #34

File Name: ICOM-272Q FA-SC73US Body 490MHz(Hf).da52

DUT: ICOM UHF Transceiver; Type: IC-F4101D; Serial: 21000201-0

Communication System: CW; Frequency: 490 MHz; Duty Cycle: 1:1

Medium parameters used: f = 490 MHz; $\sigma = 0.977 \text{ mho/m}$; $\varepsilon_r = 55.577$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3673; ConvF(9.8, 9.8, 9.8); Calibrated: 2/23/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn874; Calibrated: 2/17/2009
- Phantom: ELI 4.0; Type: QD OVA 001 BB; Serial: 1057
- -; SEMCAD X Version 14.4.5 (3634)

Configuration_Body_FA-SC73US_Hf/Body Back, d=0mm, Pin=4W(EX-Probe)/Zoom Scan (5x5x7) (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 58.459 V/m; Power Drift = 0.0072 dB

Peak SAR (extrapolated) = 3.762 W/kg

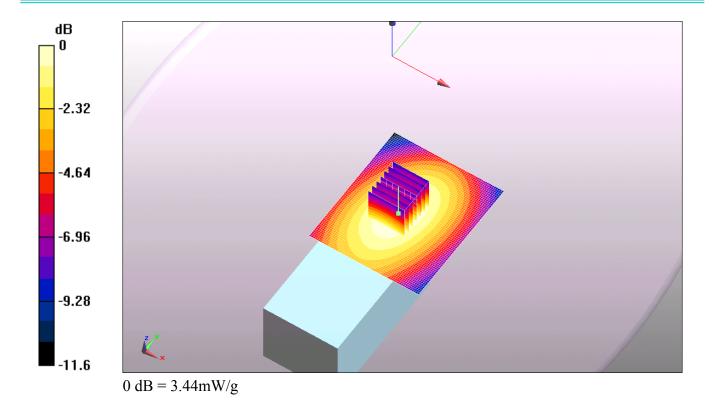
SAR(1 g) = 2.72 mW/g; SAR(10 g) = 1.99 mW/g

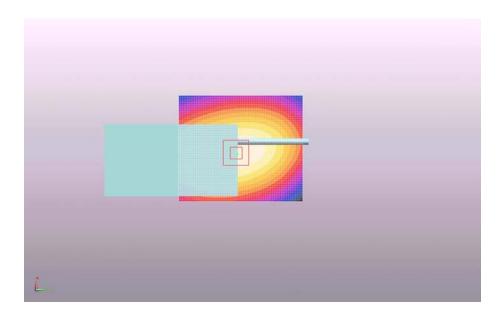
(SAR corrected for target medium)

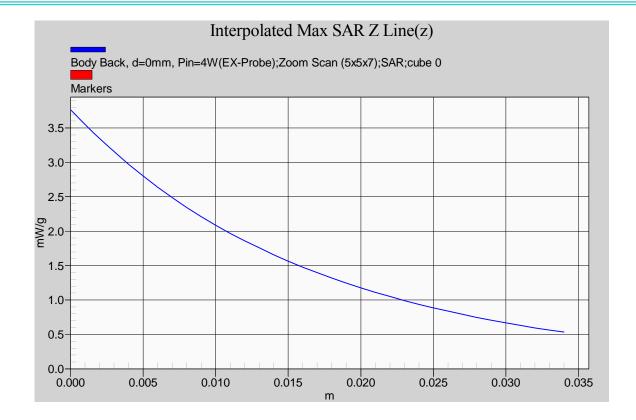
Maximum value of SAR (measured) = 2.972 mW/g

Configuration Body FA-SC73US Hf/Body Back, d=0mm, Pin=4W(EX-Probe)/Area Scan (61x71x1): Measurement grid:

dx=15mm, dv=15mm


Maximum value of SAR (interpolated) = 3.436 mW/g


Configuration_Body_FA-SC73US_Hf/Body Back, d=0mm, Pin=4W(EX-Probe)/FindMax (11x41x1): Measurement grid:


dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 3.002 mW/g

June 28, 2011

6.5.5. Body Configuration Result* of Part 2: FA-SC61UC Cut Antenna

#	Configuration	Antenna Position	Frequency [MHz]	Channel	MAX SAR _{1g} [W/Kg]
*	Occupational/Controlled Exposure Category Limit				8.0
35	1/4 helical whip cut antenna (M/N: FA-SC61UC, 360~520 MHz, white ring)	FIX	460	Low	3.69
36	50% duty cycle for PTT; Antenna Length=142mm	FIX	486	Middle	4.67
37	MB-124 Clip, HM-159L Speaker Mic with SP-27 Tube Earphone	FIX	512	High	3.39
38	1/4 helical whip antenna (M/N: FA-SC61UC, 360~520 MHz, white ring)	FIX	450	Low	2.28
39	50% duty cycle for PTT; Antenna Length=136mm	FIX	480	Middle	4.17
40	MB-124 Clip, HM-159L Speaker Mic with SP-27 Tube Earphone	FIX	512	High	4.95
41	1/4 helical whip antenna (M/N: FA-SC61UC, 360~520 MHz, white ring)	FIX	450	Low	1.64
42	50% duty cycle for PTT; Antenna Length=129mm	FIX	500	Middle	4.65
43	MB-124 Clip, HM-159L Speaker Mic with SP-27 Tube Earphone	FIX	512	High	5.90
44		FIX	475	Option	2.48

^{*} Cut antenna test plan is established according to PBA responses (tracking number:133795 and 598241) from FCC, following FCC PBA procedure.

6.5.5.1. ¹/₄ helical whip cut antenna (M/N: FA-SC61UC), length=142mm; Belt Belt Clip (M/N: MB-124), Speaker Microphone (M/N: HM-159L) with Tube Earphone (M/N: SP-27); 460 MHz; #35

File Name: ICOM-272Q FA-SC61UC(142mm) Body 460MHz(Lf).da52

DUT: ICOM UHF Transceiver; Type: IC-F4101D; Serial: 21000201-0

Communication System: CW; Frequency: 460 MHz; Duty Cycle: 1:1

Medium parameters used: f = 460 MHz; $\sigma = 0.947 \text{ mho/m}$; $\varepsilon_r = 56.074$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3673; ConvF(9.8, 9.8, 9.8); Calibrated: 2/23/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn874; Calibrated: 2/17/2009
- Phantom: ELI 4.0; Type: QD OVA 001 BB; Serial: 1057
- -; SEMCAD X Version 14.4.5 (3634)

Configuration_Body_FA-SC61UC-142mm_Lf/Body Back, d=0mm, Pin=4W(EX-Probe)/Zoom Scan (5x5x7)

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.807 V/m; Power Drift = 0.13 dB

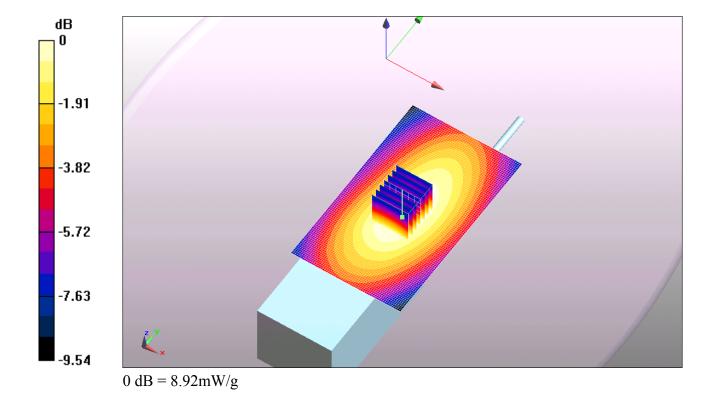
Peak SAR (extrapolated) = 9.949 W/kg

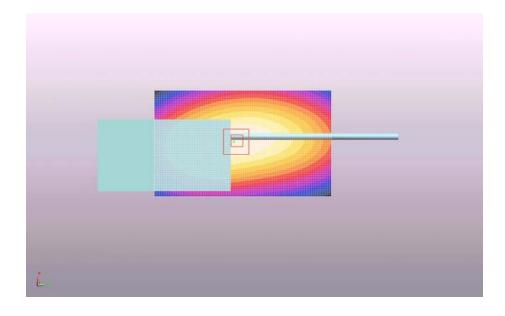
SAR(1 g) = 7.38 mW/g; SAR(10 g) = 5.43 mW/g

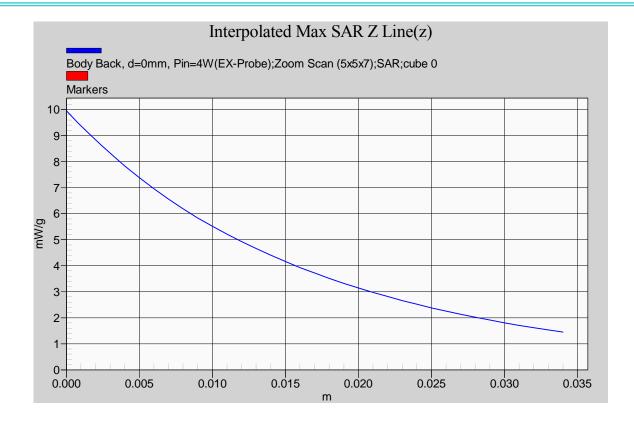
(SAR corrected for target medium)

Maximum value of SAR (measured) = 7.840 mW/g

Configuration_Body_FA-SC61UC-142mm_Lf/Body Back, d=0mm, Pin=4W(EX-Probe)/Area Scan (61x101x1):


Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 8.924 mW/g


Configuration_Body_FA-SC61UC-142mm_Lf/Body Back, d=0mm, Pin=4W(EX-Probe)/FindMax (11x41x1):

Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 7.714 mW/g

UHF Transceiverss M/N: IC-F4101D

FCC ID: AFJ332902, IC: 202D-332902

6.5.5.2. '4 helical whip cut antenna (M/N: FA-SC61UC), length=142mm; Belt Belt Clip (M/N: MB-124), Speaker Microphone (M/N: HM-159L) with Tube Earphone (M/N: SP-27); 486 MHz; #36

File Name: ICOM-272Q FA-SC61UC(142mm) Body 486MHz(Mf).da52

DUT: ICOM UHF Transceiver; Type: IC-F4101D; Serial: 21000201-0

Communication System: CW; Frequency: 486 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 486 MHz; $\sigma = 0.971 \text{ mho/m}$; $\varepsilon_r = 55.628$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3673; ConvF(9.8, 9.8, 9.8); Calibrated: 2/23/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn874; Calibrated: 2/17/2009
- Phantom: ELI 4.0; Type: QD OVA 001 BB; Serial: 1057
- -; SEMCAD X Version 14.4.5 (3634)

Configuration Body FA-SC61UC-142mm Mf/Body Back, d=0mm, Pin=4W(EX-Probe)/Zoom Scan (5x5x7)

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 109.1 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 12.877 W/kg

SAR(1 g) = 9.34 mW/g; SAR(10 g) = 6.88 mW/g

(SAR corrected for target medium)

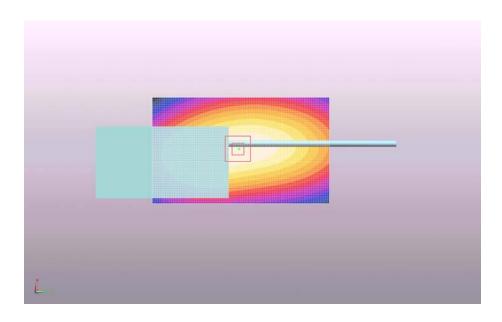
Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 10.161 mW/g

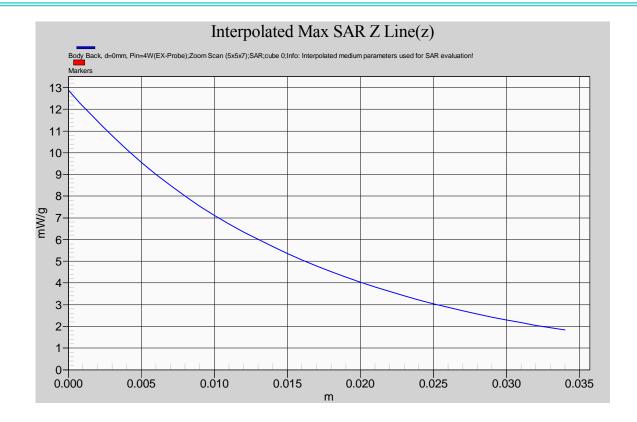
Configuration Body FA-SC61UC-142mm Mf/Body Back, d=0mm, Pin=4W(EX-Probe)/Area Scan (61x101x1):

Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.


Maximum value of SAR (interpolated) = 11.797 mW/g

Configuration_Body_FA-SC61UC-142mm_Mf/Body Back, d=0mm, Pin=4W(EX-Probe)/FindMax (11x41x1):


Measurement grid: dx=20mm, dy=20mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 10.703 mW/g

ULTRATECH GROUP OF LABS

UHF Transceiverss M/N: IC-F4101D

FCC ID: AFJ332902, IC: 202D-332902

6.5.5.3. ¼ helical whip cut antenna (M/N: FA-SC61UC), length=142mm; Belt Belt Clip (M/N: MB-124), Speaker Microphone (M/N: HM-159L) with Tube Earphone (M/N: SP-27); 512 MHz; #37

File Name: ICOM-272Q FA-SC61UC(142mm) Body 512MHz(Hf).da52

DUT: ICOM UHF Transceiver; Type: IC-F4101D; Serial: 21000201-0

Communication System: CW; Frequency: 512 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 512 MHz; $\sigma = 0.994 \text{ mho/m}$; $\varepsilon_r = 55.197$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3673; ConvF(9.8, 9.8, 9.8); Calibrated: 2/23/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn874; Calibrated: 2/17/2009
- Phantom: ELI 4.0; Type: QD OVA 001 BB; Serial: 1057
- -; SEMCAD X Version 14.4.5 (3634)

Configuration Body FA-SC61UC-142mm Hf/Body Back, d=0mm, Pin=4W(EX-Probe)/Zoom Scan (5x5x7)

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 90.902 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 9.467 W/kg

SAR(1 g) = 6.78 mW/g; SAR(10 g) = 5 mW/g

(SAR corrected for target medium)

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 7.450 mW/g

Configuration Body FA-SC61UC-142mm Hf/Body Back, d=0mm, Pin=4W(EX-Probe)/Area Scan (61x101x1):

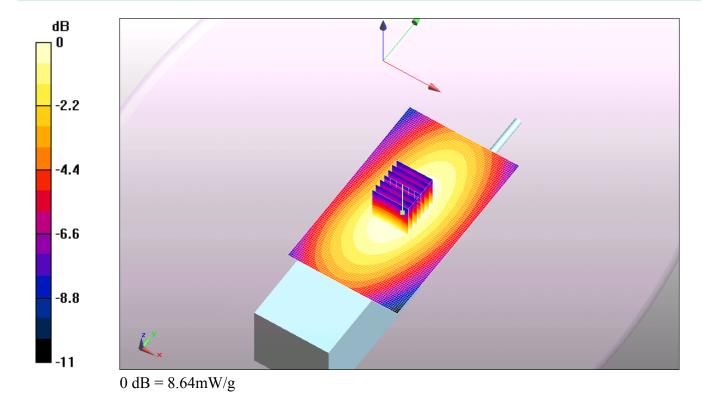
Measurement grid: dx=15mm, dy=15mm

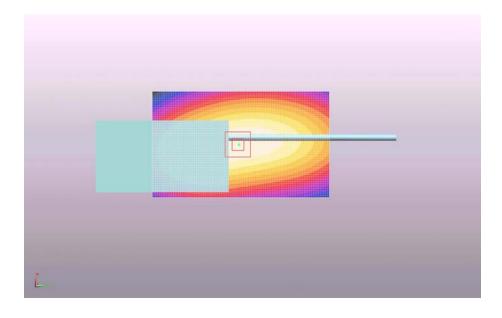
Info: Interpolated medium parameters used for SAR evaluation.

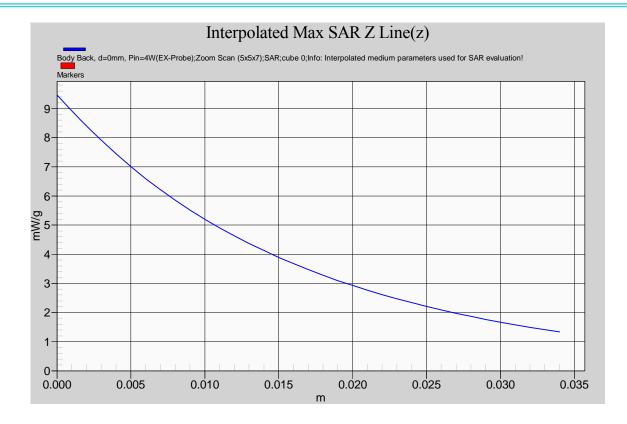
Maximum value of SAR (interpolated) = 8.640 mW/g

Configuration Body FA-SC61UC-142mm Hf/Body Back, d=0mm, Pin=4W(EX-Probe)/FindMax (11x41x1):

Measurement grid: dx=20mm, dy=20mm


Info: Interpolated medium parameters used for SAR evaluation.


Maximum value of SAR (interpolated) = 7.243 mW/g


3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

6.5.5.4. ¹/₄ helical whip cut antenna (M/N: FA-SC61UC), length=136mm; Belt Belt Clip (M/N: MB-124), Speaker Microphone (M/N: HM-159L) with Tube Earphone (M/N: SP-27); 450 MHz; #38

File Name: ICOM-272Q FA-SC61UC(136mm) Body 450MHz(Lf).da52

DUT: ICOM UHF Transceiver; Type: IC-F4101D; Serial: 21000201-0

Communication System: CW; Frequency: 450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 450 MHz; $\sigma = 0.936 \text{ mho/m}$; $\varepsilon_r = 56.254$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3673; ConvF(9.8, 9.8, 9.8); Calibrated: 2/23/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn874; Calibrated: 2/17/2009
- Phantom: ELI 4.0; Type: QD OVA 001 BB; Serial: 1057
- -; SEMCAD X Version 14.4.5 (3634)

Configuration_Body_FA-SC61UC-136mm_Lf/Body Back, d=0mm, Pin=4W(EX-Probe)/Zoom Scan (5x5x7)

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 75.280 V/m; Power Drift = 0.14 dB

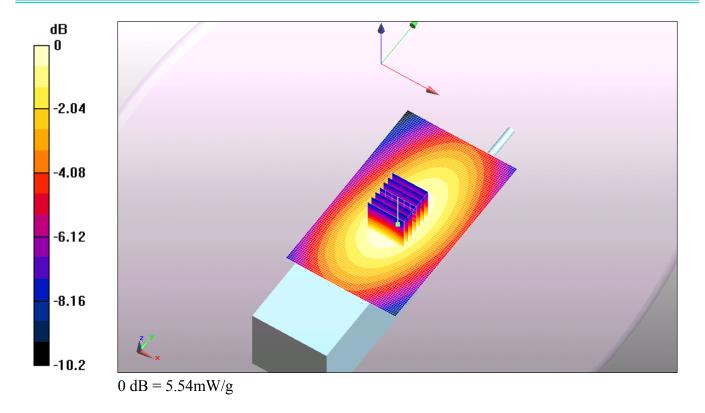
Peak SAR (extrapolated) = 6.028 W/kg

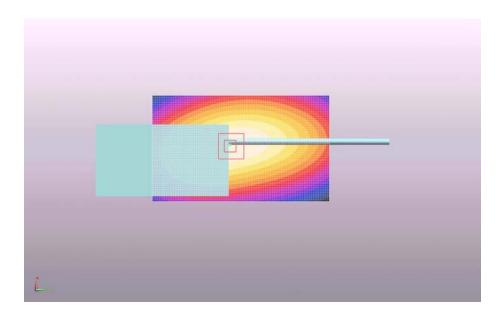
SAR(1 g) = 4.56 mW/g; SAR(10 g) = 3.38 mW/g

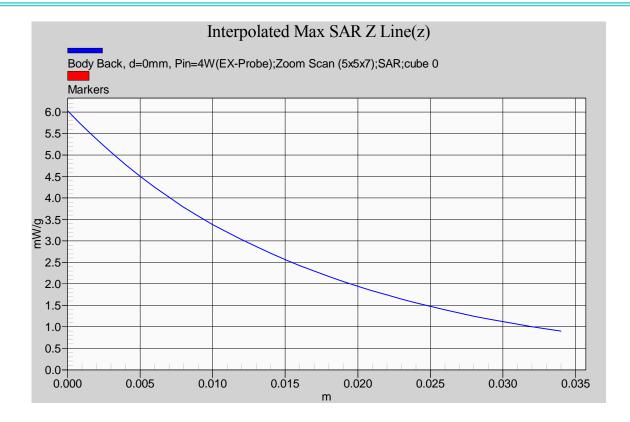
(SAR corrected for target medium)

Maximum value of SAR (measured) = 4.778 mW/g

Configuration_Body_FA-SC61UC-136mm_Lf/Body Back, d=0mm, Pin=4W(EX-Probe)/Area Scan (61x101x1):


Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 5.540 mW/g


Configuration_Body_FA-SC61UC-136mm_Lf/Body Back, d=0mm, Pin=4W(EX-Probe)/FindMax (11x41x1):

Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 4.736 mW/g

6.5.5.5. ¹/₄ helical whip cut antenna (M/N: FA-SC61UC), length=136mm; Belt Belt Clip (M/N: MB-124), Speaker Microphone (M/N: HM-159L) with Tube Earphone (M/N: SP-27); 480 MHz; #39

File Name: ICOM-272Q FA-SC61UC(136mm) Body 480MHz(Mf).da52

DUT: ICOM UHF Transceiver; Type: IC-F4101D; Serial: 21000201-0

Communication System: CW; Frequency: 480 MHz; Duty Cycle: 1:1

Medium parameters used: f = 480 MHz; $\sigma = 0.967 \text{ mho/m}$; $\varepsilon_r = 55.701$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3673; ConvF(9.8, 9.8, 9.8); Calibrated: 2/23/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn874; Calibrated: 2/17/2009
- Phantom: ELI 4.0; Type: QD OVA 001 BB; Serial: 1057
- -; SEMCAD X Version 14.4.5 (3634)

Configuration_Body_FA-SC61UC-136mm_Mf/Body Back, d=0mm, Pin=4W(EX-Probe)/Zoom Scan (5x5x7)

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 101.4 V/m; Power Drift = 0.008 dB

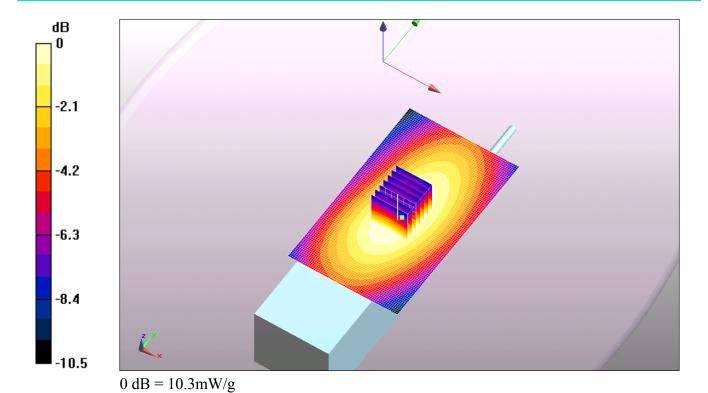
Peak SAR (extrapolated) = 11.446 W/kg

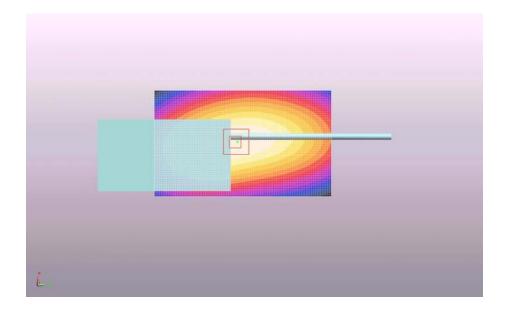
SAR(1 g) = 8.33 mW/g; SAR(10 g) = 6.12 mW/g

(SAR corrected for target medium)

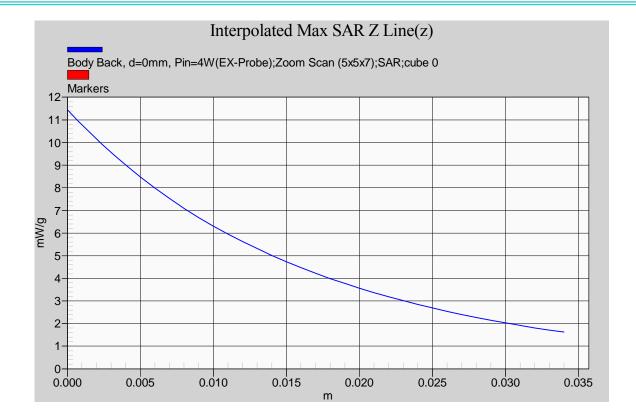
Maximum value of SAR (measured) = 9.006 mW/g

Configuration_Body_FA-SC61UC-136mm_Mf/Body Back, d=0mm, Pin=4W(EX-Probe)/Area Scan (61x101x1):


Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 10.347 mW/g

Configuration_Body_FA-SC61UC-136mm_Mf/Body Back, d=0mm, Pin=4W(EX-Probe)/FindMax (11x41x1):


Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 9.307 mW/g

ULTRATECH GROUP OF LABS

UHF Transceiverss M/N: IC-F4101D

FCC ID: AFJ332902, IC: 202D-332902

6.5.5.6. 4/4 helical whip cut antenna (M/N: FA-SC61UC), length=136mm; Belt Belt Clip (M/N: MB-124), Speaker Microphone (M/N: HM-159L) with Tube Earphone (M/N: SP-27); 512 MHz; #40

File Name: ICOM-272Q FA-SC61UC(136mm) Body 512MHz(Hf).da52

DUT: ICOM UHF Transceiver; Type: IC-F4101D; Serial: 21000201-0

Communication System: CW; Frequency: 512 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 512 MHz; $\sigma = 0.994 \text{ mho/m}$; $\varepsilon_r = 55.197$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3673; ConvF(9.8, 9.8, 9.8); Calibrated: 2/23/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn874; Calibrated: 2/17/2009
- Phantom: ELI 4.0; Type: QD OVA 001 BB; Serial: 1057
- -; SEMCAD X Version 14.4.5 (3634)

Configuration_Body_FA-SC61UC-136mm_Hf/Body Back, d=0mm, Pin=4W(EX-Probe)/Zoom Scan (5x5x7)

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 109.7 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 13.835 W/kg

SAR(1 g) = 9.9 mW/g; SAR(10 g) = 7.27 mW/g

(SAR corrected for target medium)

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 10.855 mW/g

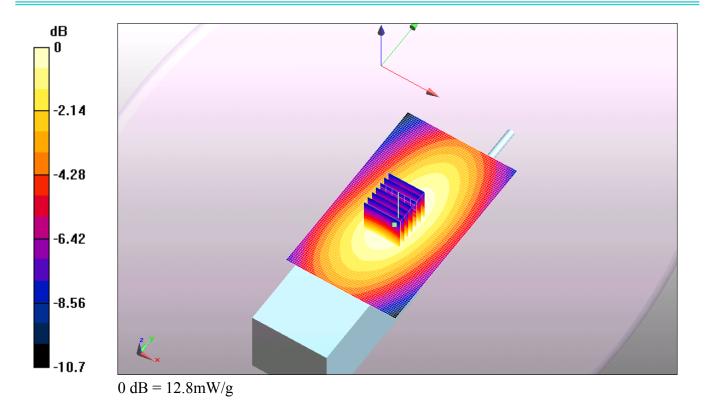
Configuration Body FA-SC61UC-136mm Hf/Body Back, d=0mm, Pin=4W(EX-Probe)/Area Scan (61x101x1):

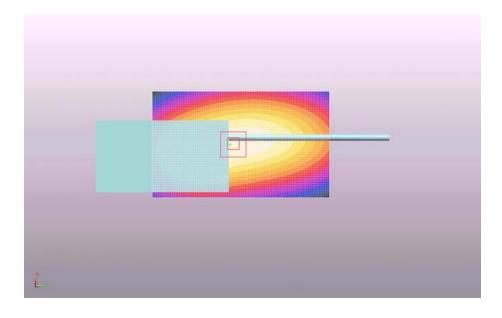
Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 12.781 mW/g

Configuration_Body_FA-SC61UC-136mm_Hf/Body Back, d=0mm, Pin=4W(EX-Probe)/FindMax (11x41x1):


Measurement grid: dx=20mm, dy=20mm


Info: Interpolated medium parameters used for SAR evaluation.


Maximum value of SAR (interpolated) = 12.158 mW/g

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4
Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

File #: ICOM-272Q-SAR June 28, 2011

4 helical whip cut antenna (M/N: FA-SC61UC), length=129mm; Belt Belt Clip (M/N: MB-124), Speaker 6.5.5.7. Microphone (M/N: HM-159L) with Tube Earphone (M/N: SP-27); 450 MHz; #41

File Name: ICOM-272O FA-SC61UC(129mm) Body 450MHz(Lf).da52

DUT: ICOM UHF Transceiver; Type: IC-F4101D; Serial: 21000201-0

Communication System: CW; Frequency: 450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 450 MHz; $\sigma = 0.936 \text{ mho/m}$; $\varepsilon_r = 56.254$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3673; ConvF(9.8, 9.8, 9.8); Calibrated: 2/23/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn874; Calibrated: 2/17/2009
- Phantom: ELI 4.0; Type: QD OVA 001 BB; Serial: 1057
- -; SEMCAD X Version 14.4.5 (3634)

Configuration_Body_FA-SC61UC-129mm_Lf/Body Back, d=0mm, Pin=4W(EX-Probe)/Zoom Scan (5x5x7)

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 65.088 V/m; Power Drift = -0.16 dB

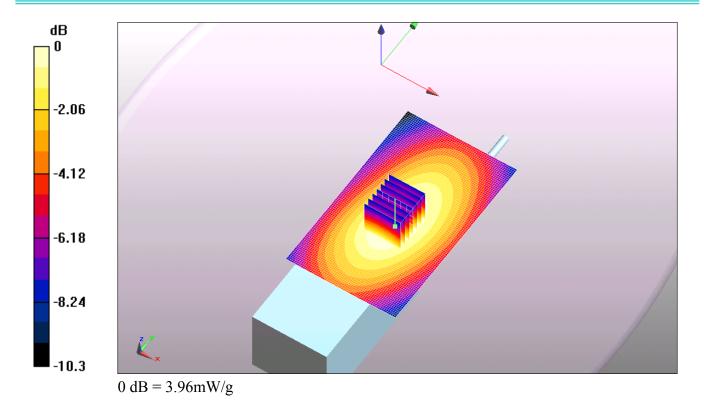
Peak SAR (extrapolated) = 4.330 W/kg

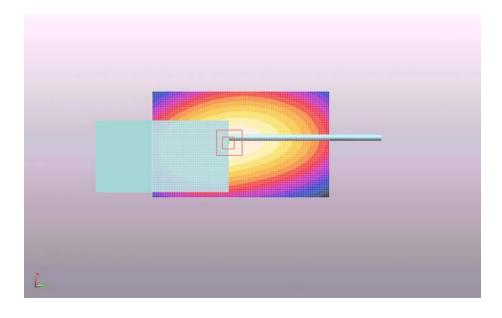
SAR(1 g) = 3.27 mW/g; SAR(10 g) = 2.41 mW/g

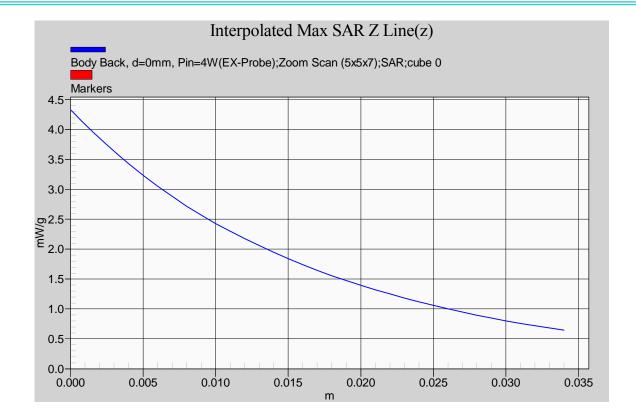
(SAR corrected for target medium)

Maximum value of SAR (measured) = 3.436 mW/g

Configuration_Body_FA-SC61UC-129mm_Lf/Body Back, d=0mm, Pin=4W(EX-Probe)/Area Scan (61x101x1):


Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 3.962 mW/g


Configuration Body FA-SC61UC-129mm Lf/Body Back, d=0mm, Pin=4W(EX-Probe)/FindMax (11x41x1):

Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 3.632 mW/g

6.5.5.8. 4/4 helical whip cut antenna (M/N: FA-SC61UC), length=129mm; Belt Belt Clip (M/N: MB-124), Speaker Microphone (M/N: HM-159L) with Tube Earphone (M/N: SP-27); 500 MHz; #42

File Name: ICOM-272Q FA-SC61UC(129mm) Body 500MHz(Mf).da52

DUT: ICOM UHF Transceiver; Type: IC-F4101D; Serial: 21000201-0

Communication System: CW; Frequency: 500 MHz; Duty Cycle: 1:1

Medium parameters used: f = 500 MHz; $\sigma = 0.986 \text{ mho/m}$; $\varepsilon_r = 55.358$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3673; ConvF(9.8, 9.8, 9.8); Calibrated: 2/23/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn874; Calibrated: 2/17/2009
- Phantom: ELI 4.0; Type: QD OVA 001 BB; Serial: 1057
- -; SEMCAD X Version 14.4.5 (3634)

Configuration_Body_FA-SC61UC-129mm_Mf/Body Back, d=0mm, Pin=4W(EX-Probe)/Zoom Scan (5x5x7)

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 108.7 V/m; Power Drift = -0.16 dB

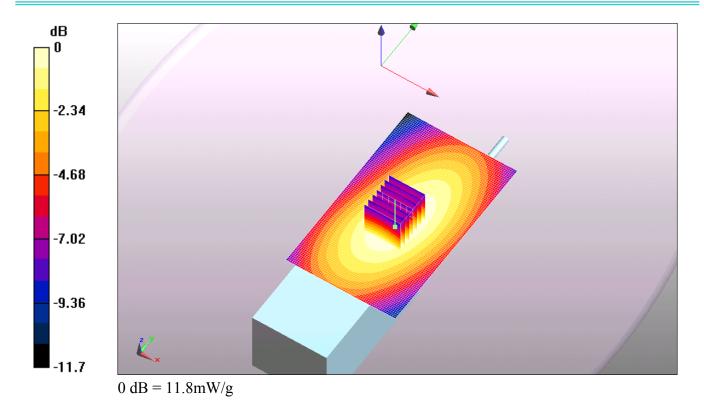
Peak SAR (extrapolated) = 12.921 W/kg

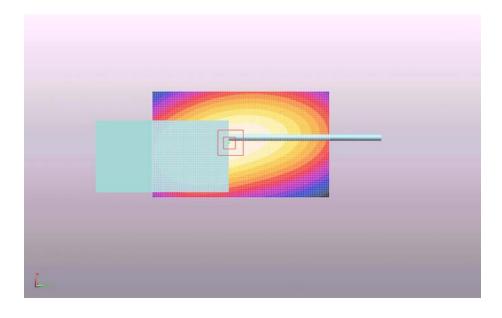
SAR(1 g) = 9.29 mW/g; SAR(10 g) = 6.84 mW/g

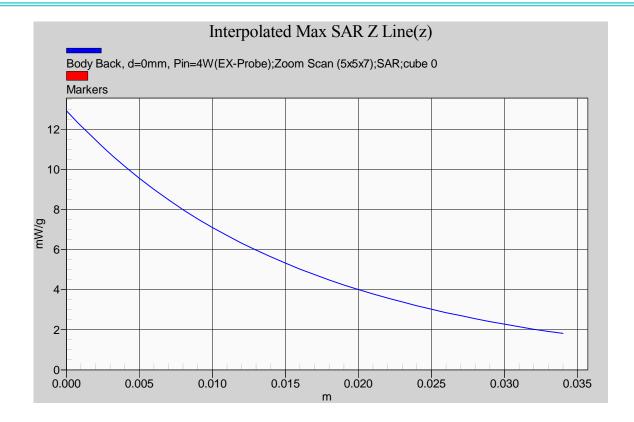
(SAR corrected for target medium)

Maximum value of SAR (measured) = 10.169 mW/g

Configuration_Body_FA-SC61UC-129mm_Mf/Body Back, d=0mm, Pin=4W(EX-Probe)/Area Scan (61x101x1):


Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 11.809 mW/g


Configuration_Body_FA-SC61UC-129mm_Mf/Body Back, d=0mm, Pin=4W(EX-Probe)/FindMax (11x41x1):

Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 10.779 mW/g

6.5.5.9. ¹/₄ helical whip cut antenna (M/N: FA-SC61UC), length=129mm; Belt Belt Clip (M/N: MB-124), Speaker Microphone (M/N: HM-159L) with Tube Earphone (M/N: SP-27); 512 MHz; #43

File Name: ICOM-272Q FA-SC61UC(129mm) Body 512MHz(Hf).da52

DUT: ICOM UHF Transceiver; Type: IC-F4101D; Serial: 21000201-0

Communication System: CW; Frequency: 512 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 512 MHz; $\sigma = 0.994 \text{ mho/m}$; $\varepsilon_r = 55.197$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3673; ConvF(9.8, 9.8, 9.8); Calibrated: 2/23/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn874; Calibrated: 2/17/2009
- Phantom: ELI 4.0; Type: QD OVA 001 BB; Serial: 1057
- -; SEMCAD X Version 14.4.5 (3634)

Configuration_Body_FA-SC61UC-129mm_Hf/Body Back, d=0mm, Pin=4W(EX-Probe)/Zoom Scan (5x5x7)

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 118.7 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 16.418 W/kg

SAR(1 g) = 11.8 mW/g; SAR(10 g) = 8.63 mW/g

(SAR corrected for target medium)

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 12.910 mW/g

Configuration Body FA-SC61UC-129mm Hf/Body Back, d=0mm, Pin=4W(EX-Probe)/Area Scan (61x101x1):

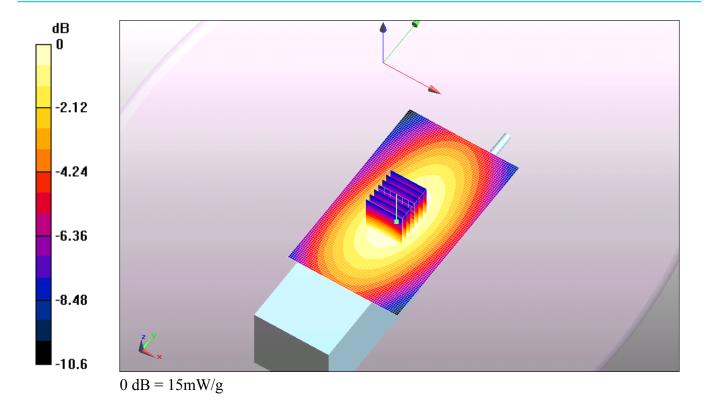
Measurement grid: dx=15mm, dy=15mm

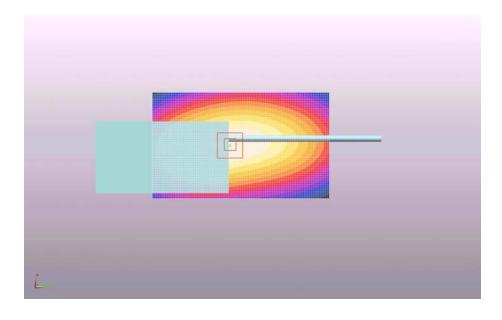
Info: Interpolated medium parameters used for SAR evaluation.

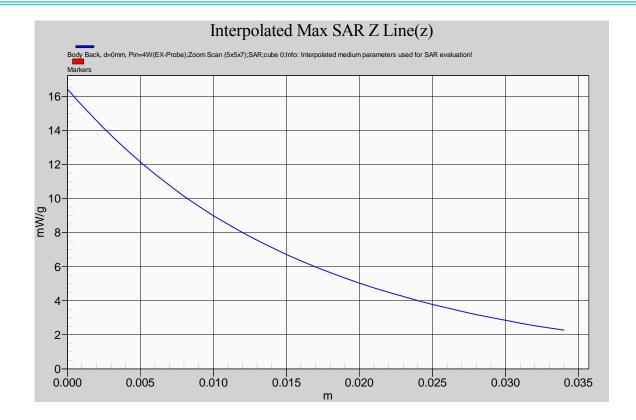
Maximum value of SAR (interpolated) = 15.023 mW/g

Configuration_Body_FA-SC61UC-129mm_Hf/Body Back, d=0mm, Pin=4W(EX-Probe)/FindMax (11x41x1):

Measurement grid: dx=20mm, dy=20mm


Info: Interpolated medium parameters used for SAR evaluation.


Maximum value of SAR (interpolated) = 12.615 mW/g


3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

June 28, 2011

6.5.5.10. ¹/₄ helical whip cut antenna (M/N: FA-SC61UC), length=129mm; Belt Belt Clip (M/N: MB-124), Speaker Microphone (M/N: HM-159L) with Tube Earphone (M/N: SP-27); 475 MHz; #44

File Name: ICOM-272Q FA-SC61UC(129mm) Body 475MHz(Of).da52

DUT: ICOM UHF Transceiver; Type: IC-F4101D; Serial: 21000201-0

Communication System: CW; Frequency: 475 MHz; Duty Cycle: 1:1

Medium parameters used: f = 475 MHz; $\sigma = 0.961$ mho/m; $\varepsilon_r = 55.775$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3673; ConvF(9.8, 9.8, 9.8); Calibrated: 2/23/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn874; Calibrated: 2/17/2009
- Phantom: ELI 4.0; Type: QD OVA 001 BB; Serial: 1057
- -; SEMCAD X Version 14.4.5 (3634)

Configuration_Body_FA-SC61UC-129mm_Of/Body Back, d=0mm, Pin=4W(EX-Probe)/Zoom Scan (5x5x7)

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 79.554 V/m; Power Drift = -0.06 dB

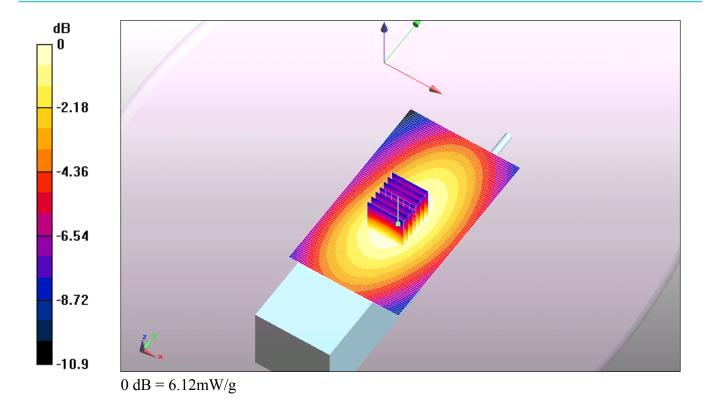
Peak SAR (extrapolated) = 6.758 W/kg

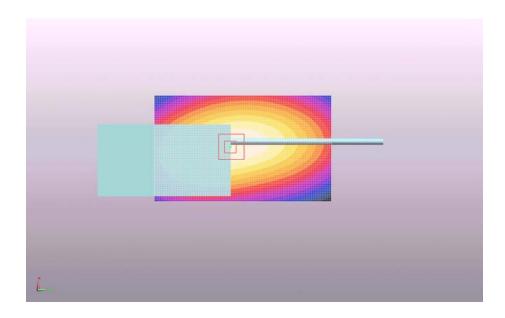
SAR(1 g) = 4.95 mW/g; SAR(10 g) = 3.64 mW/g

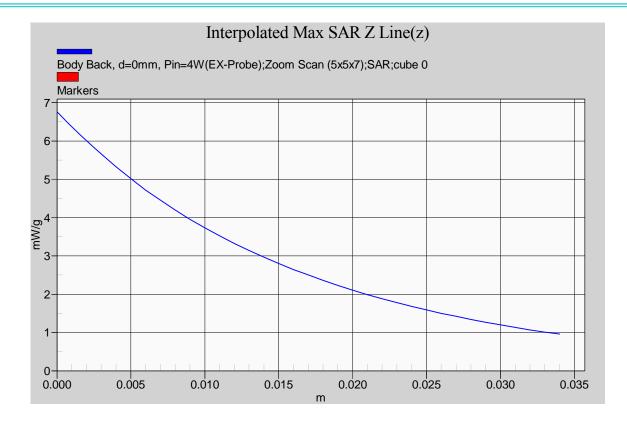
(SAR corrected for target medium)

Maximum value of SAR (measured) = 5.331 mW/g

Configuration_Body_FA-SC61UC-129mm_Of/Body Back, d=0mm, Pin=4W(EX-Probe)/Area Scan (61x101x1):

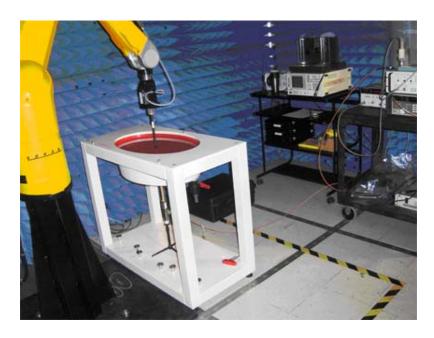

Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 6.121 mW/g


Configuration_Body_FA-SC61UC-129mm_Of/Body Back, d=0mm, Pin=4W(EX-Probe)/FindMax (11x41x1):

Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 5.654 mW/g

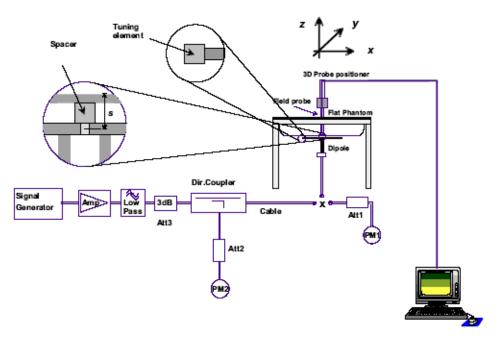


UHF Transceiverss M/N: IC-F4101D

FCC ID: AFJ332902, IC: 202D-332902

EXHIBIT 7. SAR MEASUREMENT SYSTEM VERIFICATION

7.1. STANDARD SOURCE


A half-wave dipole is positioned below the bottom of the phantom and centered with its axis parallel to the longest side of the phantom. The distance between the liquid filled phantom bottom surface and the center of the dipole axis, s, is chosen as specified IEEE 1528 at the specific test frequency (i.e. 15 mm at 835 MHz). A low loss and low dielectric constant spacer is used to establish the correct distance between the top surface of the dipole and the bottom surface of the phantom.

ULTRATECH GROUP OF LABS

7.2. STANDARD SOURCE INPUT POWER MEASUREMENT

The system validation is performed as shown below or in Figure 7.1 in IEEE 1528.

First the power meter PM1 (including attenuator Att1) is connected to the cable to measure the forward power at the location of the dipole connector (X). The signal generator is adjusted for the desired forward power at the dipole connector (taking into account the attenuation of Att1) as read by power meter PM2. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2. If the signal generator does not allow adjustment in 0.01dB steps, the remaining difference at PM2 must be taken into consideration. PM3 records the reflected power from the dipole to ensure that the value is not changed from the previous value. The reflected power was verified to be at least 20dB below the forward power.

7.3. SYSTEM VALIDATION PROCEDURE

A complete 1g-averaged SAR measurement is performed. The measured 1g-averaged SAR value is normalized to a forward power of 1W to a half-wave dipole and compared with the reference SAR value for the reference dipole and flat phantom shown in columns 2 and 3 of Table 7.1 in IEEE 1528.

7.4. VERIFICATION RESULTS

7.4.1. Reference SAR values at 450 MHz*

	Head Tissue	Body Tissue
Reference SAR _{1g [W/Kg]}	4.58	4.69
Reference SAR _{peak [W/Kg]}	6.75	6.82
Measured SAR _{1g [W/Kg]}	4.4	4.64
Measured SAR _{peak [W/Kg]}	6.62	6.96

^{*} SAR values in 7.4.1 are normalized to a forward power of 1 W.

7.4.2. Verification at 450 MHz

7.4.2.1. Verification for 450MHz Head Tissue:

File Name: Sys.Per.Check-D450MHz ICOM-272Q Head.da52

DUT: Dipole 450 MHz D450V3; Type: SA AAD 045 CA; Serial: 1063

Communication System: CW; Frequency: 450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 450 MHz; $\sigma = 0.863 \text{ mho/m}$; $\varepsilon_r = 43.623$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

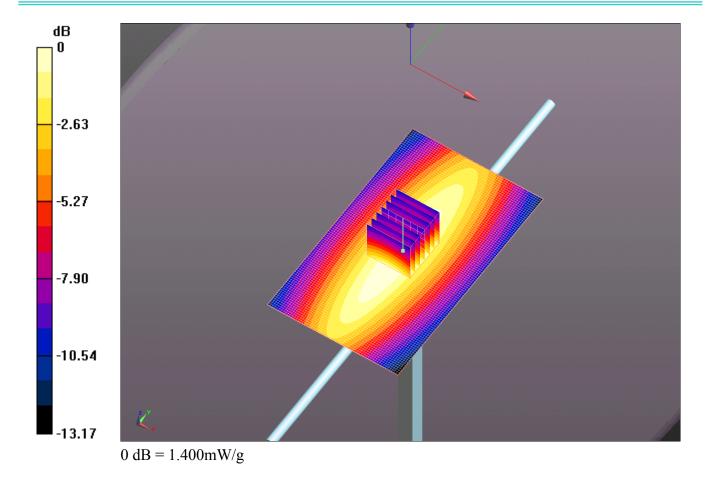
- Probe: EX3DV4 SN3673; ConvF(9.2, 9.2, 9.2); Calibrated: 2/23/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn874; Calibrated: 2/17/2009
- Phantom: ELI 4.0; Type: QD OVA 001 BB; Serial: 1057
- -; SEMCAD X Version 14.4.5 (3634)

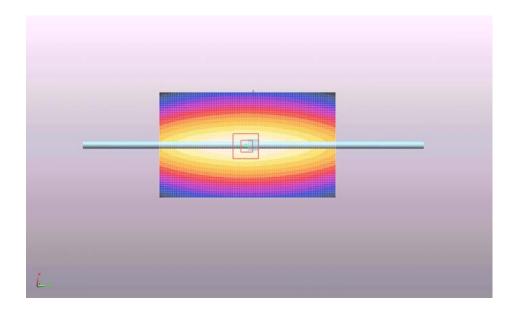
System Verification Configuration for 450MHz Head/d=15mm, Pin=250mW, dist=2.0mm (EX-Probe)/Zoom Scan

(7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 41.092 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 1.654 W/kg


SAR(1 g) = 1.1 mW/g; SAR(10 g) = 0.738 mW/g


Maximum value of SAR (measured) = 1.183 mW/g

System Verification Configuration for 450MHz_Head/d=15mm, Pin=250mW, dist=2.0mm (EX-Probe)/Area Scan

(61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.397 mW/g

ULTRATECH GROUP OF LABS

ULTRATECH GROUP OF LABS

7.4.2.2. Verification for 450MHz Body Tissue:

File Name: Sys.Per.Check-D450MHz ICOM-272Q Body.da52

DUT: Dipole 450 MHz D450V3; Type: SA AAD 045 CA; Serial: 1063

Communication System: CW; Frequency: 450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 450 MHz; $\sigma = 0.936 \text{ mho/m}$; $\varepsilon_r = 56.254$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

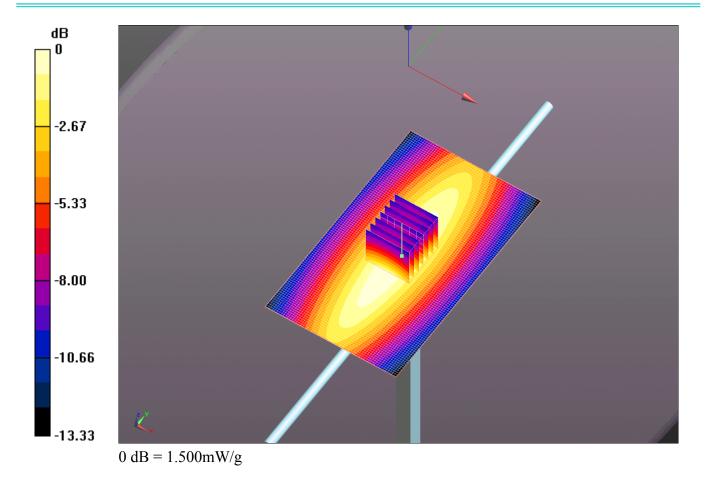
DASY5 Configuration:

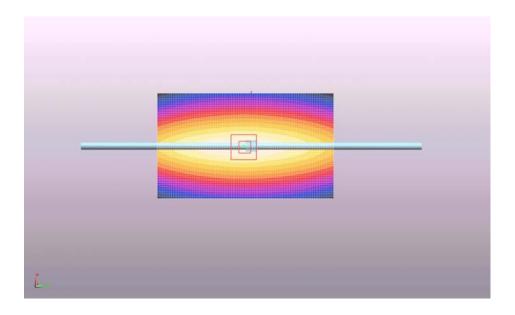
- Probe: EX3DV4 SN3673; ConvF(9.8, 9.8, 9.8); Calibrated: 2/23/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn874; Calibrated: 2/17/2009
- Phantom: ELI 4.0; Type: QD OVA 001 BB; Serial: 1057
- -; SEMCAD X Version 14.4.5 (3634)

System Verification Configuration for 450MHz Body/d=15mm, Pin=250mW, dist=2.0mm (EX-Probe)/Zoom Scan

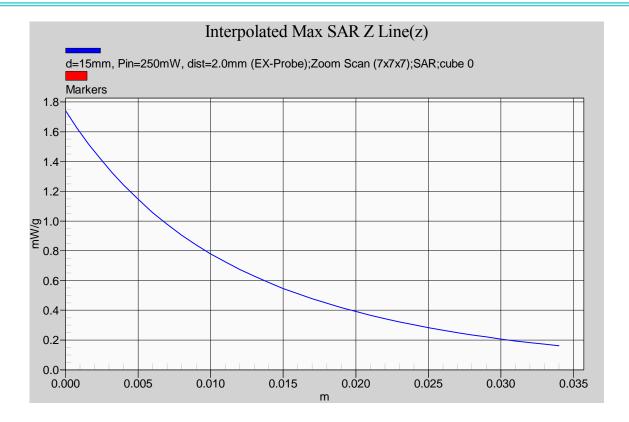
(7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 40.384 V/m; Power Drift = -0.06 dB

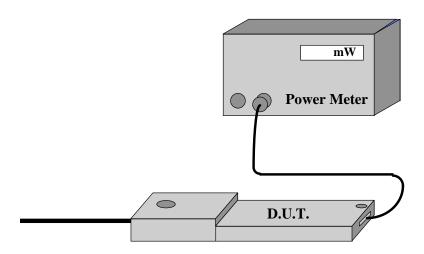

Peak SAR (extrapolated) = 1.741 W/kg


SAR(1 g) = 1.16 mW/g; SAR(10 g) = 0.776 mW/g

Maximum value of SAR (measured) = 1.241 mW/g


System Verification Configuration for 450MHz Body/d=15mm, Pin=250mW, dist=2.0mm (EX-Probe)/Area Scan

(61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.504 mW/g



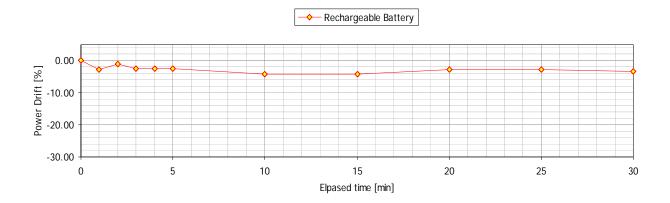
ULTRATECH GROUP OF LABS

EXHIBIT 8. D.U.T. POWER MEASUREMENT

Whenever possible, a conducted power measurement is performed. To accomplish this, we utilize a fully charged battery, a calibrated power meter and a cable adapter provided by the manufacturer. The data of the cable and related circuit losses are also provided by the manufacturer. The power measurement is then performed across the operational band and the channel with the highest output power is recorded.

Power measurement is performed before and after the SAR to verify if the battery was delivering full power at the time of testing. A difference in output power would determine a need for battery replacement and to repeat the SAR test.

UHF Transceiverss M/N: IC-F4101D


8.1.1. RF conducted output power measurement

Fundamental Frequency (MHz)	Measured RF output power conducted (W)
450	4.14
460	4.04
470	4.06
475	4.09
480	4.12
486	4.18
490	4.09
500	4.07
512	4.02

8.1.2. SAR drift measurement

The local SAR was measured at the arbitrary location in the vicinity of the antenna fed point in the simulated tissue at 460 MHz during the period of 30 minute for rechargeable Li-ion battery pack.

The power (SAR) drift after 30 minutes of the continuous transmission at the maximum power level was found to be less than \pm 5 %.

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

EXHIBIT 9. TISSUE DIELECTRIC PARAMETER CALIBRATION

9.1. SIMULATED TISSUE

UHF Transceiverss M/N: IC-F4101D

Simulated Tissue: Suggested in a paper by George Hartsgrove and colleagues in University of Ottawa Ref.: Bioelectromagnetics 8:29-36 (1987)

Ingredient	Quantity
Water	40.4 %
Sugar	56.0 %
Salt	2.5 %
HEC	1.0 %
Bactericide	0.1 %

Table 9.1 Example of composition of simulated tissue

This simulated tissue is mainly composed of water, sugar and salt. At higher frequencies, in order to achieve the proper conductivity, the solution does not contain salt. Also, at these frequencies, D.I. water and alcohol is preferred.

Target Frequency	Н	ead	Вс	Body		
(MHz)	$\epsilon_{\rm r}$	σ (S/m)	ε _r	σ (S/m)		
150	52.3	0.76	61.9	0.80		
300	45.3	0.87	58.2	0.92		
450	43.5	0.87	56.7	0.94		
835	41.5	0.90	55.2	0.97		
900	41.5	0.97	55.0	1.05		
915	41.5	0.98	55.0	1.06		
1450	40.5	1.20	54.0	1.30		
1610	40.3	1.29	53.8	1.40		
1800 – 2000	40.0	1.40	53.3	1.52		
2450	39.2	1.80	52.7	1.95		
3000	38.5	2.40	52.0	2.73		
5800	35.3	5.27	48.2	6.00		

 $(\varepsilon_r = relative \ permittivity, \ \sigma = conductivity \ and \ \rho = 1000 \ Kg/m^3)$

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

File #: ICOM-272Q-SAR June 28, 2011

The actual mass density of the equivalent tissue varies based on the composition of the tissue from 990 Kg/m³ to 1,300 Kg/m³.

9.2. MEASUREMENT OF ELECTRICAL CHARACTERISTICS OF SIMULATED TISSUE

HP Dielectric Strength Probe System (open-ended coaxial transmission-line probe/sensor) was used.

9.2.1. Equipment set-up

The equipment consists of a probe connected to one port of a vector network analyzer. The probe is an open-ended coaxial line, as shown in Figure 9.2.1.1. Cylindrical coordinates (ρ, ϕ, z) are used where ρ is the radial distance from the axis, ϕ is the angular displacement around the axis, z is the displacement along the axis, z is the inner conductor radius, and z is the outer conductor inner radius.

The sample holder is a non-metallic container that is large compared with the size of the probe immersed in it. A probe with an outer diameter b of 2 to 4 mm is suitable for the measurement of tissue-equivalent materials in the 300 MHz to 3 GHz frequency range. This probe size is commensurate with sample volumes of 50 cc or higher. Larger probes of up to 7 mm outer diameter b may be used with larger sample volumes. A flange is typically included to better represent the infinite ground-plane assumption used in admittance calculations.

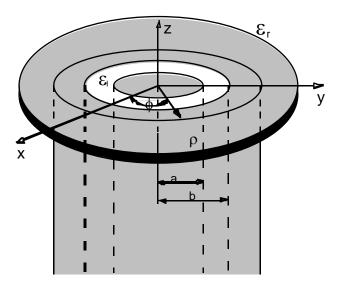


Figure 9.2.1. An open-ended coaxial probe with inner and outer radii a and b, respectively

The accuracy of the short-circuit measurement should be verified for each calibration at a number of frequencies. A short circuit can be achieved by gently pressing a piece of aluminum foil against the open end. For best electrical contact, the probe end should be flat and free of oxidation. Larger the sensors generally have better foil short-circuit repeatability. It is possible to obtain good contact with some commercial 4.6 mm probes using the metal-disk short-circuit supplied with the kit. For best repeatability, it may be necessary to press the disk by hand.

The network analyzer is configured to measure the magnitude and phase of the admittance. A one-port reflection calibration is performed at the plane of the probe by placing materials for which the reflection coefficient can be calculated in contact with the probe. Three standards are needed for the calibration, typically a short circuit, air, and de-ionized water at a well-defined temperature (other reference liquids such as methanol or ethanol may be used for calibration). The calibration is a key part of the measurement procedure, and it is therefore important to ensure that it

has been performed correctly. It can be checked by re-measuring the short circuit to ensure that a reflection coefficient of $\Gamma = -1.0$ (linear units) is obtained consistently.

9.2.2. Measurement procedure

- a) Configure and calibrate the network analyzer and probe system.
- b) Place the sample in a non-metallic container and immerse the probe. A fixture or clamp is recommended to stabilize the probe, mounted such that the probe face is at an angle with respect to the liquid surface to minimize trapped air bubbles beneath the flange.
- c) Measure the complex admittance with respect to the probe aperture.
- d) Compute the complex relative permittivity $\varepsilon_r = \varepsilon_r' j \, \sigma / \omega \varepsilon_0$.

9.3. SIMULATED TISSUE MEASUREMENT RESULTS

Tissue calibration type	HP Dielectric Strength Probe Sys	stem (M/N: 85070C)
Tissue calibration date [MM/DD/YYYY]	06/08/2011	06/08/2011
Tissue calibrated by	Steven Lu	Steven Lu
Room temperature [°C]	24.8	24.8
Room humidity [%]	40	40
Simulated tissue temperature [°C]	23.9	23.9
Tissue calibration frequency [MHz]	450	450
Tissue Type	Brain	Muscle
Target conductivity [S/m]	0.87	0.94
Target dielectric constant	43.5	56.7
Composition (by weight) [%]	DI Water (38.56 %)	DI Water (51.16 %)
	Sugar (56.32 %)	Sugar (46.78 %)
	Salt (3.95 %)	Salt (1.49 %)
	HEC (0.25 %)	HEC (0.13 %)
	Bactericide (0.92 %)	Bactericide (0.44 %)
Measured conductivity [S/m]	0.86(-0.8%)	0.94(-0.4%)
Measured dielectric constant	43.6(0.3%)	56.3(-0.8 %)
Penetration depth (plane wave excitation) [mm]	43.3	44.6

9.3.1. 450 MHz Brain Tissue

	Meas. after 5min			DI Water at 20°C			Init. Meas.		
Frequency [MHz]	ε'	ε"	σ [S/m]	ε'	ε"	σ [S/m]	ε'	ε"	σ [S/m]
450.000	43.6225	34.4681	0.86	78.1741	0.8557	0.02	43.6351	34.4286	0.86
485.000	42.7700	33.2319	0.90	78.2332	1.2797	0.03	42.8126	33.2775	0.90
515.000	42.1304	32.1297	0.92	78.2174	1.4084	0.04	42.1576	32.1913	0.92

9.3.2. 450 MHz Muscle Tissue

	M	Meas. after 5min			DI Water at 20°C			Init. Meas.		
Frequency [MHz]	ε'	ε"	σ [S/m]	ε'	ε"	σ [S/m]	ε'	ε"	σ [S/m]	
450.000	56.2538	37.3902	0.94	78.1741	0.8557	0.02	56.3055	37.5523	0.94	
485.000	55.6413	35.9525	0.97	78.2332	1.2797	0.03	55.6921	36.0223	0.97	
515.000	55.1499	34.7736	1.00	78.2174	1.4084	0.04	55.1869	34.8248	1.00	

EXHIBIT 10. SAR MEASUREMENT UNCERTAINTY

10.1. MEASUREMENT UNCERTAINTY EVALUATION FOR SAR TEST

Error Description	Uncertainty value	Prob. Dist.	Div.	(c _i) 1g	(c _i) 10g	Std. Unc. (1g)	Std. Unc. (10g)	(vi) v _{eff}
Measurement System				Ü		, g,	, g,	- Can
Probe Calibration	±5.5 %	N	1	1	1	±5.5 %	±5.5 %	∞
Axial Isotropy	±4.7 %	R	$\sqrt{3}$	0.7	0.7	±1.9 %	±1.9 %	∞
Hemispherical Isotropy	±9.6 %	R	$\sqrt{3}$	0.7	0.7	±3.9 %	±3.9 %	∞
Boundary Effects	±1.0 %	R	$\sqrt{3}$	1	1	±0.6 %	±0.6 %	∞
Linearity	±4.7 %	R	$\sqrt{3}$	1	1	±2.7 %	±2.7 %	∞
System Detection Limits	±1.0 %	R	$\sqrt{3}$	1	1	±0.6 %	±0.6 %	∞
Readout Electronics	±0.3 %	R	$\sqrt{3}$	1	1	±0.3 %	±0.3 %	∞
Response Time	±0.8 %	N	1	1	1	±0.5 %	±0.5 %	8
Integration Time	±2.6 %	R	$\sqrt{3}$	1	1	±1.5 %	±1.5 %	∞
RF Ambient Noise	±3.0 %	R	$\sqrt{3}$	1	1	±1.7 %	±1.7 %	∞
RF Ambient Reflections	±3.0 %	R	$\sqrt{3}$	1	1	±1.7 %	±1.7 %	œ
Probe Positioner	±0.4 %	R	$\sqrt{3}$	1	1	±0.2 %	±0.2 %	∞
Probe Positioning	±2.9 %	R	$\sqrt{3}$	1	1	±1.7 %	±1.7 %	∞
Max. SAR Eval.	±1.0 %	R	$\sqrt{3}$	1	1	±0.6 %	±0.6 %	∞
Test Sample Related								
Device Positioning	±2.9 %	N	1	1	1	±2.9 %	±2.9 %	145
Device Holder	±3.6 %	N	1	1	1	±3.6 %	±3.6 %	5
Power Drift	±5.0 %	R	$\sqrt{3}$	1	1	±2.9 %	±2.9 %	∞
Phantom and Setup								
Phantom Uncertainty	±4.0 %	R	$\sqrt{3}$	1	1	±2.3 %	±2.3 %	8
Liquid Conductivity (target)	±5.0 %	R	$\sqrt{3}$	0.64	0.43	±1.8 %	±1.2 %	8
Liquid Conductivity (meas.)	±2.5 %	N	1	0.64	0.43	±1.6 %	±1.1 %	∞
Liquid Permittivity (target)	±5.0 %	R	$\sqrt{3}$	0.6	0.49	±1.7 %	±1.4 %	8
Liquid Permittivity (meas.)	±2.5 %	N	1	0.6	0.49	±1.5 %	±1.2 %	∞
Combined Std. Uncertainty						±10.7 %	±10.5 %	387
Expanded STD Uncertainty						±21.4 %	±21.0 %	

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

File #: ICOM-272Q-SAR June 28, 2011

EXHIBIT 11. ADDITIONAL TEST INSTRUMENTS LIST

Name	Туре	Serial Number (SN)	Calibration Date (or Due Date)
Signal Generator	HP 8648C	3443U00391	Due Date: Dec. 16, 2011
Dipole Antenna	D450V3	1063	Feb. 02, 2009
Power Meter (HP)	HP 436A HP 436A	2347A17246 2709A27515	Due Date: Jul. 09, 2011 Due Date: Aug. 27, 2011
Directional Coupler (narda)	Model 3020A	35482	N/A
Spectrum Analyzer (ADVANTEST)	R3271	15050203	Due Date: Mar. 15, 2012
Network Analyzer (HP)	8753D	3410J02042	Due Date: June 21, 2011
RF Amplifier (RF Bay, Inc)	MPA-12-30	21100106	N/A

EXHIBIT 12. PROBE CALIBRATION CERTIFICATE

See Appendix 1.

EXHIBIT 13. VALIDATION DIPOLE CALIBRATION CERTIFICATE

See Appendix 2.