ENGINEERING TEST REPORT

VHF Transceiver Model No.: IC-V80

FCC ID: AFJ325400

Applicant:

ICOM Incorporated

1-1-32, Kamiminami, Hirano-ku Osaka, Japan, 547-0003

Tested in Accordance With

Federal Communications Commission (FCC)
47 CFR, Part 15, Subpart B
Scanning Receivers Operating in the Frequency Band
136-174 MHz

UltraTech's File No.: ICOM-223F15B121

This Test report is Issued under the Authority of Tri M. Luu, Professional Engineer, Vice President of Engineering UltraTech Group of Labs

Date: November 17, 2009

Report Prepared by: JaeWook Choi

Issued Date: November 17, 2009

Tested by: Wayne Wu, EMI/RFI Technician

Test Dates: October 28 & November 5, 2009

The results in this Test Report apply only to the sample(s) tested, and the sample tested is randomly selected.

This report must not be used by the client to claim product endorsement by NVLAP or any agency of the US Government.

UltraTech Group of Labs

3000 Bristol Circle, Oakville, Ontario, Canada, L6H 6G4
Tel.: (905) 829-1570 Fax.: (905) 829-8050
Website: www.ultratech-labs.com, Email: wic@ultratech-labs.com, Email: tri@ultratech-labs.com

91038

1309

46390-2049

NvLap Lab Code 200093-0 SL2-IN-E-1119R

CA2049

TABLE OF CONTENTS

EXHIB	IT 1.	INTRODUCTION	I
1.1. 1.2. 1.3.	RELA	E TED SUBMITTAL(S)/GRANT(S) IATIVE REFERENCES	1
EXHIB	IT 2.	PERFORMANCE ASSESSMENT	2
2.1.	CLIEN	VT INFORMATION	2
2.2.	EQUII	PMENT UNDER TEST (EUT) INFORMATION	2
2.3.		TECHNICAL SPECIFICATIONS	
2.4.		OF EUT'S PORTS	
2.5.	ANCI	LLARY EQUIPMENT	
EXHIBI	IT 3.	EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS	4
3.1.	OPER	ATIONAL TEST CONDITIONS & ARRANGEMENT FOR TEST SIGNALS	4
EXHIBI	IT 4.	SUMMARY OF TEST RESULTS	5
4.1.		TION OF TESTS	
4.2.		CABILITY & SUMMARY OF EMC EMISSION TEST RESULTS	
4.3.	MODI	FICATIONS REQUIRED FOR COMPLIANCE	5
EXHIB	IT 5.	MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS	6
5.1.		PROCEDURES	
5.2.		UREMENT UNCERTAINTIES	
5.3.	MEAS	UREMENT EQUIPMENT USED	6
5.4.		IVER ANTENNA POWER SPURIOUS/HARMONIC CONDUCTED EMISSIONS [§15.111(A)]	7
5.5.		IOUS/HARMONIC RADIATED EMISSIONS FROM RECEIVER AND CLASS B UNINTENTIONAL	10
		(DIGITAL DEVICES) [§ 15.109(A)]	
5.6.	SCAN	NING RECEIVERS CELLULAR BAND REJECTION [§ 15.121(B)]	
EXHIB	IT 6.	TEST EQUIPMENTS LIST	17
EXHIBI	IT 7.	MEASUREMENT UNCERTAINTY	19
7.1.	LINE	CONDUCTED EMISSION MEASUREMENT UNCERTAINTY	19
7.2.	RADI	ATED EMISSION MEASUREMENT UNCERTAINTY	20

EXHIBIT 1. INTRODUCTION

1.1. SCOPE

Reference:	FCC Part 15, Subpart B, Sections 15.107, 15.109, 15.111 & 15.121	
Title:	Code of Federal Regulations (CFR), Title 47, Telecommunication, Part 15	
Purpose of Test:	Purpose of Test: To gain FCC Certification Authorization for Scanning Receivers Operating in 136-174 Mb band.	
Test Procedures:	Both conducted and radiated emissions measurements were conducted in accordance with American National Standards Institute ANSI C63.4 - American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.	
Environmental Classification:	Residential, Commercial, Industrial or Business environment.	

1.2. RELATED SUBMITTAL(S)/GRANT(S)

None.

1.3. NORMATIVE REFERENCES

Publication	Year	Title
FCC CFR Parts 0-19, 80-End	2008	Code of Federal Regulations – Telecommunication
ANSI C63.4	2003	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
TIA/EIA 603, Edition C	2004	Land Mobile FM or PM Communications Equipment Measurement and Performance Standards

EXHIBIT 2. PERFORMANCE ASSESSMENT

2.1. CLIENT INFORMATION

APPLICANT		
Name:	Icom Incorporated	
Address:	1-1-32, Kamiminami, Hirano-ku, Osaka Japan, 547-0003	
Contact Person:	Mr. Takayuki Watanabe Phone #: +81-66-793-5302 Fax #: +81-66-793-0013 Email Address: export@icom.co.jp	

MANUFACTURER		
Name:	Icom Incorporated	
Address:	1-1-32, Kamiminami, Hirano-ku, Osaka Japan, 547-0003	
Contact Person:	Mr. Takayuki Watanabe Phone #: +81-66-793-5302 Fax #: +81-66-793-0013 Email Address: export@icom.co.jp	

2.2. EQUIPMENT UNDER TEST (EUT) INFORMATION

The following information (with the exception of the Date of Receipt) has been supplied by the applicant.

Brand Name:	ICOM Incorporated
Product Name:	VHF Transceiver
Model Name or Number:	IC-V80
Serial Number:	0000014-0
Type of Equipment:	Scanning Receiver
Power input source:	LR6 (AA) × 6 alkaline batteries 7.2 VDC 1400 mAh rechargeable battery 7.4 VDC 2000 mAh rechargeable battery

2.3. EUT'S TECHNICAL SPECIFICATIONS

RECEIVER		
Equipment Type:	Portable	
Power Supply Requirement:	7.2VDC	
Operating Frequency Range:	136-174 MHz	
Intermediate Frequencies:	1 st : 21.7 MHz, 2 nd : 450 kHz	
RF Input Impedance:	50 Ω	

2.4. LIST OF EUT'S PORTS

Port Number	EUT's Port Description	Number of Identical Ports	Connector Type
1	Antenna Connector	1	BNC type
2	Speaker-Microphone Jack	1	Phone / Mic Jack

2.5. ANCILLARY EQUIPMENT

N/A

EXHIBIT 3. EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS

3.1. OPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TEST SIGNALS

Operating Modes:	The receiver was operated in the normal intended mode during testing
Special Test Software:	None
Special Hardware Used:	None
Receiver Test Antenna:	The EUT was tested with its antenna fitted in normal operation condition

Receiver Test Signals		
Frequency Band(s):	136-174 MHz	
Test Frequency(ies): (Near lowest, near middle & near highest frequencies in the frequency range of operation.)	136 MHz, 155 MHz, 174 MHz	

EXHIBIT 4. SUMMARY OF TEST RESULTS

4.1. LOCATION OF TESTS

All of the measurements described in this report were performed at Ultratech Group of Labs located in the city of Oakville, Province of Ontario, Canada.

- Power Line Conducted Emissions were performed in UltraTech's shielded room, 16'(L) by 12'(W) by 12'(H).
- Radiated Emissions were performed at the Ultratech's 3-10 TDK Semi-Anechoic Chamber situated in the Town of Oakville, province of Ontario. This test site been calibrated in accordance with ANSI C63.4, and found to be in compliance with the requirements of Sec. 2.948 of the FCC Rules. The descriptions and site measurement data of the Oakville 3-10 TDK Semi-Anechoic Chamber has been filed with FCC office (FCC File No.: 91038) and Industry Canada office (Industry Canada File No.: 2049A-3). Expiry Date: 2011-05-01.

4.2. APPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS

FCC Part 15, Subpart B	Test Requirements	Compliance (Yes/No)
15.107(a), Class B	Power Line Conducted Emissions Measurements	N/A for battery operated
15.111(a)	Receiver Antenna Power Conducted Emissions for Non-Integral Antenna Port	Yes
15.109(a)	Radiated Emissions from Scanning Receivers & Class B Digital Device	Yes
15.121	Requirements for Scanning Receivers	Yes

4.3. MODIFICATIONS REQUIRED FOR COMPLIANCE

None.

VHF Transceiver, M/N: IC-V80

FCC ID: AFJ325400

EXHIBIT 5. MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS

5.1. TEST PROCEDURES

Please refer to UltraTech Test Procedures, File# ULTR-P001-2004 and for Test Procedures.

5.2. MEASUREMENT UNCERTAINTIES

The measurement uncertainties stated were calculated in accordance with requirements of UKAS Document LAB 34 with a confidence level of 95%. Please refer to EXHIBIT 7. for Measurement Uncertainties.

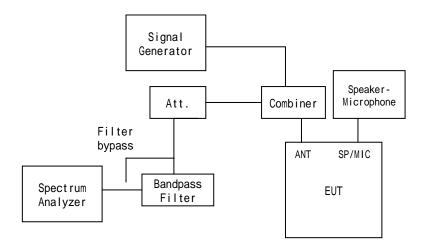
5.3. MEASUREMENT EQUIPMENT USED

The measurement equipment used complied with the requirements of the Standards referenced in the Methods & Procedures ANSI C63.4 and CIPSR 16-1-1.

5.4. RECEIVER ANTENNA POWER SPURIOUS/HARMONIC CONDUCTED EMISSIONS [§ 15.111(a)]

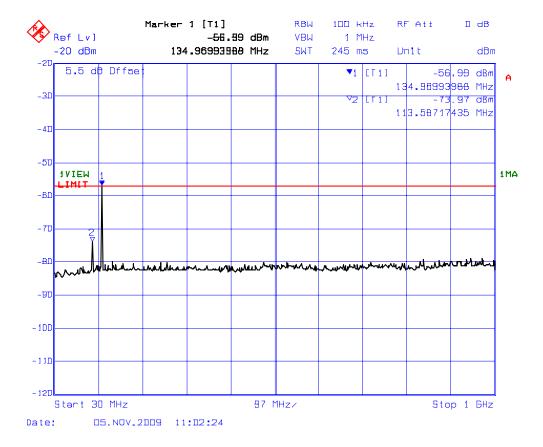
5.4.1. Limits

Receivers that operate (tune) in the frequency range 30 to 9174 MHz and CB receivers that provides terminals for the connection of an external antenna may be tested to demonstrate compliance with the provisions of @ 15.109 with the antenna terminals shielded and terminated with a resistive termination equal to the impedance specified for the antenna, provided these receivers also comply with the following:- With the receiver antenna terminal connected to a resistive termination equal to the impedance specified or employed for the antenna, the power at the antenna terminal at frequency within the range from 30 MHz to 5th harmonic of the highest frequency shall not exceed 2.0 nanowatts (or -57 dBm @ 50 Ohm).

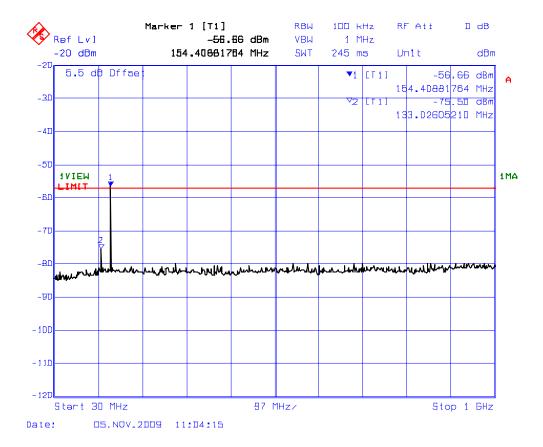

5.4.2. Method of Measurements

Refer to Ultratech Test Procedures ULTR-P001-200 & ANSI C63.4 for method of measurements.

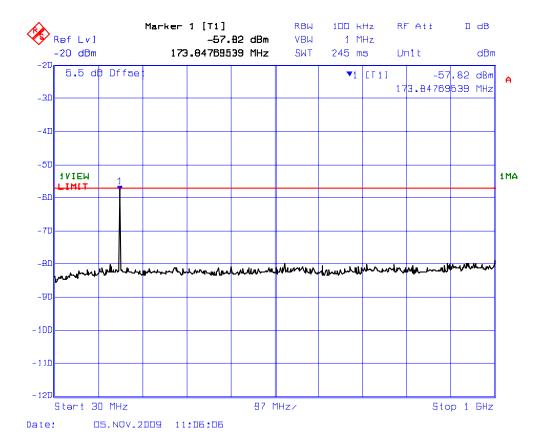
The spectrum shall be investigated from the lowest radio frequency signal generated or used in the device, without going below the lowest frequency for which a radiated emission limit is specified, up to the frequency shown in the following table:


Highest frequency generated or used in the device or on which the device operates or tunes (MHz)	Upper frequency of measurement range (MHz)
Below 1.705	30
1.705 - 108	1000
108 – 500	2000
500 -1000	5000
Above 1000	5 th harmonic of the highest frequency or 40 GHz, whichever is lower

5.4.3. Test Arrangement



5.4.4. Test Data


5.4.4.1. Near Lowest Frequency (136 MHz, 60 dBuV CW input)

5.4.4.2. Near Middle Frequency (155 MHz, 60 dBuV CW input)

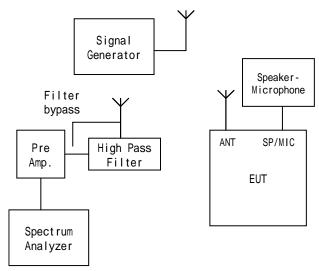
5.4.4.3. Near Highest Frequency (174 MHz, 60 dBuV CW input)

5.5. SPURIOUS/HARMONIC RADIATED EMISSIONS FROM RECEIVER AND CLASS B UNINTENTIONAL RADIATORS (DIGITAL DEVICES) [§ 15.109(a)]

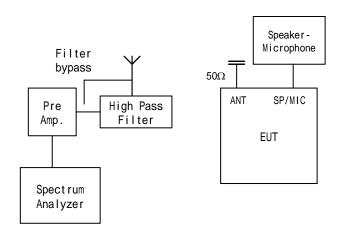
5.5.1. Limits

The equipment shall meet the limits of the following table:

Test Frequency Range (MHz)	Class B Limits @ 3 m (dBμV/m)
30 – 88	40.0
88 – 216	43.5
216 – 960	46.0
Above 960	54.0


5.5.2. Method of Measurements

Refer to Ultratech Test Procedures ULTR-P001-200 & ANSI C63.4 for method of measurements.


The spectrum shall be investigated from the lowest radio frequency signal generated or used in the device, without going below the lowest frequency for which a radiated emission limit is specified, up to the frequency shown in the following table:

Highest frequency generated or used in the device or on which the device operates or tunes (MHz)	Upper frequency of measurement range (MHz)
Below 1.705	30
1.705 - 108	1000
108 – 500	2000
500 -1000	5000
Above 1000	5 th harmonic of the highest frequency or 40 GHz, whichever is lower

5.5.3. Test Arrangement

< Receiver mode >

< Digital Device >

5.5.4. Test Data

5.5.4.1. Near Lowest Frequency (136 MHz, 60dBuV, Lo = Rx – IF = 136 – 21.7 = 114.3 MHz)

The emissions were scanned from 30 MHz to 5th harmonic of Lo at 3 Meters distance and all emissions within 20 dB of the specified limits have been reported unless otherwise specified.

WILLIIII ZO GD O	Within 20 db of the specified lithits have been reported diffess otherwise specified.						
	RF	DETECTOR	ANTENNA				
FREQUENCY	LEVEL	USED	PLANE	LIMIT	MARGIN	PASS/	
(MHz)	(dBuV/m)	(PEAK/QP)	(H/V)	(dBuV/m)	(dB)	FAIL	
114.30	12.05	PEAK	V	43.5	-31.45	PASS	

5.5.4.2. Near Middle Frequency (155 MHz, 60dBuV, Lo = Rx – IF = 155 – 21.7 = 133.3 MHz)

The emissions were scanned from 30 MHz to 5th harmonic of Lo at 3 Meters distance and all emissions within 20 dB of the specified limits have been reported unless otherwise specified.

Within 20 ab o	tilo opodilioa ili	TITLE TIEVE DOOT!	Within 20 dB of the opening hinte have been reported different experiment.						
	RF	DETECTOR	ANTENNA						
FREQUENCY	LEVEL	USED	PLANE	LIMIT	MARGIN	PASS/			
(MHz)	(dBuV/m)	(PEAK/QP)	(H/V)	(dBuV/m)	(dB)	FAIL			
133.30	15.20	PEAK	V	43.5	-28.30	PASS			
133.30	15.00	PEAK	Н	43.5	-28.50	PASS			
266.60	17.19	PEAK	Н	46.0	-28.81	PASS			

5.5.4.3. Near Highest Frequency (174 MHz, 60dBuV, Lo = Rx - IF = 174 - 21.7 = 152.3 MHz)

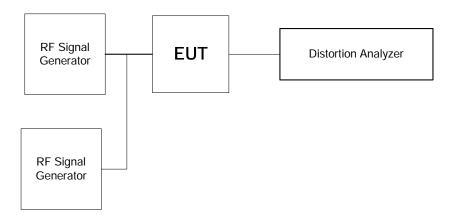
The emissions were scanned from 30 MHz to 5th harmonic of Lo at 3 Meters distance and all emissions within 20 dB of the specified limits have been reported unless otherwise specified

WILTIIT 20 GB 0	within 20 db of the specified limits have been reported unless otherwise specified.							
	RF	DETECTOR	ANTENNA					
FREQUENCY	LEVEL	USED	PLANE	LIMIT	MARGIN	PASS/		
(MHz)	(dBuV/m)	(PEAK/QP)	(H/V)	(dBuV/m)	(dB)	FAIL		
152.30	22.85	PEAK	V	43.5	-20.65	PASS		
152.30	27.20	QP	Н	43.5	-16.30	PASS		

5.5.4.4. Class B Digital Devices

The emissions were scanned from 30 MHz to 6 GHz at 3 Meters distance and all emissions within 20 dB of the specified limits have been reported unless otherwise specified.

the openited in	THIS HAVE DECIT	reperted arriess	other wise speed	nou.			
	RF	DETECTOR	ANTENNA				
FREQUENCY (MHz)	LEVEL (dBuV/m)	USED (PEAK/QP)	PLANE (H/V)	LIMIT (dBuV/m)	MARGIN (dB)	PASS/ FAIL	
No signal was found within 20 dB below limit.							


5.6. SCANNING RECEIVERS CELLULAR BAND REJECTION [§ 15.121(b)]

5.6.1. Limits

Except as provided in paragraph (c) of this section, scanning receivers shall reject any signals from the Cellular Radiotelephone Service frequency bands that are 38dB or lower based upon a 12dB SINAD measurement, which is considered the threshold where a signal can be clearly discerned from any interference that may be present.

5.6.2. Method of Measurements

- (1) Connected the EUT as shown in the following block diagram
- (2) Apply a standard RF signal to the receiver input port
- (3) Adjust the audio output signal of the receiver to it's rated value with the distortion less than 10%
- (4) Adjust the RF Signal Generator Output Power to produce 12 dB SINAD without the audio output power dropping by more than 3 dB
- (5) Repeat step (4) at lowest, middle and highest channel frequencies across all cellular base station band to establish a reference sensitivity level. The reference sensitivity taken was the lowest or worse-case sensitivity for all of the bands.
- (6) Adjust the RF Signal Generator output to a level of +60 dB above the reference sensitivity obtained in step (5)
- (7) Set the Receiver squelch threshold (the signal required to open the squelch) no greater than +20 dB above the reference sensitivity level.
- (8) Put the receiver in a scanning mode and allow it to scan across it's complete receive range
- (9) If the receiver unsquelched or stopped on any frequency, the display frequency is recorded. The signal generator output level was then adjusted until 12 dB SINAD from the receiver was produced. The signal generator level associated with this response was also noted.
- (10) Repeat this procedure for 3 frequencies in the cellular base station transmit band.
- (11) The difference between the signal generator output for any response recorded and reference sensitivity is the rejection ratio

FCC ID: AFJ325400 VHF Transceiver, M/N: IC-V80

5.6.3. Test Data

Remark: Cellular Transmitter Test frequencies are 824.04, 836.40, 848.97, 869.04, 880.62 and 893.97 MHz

5.6.3.1. FM mode

EUT's Scanning Frequency Band (MHz)	Cellular Transmitter Test Frequencies (MHz)	RF Input Signal Level @ Cellular Frequencies for 12 dB SINAD (dBm)	Reference Sensitivity (dBm)	Rejection Ratio (dB)	Maximum Rejection Ratio Limit (dB)
137.62	824.04, 836.40, 848.97, 869.04, 880.62, 893.97	-50	-123.1	> 50	38.0
148.74	824.04, 836.40, 848.97, 869.04, 880.62, 893.97	-50	-123.5	> 50	38.0

EXHIBIT 6. Test Equipments List

Test Instruments	Manufacturer	Model No.	Serial No.	Operating Range
Attenuator	Weinschel	46-20-34	BM1347	DC – 18 GHz
Attenuator	Weinschel	46-30-34	BM5354	DC – 18 GHz
BiConiLog Antenna	Emco	3142	10005	0.03 – 2 GHz
BiConiLog Antenna	ETS-Lindgren	3142B	1575	26 MHz – 2 GHz
Communication test set	Hewlett Packard	8920B	US39064699	AF SG DC – 20 kHz
Combiner	Weinschel	1515	93459	DC – 10 GHz
Distortion analyzer	Hewlett- Packard	8903E	3514A01460	20-100K Hz
EMC Analyzer	Hewlett Packard	8593EM		9kHz – 22 GHz
FFT (audio) EMI Receiver	Advantest	R9211E	82020336	10 mHz – 100 kHz, 1 MHz Input Impedance
High Pass Filter	Mini-Circuits	SHP-300	10427	Cut of 230 MHz
Horn Antenna	Emco	3155	9701-5061	1 – 18 GHz
Horn Antenna	Emco	3155	9911-5955	1 – 18 GHz
Infinium Oscilloscope	Hewlett Packard	54810A	US38380192	500 MHz, 1 GSa/s
L.I.S.N.	EMCO	3810/2	2209	9 kHz – 200 MHz
				50 Ohms / 50 μH
12'x16'x12' RF Shielded Chamber	RF Shielding			
Microwave Frequency Counter	EIP	545A	2683	10 Hz – 18 GHz
Modulation Analyzer	Hewlett Packard	8910B	3226A04606	150 kHz – 1300 MHz
Power Divider	Mini-Circuits	15542	105	1 MHz – 1 GHz
Power Meter	Hewlett Packard	437B	3.13E+09	10 kHz – 50 GHz
Power Sensor	Hewlett Packard	8481A	1150A15143	9 kHz – 26.5 GHz
RF Amplifier	Com-Power	PA-103		1 MHz – 1 GHz
RF Amplifier	Hewlett Packard	84498	3008A00769	1 – 26.5 GHz
Signal Generator	Hewlett Packard	83752B	3610A00457	0.01- 20 GHz
Signal Generator	IFR Systems Inc.	2025	20304/137	9 kHz – 2.51 GHz

ULTRATECH GROUP OF LABS

Signal Generator	Rohde & Schwarz	SMIQ02E	DE2Z858	300 kHz – 2.1 GHz
Spectrum Analyzer	Rohde & Schwarz	FSEK20/B4/B21	834157/005	9 kHz – 40 GHz
Spectrum Analyzer	Rohde & Schwarz	FSEK30	100077	20 Hz – 40 GHz
Spectrum Analyzer	Advantest	R3271	15050203	100 Hz – 26.5 GHz
Spectrum Analyzer / EMI Receiver	Hewlett Packard	8593EM	3710A00223	9 kHz – 6.5 GHz Built-in amplifier 30dB
Temperature & Humidity Chamber	Tenney	T5	9723B	-40 °C - +80 °C range
Transient Limiter	Hewlett Packard	11947A	3107A01998	9 kHz – 200 MHz 10 dB attenuation

EXHIBIT 7. **MEASUREMENT UNCERTAINTY**

The measurement uncertainties stated were calculated in accordance with the requirements of NIST Technical Note 1297 and LAB 34

7.1. LINE CONDUCTED EMISSION MEASUREMENT UNCERTAINTY

CONTRIBUTION	PROBABILITY	UNCERTAINTY (dB)		
(Line Conducted)	DISTRIBUTION	9-150 kHz	0.15-30 MHz	
EMI Receiver specification	Rectangular	<u>+</u> 1.5	<u>+</u> 1.5	
LISN coupling specification	Rectangular	<u>+</u> 1.5	<u>+</u> 1.5	
Cable and Input Transient Limiter calibration	Normal (k=2)	<u>+</u> 0.3	<u>+</u> 0.5	
Mismatch: Receiver VRC Γ_1 = 0.03 LISN VRC Γ_R = 0.8(9 kHz) 0.2 (30 MHz) Uncertainty limits 20Log(1± $\Gamma_1\Gamma_R$)	U-Shaped	<u>+</u> 0.2	<u>+</u> 0.3	
System repeatability	Std. deviation	<u>+</u> 0.2	<u>+</u> 0.05	
Repeatability of EUT				
Combined standard uncertainty	Normal	<u>+</u> 1.25	<u>+</u> 1.30	
Expanded uncertainty U	Normal (k=2)	<u>+</u> 2.50	<u>+</u> 2.60	

Sample Calculation for Measurement Accuracy in 150 kHz to 30 MHz Band:

$$u_c(y) = \sqrt{\sum_{i=1}^{m} u_i^2(y)} = \ \ \underline{+} \ \sqrt{\ (1.5^2 + 1.5^2)/3 + \ (0.5/2)^2 + \ (0.05/2)^2 + 0.35^2} \ = \ \underline{+} \ 1.30 \ dB$$

$$U = 2u_c(y) = + 2.6 dB$$

7.2. RADIATED EMISSION MEASUREMENT UNCERTAINTY

CONTRIBUTION	PROBABILITY	UNCERTA	INTY (<u>+</u> dB)
(Radiated Emissions)	DISTRIBUTION	3 m	10 m
Antenna Factor Calibration	Normal (k=2)	<u>+</u> 1.0	<u>+</u> 1.0
Cable Loss Calibration	Normal (k=2)	<u>+</u> 0.3	<u>+</u> 0.5
EMI Receiver specification	Rectangular	<u>+</u> 1.5	<u>+</u> 1.5
Antenna Directivity	Rectangular	+0.5	+0.5
Antenna factor variation with height	Rectangular	<u>+</u> 2.0	<u>+</u> 0.5
Antenna phase center variation	Rectangular	0.0	<u>+</u> 0.2
Antenna factor frequency interpolation	Rectangular	<u>+</u> 0.25	<u>+</u> 0.25
Measurement distance variation	Rectangular	<u>+</u> 0.6	<u>+</u> 0.4
Site imperfections	Rectangular	<u>+</u> 2.0	<u>+</u> 2.0
Mismatch: Receiver VRC Γ_1 = 0.2 Antenna VRC Γ_R = 0.67(Bi) 0.3 (Lp) Uncertainty limits 20Log(1± $\Gamma_1\Gamma_R$)	U-Shaped	+1.1	<u>+</u> 0.5
System repeatability	Std. Deviation	<u>+</u> 0.5	<u>+</u> 0.5
Repeatability of EUT		-	-
Combined standard uncertainty	Normal	+2.19 / -2.21	+1.74 / -1.72
Expanded uncertainty U	Normal (k=2)	+4.38 / -4.42	+3.48 / -3.44

Calculation for maximum uncertainty when 3m biconical antenna including a factor of k = 2 is used:

$$U = 2u_c(y) = 2x(+2.19) = +4.38 \text{ dB}$$
 And $U = 2u_c(y) = 2x(-2.21) = -4.42 \text{ Db}$

File #: ICOM-223F15B121

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)