

Test Report – FCC Part 15B Unintentional Radiator Applicant: Icom Incorporated

Signature:	Bruno Clourer
Name & Title:	Bruno Clavier, General Manager
-	

3/10/2023

Approved for Release By:

Date of Signature

This test report shall not be reproduced except in full without the written and signed permission of Timco Engineering Inc. (IIA). This test report relates only to the items tested as identified and is not valid for any subsequent changes or modifications made to the equipment under test.

Table of Contents

1.		CUSTOM	ER INFORMATION	4
	1.1	Test R	esult Summary	4
2.		LOCATIC	N OF TESTING	5
	2.1	Test L	ABORATORY	5
	2.2	TESTIN	G WAS PERFORMED, REVIEWED BY	5
3.	•	TEST SAN	MPLE(S) (EUT/DUT)	6
	3.1	Descr	iption of the EUT	6
	3.2		GURATION OF EUT	
	3.3	Test S	ETUP OF EUT	7
4.		TEST ME	THODS & APPLICABLE REGULATORY LIMITS	8
	4.1	TEST N	iethods/Standards/Guidance	8
5.		MEASUR	EMENT UNCERTAINTY	8
6.		ENVIRON	IMENTAL CONDITIONS	8
7.		LIST OF 1	EST EQUIPMENT AND TEST FACILITY	9
8.		TEST RES	ULTS	10
	8.1		ted Emissions	
		8.1.1	Scanning Receiver Function, 30 MHz to 200 MHz, Horizontal/ Vertical Polarity Plot	
		8.1.2	Scanning Receiver Function, 30 MHz to 200 MHz, Horizontal/ Vertical Polarity Table	
		8.1.3	Scanning Receiver Function, 200 MHz to 1000 MHz, Horizontal/ Vertical Polarity Plot	
		8.1.4	Scanning Receiver Function, 200 MHz to 1000 MHz, Horizontal/ Vertical Polarity Table	
		8.1.5	Scanning Receiver Function, above 1000 MHz, Horizontal/ Vertical Polarity Plot	
		8.1.6	Scanning Receiver Function, above 1000 MHz, Horizontal/ Vertical Polarity Table	
		8.1.7	51 MHz, 30 MHz to 200 MHz, Horizontal/ Vertical Polarity Plot	18
		8.1.8	51 MHz, 30 MHz to 200 MHz, Horizontal/ Vertical Polarity Table	
		8.1.9	51 MHz, 200 MHz to 1000 MHz, Horizontal/ Vertical Polarity Plot	20
		8.1.10	51 MHz, 200 MHz to 1000 MHz, Horizontal/ Vertical Polarity Table	21
		8.1.11	51 MHz, above 1000 MHz, Horizontal/ Vertical Polarity Plot	22
		8.1.12	51 MHz, above 1000 MHz, Horizontal/ Vertical Polarity Table	23
		8.1.13	136 MHz, 30 MHz to 200 MHz, Horizontal/ Vertical Polarity Plot	24
		8.1.14	136 MHz, 30 MHz to 200 MHz, Horizontal/ Vertical Polarity Table	25
		8.1.15	136 MHz, 200 MHz to 1000 MHz, Horizontal/ Vertical Polarity Plot	
		8.1.16	136 MHz, 200 MHz to 1000 MHz, Horizontal/ Vertical Polarity Table	27
		8.1.17	136 MHz, above 1000 MHz, Horizontal/ Vertical Polarity Plot	28
		8.1.18	136 MHz, above 1000 MHz, Horizontal/ Vertical Polarity Table	29
		8.1.19	381.3 MHz, 30 MHz to 200 MHz, Horizontal/ Vertical Polarity Plot	30
		8.1.20	381.3 MHz, 30 MHz to 200 MHz, Horizontal/ Vertical Polarity Table	31
		8.1.21	381.3 MHz, 200 MHz to 1000 MHz, Horizontal/ Vertical Polarity Plot	32
		8.1.22	381.3 MHz, 200 MHz to 1000 MHz, Horizontal/ Vertical Polarity Table	33
		8.1.23	381.3 MHz, above 1000 MHz, Horizontal/ Vertical Polarity Plot	34
				Page 2 of 75

Timco Engineering, Inc., an IIA Company 849 NW State Road 45, Newberry, Florida 32669 (352) 472-5500 / testing@timcoengr.com

	8.1.24	381.3 MHz, above 1000 MHz, Horizontal/ Vertical Polarity Table	35
	8.1.25	685.5 MHz, 30 MHz to 200 MHz, Horizontal/ Vertical Polarity Plot	36
	8.1.26	685.5 MHz, 30 MHz to 200 MHz, Horizontal/ Vertical Polarity Table	37
	8.1.27	685.5 MHz, 200 MHz to 1000 MHz, Horizontal/ Vertical Polarity Plot	38
	8.1.28	685.5 MHz, 200 MHz to 1000 MHz, Horizontal/ Vertical Polarity Table	39
	8.1.29	685.5 MHz, above 1000 MHz, Horizontal/ Vertical Polarity PlotPlot	40
	8.1.30	685.5 MHz, above 1000 MHz, Horizontal/ Vertical Polarity Table	
	8.1.31	1211.28 MHz, 30 MHz to 200 MHz, Horizontal/ Vertical Polarity PlotPlot	
	8.1.32	1211.28 MHz, 30 MHz to 200 MHz, Horizontal/ Vertical Polarity Table	43
	8.1.33	1211.28 MHz, 200 MHz to 1000 MHz, Horizontal/ Vertical Polarity PlotPlot	44
	8.1.34	1211.28 MHz, 200 MHz to 1000 MHz, Horizontal/ Vertical Polarity Table	45
	8.1.35	1211.28 MHz, above 1000 MHz, Horizontal/ Vertical Polarity Plot	46
	8.1.36	1211.28 MHz, above 1000 MHz, Horizontal/ Vertical Polarity Table	47
8	3.2 Con	iducted Emissions	48
	8.2.1	Scanning, Line 1 Plot	49
	8.2.2	Scanning, Line 1 Table	50
	8.2.3	Scanning, Line 2 Plot	51
	8.2.4	Scanning, Line 2 Table	52
	8.2.5	51 MHz, Line 1 Plot	53
	8.2.6	51 MHz, Line 1 Table	
	8.2.7	51 MHz, Line 2 Plot	55
	8.2.8	51 MHz, Line 2 Table	
	8.2.9	136 MHz, Line 1 Plot	57
	8.2.10	136 MHz, Line 1 Table	
	8.2.11	136 MHz, Line 2 Plot	
	8.2.12	136 MHz, Line 2 Table	60
	8.2.13	381.3MHz, Line 1 Plot	61
	8.2.14	381.3 MHz, Line 1 Table	62
	8.2.15	381.3 MHz, Line 2 Plot	
	8.2.16	381.3 MHz, Line 2 Table	
	8.2.17	685.5 MHz, Line 1 Plot	65
	8.2.18	685.5 MHz, Line 1 Table	66
	8.2.19	685.5 MHz, Line 2 Plot	67
	8.2.20	685.5 MHz, Line 2 Table	
	8.2.21	1211.28 MHz, Line 1 Plot	
	8.2.22	1211.28 MHz, Line 1 Table	
	8.2.23	1211.28 MHz, Line 2 Plot	
	8.2.24	1211.28 MHz, Line 2 Table	72
9.	STATEN	MENTS OF COMPATIBILITY WITH FCC RULES – PART 15.121	73
10.	ANNEX	-A - PHOTOGRAPHS OF THE EUT	74
11.	ANNEX	-B – TEST SETUP PHOTOGRAPHS	74
12.	HISTOR	RY OF TEST REPORT CHANGES	74

1. Customer Information

Applicant: Icom Incorporated

Address: 1-1-32 Kamininami, Hirano-Ku

Osaka, 547-0003, Japan

1.1 Test Result Summary

The following test procedure was used ANSI C63.4-2014. Full test results are available in this report.

No additions to the test methods were needed. There were no deviations, or exclusions from the test methods. No test results are from external providers or from the customer. The test results relate only to the items tested. Timco does not offer opinions and interpretations, only a pass/fail statement.

Clauses	Description of the Requirements	Result (Pass, Fail or N/A)
15.107	Conducted Emission Limits	Pass
15.111 (a)	Receiver Conducted Power	N/A
15.121	38 dB Rejection	N/A
15.109	Radiated Emission Limits	Pass

2. Location of Testing

2.1 Test Laboratory

Timco Engineering Inc. is a subsidiary of Industrial Inspection & Analysis, Inc. ("IIA"). Testing was performed at Timco's permanent laboratory located at 849 NW State Road 45, Newberry, Florida 32669

ERTIFIE

FCC test firm # 578780
FCC Designation # US1070
FCC site registration is under A2LA certificate # 0955.01
ISED Canada test site registration # 2056A
EU Notified Body # 1177
For all designations see A2LA scope # 0955.01

2.2 Testing was performed, reviewed by

Dates of Testing: 2/17/2023 - 2/20/2023

Signature:	Sr. EMC Engineer EMC-003838-NE	
Name & Title:	Tim Royer, EMC Engineer	
Date of Signature	3/10/2023	
	VAI CI	
Signature:	LAR Ja	
Name & Title:	Kristoffer Costa, EMC Technician	
Date of Signature	3/10/2023	

3. Test Sample(s) (EUT/DUT)

The test sample was received: 2/16/2023

3.1 Description of the EUT

A description as well as unambiguous identification of the EUT(s) tested. Where more than one sample is required for technical reasons (such as the use of connected units for the purpose of conducted output power testing where the product units will have integral antennas), each specific test shall identify which unit was tested.

Identification						
FCC ID:	AFJ325010					
Brief Description	Scanning Receiver					
Model(s) #	IC-R6					
Firmware version	N/A					
Software version	N/A					
Serial Number	N/A					

Technical Characteristics					
Frequency Range	0.10 - 823.995 MHz				
	851.0 - 866.995 MHz				
	896.0 - 1309.995 MHz				
RF O/P Power (Max.)	140 mA				
Number of Channels	Variable				
Duty Cycle	100%				
Antenna Connector	SMA				
Voltage Rating (AC or Batt.)	Battery				

3.2 Configuration of EUT

Band (MHz)	Mode	Number of Ant.		
0.100- 1309.995 MHz	Receive	1		

Operating conditions during Testing:

No modifications of the device under test (including firmware, specific software settings, and input/output signal levels to the EUT).

Peripherals used during Testing:

No peripherals used.

3.3 Test Setup of EUT

Equipment, antenna, and cable arrangement. The setup of the equipment and cable or wire placement on the test site that produces the highest radiated and the highest ac power-line conducted emissions shall be shown clearly and described. Information on the orientation of portable equipment during testing shall be included. Drawings or photographs may be used for this purpose.

Test Setups are included in the test report.

4. Test methods & Applicable Regulatory Limits

4.1 Test methods/Standards/Guidance

The measurement was performed as per ANSI 63.4. Full test results are available in this report.

Limits and Regulatory Limits:

1) FCC 15B

5. Measurement Uncertainty

Uncertainty (dB)
± 3.14 dB
± 3.08 dB
± 2.16 dB
± 2.15 dB
± 2.14 dB
± 2.31 dB

Note: The uncertainties provided in this table represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of K=2.

6. Environmental Conditions

Temperature & Humidity

Measurements performed at the test site did not exceed the following:

Parameter	Measurement					
Temperature	23 C +/- 5%					
Humidity	55% +/- 5%					
Barometric Pressure	30.05 in Hg					
Note: Specific environmental conditions that are applicable to a specific test are available in the test result						

Note: Specific environmental conditions that are applicable to a specific test are available in the test result section.

7. List of Test Equipment and Test Facility

The test equipment used identified by type, manufacturer, serial number, or other identification and the date on which the next calibration or service check is due.

Description of the firmware or software used to operate EUT for testing purposes.

A complete list of all test equipment used shall be included with the test report. The manufacturer's model and serial numbers, and date of last calibration, and calibration interval shall be included. Measurement cable loss, measuring instrument bandwidth and detector function, video bandwidth, if appropriate, and antenna factors shall also be included where applicable.

List of Test Equipment

	Test Equipment									
Туре	Device	Manufacturer	Model	SN#	Current Cal	Cal Due				
Antenna	Biconical 1057	Eaton	94455-1	1057	10/16/20	10/16/2023				
Antenna, NSA	Log-Periodic 1243	Eaton	96005	1243	5/4/21	5/3/2024				
Antenna	Double-Ridged Horn/ETS Horn 1	ETS-Lindgren	3117	00035923	2/25/20	2/24/2023				
CHAMBER	CHAMBER	Panashield	3M	N/A	3/12/19	12/21/2023				
Pre-amp	Pre-amp	RF-LAMBDA	RLNA00M45GA	NA	2/27/19	7/26/2025				
Receiver	EMI Test Receiver R&S ESU 40	Rohde & Schwarz	ESU 40	100320	5/27/21	5/26/2024				
Receiver	EMI Test Receiver R&S ESW44	Rohde & Schwarz	ESW44	103049	10/13/21	10/12/2024				
LISN	LISN (Primary)	Electro-Metrics	ANS-25/2	225363	9/16/20	9/16/2023				

8. Test Results

The results of the test are usually indicated in the form of tables, spectrum analyzer plots, charts, sample calculations, as appropriate for each test procedure.

A description and/or a block diagram of the test setup is usually provided.

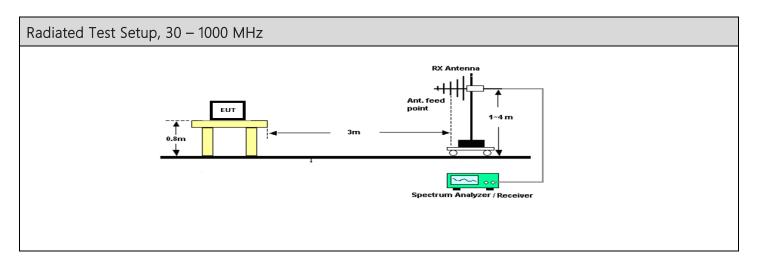
The measurement results, along with the appropriate limits for comparison, may be presented in tabular or graphical form. In addition, any variation in the measurement environment may be reported if applicable (e.g., a significant change of temperature that could affect the cable loss and amplifier response).

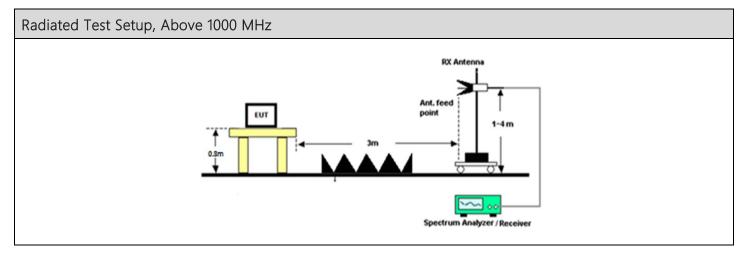
Units of measurement

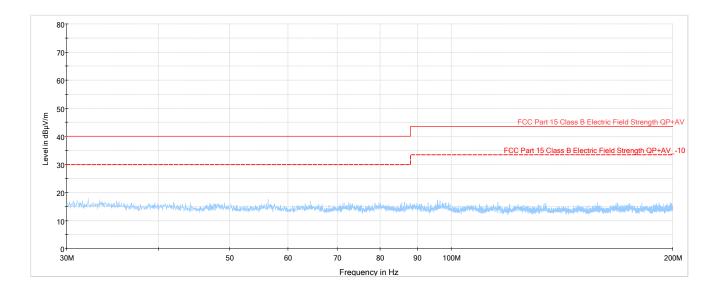
Unless noted otherwise in the referenced standard, the measurements of ac power-line conducted emissions and conducted power output will be reported in units of dB μ V. Unless noted otherwise in the referenced standard, the measurements of radiated emissions will be reported in units of decibels, referenced to one microvolt per meter (dB μ V/m) for electric fields, or to one ampere per meter (dBA/m) for magnetic fields, at the distance specified in the appropriate standards or requirements. The measurements of antenna-conducted power for receivers may be reported in units of dB μ V if the impedance of the measuring instrument is also reported. Otherwise, antenna-conducted power will be reported in units of decibels referenced to one milliwatt (dBm). All formulas for data conversions and conversion factors, if used, will be included in this measurement report.

Example:

Freq (MHz) Meter Reading + ACF +CL = FS

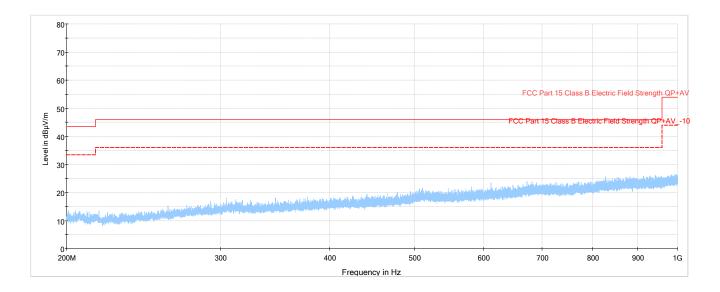

40.33 $20 dB\mu V$ + 10.36 dB/m + 0.40 dB $= 30.36 dB\mu V/m @ 3m$


EIRP = Pcond (dBm) + dBi


8.1 Radiated Emissions

Limits from FCC 15.109 and test procedure from ANSI C63.4-2014.

8.1.1 Scanning Receiver Function, 30 MHz to 200 MHz, Horizontal/ Vertical Polarity Plot

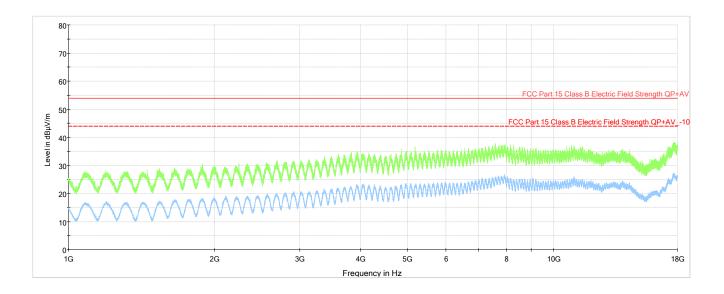


8.1.2 Scanning Receiver Function, 30 MHz to 200 MHz, Horizontal/ Vertical Polarity Table

Test

Frequency (MHz)	QuasiPeak (dBµV/m)	CAverage (dBµV/m)		Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)	Comment

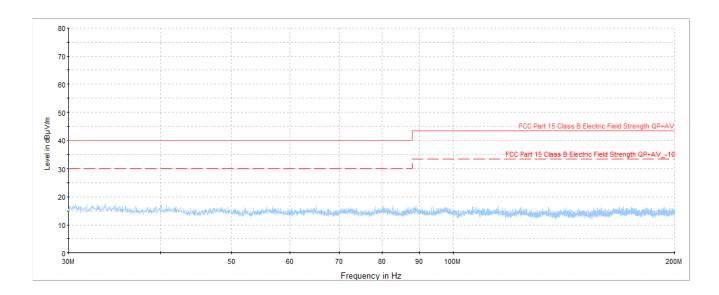
8.1.3 Scanning Receiver Function, 200 MHz to 1000 MHz, Horizontal/ Vertical Polarity Plot


8.1.4 Scanning Receiver Function, 200 MHz to 1000 MHz, Horizontal/ Vertical Polarity Table

Test

Frequency (MHz)	QuasiPeak (dBµV/m)	CAverage (dBµV/m)	_	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)	Comment

8.1.5 Scanning Receiver Function, above 1000 MHz, Horizontal/ Vertical Polarity Plot

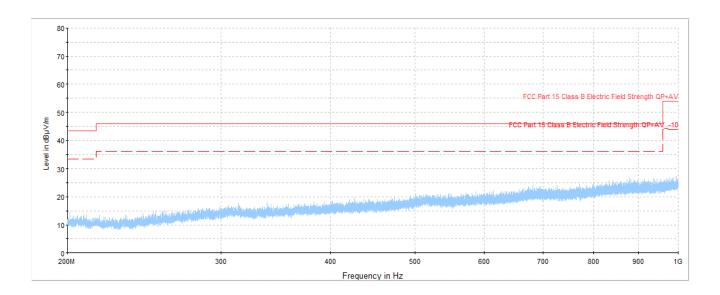


8.1.6 Scanning Receiver Function, above 1000 MHz, Horizontal/ Vertical Polarity Table

Test

Frequency (MHz)	QuasiPeak (dBµV/m)	CAverage (dBµV/m)	_	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)	Comment

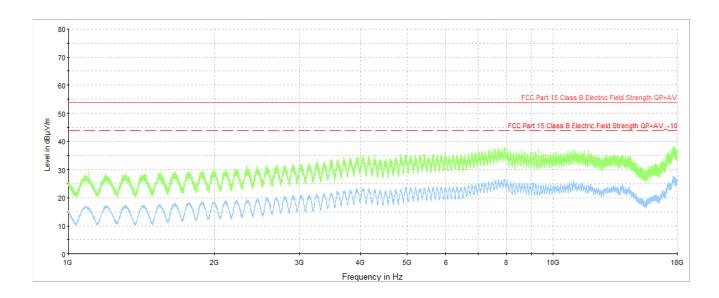
8.1.7 51 MHz, 30 MHz to 200 MHz, Horizontal/ Vertical Polarity Plot


8.1.8 51 MHz, 30 MHz to 200 MHz, Horizontal/ Vertical Polarity Table

Test

I		QuasiPeak				Meas. Time	Bandwidth	Height	Pol			Comment
L	(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(ms)	(kHz)	(cm)		(deg)	(dB/m)	

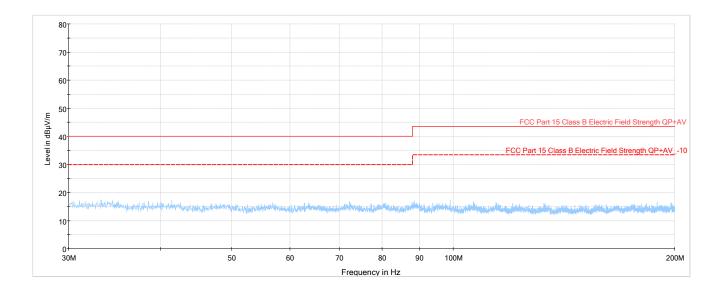
8.1.9 51 MHz, 200 MHz to 1000 MHz, Horizontal/ Vertical Polarity Plot


8.1.10 51 MHz, 200 MHz to 1000 MHz, Horizontal/ Vertical Polarity Table

Test

	Frequency (MHz)	QuasiPeak (dBµV/m)	 Limit (dBµV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)	Comment
[

8.1.11 51 MHz, above 1000 MHz, Horizontal/ Vertical Polarity Plot

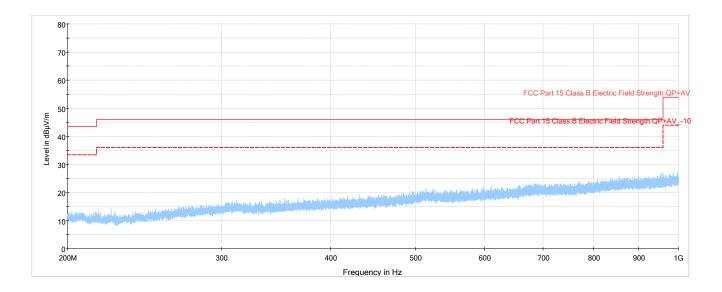


8.1.12 51 MHz, above 1000 MHz, Horizontal/ Vertical Polarity Table

Test

	Frequency (MHz)	QuasiPeak (dBµV/m)	CAverage (dBµV/m)		Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)	Comment
[

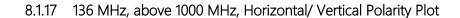
8.1.13 136 MHz, 30 MHz to 200 MHz, Horizontal/ Vertical Polarity Plot

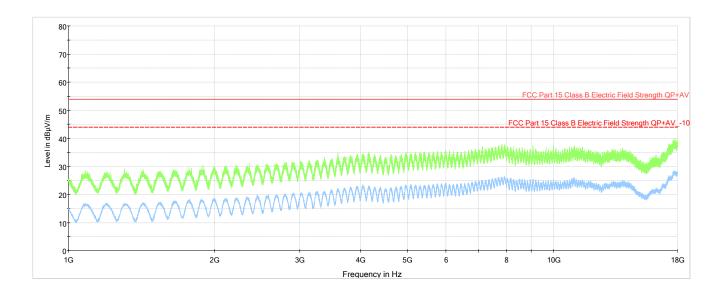


8.1.14 136 MHz, 30 MHz to 200 MHz, Horizontal/ Vertical Polarity Table

Test

	Frequency (MHz)	QuasiPeak (dBµV/m)	CAverage (dBµV/m)		Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)	Comment
[

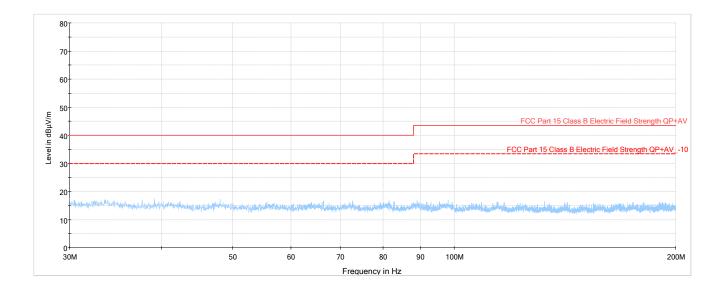

8.1.15 136 MHz, 200 MHz to 1000 MHz, Horizontal/ Vertical Polarity Plot



8.1.16 136 MHz, 200 MHz to 1000 MHz, Horizontal/ Vertical Polarity Table

Test

	Frequency (MHz)	QuasiPeak (dBµV/m)	CAverage (dBµV/m)		Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)	Comment
[

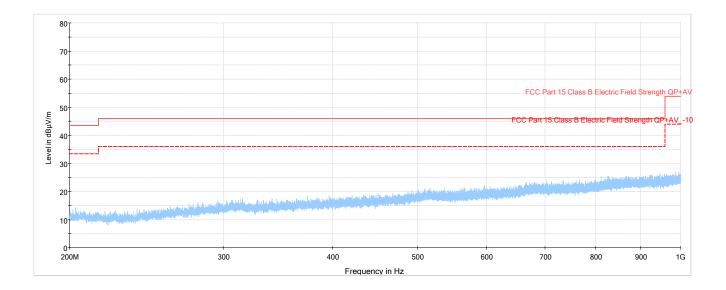


8.1.18 136 MHz, above 1000 MHz, Horizontal/ Vertical Polarity Table

Test

	Frequency (MHz)	QuasiPeak (dBµV/m)	CAverage (dBµV/m)		Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)	Comment
[

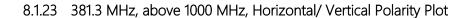
8.1.19 381.3 MHz, 30 MHz to 200 MHz, Horizontal/ Vertical Polarity Plot

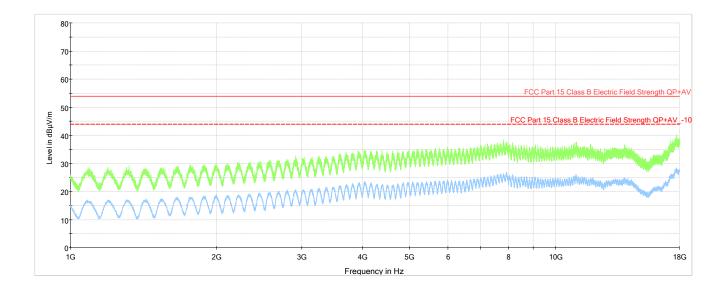

8.1.20 381.3 MHz, 30 MHz to 200 MHz, Horizontal/ Vertical Polarity Table

Test

	Frequency (MHz)	QuasiPeak (dBµV/m)	CAverage (dBµV/m)		Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)	Comment
[

8.1.21 381.3 MHz, 200 MHz to 1000 MHz, Horizontal/ Vertical Polarity Plot

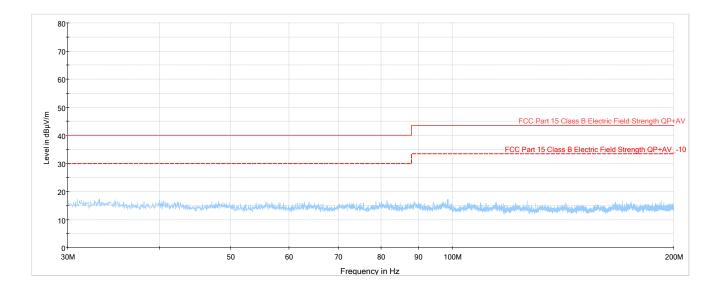




8.1.22 381.3 MHz, 200 MHz to 1000 MHz, Horizontal/ Vertical Polarity Table

Test

	Frequency (MHz)	QuasiPeak (dBµV/m)	CAverage (dBµV/m)		Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)	Comment
[

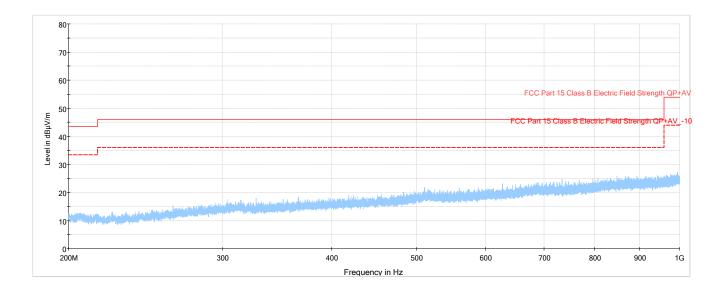


8.1.24 381.3 MHz, above 1000 MHz, Horizontal/ Vertical Polarity Table

Test

	Frequency (MHz)	QuasiPeak (dBµV/m)	CAverage (dBµV/m)		Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)	Comment
[

8.1.25 685.5 MHz, 30 MHz to 200 MHz, Horizontal/ Vertical Polarity Plot

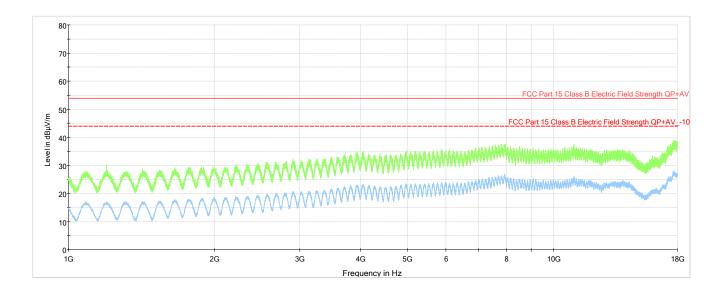

8.1.26 685.5 MHz, 30 MHz to 200 MHz, Horizontal/ Vertical Polarity Table

Test

Final_Result

I		QuasiPeak				Meas. Time	Bandwidth	Height	Pol			Comment
ı	(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(ms)	(kHz)	(cm)		(deg)	(dB/m)	
[

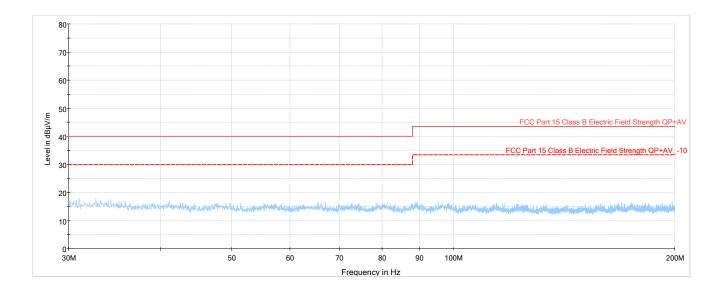
8.1.27 685.5 MHz, 200 MHz to 1000 MHz, Horizontal/ Vertical Polarity Plot


8.1.28 685.5 MHz, 200 MHz to 1000 MHz, Horizontal/ Vertical Polarity Table

Test

Final_Result

Frequency (MHz)	QuasiPeak (dBµV/m)	CAverage (dBµV/m)	_	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)	Comment

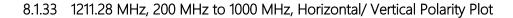

8.1.30 685.5 MHz, above 1000 MHz, Horizontal/ Vertical Polarity Table

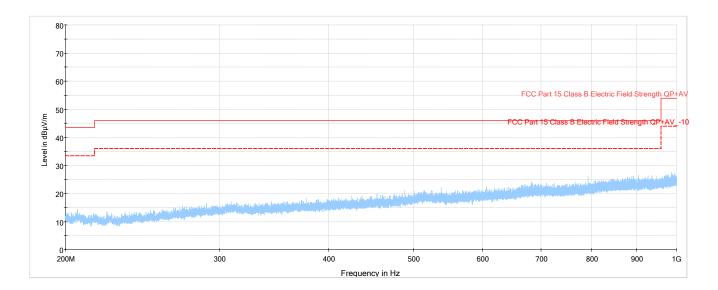
Test

Final_Result

	Frequency (MHz)	QuasiPeak (dBµV/m)	CAverage (dBµV/m)		Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)	Comment
[

8.1.31 1211.28 MHz, 30 MHz to 200 MHz, Horizontal/ Vertical Polarity Plot



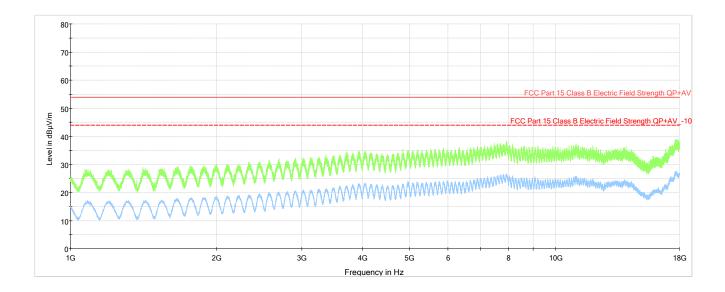

8.1.32 1211.28 MHz, 30 MHz to 200 MHz, Horizontal/ Vertical Polarity Table

Test

Final_Result

	Frequency (MHz)	QuasiPeak (dBµV/m)	CAverage (dBµV/m)	_	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)	Comment
Į				 							

8.1.34 1211.28 MHz, 200 MHz to 1000 MHz, Horizontal/ Vertical Polarity Table


Test

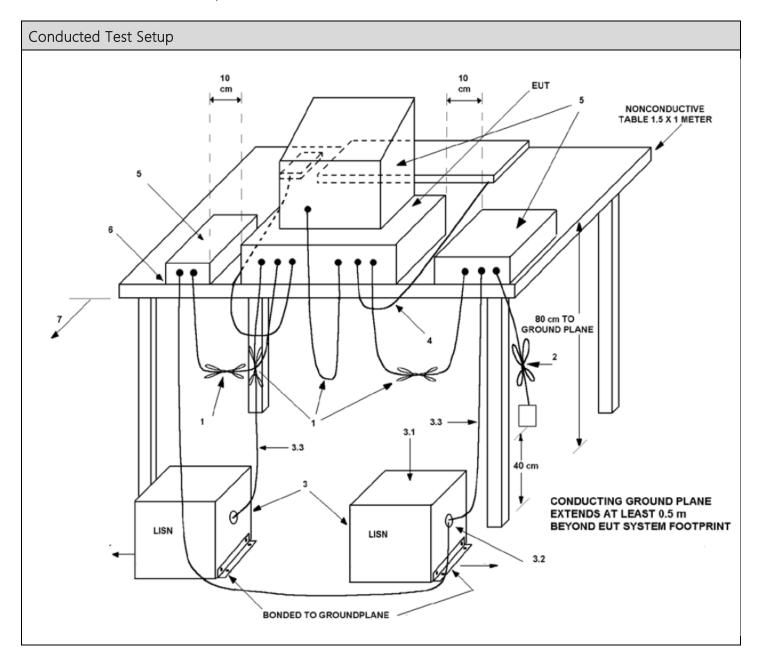
Final_Result

	Frequency (MHz)	QuasiPeak (dBµV/m)	CAverage (dBµV/m)	_	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)	Comment
Į				 							

8.1.35 1211.28 MHz, above 1000 MHz, Horizontal/ Vertical Polarity Plot

8.1.36 1211.28 MHz, above 1000 MHz, Horizontal/ Vertical Polarity Table

Test


Final_Result

	Frequency (MHz)	QuasiPeak (dBµV/m)	CAverage (dBµV/m)		Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)	Comment
[

8.2 Conducted Emissions

Limits from FCC 15.107 and test procedure from ANSI C63.4-2014.

8.2.1 Scanning, Line 1 Plot

20.Feb 23 11:26

Stepped Scan (1 Range)

Scan Start: 150 kHz Scan Stop: 30 MHz

Detector: Trace 1: MAX PEAK Trace 2: Average

Transducer: tdf_20

Start	Stop	Step			RF
Frequency	Frequency	Size	Res BW	Time A	Atten Preamp Input
150.000000 kHz	30.000000 MHz	4.00 kHz	9.00 kHz	100 ms A	Auto 0 dB INPUT2
%		RBW	120 kHz		
•		МТ	100 ms		
Step AUTO		dB AUTO PREAMP			,
авру 90	1 NH	Z LIMIT CHECK PAS		MHz	
80					SGL
HXXH					
2 AV 70			+ + + + + + + +		_
MAXH 90					TDF
-60			 		
ma .			 		
50					
	\rightarrow				
40					6DB AC
30	- 		+ 		_
20			\bot		
N I					
www.	Market and John S.	[]		I.I.	
110	A A A A A A A A A A A A A A A A A A A	water the water we	and market white	والمساعرة والمعاملين	Maha Maran M
			1 1	اياا	. [
	~~~~~~ <u>~~</u>				

#### Final Measurement

Meas Time: 1 s Margin: 20 dB Subranges: 0

# 8.2.2 Scanning, Line 1 Table

20.Feb 23 11:26

### Transducer Table

Name: tdf_20 Interpolation: LIN

Comment: ANS 25/2 Primary LISN IL Line 1 + Coax Cable IL

		,,,,
Frequer	ю	Factor (dB)
150.00	kHz	0.19
170.00	kHz	0.17
200.00	kHz	0.16
250.00	kHz	0.13
300.00	kHz	0.12
350.00	kHz	0.12
400.00	kHz	0.11
500.00	kHz	0.12
600.00	kHz	0.12
700.00	kHz	0.11
800.00	kHz	0.13
900.00	kHz	0.12
1.00	MHz	0.21
1.20	MHz	0.22
1.50	MHz	0.28
2.00	MHz	0.37
2.50	MHz	0.41
3.00	MHz	0.59
4.00	MHz	0.40
5.00	MHz	0.47
7.00	MHz	0.63
10.00	MHz	0.88
15.00	MHz	1.08
20.00	MHz	1.01
30.00	MHz	1.80

# 8.2.3 Scanning, Line 2 Plot

20.Feb 23 11:40

### Stepped Scan (1 Range)

Scan Start: 150 kHz Scan Stop: 30 MHz

Detector: Trace 1: MAX PEAK Trace 2: Average

Transducer: tdf_20

Start Frequency	Stop Frequency	Step Size	Res BW		RF Atten Preamp Input
150.000000 kHz			9.00 kHz		Auto 0 dB INPUT2
Step AUTO	Att 10	RBW MT dB AUTO PREAMP	120 kHz 100 ms		
<b>дв</b> µ <b>v</b> 90	1 MH		ss 10	MHZ	
1 PK MAXH					SGL
2 AV MAXH					TDF
-50					
-40					6DB
30					_
20					-
1.0	Mary Mary Care Company	militario de la	and the manning for	Marin Marin	Mark.
b~~~~~	~~~~~~				

#### Final Measurement

Meas Time: 1 s Margin: 20 dB Subranges: 0

# 8.2.4 Scanning, Line 2 Table

20.Feb 23 11:40

### Transducer Table

Name: tdf_20 Interpolation: LIN

Comment: ANS 25/2 Primary LISN IL Line 1 + Coax Cable IL

		,
Frequer	псу	Factor (dB)
150.00	kHz	0.19
170.00	kHz	0.17
200.00	kHz	0.16
250.00	kHz	0.13
300.00	kHz	0.12
350.00	kHz	0.12
400.00	kHz	0.11
500.00	kHz	0.12
600.00	kHz	0.12
700.00	kHz	0.11
800.00	kHz	0.13
900.00	kHz	0.12
1.00	MHz	0.21
1.20	MHz	0.22
1.50	MHz	0.28
2.00	MHz	0.37
2.50	MHz	0.41
3.00	MHz	0.59
4.00	MHz	0.40
5.00	MHz	0.47
7.00	MHz	0.63
10.00	MHz	0.88
15.00	MHz	1.08
20.00	MHz	1.01
30.00	MHz	1.80

### 8.2.5 51 MHz, Line 1 Plot

20.Feb 23 08:27

### Stepped Scan (1 Range)

Scan Start: 150 kHz Scan Stop: 30 MHz

Detector: Trace 1: MAX PEAK Trace 2: Average

Transducer: tdf_20

Start Frequency	Stop Frequency	Step Size	Res BW	Meas Time	RF Atten	Preamp	Input
50.000000 kHz	30.000000 MH	z 4.00 kHz	9.00 kHz	100 ms	Auto	0 dB	INPUT2
Step AUTO	Att 10	RBW MT dB AUTO PREAMP	100 ms	er 1 [71 ] 25.47			
-80 -80	1 MH		ss 10	MHZ	SGL		
1 PK MAXH 2 AV					TDF		
-60					TDF		
-50					6 д в		
30					A.C		
20							
10	Mary Mary Mary Mary	with the second	U. As a second s	· Luxware	MANN		
150 kHz				Щ	0 MHz		

#### Final Measurement

Meas Time: 1 s Margin: 20 dB Subranges: 0

## 8.2.6 51 MHz, Line 1 Table

20.Feb 23 08:27

### Transducer Table

Name: tdf_20 Interpolation: LIN

Comment: ANS 25/2 Primary LISN IL Line 1 + Coax Cable IL

Frequer	су	Factor (dB)
150.00	kHz	0.19
170.00	kHz	0.17
200.00	kHz	0.16
250.00	kHz	0.13
300.00	kHz	0.12
350.00	kHz	0.12
400.00	kHz	0.11
500.00	kHz	0.12
600.00	kHz	0.12
700.00	kHz	0.11
800.00	kHz	0.13
900.00	kHz	0.12
1.00	MHz	0.21
1.20	MHz	0.22
1.50	MHz	0.28
2.00	MHz	0.37
2.50	MHz	0.41
3.00	MHz	0.59
4.00	MHz	0.40
5.00	MHz	0.47
7.00	MHz	0.63
10.00	MHz	0.88
15.00	MHz	1.08
20.00	MHz	1.01
30.00	MHz	1.80

### 8.2.7 51 MHz, Line 2 Plot

20.Feb 23 08:44

### Stepped Scan (1 Range)

Scan Start: 150 kHz Scan Stop: 30 MHz

Detector: Trace 1: MAX PEAK Trace 2: Average

Transducer: tdf_20

Start Frequency	Stop Frequency	Step Size	Res BW	Meas RF Time Atte	en Preamp Input
150.000000 kHz	: 30.000000 MHz	4.00 kHz	9.00 kHz	100 ms Aut	o 0 dB INPUT2
Step AUTO	Att 10	RBW MT dB AUTO PREAMP	100 ms	er 1 [T1 ] 24.59 dвµ 50.000000000 kн	
-80 -80	1 MH	Z LIMIT CHECK PAS	s 10	MHZ	SGL
1 PK MAXH -70					TDF
-60 -60					
-50					6DB
-30					Ac
20					
Myrry	the Manual of the state of the	Marine de la company de la	an distance of the first of	and have now	~
150 kHz	·			30 MH	

#### Final Measurement

Meas Time: 1 s Margin: 20 dB Subranges: 0

# 8.2.8 51 MHz, Line 2 Table

20.Feb 23 08:44

### Transducer Table

Name: tdf_20 Interpolation: LIN

Comment: ANS 25/2 Primary LISN IL Line 1 + Coax Cable IL

		· · · · · · · · · · · · · · · · · · ·
Frequer	су	Factor (dB)
150.00	kHz	0.19
170.00	kHz	0.17
200.00	kHz	0.16
250.00	kHz	0.13
300.00	kHz	0.12
350.00	kHz	0.12
400.00	kHz	0.11
500.00	kHz	0.12
600.00	kHz	0.12
700.00	kHz	0.11
800.00	kHz	0.13
900.00	kHz	0.12
1.00	MHz	0.21
1.20	MHz	0.22
1.50	MHz	0.28
2.00	MHz	0.37
2.50	MHz	0.41
3.00	MHz	0.59
4.00	MHz	0.40
5.00	MHz	0.47
7.00	MHz	0.63
10.00	MHz	0.88
15.00	MHz	1.08
20.00	MHz	1.01
30.00	MHz	1.80

### 8.2.9 136 MHz, Line 1 Plot

20.Feb 23 09:10

### Stepped Scan (1 Range)

Scan Start: 150 kHz Scan Stop: 30 MHz

Detector: Trace 1: MAX PEAK Trace 2: Average

Transducer: tdf_20

Start	Stop	Step	D D)46	Meas	RF	D	I
Frequency		Size	Res BW	Time	Atten	Preamp	•
150.000000 kHz	30.000000 MHz	4.00 kHz	9.00 kHz	100 ms	Auto	0 dB	INPUT2
R		RBW	120 kHz Mark	er 1 [71 ]			
<b>\sqrt{3}</b>		МT	100 ms	23.94	dΒμV		
Step AUTO	Att 10	dB AUTO PREAMP	OFF 1	50.00000000	0 kHz		
dВμV 90	1 MH:			MHz			
		LIMIT CHECK PAS	S				
80	<del>-                                     </del>		<del>+ + + + + + +</del>		SGL		
1 PK MAXH							
70 -70							
2 AV							
HXAM					TDF		
60			<del>                                     </del>				
AVG.			+				
50							
			<del>                                      </del>				
40							
-10-					6DB AC		
3 0	<del>-                                     </del>		<del>+ + + + + + +</del>				
<b>.</b> .							
20							
N							
Manda make	Washington and the	,					
10	WAS MICHAEL STATE OF THE STATE	the whole where	Marie Line	مامسييم المنا	Walder .		
/		1,420 (1)		-VVV	•		
b	<u> </u>						
150 kHz				3	0 MHz		

#### Final Measurement

Meas Time: 1 s Margin: 20 dB Subranges: 0

### 8.2.10 136 MHz, Line 1 Table

20.Feb 23 09:10

### Transducer Table

Name: tdf_20 Interpolation: LIN

Comment: ANS 25/2 Primary LISN IL Line 1 + Coax Cable IL

Comment.		ANO 25/21 IIIIary LIGHT LINE I
Frequer	тсу	Factor (dB)
150.00	kHz	0.19
170.00	kHz	0.17
200.00	kHz	0.16
250.00	kHz	0.13
300.00	kHz	0.12
350.00	kHz	0.12
400.00	kHz	0.11
500.00	kHz	0.12
600.00	kHz	0.12
700.00	kHz	0.11
800.00	kHz	0.13
900.00	kHz	0.12
1.00	MHz	0.21
1.20	MHz	0.22
1.50	MHz	0.28
2.00	MHz	0.37
2.50	MHz	0.41
3.00	MHz	0.59
4.00	MHz	0.40
5.00	MHz	0.47
7.00	MHz	0.63
10.00	MHz	0.88
15.00	MHz	1.08
20.00	MHz	1.01
30.00	MHz	1.80

### 8.2.11 136 MHz, Line 2 Plot

20.Feb 23 09:24

### Stepped Scan (1 Range)

Scan Start: 150 kHz Scan Stop: 30 MHz

Detector: Trace 1: MAX PEAK Trace 2: Average

Transducer: tdf_20

Start	Stop	Step		Meas	RF		
requency	Frequency	Size	Res BW	Time	Atten	Preamp	Input
50.000000 kHz	30.000000 MHz	4.00 kHz	9.00 kHz	100 ms	Auto	0 dB	INPUT2
<b>(</b>		RBW	120 kHz Mark	er 1 [71 ]			
<b>(</b> \$/		МТ	100 ms		dΒμV		
Step AUTO	Att 10	dB AUTO PREAMP	OFF 1	.50.00000000	0 kHz		
<b>івру</b> 90	1 MH			MHz			
		LIMIT CHECK PA	3 8				
80	<del></del>		<del></del>		SGL		
PK							
70 -70							
av					TDF		
HXA PP					TDF		
60	<del></del>		<del>-                                    </del>				
ALG.							
50							
	<b>1111111</b>		<del> </del>				
40							
F10 1					6DB AC		
30	<del>-                                     </del>		<del>-                                     </del>				
<b>.</b>							
20							
N							
Valman	الالبانيانا						
110	The land of the land of	Mmulan leder shown	Mary Mary Mary Mary Mary Mary Mary Mary	- Maryland Maryland	السلفانس		
				]			
·~	~~~~~~			11.			

#### Final Measurement

Meas Time: 1 s Margin: 20 dB Subranges: 0

### 8.2.12 136 MHz, Line 2 Table

20.Feb 23 09:24

### Transducer Table

Name: tdf_20 Interpolation: LIN

Comment: ANS 25/2 Primary LISN IL Line 1 + Coax Cable IL

		· · · · · · · · · · · · · · · · · · ·
Frequer	су	Factor (dB)
150.00	kHz	0.19
170.00	kHz	0.17
200.00	kHz	0.16
250.00	kHz	0.13
300.00	kHz	0.12
350.00	kHz	0.12
400.00	kHz	0.11
500.00	kHz	0.12
600.00	kHz	0.12
700.00	kHz	0.11
800.00	kHz	0.13
900.00	kHz	0.12
1.00	MHz	0.21
1.20	MHz	0.22
1.50	MHz	0.28
2.00	MHz	0.37
2.50	MHz	0.41
3.00	MHz	0.59
4.00	MHz	0.40
5.00	MHz	0.47
7.00	MHz	0.63
10.00	MHz	0.88
15.00	MHz	1.08
20.00	MHz	1.01
30.00	MHz	1.80

## 8.2.13 381.3MHz, Line 1 Plot

20.Feb 23 09:38

### Stepped Scan (1 Range)

Scan Start: 150 kHz Scan Stop: 30 MHz

Detector: Trace 1: MAX PEAK Trace 2: Average

Transducer: tdf_20

Start	Stop	Step		Meas	RF	_	
Frequency			Res BW		Atten	Preamp	•
150.000000 kHz	30.000000 MHz	4.00 kHz	9.00 kHz	100 ms	Auto	0 dB	INPUT2
<b>^</b>		RBW	120 kHz Mark	er 1 [71 ]			
<b>\$</b> \$		нт	100 ms	24.42	dΒμV		
Step AUTO	Att 10	dB AUTO PREAMP	OFF 1	50.00000000	k H z		
dBμV 90	1 MH:			MHz			
		LIMIT CHECK PAS	s III				
80	<del></del>		<del></del>		SGL		
1 PK							
MAXH -70							
2 AV							
MAXH					TDF		
60							
THE .			+-				
50	$\longrightarrow$						
	<b>\</b>		<del>                                     </del>				
40					6DB AC		
30	<del></del>		<del></del>				
<b>;</b>							
20							
N					1		
har har na	Marine Marine Marine			.1			
10 - 00	CONTRACTOR OF THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND A	white was the way to be a second	Luc Contribution and	and the same of the	Maria Maria		
\			. L. M. L. L. J. M.		·		
borrown	~~ <del>~</del>						
150 kHz				3 (	MHz		

#### Final Measurement

Meas Time: 1 s Margin: 20 dB Subranges: 0

### 8.2.14 381.3 MHz, Line 1 Table

20.Feb 23 09:38

### Transducer Table

Name: tdf_20 Interpolation: LIN

Comment: ANS 25/2 Primary LISN IL Line 1 + Coax Cable IL

Comment.		ANO 25/21 Illiary LION IL Line 1 1 C	JUAN
Frequen	су	Factor (dB)	
150.00	kHz	0.19	
170.00	kHz	0.17	
200.00	kHz	0.16	
250.00	kHz	0.13	
300.00	kHz	0.12	
350.00	kHz	0.12	
400.00	kHz	0.11	
500.00	kHz	0.12	
600.00	kHz	0.12	
700.00	kHz	0.11	
800.00	kHz	0.13	
900.00	kHz	0.12	
1.00	MHz	0.21	
1.20	MHz	0.22	
1.50	MHz	0.28	
2.00	MHz	0.37	
2.50	MHz	0.41	
3.00	MHz	0.59	
4.00	MHz	0.40	
		0.47	
7.00	MHz	0.63	
10.00	MHz	0.88	
		1.08	
20.00	MHz	1.01	
30.00	MHz	1.80	
	Frequent 150.00 170.00 200.00 250.00 350.00 400.00 500.00 600.00 700.00 1.20 1.50 2.00 2.50 3.00 4.00 5.00 7.00 10.00 10.00 10.00 10.00	Frequency  150.00 kHz  170.00 kHz  200.00 kHz  250.00 kHz  300.00 kHz  400.00 kHz  500.00 kHz  600.00 kHz  700.00 kHz  1.00 MHz  1.00 MHz  1.20 MHz  2.50 MHz  3.00 MHz  4.00 MHz  3.00 MHz  4.00 MHz  1.00 MHz  1.00 MHz  1.00 MHz  1.00 MHz  3.00 MHz  4.00 MHz  4.00 MHz  4.00 MHz  5.00 MHz  6.00 MHz  6.00 MHz  6.00 MHz  7.00 MHz  1.00 MHz	Frequency   Factor (dB)   150.00 kHz   0.19   170.00 kHz   0.17   200.00 kHz   0.16   250.00 kHz   0.12   350.00 kHz   0.12   350.00 kHz   0.12   400.00 kHz   0.11   500.00 kHz   0.12   700.00 kHz   0.12   700.00 kHz   0.12   700.00 kHz   0.11   700.00 kHz   0.12   700.00 kHz   0.13   700.00 kHz   0.13   700.00 kHz   0.13   700.00 kHz   0.12   700.00 kHz   0.20   700.00 kHz   0.20   700.00 kHz   0.20   700.00 kHz   0.20   700.00 kHz   0.37   700.00 kHz   0.40   700.00 kHz   0.63   700.00 kHz   0.88   700.00 kHz   0.88   700.00 kHz   0.08   700.00 kHz   0.00 kHz   0

### 8.2.15 381.3 MHz, Line 2 Plot

20.Feb 23 09:51

### Stepped Scan (1 Range)

Scan Start: 150 kHz Scan Stop: 30 MHz

Detector: Trace 1: MAX PEAK Trace 2: Average

Transducer: tdf_20

start	Stop	Step		Meas	RF		
requency	Frequency	Size	Res BW	Time	Atten	Preamp	Input
50.000000 kH	z 30.000000	MHz 4.00 kHz	9.00 kHz	100 ms	Auto	0 dB	INPUT2
$\wedge$							
<b>*</b>		R B W	120 kHz Mark 100 ms	er 1 [71 ]	) dBμV		
Step AUTC	At			50.0000000			
1вич 90		1 MHz	1 1 1 1 1 1 1 1	MHz			
		LIMIT CHECK	PASS	1			
80					SGL		
PK					302		
AXH							
AV -70							
AXH SP					TDF		
-60							
THE .							
-50							
40					6 D B		
					A C		
30							
l l							
20							
- IN I							
mum	ment and the second	ب این این این					
[{ [		the the second s	pro-propagation for facility	Mandeller	Martin		
1				Lil			
150 kHz				. 11.	30 MHz		

#### Final Measurement

Meas Time: 1 s Margin: 20 dB Subranges: 0

### 8.2.16 381.3 MHz, Line 2 Table

20.Feb 23 09:51

### Transducer Table

Name: tdf_20 Interpolation: LIN

Comment: ANS 25/2 Primary LISN IL Line 1 + Coax Cable IL

Frequen	су	Factor (dB)
150.00	kHz	0.19
170.00	kHz	0.17
200.00	kHz	0.16
250.00	kHz	0.13
300.00	kHz	0.12
350.00	kHz	0.12
400.00	kHz	0.11
500.00	kHz	0.12
600.00	kHz	0.12
700.00	kHz	0.11
800.00	kHz	0.13
900.00	kHz	0.12
1.00	MHz	0.21
1.20	MHz	0.22
1.50	MHz	0.28
2.00	MHz	0.37
2.50	MHz	0.41
3.00	MHz	0.59
4.00	MHz	0.40
5.00	MHz	0.47
7.00	MHz	0.63
10.00	MHz	0.88
15.00	MHz	1.08
20.00	MHz	1.01
30.00	MHz	1.80

## 8.2.17 685.5 MHz, Line 1 Plot

20.Feb 23 10:09

### Stepped Scan (1 Range)

Scan Start: 150 kHz Scan Stop: 30 MHz

Detector: Trace 1: MAX PEAK Trace 2: Average

Transducer: tdf_20

Start Frequency	Stop Frequency	Step Size	Res BW		RF Atten Preamp Input
150.000000 kHz			9.00 kHz		Auto 0 dB INPUT2
Step AUTO	Att 10	RBW MT db Auto Preamp	120 kHz 100 ms		
<b>дв</b> µ <b>v</b> 90	1 MH	Z LIMIT CHECK PA:		MHZ	SQL
1 PK MAXH					SUL
2 AV MAXH					TDF
50					
40					6 D B
-30					
20					
110	Metaboral and a september of the septemb	ramphodusely silvenson		Mundemand	- June

#### Final Measurement

Meas Time: 1 s Margin: 20 dB Subranges: 0

## 8.2.18 685.5 MHz, Line 1 Table

20.Feb 23 10:09

### Transducer Table

Name: tdf_20 Interpolation: LIN

Comment: ANS 25/2 Primary LISN IL Line 1 + Coax Cable IL

Comment.		ANO 20/21 Illiary LIGHT Line 1 1 Of	
Frequen	су	Factor (dB)	
150.00	kHz	0.19	
170.00	kHz	0.17	
200.00	kHz	0.16	
250.00	kHz	0.13	
300.00	kHz	0.12	
350.00	kHz	0.12	
400.00	kHz	0.11	
500.00	kHz	0.12	
600.00	kHz	0.12	
700.00	kHz	0.11	
800.00	kHz	0.13	
900.00	kHz	0.12	
1.00	MHz	0.21	
1.20	MHz	0.22	
1.50	MHz	0.28	
2.00	MHz	0.37	
2.50	MHz	0.41	
3.00		0.59	
4.00		0.40	
5.00		0.47	
7.00		0.63	
10.00		0.88	
15.00		1.08	
20.00		1.01	
30.00	MHz	1.80	

## 8.2.19 685.5 MHz, Line 2 Plot

20.Feb 23 10:23

### Stepped Scan (1 Range)

Scan Start: 150 kHz Scan Stop: 30 MHz

Detector: Trace 1: MAX PEAK Trace 2: Average

Transducer: tdf_20

Start Frequency	Stop Frequency	Step Size	Res BW		RF Atten Preamp Input
	30.000000 MH:		9.00 kHz		Auto 0 dB INPUT2
Step AUTO	Att 10	RBW MT db Auto Preamp	120 kHz 100 ms		
80	1 MH	Z LIMIT CHECK PA:		MHZ	SGL
1 PK MAXH -70					
махн -60					TDF
-50					
40					6 D B A C
-30					
N I I	when the second	Must de la			
		- Hundredon by house from	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	المالية	the water.

#### Final Measurement

Meas Time: 1 s Margin: 20 dB Subranges: 0

## 8.2.20 685.5 MHz, Line 2 Table

20.Feb 23 10:23

### Transducer Table

Name: tdf_20 Interpolation: LIN

Comment: ANS 25/2 Primary LISN IL Line 1 + Coax Cable IL

		•
Frequer	ıcy	Factor (dB)
150.00	kHz	0.19
170.00	kHz	0.17
200.00	kHz	0.16
250.00	kHz	0.13
300.00	kHz	0.12
350.00	kHz	0.12
400.00	kHz	0.11
500.00	kHz	0.12
600.00	kHz	0.12
700.00	kHz	0.11
800.00	kHz	0.13
900.00	kHz	0.12
1.00	MHz	0.21
1.20	MHz	0.22
1.50	MHz	0.28
2.00	MHz	0.37
2.50	MHz	0.41
3.00	MHz	0.59
4.00	MHz	0.40
5.00	MHz	0.47
7.00	MHz	0.63
10.00	MHz	0.88
15.00	MHz	1.08
20.00	MHz	1.01
30.00	MHz	1.80

## 8.2.21 1211.28 MHz, Line 1 Plot

20.Feb 23 10:57

### Stepped Scan (1 Range)

Scan Start: 150 kHz Scan Stop: 30 MHz

Detector: Trace 1: MAX PEAK Trace 2: Average

Transducer: tdf_20

Start	Stop	Step		Meas	RF	
Frequency	Frequency	Size	Res BW	Time	Atten Prea	mp Input
150.000000 kHz	30.000000 MHz	4.00 kHz	9.00 kHz	100 ms	Auto 0 di	B INPUT2
R		RBW	120 kHz			
<b>\\$</b>		МT	100 ms			
Step AUTO		dB AUTO PREAME				
авим 90	1 i ń H		.88	MHz		
-80					SGL	
1 PK					SUL	
MAXH -70						
2 AV					TDF	
HXAM					108	
60						
ma						
-50						
40			<del>-              </del>		6 D B	
30	<del>-                                     </del>		<del>-                                     </del>			
20	<del>-                                     </del>		<del>-                                     </del>			
10	WWW.	harman distanta		La Maria La		
					Mar. 2	
b	~~~~~~~			L .		

#### Final Measurement

Meas Time: 1 s Margin: 20 dB Subranges: 0

## 8.2.22 1211.28 MHz, Line 1 Table

20.Feb 23 10:57

### Transducer Table

Name: tdf_20 Interpolation: LIN

Comment: ANS 25/2 Primary LISN IL Line 1 + Coax Cable IL

Comment.		ANO 20/21 IIIIaly LIGIT IL LINE		
Frequency		Factor (dB)		
150.00	kHz	0.19		
170.00	kHz	0.17		
200.00	kHz	0.16		
250.00	kHz	0.13		
300.00	kHz	0.12		
350.00	kHz	0.12		
400.00	kHz	0.11		
500.00	kHz	0.12		
600.00	kHz	0.12		
700.00	kHz	0.11		
800.00	kHz	0.13		
900.00	kHz	0.12		
1.00	MHz	0.21		
1.20	MHz	0.22		
1.50	MHz	0.28		
2.00	MHz	0.37		
2.50	MHz	0.41		
3.00	MHz	0.59		
4.00	MHz	0.40		
5.00	MHz	0.47		
7.00	MHz	0.63		
10.00	MHz	0.88		
15.00	MHz	1.08		
20.00	MHz	1.01		
30.00	MHz	1.80		

## 8.2.23 1211.28 MHz, Line 2 Plot

20.Feb 23 11:12

### Stepped Scan (1 Range)

Scan Start: 150 kHz Scan Stop: 30 MHz

Detector: Trace 1: MAX PEAK Trace 2: Average

Transducer: tdf_20

Start	Stop	Step		Meas RF	
Frequency	Frequency	Size	Res BW	Time At	ten Preamp Input
150.000000 kHz	30.000000 MHz	4.00 kHz	9.00 kHz	100 ms Au	ito 0 dB INPUT2
<b>%</b>		RBW	120 kHz		
Step AUTO	Att 10	MT dB AUTO PREAMP	100 ms OFF		
dBμV 90	1 MHz			MHz	$\neg$
		LIMIT CHECK PAS	s I I I I I		
1 PK					SGL
MAXH -70					
2 AV MAXH					TDF
60					_
ma			+		
-50					
40					
-40					6 D B
30					
l l					
20	<del></del>				_
human	.				
10	Activisms rate last and the last	about which her	manus de la compansión de	Jale Harrison	nt.

#### Final Measurement

Meas Time: 1 s Margin: 20 dB Subranges: 0

## 8.2.24 1211.28 MHz, Line 2 Table

20.Feb 23 11:12

### Transducer Table

Name: tdf_20 Interpolation: LIN

Comment: ANS 25/2 Primary LISN IL Line 1 + Coax Cable IL

Comment.		L.	ANS 20/2 PHHAIR LISIN IL LINE I + C			
Frequency		су	Factor (dB)			
	150.00	kHz	0.19			
	170.00	kHz	0.17			
	200.00	kHz	0.16			
	250.00	kHz	0.13			
	300.00	kHz	0.12			
	350.00	kHz	0.12			
	400.00	kHz	0.11			
	500.00	kHz	0.12			
	600.00	kHz	0.12			
	700.00	kHz	0.11			
	800.00	kHz	0.13			
	900.00	kHz	0.12			
	1.00	MHz	0.21			
	1.20	MHz	0.22			
	1.50	MHz	0.28			
	2.00	MHz	0.37			
	2.50	MHz	0.41			
	3.00	MHz	0.59			
	4.00	MHz	0.40			
	5.00	MHz	0.47			
	7.00	MHz	0.63			
	10.00	MHz	0.88			
	15.00	MHz	1.08			
	20.00	MHz	1.01			
	30.00	MHz	1.80			



### 9. Statements of Compatibility with FCC Rules – part 15.121

FCC ID: AFJ325010

This scanning receiver cannot be used or modified to receive cellular radiotelephony frequencies. This is achieved by the key features described in detailed statements below. 1. Statement assessing the vulnerability of {cust_desc} to possible modifications and describing design steps taken to make the tuning, control and filtering circuitry inaccessible (15.121 (a)): The receiver portion of the equipment under this application scans the frequency bands 88MHz to 450 MHz. The receiver circuitry cannot be altered to enable it to scan the cellular bands by means of clipping the leads of components, installing a diode and/or jumper wire, or by any other such simple modification. Nor can the receiver be made to scan the cellular bands by replacing a plug-in semiconductor chip, because no such plug-in chips are utilized anywhere in the receiver. The semiconductor chips that are utilized in the tuning function of the equipment cannot be reprogrammed. The tuning, control and filtering circuitry of the receiver is controlled by a microprocessor firmware, which is unalterable by the user (and it is also unalterable by the manufacturer's own support and distribution staff, and their resellers). Any attempt to modify the circuitry cannot therefore result in achieving access to the cellular bands, but is likely to make the receiver inoperable.

2. Statement relating to cellular band rejection (15.121 (b)): The FCC requirement stipulates that scanning receivers shall reject any signals from the cellular radiotelephone service frequency bands that are 38dB or lower (at 12 dB SINAD). The construction of the equipment under this application is such that image rejection is typically 60 dB, therefore with a more than sufficient margin for adequate suppression of any image frequencies related to the cellular radiotelephone signals. This aspect was tested by the receiver placed in a scanning mode. There were no spurious responses detected within the entire frequency range of the receiver with a rejection ratio less than 44 dB. In view of the above, the equipment complies with part 15.121 of the FCC rules.

Page 73 of 75

# 10. ANNEX-A - Photographs of the EUT

Photographs of the EUT and any manufacturer supplied accessories to be used with the EUT are in a separate document.

### 11. ANNEX-B – Test Setup Photographs

Test setup photographs are located in a separate document.

### 12. History of Test Report Changes

Test Report #	Revision #	Description	Date of Issue
	1	Initial release	2/20/2023
TR_6575-23_FCC 15B_Scanning Receiver	2	Updated Page 6	3/10/2023
dddiver_			

# **END OF TEST REPORT**