

Bundesrepublik Deutschland

Federal Republic of Germany

Conformance test report of a

GPS receiver modul

integrated in an

AIS Transponder

Equipment under test: ICOM AIS class B

Type: MA-500TR

Applying test standards: IEC 61108-1:2003

Test Report No.: BSH/46162/4321440/10-2

Applicant: Pete Hizzey

5 Boulevard Libre Echange,

2AC Champs Pinsons

31650 Saint-Orens de Gameville

France

Hamburg, 3rd December 2010 by order Federal Maritime and

Hydrographic Agency

by order

Tobias Ehlers

Tosias Ellers

Test engineer

Jochen Ritterbusch Head of Laboratory

nach DIN EN 17025 akkreditiertes Prüflaboratorium

Federal Maritime and Hydrographic Agency Bernhard-Nocht-Str. 78

D-20359 Hamburg

Germany

Deutscher Akkreditierungs Rat

DAT-PL-086/98-02

Note: Extracts from this test report shall not be copied without permission of the Federal Maritime and Hydrographic Agency
Version 2.21 page 1 of 107

DATech Deutsche Akkreditierungsstelle Technik in der TGA GmbH Signatory of the Multilateral Agreement of EA and ILAC for the mutual recognition

represented in the

Deutschen Akkreditierungs Rat

Akkreditierung

The TGA GmbH, represented by the DATech Deutsche Akkreditierungsstelle Technik in der TGA GmbH, confirms that the Testing Laboratory

Federal Maritime and Hydrographic Agency Department Shipping Laboratory for Type Approvals Bernhard-Nocht-Straße 78

20359 Hamburg

is competent under the terms of DIN EN ISO/IEC 17025:2005 to carry out testing in the fields of

Marine Equipment (Navigation Equipment, Radio-Communication Equipment, Life-Saving Appliances)

according to the annexed list of standards and specifications.

The accreditation is valid until: 2013-12-22

The annex is deemed part of this certificate and comprises 8 pages.

DAR-Registration No.: DAT-PL-086/98-02

Frankfurt/Main, 2008-12-23

Correctness of the english translation confirmed: Frankfurt/Main, 2008-12-23

Date: 2010/12/03

i.V. Dipl.-Ing.(FH) R. Egner Head of the Accreditation Body

Member in EA, ILAC, IAF

Translation for information purposes only. The German Accreditation Certificate is authoritative

See notes overleaf

Table of contents

1	GENERAL	7
1.	.1 SUMMERY	8
	.2 EQUIPMENT HISTORY	
	.3 TEST ENVIRONMENT	
1.	.4 Legend	
1.	.5 GENERAL OBSERVATIONS	
2	FUNCTIONAL TESTS	13
2.	2.1 IEC 61108-1	13
	IEX A - TEST EQUIPMENT	
	A.1 TEST EQUIPMENT SUMMARY	
	A.2 DOCUMENTATION OF TEST EQUIPMENT	
А	A.2.1 Simulation of $\pm 22^{\circ}$ roll	
	A.2.2 L-band interference signal amplifier	
	A.2.3 Radar device	
	A.2.4 GPS Simulation	
	A.2.5 Calibration protocol of RF- Chamber	
ΛΝΝΙ	IEX B - TEST DIAGRAMS	
В	3.1 § 5.6.4.1STATIC ACCURACY	
n	B.1.1 § 5.6.4.1.1 Static accuracy – GPS	
В	3.2 § 5.6.4.2 ANGULAR MOVEMENT OF THE ANTENNA	
n	B.2.1 § 5.6.4.2 Angular movement of the antenna – GPS	
В	8.3 § 5.6.4.3 DYNAMIC ACCURACY	
	B.3.1 § 5.6.4.3.1 GPS part a)	
ъ	B.3.2 § 5.6.4.3.1 GPS part b)	
В	3.4 § 5.6.5 AQUISITION	
	B.4.1 § 5.6.5.1 Condition A - Initialization	
	B.4.2 § 5.6.5.2 Condition B – Power Outage	
	B.4.3 § 5.6.5.3 Condition C – Interruption of GPS signal	
D	B.4.4 § 5.6.5.4 Condition D – Brief interruption of power	
D	B.5.1 § 5.6.9.1 L-Band interference GPS	
	B.5.1 § 5.6.9.1 L-Band interference GFS	
D	B.5.2 §5.6.10 POSITION UPDATE	
ь	B.6.1 § 5.6.10.1 Slow speed update rate	
	B.6.2 § 5.6.10.2 High speed update rate	
D	B.O.2 § 5.0.10.2 High speed update rate	
ь	B.7.1 Simulation scenarios for test of RAIM functionality	
	B.7.2 § 5.6.12.2 Test of integrity monitoring using RAIM	
D	B.7.2 § 5.6.12.2 Test of integrty monutoring using RAIM	
	3.9 § 5.7.2 TESTING INTERFERENCE	
D	B.9.1 § 5.7.2.4.1 Interference conditions	
	B.9.2 § 5.7.2.5 Reaquisition test	
$\Lambda \Lambda I \Lambda I \Lambda$	IEV C DHOTOS OF FOLIDMENT LINDED TEST	102

1 General

Applicant: Pete Hizzey

5 Boulevard Libre Echange

2AC Champs Pinsons

31650 Saint-Orens de Gameville

France

Equipment under test: ICOM AIS class B

Type: MA-500TR

Manufacturer: ICOM Incorporated

2-1-32 Kamiminami, Hirano-Ku

Osaka 547-0003

Japan

Place of test: BSH test laboratory Hamburg,

Room 908/042

Date: 2010/12/03

Start of test: 16th July 2010

End of test: 21st October 2010

1.1 Summery

Test standard: IEC 61108-1 Ed. 2, 2003

Test No.	Reference	Section	Result (passed/ not passed / not applicable / not tested)
1	IEC 61108-1	4.1 Object compliance with IEC 61162-1 compliance with IEC 60945	not tested
2/16	IEC 61108-1	4.2 GPS receiver equipment	passed
3/17	IEC 61108-1	4.3.1 General	passed
4/18	IEC 61108-1	4.3.2 Equipment output	not applicable
5/19-23	IEC 61108-1	4.3.3 Accuracy	passed
6/24-27	IEC 61108-1	4.3.4 Acquisition	passed
7/28	IEC 61108-1	4.3.5 Protection	passed
8/29	IEC 61108-1	4.3.6 Antenna design	passed
9/30-31	IEC 61108-1	4.3.7 Dynamic range	passed
10/32- 33	IEC 61108-1	4.3.8 Effects of specific interfering signals	passed
11/34- 35	IEC 61108-1	4.3.9 Position update	passed
12/36	IEC 61108-1	4.3.10 Differential GPS input	not applicable
13/37- 40	IEC 61108-1	4.3.11 Failure warnings and status indications	passed ¹
14/41- 42	IEC 61108-1	4.3.12 Output of COG, SOG and UTC	passed
15/43- 44	IEC 61108-1	4.3.13 Typical interference conditions	passed

¹ EUT is an AIS class B, no RAIM mode available, RAIM functionality tested by position output evaluation during RAIM scenario, see Annex B.7 for details.

Date: 2010/12/03

Test Report No. BSH/46162/4321440/10-2

1.2 Equipment history

Transponder L	Transponder Unit – Equipment No. 1					
Туре	MA-500TR		Part N	lo.:		
Delivery date	2010-05-19		Serial	number	000043	
	-		-			
HW Version:	Delivery date	2010-0	5-19	Version		
	Installation	2010-0	7-23	no		
	date					
SW Version:	Delivery date	2010-0	5-19	Version	SW: 1.002	
	Installation	2010-0	7-23	no		
	date					
SW Version:	Delivery date	2010-0	7-19	Version	SW:1.005	
	Installation	2010-0	7-23	no		
	date					
SW Version:	Delivery date			Version		
	Installation			no		
	date					
SW Version:	Delivery date			Version		
	Installation			no		
	date					

GPS antenna				
Туре	ICOM MXG 500	00 Part	No.:	
Delivery date	2010-05-19	Seria	l number	0000315
	-	<u>-</u>		_
HW Version:	Delivery date		Version	Includes the GPS
	Installation		no	receiver
	date			

Transponder L	Transponder Unit – Equipment No. 2						
Туре	MA-500TR		Part N	lo.:			
Delivery date	2010-09-02		Serial	number	09001022		
HW Version:	Delivery date	2010-0	9-02	Version			
	Installation date	2010-0	9-30	no			
SW Version:	Delivery date	2010-0	9-02	Version	SW: 1.007		
	Installation date	2010-0	9-30	no			
SW Version:	Delivery date			Version			
	Installation date			no			
SW Version:	Delivery date			Version			
	Installation			no			
	date						

GPS antenna					
Туре	ICOM MXG 50	00	Part N	0.:	
Delivery date	te 2010-09-24		Serial number		0301057
HW Version:	Delivery date	2010-0	9-24	Version	Includes the GPS
	Installation	2010-0	9-30	no	receiver
	date				

Test Report No. BSH/46162/4321440/10-2 Date: 2010/12/03 page 10 of 107

1.3 Test environment

Documentation of equipment tests and dates of tests.

Test environment is completely equipped as described in Annex A.

Room	BSH room 908/ 042
Test engineer	T. Ehlers (S3301)
Location	Hamburg

Equipment	Start of test	End of test	Test engineer
no			
1	16 th July 2010	30 th Sept. 2010	T. Ehlers (S3301)
2	20 th Oct. 2010	21 st Oct. 2010	T. Ehlers (S3301)

Test Report No. BSH/46162/4321440/10-2 Date: 2010/12/03 page 11 of 107

1.4 Legend

Result marking (in the "result" column)²: Passed Item was OK, test successful

No colour marking

Not passed Test of a required item was not successful, change required

N/T Not tested N/A Not applicable

Specific remarks (in the "remark" column, marked "bold italic"):

REC recommendation (in terms of IEC17025 "opinion"); an improvement or change

is recommended

Note Note or comment (in terms of IEC17025 "interpretation");rationale for specific

results or interpretation of requirements as appropriate

1.5 General observations

General observations unrelated to any paragraphs of applied test standards.

Date: 2010/12/03

Passed no colour marking

Not passed yellow N/T blue

N/A no colour marking

REC green

Test Report No. BSH/46162/4321440/10-2

² Test items maybe colour marked in draft versions of the report as follows:

2 Functional Tests

2.1 IEC 61108-1

No. of test	IEC 61108-1	Requirement/Condition	Remark	Result
	4	Minimum Performance Standards		
1	4.1	Object compliance with IEC 61162-1 (see §2.3) compliance with IEC 60945		N/T N/T
2	4.2	GPS Receiver equipment		
	4.2.1	(M.112/A2.1) The words "GPS receiver equipment" as used in this performance standard include all the components and units necessary for the system to properly perform its intended functions. The equipment shall include the following minimum facilities: a) antenna capable of receiving GPS signals; b) GPS receiver and processor; c) means of accessing the computed latitude/longitude position; d) data control and interface; and e) position display and, if required, other form of output.	NOTE EUT is an AIS with integrated GPS-Receiver and serial interface for data output See also test results under test no. 16.	Passed
	4.2.2	The equipment may be supplied in one of the several configurations to provide the necessary position information. Examples are: stand-alone receiver with means of accessing computed position via a keyboard with the position information suitably displayed; GPS black box receiver fed with operational parameters from external devices/remote locations and feeding an integrated system with means of access to the computed position via an appropriate interface, and the positional information available to at least one remote location. The above examples should not be implied as limiting the scope of future development.	NOTE EUT is an AIS with integrated GPS receiver See also test results under test no. 16	Passed

Date: 2010/12/03

Test Report No. BSH/46162/4321440/10-2

	4.3	Performance standard for GPS		
		receiver equipment		
3	4.3.1	General		Passed
		(M.112/A3.1) The GPS receiver equipment shall be		
		capable of receiving and processing the Standard	See also test results	
		Positioning Service (SPS) and provide position	under	
	, , ,	information in latitude and longitude World	test no. 17.	
		Geodetic System (WGS 84) co-ordinates in degrees,		
		minutes and thousandths of minutes and time of		
		solution referenced to UTC (USNO). Means may		
		be provided to transform the computed position		
		based upon WGS-84 into data compatible with the		
		datum of the navigational chart in use. Where this		
		facility exists, the display shall indicate that co-		
		ordinate conversion is being performed and shall		
		identify the co-ordinate system in which the		
		position is expressed.		
		(M.112/A3.2) The GPS receiver equipment shall		
		operate on the L1 signal and C/A code.		

4	4.3.2	Equipment output	NOTE	N/T
		(M.112/A3.3) The GPS receiver equipment shall be	EUT is equipped with a	
		provided with at least one output from which	serial interface for AIS	
		position information can be supplied to other	data output.	
		equipment. The output of position information		
		based upon WGS-84 shall be in accordance with		
		International Standards - IEC 61162		
		The position information output shall be in		
		accordiance with IEC 61162 as follows:		
		For positioning reporting purposes the following		
		sentences shall be available in any combination.		
		DMT – Datum reference		
		GBS – GNSS satellite fault detection		
		GGA – GPS fix data		
		GNS – GNSS fix data		
		RMC – Recommended minimum specific GNSS		
		data		
		VTG – Course over ground and ground speed		
		ZDA – Time and date		
		If a sentences uses a datum other than WGS-84		
		then the DTM sentence must be used in compliance		
		with IEC 61162.		
		In addition, for integrating with other navigational		
		aids the following sentences may be available in		
		any combination.		
		GRS – GNSS range residuals		
		GSA – GNSS DOP and active satellites		
		GST – GNSS pseudorange error statistics		
		GSV – GNSS satellites in view		
		NOTE GRS, GSA, GST, GSV are required to		
		support external integrity checking. They are to be		
		synchronized with corresponding fix data (GGA or		
		GNS).		

5	4.3.3	Accuracy		
	4.3.3.1	Static Accuracy (M.112/A3.4) The GPS receiver equipment shall have static accuracy such that the position of the antenna is determined to 100 m (95 %) with horizontal dilution of position (HDOP)≤4 (or PDOP≤6). Since Selective Availability has been set to zero, the static accuracy has been determined to be within 13 m (95 %) as specified by the GPS SPS	See test results under test no. 19 – 21.	Passed
	4.3.3.2	Performance Standards of October 2001. Dynamic Accuracy (M.112/A3.5) The GPS receiver equipment shall have dynamic accuracy such that the position of the antenna is determined to within an accuracy of 100 m (95 %) with HDOP ≤ 4 (or PDOP ≤ 6) under the conditions of sea state and ship's motion likely to be experienced in ships (see IMO Resolution A.694, IEC 60721-3-6 and IEC 60945). Since Selective Availability has been set to zero, the dynamic accuracy has been determined to be within 13 m (95 %) as specified by the GPS SPS	See test results under test no. 22 and 23.	Passed
6	4.3.4	Acquisition (M.112/A3.6) The GPS receiver equipment shall be capable of selecting automatically the appropriate satellite transmitted signals for determination of the ship's position with the required accuracy and update rate. (M.112/A3.8) The GPS receiver equipment shall be capable of acquiring position to the required accuracy, within 30 min, when there is no valid almanac data. (M.112/A3.9) The GPS receiver equipment shall be capable of acquiring position to the required accuracy, within 5 min, when there is valid almanac data. (M.112/A3.10) The GPS receiver equipment shall be capable of re-acquiring position to the required accuracy, within 5 min, when the GPS signals are interrupted for a period of at least 24 h, but there is no loss of power. (M.112/A3.11) The GPS receiver equipment shall be capable of re-acquiring position to the required accuracy, within 2 min, when subjected to a power interruption of 60 s. Acquisition is defined as the processing of GPS satellite signals to obtain a position fix within the required accuracies. Four conditions of the GPS receiver equipment are set out under which the minimum performance standards shall be met.	See test results under test no. 24 - 27	

		Condition A Initialization - the equipment has been transported over large distances (>1 000 km to <10 000 km) without power or GPS signals or by the deletion of the current almanac; or not been powered for >7 days		Passed
		Condition B Power outag: under normal operation the equipment losses power for at least 24 h.		Passed
		Condition C Interruption of GPS signal reception - under normal operation the GPS signal reception is interrupted for at least 24 h, but there is no loss of power.		Passed
		Condition D Brief interruption of GPS signals for 60 s. No user action other than applying power and providing a clear view from the antenna for the GPS signals, shall be necessary, from any of the initial conditions above, in order to achieve the required acquisition time limits in Table 1: A: 30 minutes B: 5 minutes C: 5 minutes D: 2 minutes		Passed
7	4.3.5	Protection		
	4.3.5.1	Antenna and input/output connections (M.112/A4) Precautions shall be taken to ensure that no permanent damage can result from an accidental short circuit or grounding of the antenna or any of its input or output connections or any of the GPS receiver equipment inputs or outputs for a duration of 5 min.	See test results under test no. 28.	Passed
8	4.3.6	Antenna design (M.112/A2.2) The antenna design shall be suitable for fitting at a position on the ship which ensures a clear view of the satellite constellation.	See test results under test no. 29.	Passed
9	4.3.7	Dynamic range (M.112/A3.7) The GPS receiver equipment shall be capable of acquiring satellite signals with input signals having carrier levels in the range of – 130 dBm to –120 dBm as measured at the output of a 3 dBi linear polarized receiving antenna. Once the satellite signals have been acquired the equipment shall continue to operate satisfactorily with satellite signals having carrier levels down to – 133 dBm as measured at the output of a 3 dBi linear polarized receiving antenna.	See test results under test no. 30 and 31.	Passed

10	4.3.8	Effects of specific interfering signals The GPS receiver equipment shall meet the following requirements: a) In a normal operating mode, i.e. switched on and with antenna attached, it is subject to radiation of 3 W/m² at a frequency of 1 636.5 MHz for 10 min. When the unwanted signal is removed and the GPS receiver antenna is exposed to the normal GPS satellite signals, the GPS receiver equipment shall calculate valid position fixes within 5 min without further operator intervention. b) In a normal operating mode, i.e. switched on and with antenna attached, it is subject to radiation consisting of a burst of 10 pulses, each 1.0 μs to 1.5 μs long on a duty cycle of 1600:1 at a frequency lying between 2.9 GHz and 3.1 GHz at power density of about 7.5 kW/m². The condition shall be maintained for 10 min with the bursts of pulses repeated every 3 s. When the unwanted signal is removed and the GPS receiver antenna is exposed to the normal GPS satellite signals, the receiver shall calculate valid position fixes within 5 min without further operator intervention. Advice shall be given in the manual for adequate installation of the antenna unit, to minimise interference with other radio equipment such as	NOTE (Condition B) This condition is approximately equivalent to exposing the antenna to radiation from a 60kW 'S' band marine radar operating at a nominal 1,2µs pulse width at 600 pulses/s using a 4m slot antenna rotating at 20r/min with the GPS antenna placed in the	Passed Passed
		interference with other radio equipment such as marine radars, Inmarsat SES's, etc.	plane of the bore site of the radar antenna at a distance of 10m from the centre of rotation.	
11	4.3.9	Position update (M.112/A3.12) The GPS receiver equipment shall generate and output to a display and digital interface a new position solution at least once every 1 s. (M.112/A3.13) The minimum resolution of position i.e. latitude and longitude shall be 0.001 min.	NOTE For craft meeting the HSC code, a new position solution at least every 0.5 s is recommended. See test results under test no. 34 and 35.	Passed

12	4.3.10	Differential GPS input		N/A
		(M.112/A3.15) The GPS receiver equipment shall		
		have the facilities to process differential GPS		
		(DGPS) data fed to it in accordance with the		
		standards of Recommendation ITU-R M.823 and		
		an appropriate RTCM standard.		
		When a GPS receiver is equipped with a		
		differential receiver, performance standards for		
		static and dynamic accuracy (M.112/A3.4 and		
		A3.5) shall be 10 m (95 %) together with integrity		
		monitoring.		
		An integrated DGPS receiver shall have an ITU-R		
		M823 compliant data output port for testing or		
		alternatively, a possibility to display Word Error		
		Rate (WER) on the integrated equipment. The WER is the number of incorrect ITU-R M.823		
		words in relation to total number of words received.		
13	4.3.11	Failure warnings and status indications		N/A
		(M.112/A5.1) The equipment shall provide an		
		indication if the position calculated is likely to be		
		outside of the requirements of these performance		
		standards;		
	4.3.11.1	General	NOTE	N/A
		(M112/A52) The GPS receiver equipment shall provide	EUT is an AIS class B	
		as a minimum:		
			NOTE a2)	
		a) (M.112/A5.2.1) an indication within 5 s if either:	For craft meeting the HSC code, an new	
		1) the specified HDOP has been exceeded; or 2) a new position has not been calculated for more than	position solution at	
		1 s;	least every 0.5 s is	
		3) under such conditions the last known position and the	recommended.	
		time of the last valid fix, with explicit indication of this		
		state, so that no ambiguity can exist, shall be output until		
		normal operation is resumed;		
		b) (M.112/A5.2.2) a warning of loss of position; and		
		c) (M.112/A5.2.3) differential GPS status indication of:		
		1) the receipt of DGPS signals; and 2) whether DGPS corrections are being applied to the		
		indicated ship's position.		
		d) (M112/A5.2.5) DGPS text message display. The GPS		
		receiver either shall have as a minimum the capability of		
		displaying appropriate DGPS text messages or		
		forwarding those messages to for display on a		
		remote system.		

4.3.11.2	Integrity using RAIM	Passed
7.5.11.2	The GPS receiver equipment shall incorporate	1 asseu
	integrity monitoring using fault detection, for	
	example receiver autonomous integrity monitoring	
	(RAIM), or similar means to determine if accuracy	
	is within the performance standards and provide	
	an integrity indication.	
	An integrity indication shall be used to present the	
	result of the integrity calculation with respect to	
	the selected accuracy level appropriate for vessels	
	operational mode. According to IMO Resolution	
	A.815 these accuracy levels shall be user selectable	
	for 10 m and 100 m. Additional accuracy levels for	
	user selection may be provided.	
	The integrity indication for different position	
	accuracy levels shall be expressed in three states:	
	"safe"	
	"caution", and	
	"unsafe"	
	for the currently selected accuracy level with a 95	
	% confidence level.	
	The integrity status shall be continuously displayed	
	along with an indication of the accuracy level	
	selected. The integrity status and the accuracy level	
	selected, shall be provided to other equipment in	
	accordance with the equipment output	
	requirements in 4.3.2.	
	The manufacturer may use colours for integrity	
	indication and if so the following colours shall be	
	used:	
	"safe" shall be green,	
	"caution shall be yellow, and	
	"unsafe" shall be red.	
	The maximum delay for reaction of the integrity	
	calculation by means of RAIM due to negative	
	changes affecting the integrity status is 10 s.	
	The integrity status shall be provided to other	
	equipment in accordance with the equipment	
	output requirements in 4.3.2. For receiver	
	equipment which do not provide information by a	
	dedicated display, the provision of the integrity	
	indication status and the selected accuracy level	
	with the appropriate output interface is	
	mandatory.	
4.3.11.3	GPS integrity status using DGPS	N/A
	(M.112/A5.2) The GPS receiver equipment shall	
	provide as a minimum GPS integrity status using	
	DGPS.	
	If the range-rate correction or the pseudo range	
	correction of a satellite is out of tolerance, the	
LL	correction of a satemite is out of tolerance, the	I

		binary code in the ITU-R M.823-2 types 1, 9, 31	
		and 34 messages will cause the GPS receiver not to	
		use that satellite.	
	4.3.11.4	DGPS integrity status and alarm	N/A
	4.3.11.4		IN/A
		(M.112/A5.2.4) The GPS receiver equipment shall	
		provide as a minimum DGPS integrity status and	
		alarm.	
		The following functions shall be performed in	
		either an integrated DGPS receiver or an	
		associated GPS receiver connected to a DGPS	
		radio beacon receiver.	
		When in differential mode, the GPS receiver shall	
		present a DGPS integrity indication on a display,	
		or forward those messages for display on a remote	
		system:	
		if no DGPS message is received within 10 s;	
		while in manual station selection mode and the	
		selected station is unhealthy, unmonitored, or	
		signal quality is below threshold; while in automatic station selection mode and the	
		only available station is unhealthy, unmonitored,	
1.4	4 2 12	or signal quality is below threshold.	NT/A
14	4.3.12	Output of COG, SOG and UTC	N/A
		(M.112/A3.14) The GPS receiver equipment shall	
		generate and output to the digital interface	
		(conforming to the IEC 61162 series) course over	
		ground (COG), speed over ground (SOG) and	
		universal time coordinated (UTC). Such outputs	
		shall have a validity mark aligned with that on the	
		position output. The accuracy requirement for COG and SOG shall no be inferior to the relevant	
		performance standards for heading (Resolution	
		_	
		A.424(XI)) and SDME (Resolution A.824/19)), within the limitations of GPS measurements	
		provided by one antenna, compared to the requirements of those standards. Generation and	
		output of COG and SOG are not intended to satisfy	
		the carriage requirements of SOLAS, Chapter V	
		for Heading Devices and SDME by GPS receivers.	
		GPS receivers of this standard have limitations in	
		COG accuracy under high dynamic movement.	
		Such limitations shall be described in the	
		manufacturer's operating manual as shown in	
		Table 2.	
	4.3.12.1	Accuracy of COG information	Passed
	7.3.12.1	The error in the COG (the path of the antenna	1 asseu
		position over ground) due to the actual ship's speed	
		over ground shall not exceed the following values:	
		over ground shan not exceed the following values:	
		Table 2:	
		Speed range (knots) Accuracy of COG output to	
		user	
		usci	

		0 to ≤1 knot Unreliable or not available		
		>1 to ≤17 knots ±3°		
		>17 knots $\pm 1^{\circ}$		
		Due to the limitations of GPS receivers of this		
		standard, it is not appropriate to include		
		requirements for COG errors attributed to high		
		dynamic movement. Such limitations shall be in the		
		manufacturer's operation manual.		
	4.3.12.2	Accuracy of SOG information		Passed
		Errors in the SOG (velocity of the antenna position		
		over ground) shall not exceed 2 % of the actual		
		speed or 0.2 knots, whichever is greater.		
	4.3.12.3	Availability and validity of time information		N/A
		The GPS receiver equipment shall provide UTC		
		with resolution of 0.01 s on the digital interface.		
		The validity mark of the digital interface for		
		position contained in GGA message of IEC 61162		
		shall be used for interpretation of validity of digital		
		interface for UTC contained in ZDA message of		
		IEC 61162.		
15	4.3.13	Typical interference conditions	See test results under	Passed
		(M.112/A3.16) The GPS receiver equipment shall	Test no. 43 and 44.	
		be capable of operating satisfactorily in typical		
		interference conditions.		
		For clarification of this requirement see 5.7.1 and		
		for the associated tests see 5.7.2.		
	5.6	Methods of test and required test results	NOTE	
		•	The number in brackets	
			is the sub-clause of the	
			relevant performance	
1.0	5.6.1	CDC	standard.	D
16	5.6.1	GPS receiver equipment		Passed
	(4.2.1)	The equipment under test (EUT) shall be checked		
		for composition by inspection of the equipment and		
15	5.60	the manufacturer's documentation.		D 1
17	5.6.2	Position output		Passed
	(4.3.1)	The EUT shall be checked for the form of the		
		position output by inspection of the manufacturer's		
10	7.60	documentation.		NI/ID
18	5.6.3	Equipment output		N/T
	(4.3.2)	The EUT shall be checked for conformity to IEC		
		61162-1 by inspection of the manufacturer's		
		documentation and protocol tests.		

	5.6.4	Accuracy		
	(4.3.3)			
	5.6.4.1	Static accuracy		
	(4.3.3.1)			
19	5.6.4.1.1	GPS	NOTE	Passed
		Position fix measurements shall be taken over a	The measurements	
		period of not <24 h. The absolute horizontal	were evaluated with	
		accuracy shall be within 13 m (95 %), having	regard to the precisely	
		discarded measurements taken in conditions of	measured reference	
		$HDOP \ge 4$ and $PDOP \ge 6$.	position on the roof of	
			BSH.	
			Accuracy requirements	
			are met - see Annex B	
			for printouts of the	
			measurements for static	
			accuracy in GPS mode.	
20	5.6.4.1.2	Differential GPS		N/A
		Position fix measurements shall be taken once per		
		second over a period of not <24 h. The distribution		
		of the horizontal error shall be within 10 m (95 %).		
		The horizontal position of the antenna shall be		
		known to within 0.1 m in the datum used for the		
		generation of the corrections. The corrections shall		
		be provided by an actual DGPS broadcast in		
		accordance with ITU-R M.823.		
21	5.6.4.2	Angular movement of the antenna	NOTE	Passed
		The static tests specified in 5.6.4.1.1 and 5.6.4.1.2	The EUT antenna was	1 43504
		shall be repeated with the antenna performing an	mounted on a special	
		angular displacement of $\pm 22.5^{\circ}$ (simulating roll) in	motor driven support	
		a period of about 8 s (see IEC 60721-3-6) during	simulating the required	
		the duration of the tests.	roll motion at the roof	
		the duration of the tests.	of BSH.	
			TEN.	
			The measurements were evaluated with	
			regard to the precisely	
			measured reference	
			position at the roof of	
			the BSH.	
			inc Doil.	
			Accuracy requirements	
			are met - see Annex B	
			for printouts of the	
			measurements for static	
1			accuracy in GPS mode	

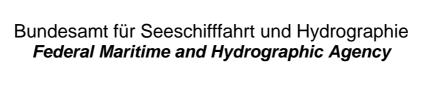
	5.6.4.3	Dynamic accuracy	
	(4.3.3.2)		
22	5.6.4.3.1	GPS The tests for dynamic accuracy are a practical interpretation of the conditions set out in IEC 60721-3-6, Table V, item e), X-direction (surge) and Y-direction (sway). These are stated as surge 5 m/s² and sway 6 m/s² for all classes of environment. When using a simulator, the simulator characteristics shall accurately represent the signals required. The results of the test performed by simulation facilities shall be identical with those in a) and b) below.	Passed
		Alternatively to the use of a simulator, an example of applying these accelerations is given below: a) a fully locked and settled EUT travelling in a straight line at 48 knots ± 2 knots for a minimum of 1.2 min which is reduced to 0 knots in the same straight line in 5 s, shall not indicate a positional offset >±13 m from the final position 10 s after coming to rest; a fully locked and settled EUT travelling at least 100 m at 24 knots ± 1 knot in a straight line then subjected, for at least 2 min, to smooth deviations either side of the straight line of approximately 2 m at a period of 11 s to 12 s shall remain in lock and follow the actual position to within an lane of 30 m wide centred on the mean direction of motion. For all methods above, the rest position shall be established by one of the following methods: providing a stationary receiver identical to the EUT alongside the rest point and comparing indicated output positions; or providing the reference inputs from the simulator.	

23 5.6.4.3.2 Differential GPS	N/A
	IN/A
The tests for dynamic accuracy are a practical interpretation of the conditions set out in IEC	
60721-3-6, Table V, item e), X-direction (surge)	
and Y-direction (sway). These are stated as surge 5	
m/s² and sway 6 m/s² for all classes of environment.	
When using a simulator, the simulator	
characteristics shall accurately represent the	
signals required.	
The results of the test performed by simulation	
facilities shall be identical with those in a) and b)	
below.	
Alternatively to the use of a simulator, an example	
of applying these accelerations is given below:	
a fully locked and settled EUT travelling in a	
straight line at 48 knots \pm 2 knots for a minimum of	
1.2 min which is reduced to 0 knots in the same	
straight line in 5 s, shall not indicate a positional	
offset >±10 m from the true position at rest and the	
indicated position shall settle to within ± 2 m of the	
rest position indication within 10 s of coming to	
rest;	
a fully locked and settled EUT travelling at least	
100 m at 24 knots \pm 1 knot in a straight line then	
subjected, for at least 2 min, to smooth deviations	
either side of the straight line of approximately 2 m	
at a period of 11 s to 12 s shall remain in lock and	
follow the actual position to within an lane of 30 m	
wide centred on the mean direction of motion.	
For the methods above, the true and rest positions	
shall be established by one of the following	
methods:	
a) for method a) above, the rest position	
indication shall be determined by averaging the 15	
consecutive position indications recorded following	
the 10 s settling period and the true position at rest	
shall be measured to an accuracy of 1 m;	
b) providing the reference inputs from a	
simulator within 1 m.	
5.6.5 Acquisition	
(4.3.4)	
24 5.6.5.1 Condition A - Initialisation	Passed
The EUT shall be either:	E: All Simulator
a) initialised to a false position at least tests for	Force almanach
1 000 km and not greater than 10 000 km from the	
test position, or alternatively, by deletion of the	
current almanac; or	
b) isolated from a power source and GPS	
signals for >7 days.	
A performance check shall be carried out after the	
time limit contained in Table 1.	

25	5.6.5.2	Condition B - Power outage	Passed
45	5.0.5.2	The EUT shall be isolated from the power source	rasseu
		for a period within 24 h to 25 h.	
		At the end of the period, a performance check shall	
		be carried out after the time limit contained in	
		Table 1.	
26	5.6.5.3	Condition C - Interruption of GPS signals	Passed
20	3.0.3.3	During normal operation of the EUT, the antenna	1 asscu
		shall be completely masked for a period within 24 h	
		to 25 h.	
		At the end of the period, a performance check shall	
		be carried out after the time limit contained in	
		Table 1.	
27	5.6.5.4	Condition D – Brief interruption of power	Passed
		During normal operation of the EUT, the power	
		shall be removed for a period of 60 s. At the end of	
		this period, the power shall be restored.	
		A performance check shall be carried out after the	
		time limit contained in Table 1.	
	5.6.6	Protection	
	(4.3.5)		
28	5.6.6.1	Antenna and input/output connections	Passed
	(4.3.5.1)	The antenna input of the receiver, if provided, shall	
		be connected to ground for 5 min. After completion	
		of the test and reset of the EUT, if required, the	
		antenna or input/output connections shall be	
		connected normally, and a performance check shall	
		be carried out to ensure that no permanent damage	
		has resulted.	
29	5.6.7	Antenna design	Passed
	(4.3.6)	The antenna of the EUT shall be checked by	
		inspection of the documentation provided by the	
		manufacturer, to confirm that it is suitable for	
		shipborne installation to ensure a clear view of the	
	7.60	satellite constellation.	
	5.6.8	Sensitivity and dynamic range	
30	(4.3.7) 5.6.8.1	Acquisition	Passed
30	5.0.6.1	This is tested by using a simulator.	Passeu
		Method:	
		Transmit the simulator signal over a suitable	
		antenna.	
		Adjust the signal power by use of a calibrated test	
		receiver to -125 dBm ± 5 dBm.	
		Replace the antenna of the calibrated test receiver	
		by the receiving unit of the EUT.	
		A performance check shall be carried out.	
		Required result:	
		The EUT shall meet the requirements of this check,	
		with this signal range.	

31	5.6.8.2	Tracking		Passed
-		The received satellite signals shall be monitored by		
		a suitable test receiver. These signals shall be		
		attenuated down to -133 dBm. Under these		
		conditions the performance requirements of a		
		performance check shall be met.		
		This is tested by using a simulator.		
		Method:		
		Transmit the simulator signal over a suitable		
		antenna.		
		Adjust the signal power by use of a calibrated test		
		receiver to $-125 \text{ dBm} \pm 5 \text{ dBm}$.		
		Replace the antenna of the calibrated test receiver		
		by the receiving unit of the EUT.		
		After the start of transmission and tracking with		
		the nominal transmission level condition, gradually		
		reduce transmission level down to –133 dBm.		
		Required result:		
		The EUT shall continue tracking at least one		
		satellite.		
	5.6.9	Effects of specific interfering signals		
	(4.3.8)			
32	5.6.9.1	L Band Interference		Passed
	(4.3.8 a)	In a normal operating mode, using an appropriate	For test results see	
		signal source, the EUT shall be subjected to	Annex B of this report	
		radiation of 3 W/m ² at a frequency of 1 636.5 MHz		
		for 10 min.		
		The signal shall be removed and a successful		
		performance check shall be carried out within		
		5 min.		
33	5.6.9.2	S Band Interference		Passed
	(4.3.8 b)	In a normal operating mode, using an appropriate		
		signal source, the EUT shall be subjected to		
		radiation consisting of a burst of 10 pulses, each		
		1.0 µs to 1.5 µs long on a duty cycle of 1600:1 at a		
		frequency in the range of 2.9 GHz to 3.1 GHz at		
		power density of approximately 7.5 kW/m ² . This		
		condition shall be maintained for 10 min with the		
		bursts of pulses repeated every 3 s.		
		NOTE The needs never described in 7.5 LW/c-2.4 - 1 -		
		NOTE The peak power density is 7.5 kW/m ² to be		
		measured at the EUT, this is approximately 4.7 W/m² average power at a fixed transmitting		
		antenna.		
		The signal shall be removed and a successful performance check shall be carried out within		
		5 min.		
		Э шш.		

	5.6.10	Position update		
	(4.3.9)		NOTE	
34	5.6.10.1	Slow speed update rate	NOTE The EUT was tested in	Passed
		The EUT shall be placed upon a platform, moving	a simulator (see Annex	
		in approximately a straight line, at a speed of	B)	
		5 knots \pm 1 knot. The position output of the EUT		
		shall be checked at intervals of 10 s, over a period		
		of 10 min. The output position shall be observed to		
		be updated on each occasion.		
	5 6 4 0 0	This test may be carried out by using a simulator.	NOTE	
35	5.6.10.2	High speed update rate	NOTE The EUT was tested in	Passed
		The EUT shall be placed upon a platform, moving	a simulator (see Annex	
		in approximately a straight line, at a speed of	B).	
		50 knots ± 5 knots. The position output of the EUT	2).	
		shall be checked at intervals of 1 s, over a period of		
		10 min. The output position shall be observed to be		
		updated on each occasion.		
		This test may be carried out by using a simulator		
		with a speed of 70 knots at intervals of 0.5 s.		
		The minimum resolution of position, i.e. latitude		
		and longitude shall be checked by observation		
		during 5.6.10.1 and 5.6.10.2 above.		
		Record the IEC 61162 output of the EUT during		
		this test and confirm that received positions at the		
		end of each interval are in compliance with the real		
		or simulated reference position.		
36	5.6.11	Differential GPS input		N/A
	(4.3.10)	The manufacturer's documentation shall be		
		inspected to:		
		a) verify that the EUT will correctly process		
		the message protocol of		
		1) the RTCM recommended standards for		
		differential NAVSTAR GPS service; or		
		2) in the case where maritime radio beacons		
		are used as the means of communication of the		
		differential corrections, the standard contained in		
		ITU-R M.823, and		
		b) confirm that		
		1) receipt of DGPS signals will be indicated;		
		2) that the application of DGPS signals to the		
		output ship's position is indicated; and		
		3) the WER information is provided on an		
		output port or at the display.		



	5.6.12	Failure warnings and status indications		
	(4.3.11)	Ü		
	5.6.12.1	General alarm tests		
37	5.6.12.1.1	Position/HDOP alarm test	NOTE	N/A
	(4.3.11.1a	Set up the EUT in a simulation environment with	EUT is an AIS, no	
	4.3.11.1b)	an HDOP <4. Select a specific EUT HDOP value as	indication of GPS	
		an indication threshold >4. Modify the simulator	status available	
		output until its HDOP is greater than the EUT		
		specified HDOP threshold. Observe that an		
		indication is given at the EUT within 5 s.		
		Modify the simulator output until HDOP <4 and		
		observe that the indication is removed.		
		Switch off transmission of simulated signals and		
		observe that the EUT releases an appropriate		
		indication within 5 s.		
		Verify that the last known position and ist time		
		stamp are being displayed indicating the "loss of		
		position" condition. Verify that this mode is		
		provided constantly on display and output		
		interface until removal of the error condition at the		
		simulation environment.		
		Switch on transmission of simulated signals and		
		observe that the EUT resumes normal operation.	Nome	27/1
38	5.6.12.1.2	Differential GPS status indication test	NOTE EUT is an AIS class B,	N/A
	(4.3.11.1c)	Set up the EUT in a simulation environment	no differential mode	
		providing with an HDOP <4. Observe that the	available	
		status of the EUT operation is GPD without using		
		DGPS corrections. Set the EUT differential correction age mask to		
		30 s (if available).		
		Start transmission of ITU-R M.823 differential		
		corrections. Observe that the indication for DGPS		
		status of EUT operation is given within 40 s.		
		Stop transmission of ITU-R M.823 differential		
		corrections. Observe that the status of EUT		
		operation resumes to GPS without using DGPS		
		corrections within 40 s		
	5.6.12.2	Test of integrity monitoring using RAIM	NOTE	Passed
	(4.3.11.2)	For the purpose of testing the RAIM functionality,	EUT is an AIS class B,	
		it is recommended that means are provided for	no RAIM mode	
		real-time display of the actual position error with	available, RAIM functionality tested by	
		reference to the simulated position.	position output	
			evaluation	
39	5.6.12.2.1	Testing of "safe" and "caution" status		N/A
		The EUT shall be set up under simulated		
		conditions, providing 8 "healthy" satellites		
		available, acquired and tracked.		
		a) Select an accuracy level of 100 m.		
		b) Observe that		
		1) RAIM is indicated as "in operation", and		

2) th	e "safe" status is indicated.		
c) Cons	ecutively reduce the number of "healthy"		
	ellites until the "caution" state is raised.		
Obse	rve that		
	AIM is still indicated as "in operation", and		
	e status indication switched to "caution"		
· · · · · · · · · · · · · · · · · · ·	in 10 s of the satellite change that caused it.		
	rease the number of "healthy" satellites		
unt			
	RAIM state returns to "safe" state.		
Observe			
	RAIM is still indicated as "in operation",		
and			
	he status indication switches to "safe"		
within			
	min of the satellite change that prompted		
it.			
	h step of the above test sequence observe if		
the app	ropriate interface output is provided.		
Repeat	the above test sequence for a selected		
accurac	y level of 10 m and, if provided, for another		
accurac	y level.		
40 5.6.12.2.2 Testing	of "unsafe" status		N/A
	T shall be set up under simulated		
	ons, providing 8 "healthy" satellites		
	e, acquired and tracked.		
	n accuracy level of 100 m.		
Observe			
	s indicated as "in operation", and		
	fe" status is indicated.		
	the behaviour of at least 1 satellite by		
	the satellite clocks with the result that the		
	accuracy gradually degrades until it will		
	er be inside the selected accuracy level with		
	onfidence level.		
	e that RAIM is still indicated as "in		
	on", and the status indication switches to		
	" within 10 s if the actual position error		
	ng the selected accuracy level.		
	the behaviour of the satellites back to		
	behaviour with the result that the position		
	y will be again inside of the selected		
	y level within 95 % confidence level.		
Observe			
	s still indicates as "in operation", and		
	tus indication switches to "safe" within		
2 min.			
For eac		I I	
	h step of the above test sequence observe if		
tare app	h step of the above test sequence observe if ropriate interface output is provided.		
Repeat	ropriate interface output is provided.		

41	5.6.13	Accuracy of COG and SOG	Passed
	(4.3.12)	Methods of test	
	,	The EUT shall be set up on an appropriate mobile	
		unit or simulator and all outputs indicating course	
		over ground shall be monitored.	
		At a constant forward direction, the forward speed	
		shall be within 0 knots to 1 knot. Ten seconds after	
		being in the range, measurements shall be made for	
		a duration of 2 min. This cycle shall be repeated for	
		all speed ranges of the Table 2 above.	
		Required results	
		The test results shall be observed on the display	
		and the approved interface.	
		For SOG tests, no reading of the speed indicator	
		shall differ from the constant speed being applied	
		at the time by more than 2 % of that speed or	
		0.2 knots, whichever is the greater.	
		For COG tests, the differences between the	
		reference direction and the measured course over	
		ground in each test cycle shall not exceed the limits	
		of Table 2.	
		Validity of COG and SOG information	
		The quality indicator of the GGA and VTG	
		message of IEC 61162 shall be used for	
		interpretation of validity of COG and SOG.	
		Methods of testing	
		Check of digital interface with IEC 61162. With the	
		EUT normally operating, preclude invalid position	
		data by reducing the number of received satellites.	
		Investigate the content of the resultant GGA and	
		VTG.	
		Required result	
		Observe that the quality indicator of GGA and	
		VTG messages of IEC 61162 turn to invalid.	
		Observe that the COG and SOG information	
		contained in VTG message of IEC 61162 is	
		replaced by null fields.	
42	5.6.14	Output of UTC - Method of testing	N/A
	(4.3.12)	Check of digital interface with IEC 61162. While	
		the EUT is navigating, provoke an invalid position	
		by reducing the number of received satellites to	
		two. Investigate the content of the GGA and ZDA	
		messages provided.	
		Required results	
		Observe that the resolution of UTC information	
		contained in the ZDA message is according to IEC	
		61162 requirements. Observe that the validity flag	
		of GGA message of IEC 61162 turns to invalid.	
		Observe that the ZDA message remains	
		transmitted carrying complete UTC information.	

5.7	Typical interference conditions		
5.7.1	Requirements		
5.7.1.1	Typical interference conditions	NOTE	For results
	The GPS receiver equipment shall be capable of	This test was	see test
	operating in typical interference condition.	performed by using a	No. 43
	Operational situations include static accuracy and	simulator (see Annex B).	
	reacquisition within 30 s after satellite signals have	(see Alliex D).	
	been masked for 60 s or less by an obstruction, for		
	example a bridge.		
	Typical GPS interference effects can be		
	characterised as being broadband noise-like		
	interference, Continuous Wave Interference		
	(CWI), or pulsed interference. Much work has		
	been done in the aviation community to define		
	interference levels in these three categories as		
	reported in the Minimum Operational		
	Performance Standards		
	(MOPS) for Global Positioning System/Wide Area		
	Augmentation System (GPS/WAAS) Airborne		
	Equipment (RTCA/DO-229B October 6, 1999). The		
	levels defined in this subclause are based upon the		
	interference masks developed within RTCA. These		
	masks are also described in ITU-R		
	Recommendation M.1477.		
5.7.1.2	Broadband interference levels		For results
	The interference mask for broadband noise-like		see test
	interference varies as a function of the bandwidth		No. 43
	of the interfering signal. This interference effect		
	can be represented by broadband noise centred at		
	1575.42 MHz. The bandwidth dependent		
	interference mask can be seen in Figure 1.		
5.7.1.3	Continuous wave interference (CWI)		For results
	Continuous wave interference interacts with the		see test
	individual C/A code spectral lines found in the GPS		No. 43
	signal structure. GPS receivers are typically more		
	susceptible to CWI than to any other type of		
	interference. The CWI mask can be seen in		
	Figure 2.		

5.7.1.4	Pulsed interference Pulsed interference can occur due to proximity to radars or other RF devices using pulsed waveforms. GPS receivers typically are fairly robust when exposed to low duty cycle pulsed interference. The interference mask for pulsed	For results see test No. 43
	interference. The interference mask for pulsed interference will consist of a pulse modulated carrier (CW) at 1575.42 MHz, with peak carrier level of –20 dBm and duty factor of 10 % while using a 1 ms pulse width.	
5.7.2	Testing	
5.7.2.1	The interference test procedures presented in this sub-clause follow closely the procedures used by aviation receiver manufacturers in the self-certification process used to show compliance with RTCA/DO-229B. The procedures have been adapted as necessary to meet the requirements of the IMO GPS requirements.	For results see test No. 43
5.7.2.2	Simulator conditions The simulator conditions are as follows: five GPS satellites; one satellite at a maximum level of -120 dBm plus antenna gain at 90° elevation; one satellite at a minimum level of -130 dBm plus antenna gain at 5° elevation; three satellites at a level of -127 dBm plus antenna gain at 45° elevation.	For results see test No. 43

		In vil
5.7.2.3	Navigation solution accuracy test	For results
	The normalised error associated with the	see test
	navigation solution, which will be compared with	No. 43
	the 10 m, 95 % horizontal accuracy requirement	
	shall be computed using the formula shown below:	
	$NE=[4(d_i)]/[HDOP_i]$	
	where NE is the normalised error;	
	d _i is the instantaneous 2-D horizontal position	
	error (meters);	
	HDOP _i is the instantaneous horizontal dilution of	
	precision.	
	Scaling the instantaneous 2-dimensional position	
	error (d _i) by 4/HDOP _i provides a means of	
	normalising the tests to a constant HDOP = 4 and	
	accounts for fluctuation in the satellite coverage	
	due to changing geometry. HDOP _i may be obtained	
	from the receiver under test or calculated. Only	
	those satellites used in the position solution shall be	
	included in the HDOP _i calculation.	
5.7.2.4	Navigation solution accuracy test procedures	
5.7.2.4.1	Interference conditions	For results
	Interference conditions, including broadband noise	see test
	centred at 1575.42 MHz, continuous wave	No. 43
	interference (CWI), and pulsed interference shall	
	be simulated. For the pulsed interference tests, a	
	pulse-modulated carrier (CW)with peak carrier	
	level of –20 dBm and duty factor of 10 % shall be	
	used. The interference values are shown in the	
	Three tables below.	
	Broadband interference values	
	Noise bandwidth: 1 MHz	
	Total RMS power: -110.5 dBm	
	Pulsed interference values	
	Frequency: 1575.42 MHz	
	Pulse width: 1 ms	
	Continuous wave interference (CWI) values	
	Frequency: 1575.42 MHz	
	Power: -120.5 dBm	
	Frequency: 1626.0 MHz	
	Power: +8.0 dBm	

	5.7.2.4.2	Test procedures The EUT is subjected to one of the interference sources. The simulator scenario shall be engaged and the satellite signals turned on. The EUT shall be powered and initialised. While the EUT is providing position solutions, the interference shall be applied to the EUT, and the level of the interference shall be adjusted to the required value. When steady-state accuracy is reached, record a minimum of 100 position and HDOP values as reported by the EUT at a rate of one sample every 2 min. Repeat this cycle for any remaining interference source.		For results see test No. 43
43	5.7.2.4.3	Required results Pass/fail determination If the EUT reports a position with a normalised error greater than 10 m or fails to report a position in more than 5 % of the samples, a test failure is declared.	(see Annex B)	Passed
	5.7.2.5	Reacquisition test Method of test The reacquisition test is designed to simulate a temporary loss of signal, such as passing under a bridge. To determine the re-acquisition pass/fail criteria, consider a single trial where the EUT provides a valid position fix that is within required accuracy at 30 s from restoration of the satellite signals, and maintains a tracking status for at least the next 60 s. This unit is considered to have Passed one trial.		For results see test No. 44
	5.7.2.5.1	Re-acquisition test procedures		
	5.7.2.5.2	Interference conditions The interference condition to be tested is shown below. This is a broadband noise value centred at 1575.42 MHz. Noise bandwidth: 1 MHz Total RMS power: -110.5 dBm		For results see test No. 44

	5.7.2.6	Re-acquisition scenarios		
	5.7.2.6.1	Test procedures		For results
		The EUT is subjected to the broadband		see test
		interference source.		No. 44
		The simulator scenario shall be engaged and the		
		satellite signals turned on.		
		The EUT shall be powered and initialised.		
		The EUT shall be allowed to reach steady-state		
		accuracy before the satellites are to be switched off.		
		The simulator RF output shall be removed for		
		30 S.		
		The simulator RF output shall be restored to the EUT.		
		After 30 s record a position and HDOP value as		
		reported by the EUT. If after 30 s, no position		
		report has been sent from the receiver, record a		
		trial failure and go to step i).		
		trial randre and go to step 1/.		
		Ensure that the receiver continues position		
		reporting for the next 60 s.		
		Go to step d) and repeat as required (note that if		
		the simulator scenario is reset, some receiver may		
		require purging of all previous data to enable		
		proper operation. This is due to the persistence of		
		time data in the receiver and the inability of the		
		receiver's software to deal with a backward		
		transition in time).		
44	5.7.2.6.2	Required results		Passed
		Pass/fail criteria	(see Annex B)	
		A failure by the EUT to provide a position output		
		after 30 s, reporting a position with normalised		
		error greater than 10 m, or failing to continue		
		position reporting for 60 s after sampling indicated		
		a failure mode, and results in declaring a trial		
		failure. To determine the reacquisition time		
		pass/fail criteria, the test disposition table shall be		
		used.		
45	5.8	Performance checks under IEC 60945 conditions	NOTE	N/T
		Environmental requirements of IEC 60945	For marine equipment	
		appropriate to its category, i.e. "protected" and	environmental testing	
		"exposed", shall be carried out. The manufacturer	has to be carried out for	
		shall declare any pre-conditioning required before	granted type approval. 60945 testing is not	
		environmental checks.	part of this testreport.	
		Performance checks shall be performed for	See 60945 test for	
		initial (cold) start;	EUT.	
		acquisition;		
		tracking (navigation)		

Annex A - Test equipment

A.1 Test equipment summary

Model / Program	Serial No. / Version No.	Calibrated / Function test	Used for
Reference position roof of BSH building		Lat: 53° 32.8136481666' Lon:9° 58. 1016981666'	L- and S-Band interference
GPS Simulation Unit	SPIRENT Communications Hardware:Typ: GSS8000, S/N: 8629 Software: SimGEN Ver. 2.7	Calibration date 2009/12/14 Function tests performed successfully according documented test procedures before performance of tests	All GPS testing, unless stated otherwise
MiniCircuits RF- Amplifier	ZHL-5W-2G-S+	Function tests performed successfully	L-Band interference
Radar-Device Furuno FR 2135S	FR-2105 Series	N/A	S-Band interference
Signal Generator R&S SMJ100	S/N: 100858	2007/10/15	Interference tests IEC 61108- 1 Ed.2, §5.6.9.1; §5.7
Power sensor R&S Smart Sensor NRP-Z81	S/N: 100140	2007/08/27	Calibration of GPS measurement inside RF-chamber
Narda Broadband Field Meter	B-1059/NBM550	Calibrated	Induced Power of L/S-Band
Horn Antenna Schwarzbeck BBHA 9120A	BBHA 9120A 535	2009/11/26	Calibration of GPS measurement inside RF-chamber

Reference position

Made by FREIE UND HANSESTADT HAMBURG Vermessungsamt –VA311-

Description of point	geocentrically co-ordinates (WGS84)		geodetical geographical co-ordinates (WGS84)		Gauß-Krüger (Bessel)	
	x(m)	3740601.680	N	53° 32' 49''.49049	x(m)	5935502.790
North	y(m)	657439.492	E	9° 58' 6".10408	y(m)	3 564257.804
	z(m)	5107029.673	Height over Ellipsoid	95.900 m	Altitude above sea level	55.969 m
	x(m)	3740618.106	N	53° 32' 48''.81889	x(m)	5935482.027
South	y(m)	657442.338	Е	9° 58' 6".10189	y(m)	3 564258.046
	z(m)	5107017.296	Height over Ellipsoid	95.849 m	Altitude above sea level	55.917

Accuracy of survey = 0.02 m - last survey dated 2009-05-04

Test Report No. BSH/46162/4321440/10-2 Date: 2010/12/03 page 37 of 107

A.2 Documentation of test equipment

A.2.1 Simulation of ±22° roll

Angular movement of antenna - Motor driven device

A.2.2 L-band interference signal amplifier

RF-power amplifier for L-band interference simulation

Horn antenna and Narda Field Meter for L-band interference simulation

A.2.3 Radar device

Specification of RADAR used for S-Band Test

Manufacturer: Furuno Electric Co., LTD.

Model: FR-2105 Series

Specifications:

Antenna radiator:

Type: Slotted waveguide array

Bandwidth:

Radiator Type:

SN7AF

Length:

Beamwidth (H):

Beamwidth (V)

Sidelobes ±10°:

Polarization:

S-Band

SN7AF

12 ft

1.9°

20°

-28 dB

Horizontal

RF Transceiver:

Frequency: X-Band, 3050 MHz ± 30 MHz Output power: FR-2135S/SW: 35 KW

Pulse lengths and PRR (<RF aloft>)

Range scales	P/L (μs)	PRR (Hz)
0.125 / 0.25	0.07	3000
0.5	0.07 / 0.15	3000
0.75 / 1.5	2 from 0.07 / 0.15 / 0.3	3000 / 1500
3	2 from 0.15 / 0.3 / 0.5 / 0.7	3000 / 1500
6	2 from 0.3 / 0.5 / 0.7 / 1.2	1500 / 1500
12 / 24	2 from 0.5 / 0.7 / 1.2	1000 / 600
48 / 96	1.2	600

Test Report No. BSH/46162/4321440/10-2 Date: 2010/12/03 page 40 of 107

A.2.4 GPS Simulation

GPS/ Galileo Simulation at BSH

Arrangement of GPS- and noise/ interference transmitting antennas

GPS test box, exterior view

Date: 2010/12/03

GPS test box, interior view

A.2.5 Calibration protocol of RF- Chamber

Calibration pro	tocol							
Date	21.10.2010							
	Ehlers							
Test eng. Place of Test	BSH Room (142						
	DSH KOOIII C	42						
Equipment								
R&S SMJ100A S	 Bignalgenerato	or						
Helixantenna H1	 116R6							
Schwarzbeck Bl		nantenna						
GPS- transmittir			com Corp.					
Agilent spectral		101 7410	Ooip.					
Spirent GSS800	•							
Pdef.	-130	dBm	ICD GPS200	defines -130d	Bm as minim	num received	power at 3dBi	antenna
Ins. loss RF-box	36,6	dB		IEC61108-1:2	2003 defines -	-125dBm		
Ptrans	-50	dBm	Input power of	of transmitting	antenna			
G trans. Ant.	5	dBi		Gain of GPS- transmitting antenna				
Prec.	-78	dBm	received pow	/er				
Grec.ant.	9	dBi	Gain of calibr	ated Schwarz	beck BBHA 9	120 @ 1575N	ИHz	
Ppol.loss	3,4	dB	Polarization I	oss				
cabel		dB	Cable loss tra	ansmitting ant	enna			
cabel	2	dB		eceiving anten	na			
Ptrans GPS	-66	dBm	GPS Simulat	or RF- power				
Attenuation	30,4	dB	attenuation n	eeded for adju	sted power le	evel		

Calibration	of interferen	ce		
Date	21.10.2010			
Test eng.	Ehlers			
Equipment				
R&S SMJ100	DA Signal gene	erator		
	11444000			
Helical anten	na H1116R6			
CDC transm	itting ontonno	2042460	Antoom Corn	
			P - Antcom Corp.	
	rumanalysato) <u> </u>		
Spirent GSS	8000			
Noise 1MHz	-110 5dRm			
INUISE IIVIMZ	i iv,Jubili			
Pdef.	-110,5	dBm	Needed interference power	
Ins. loss RF-			Needed interference power	
1113. 1033 1(1 -	30,0	ub		
Ptrans	-80.9	dBm	Needed power at interference trans. Antenna	
G trans. Ant.	7		Gain of interference trans. ant.	
O trailo. 7 tric.	, ·	GD.	Can of interior crare. art.	
cable loss	1.5	dB		
Power adj.	-79,4		needed power level at SMJ100A	
· ono. aaj.	10,1			
Pulsed -20d	Bm			
Pdef.	-20	dBm	Needed interference power	
Ins. loss RF-				
	1,			
Ptrans	9,6	dBm	Needed power at interference trans. Antenna	
G trans. Ant.		dBi	Gain of interference trans. ant.	
cable loss	1,5	dB		
Power adj.		dBm	needed power level at SMJ100A	
	·			

CW @ 4575 40.	420 E4D:	-		
CW @ 1575,42;	-120,5061	<u> </u>		
Pdef.	-120,5	dBm	Needed interference power	
Ins. loss RF-I	36,6			
Ptrans	-90,9		Needed power at interference trans. Antenna	
G trans. Ant.	7	dBi	Gain of interference trans. ant.	
cable loss	1.5	dB		
Power adj.		dBm	needed power level at SMJ100A	
. owo. aaj.	00,1	abiii	needed perior level at end leer t	
CW @ 1626,0; +	-8,0dBm	alternativ	√CW@1596,0MHz; -80dBm	
Pdef.		dBm	Needed interference power	
Ins. loss RF-	36,6	dB		
Dinana	FO 4	alD.co	Needed nower at interference trans. Automo-	
Ptrans G trans. Ant.	-50,4 7	dBi	Needed power at interference trans. Antenna Gain of interference trans. ant.	
G trairs. Art.		иы	Gain of interference trans. ant.	
cable loss		dB		
Power adj.	-48,9	dBm	needed power level at SMJ100A	

Annex B - Test diagrams

B.1 § 5.6.4.1 Static accuracy

B.1.1 § 5.6.4.1.1 Static accuracy – GPS

Position fix measurements shall be taken over a period of not <24 h. The absolute horizontal position accuracy shall be within 13 m (95 %), having discarded measurements taken in conditions of HDOP \geq 4 and PDOP \geq 6.

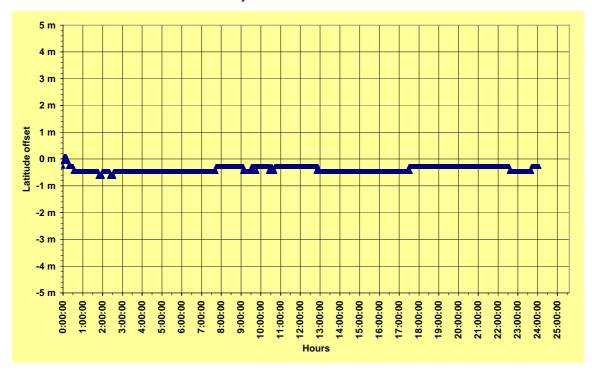
Conditions of tests performed – Real GPS signal

Period of position fix measurements: ~24 h Position fix measurements : >87000

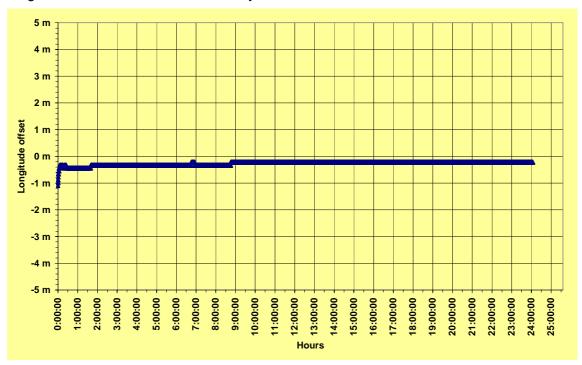
Accuracy: $HDOP \le 4$ (or $PDOP \le 6$)

Test results

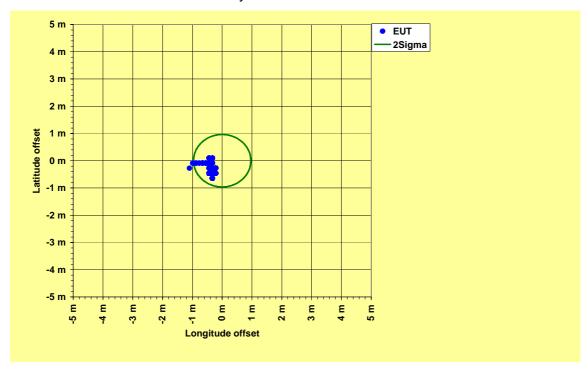
All deviations of measured positions from reference position are $<\pm 13$ m (95 %). 2 sigma value of position data: 0.96m.


Test result: Passed

For details of validation of recorded data see the following pages.


Test Report No. BSH/46162/4321440/10-2 Date: 2010/12/03 page 47 of 107

Latitude offset - GPS static accuracy


Longitude offset – GPS static accuracy

Position offset - GPS static accuracy

B.2 § 5.6.4.2 Angular movement of the antenna

B.2.1 § 5.6.4.2 Angular movement of the antenna – GPS

The static test(s) specified in 5.6.4.1.1 (and 5.6.4.1.2) shall be repeated with the antenna performing an angular displacement of \pm 22.5 ° (simulating roll) in a period of about 8 s during the duration of the test.

Conditions of tests performed – Real GPS signal

Antenna placed on a motor-driven socket simulating the angular displacement required for the test.

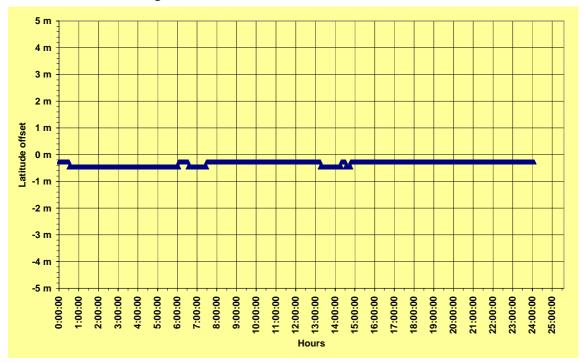
Period of position fix measurements: ~ 24 h Position fix measurements : ~84600

Accuracy: $HDOP \le 4$ (or $PDOP \le 6$)

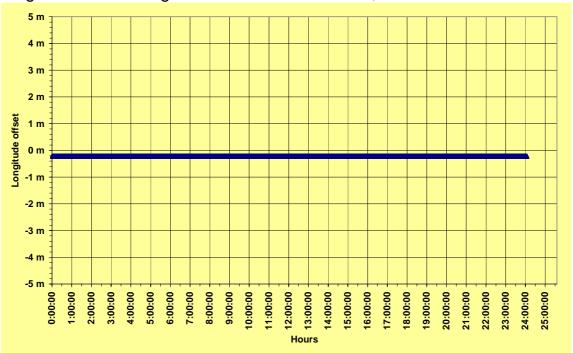
Test results for § 5.6.4.2.1

All deviations of measured positions from reference position are <±13 m (95 %).

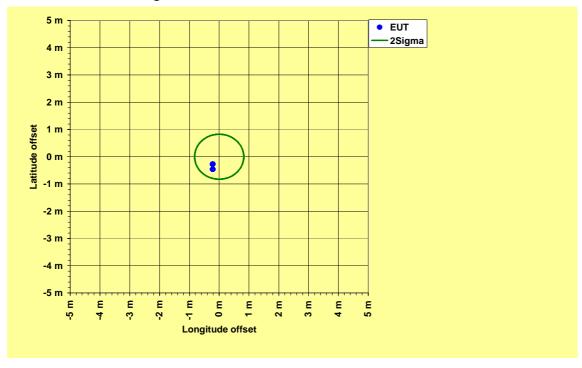
2 sigma value of position data: 0.83m.


Test result: Passed

For details of validation of recorded data see the following pages.


Test Report No. BSH/46162/4321440/10-2 Date: 2010/12/03 page 50 of 107

Latitude offset - Angular movement of antenna, GPS


Longitude offset - Angular movement of antenna, GPS

Position offset - Angular movement of antenna, GPS

B.3 § 5.6.4.3 Dynamic accuracy

B.3.1 § 5.6.4.3.1 GPS part a)

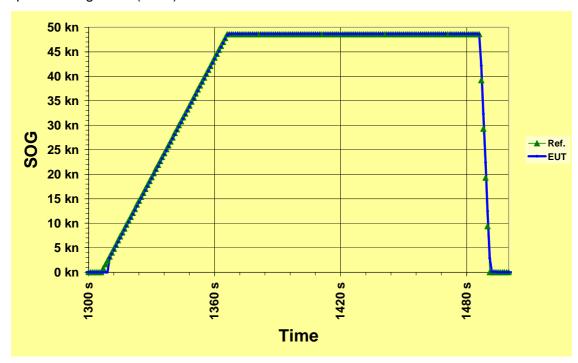
A fully locked and settled EUT travelling in a straight line at $48 \text{ kn} \pm 2 \text{ kn}$ for a minimum of 1.2 min which is reduced to 0 kn in the same straight line in 5 s, shall not indicate a position offset \pm 13 m from the final position 10 s after coming to rest.

Conditions of tests performed

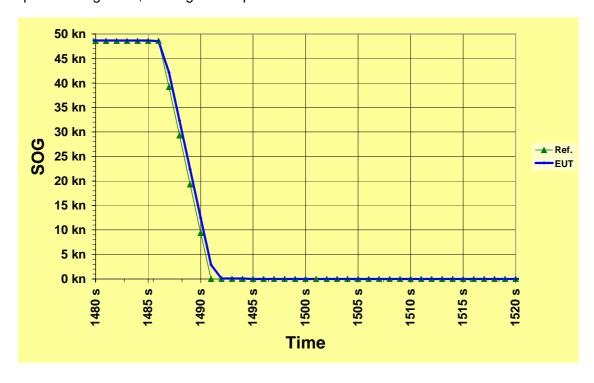
Tests performed using a simulator

Test results

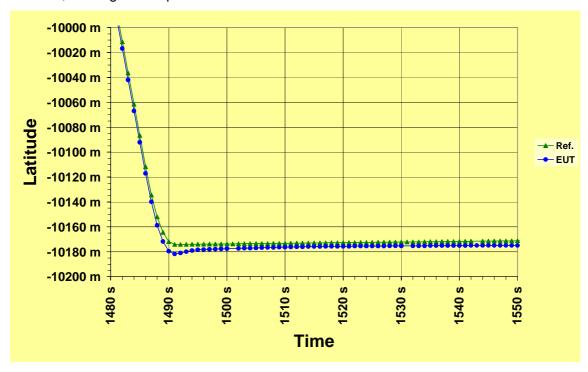
All positions offsets are <± 13 m.


Test result: Passed

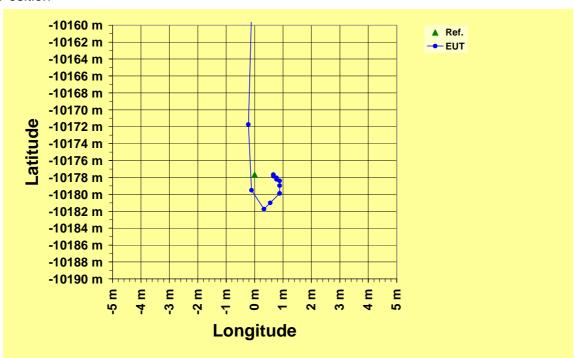
For details of validation of recorded data see the following pages.


Test Report No. BSH/46162/4321440/10-2 Date: 2010/12/03 page 53 of 107

Speed over ground (SOG)


Speed over ground, coming to rest position

Latitude, coming to rest position



Longitude

Position

B.3.2 § 5.6.4.3.1 GPS part b)

A fully locked and settled EUT travelling at least 100 m at 24 kn \pm 1 kn in a straight line then subjected, for at least 2 min, to smooth deviations either side of the straight line of approximately 2 m at a period of 11 s to 12 s shall remain in lock and follow the actual position to within a lane of 30 m wide centred on the mean direction of motion.

Conditions of tests performed

Tests performed using a simulator

Test results

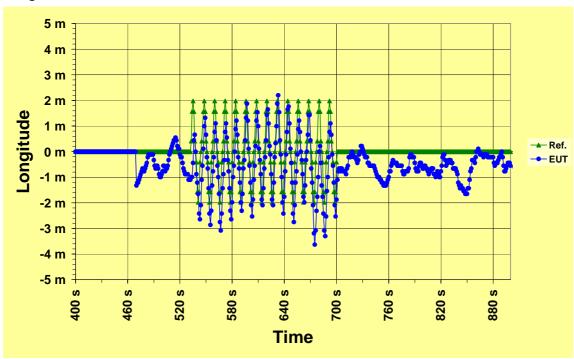
All positions offsets are within a lane of 30 m.

Test result: Passed

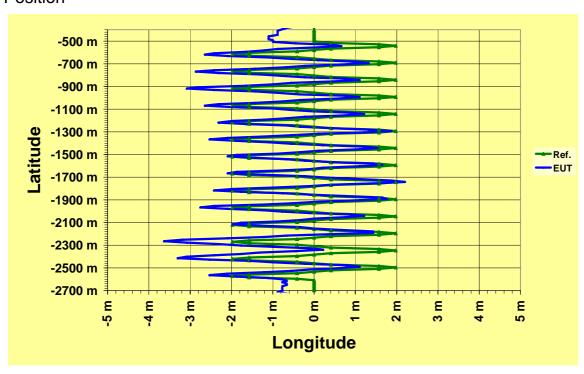
For details of validation of recorded data see the following pages.

Test Report No. BSH/46162/4321440/10-2 Date: 2010/12/03 page 57 of 107

Speed over ground (SOG) vs. time



Latitude vs. time



Longitude vs. time

Position

B.4 § 5.6.5 Aquisition

B.4.1 § 5.6.5.1 Condition A - Initialization

EUT shall be powered on without valid almanach data in memory. A performence check shall be carried out after 30 minutes of operation.

Conditions of test performed

EUT was powered for use with the simulator → No valid almanach data for simulated satellite constellation available.

EUT locked on to GPS simulation within less than 30 minutes and provided a valid positon fix. A performance check was carried out. See Annex B.4.2

Test result: Passed

Test Report No. BSH/46162/4321440/10-2 Date: 2010/12/03

B.4.2 § 5.6.5.2 Condition B – Power Outage

EUT shall be isolated from power source for 24 to 25 hours. A performence check shall be carried out after 5 minutes of operation.

Conditions of test performed

EUT was isolated from power for approx. 24.5 hours.

EUT locked on to GPS simulation within less than two minutes and provided a valid positon fix. A performance check was carried out after 5 minutes of operation.

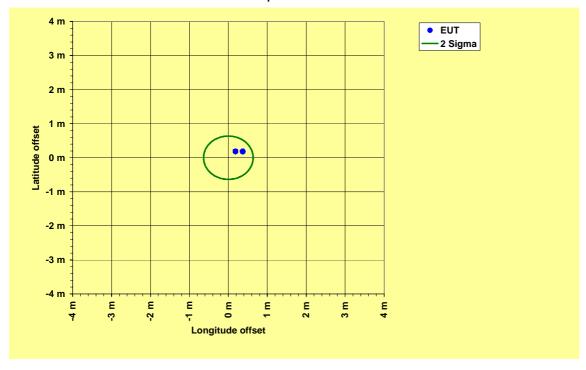
2 Sigma value of performence check: 0.64m


Test result: Passed

For details of validation of recorded data see the following pages.

Test Report No. BSH/46162/4321440/10-2 Date: 2010/12/03 page 61 of 107

Latitude offset after 5 minutes operation


Longitude offset after 5 minutes of operation

Position offset after 5 minutes of operation

B.4.3 § 5.6.5.3 Condition C – Interruption of GPS signal

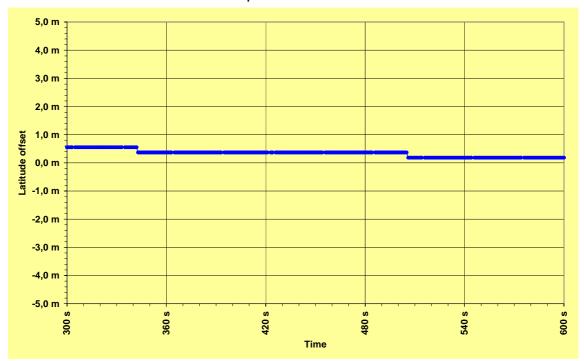
EUT antenna shall be completely masked for 24 to 25 hours. A performence check shall be carried out after 5 minutes of operation.

Conditions of test performed

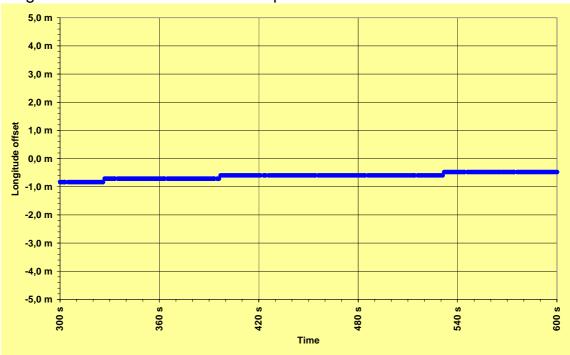
EUT antenna was masked for approx. 24.5 hours.

EUT locked on to GPS SIMULATION within less than two minutes and provided a valid positon fix. A performance check was carried out after 5 minutes of operation.

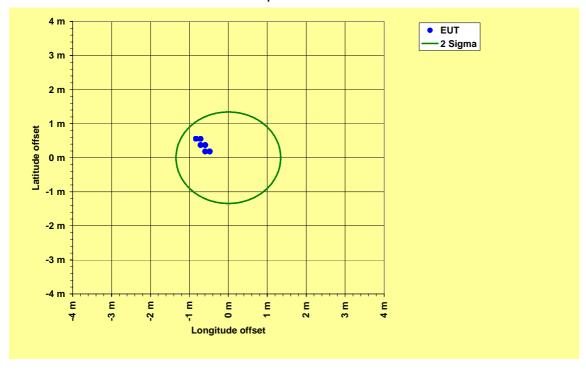
2 Sigma value of performence check:1.34m


Test result: Passed

For details of validation of recorded data see the following pages.


Test Report No. BSH/46162/4321440/10-2 Date: 2010/12/03 page 64 of 107

Latitude offset after 5 minutes operation


Longitude offset after 5 minutes of operation

Position offset after 5 minutes of operation

B.4.4 § 5.6.5.4 Condition D – Brief interruption of power

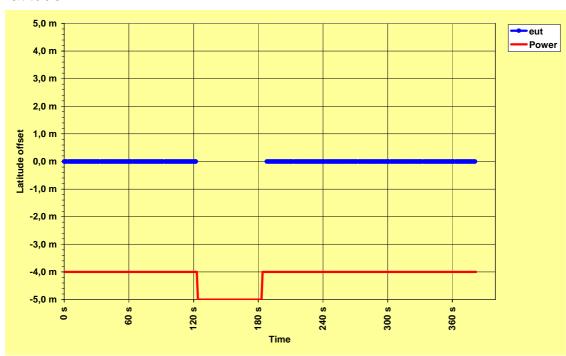
EUT shall be isolated from power for 60s. A performence check shall be carried out after 2 minutes of operation.

Conditions of test performed

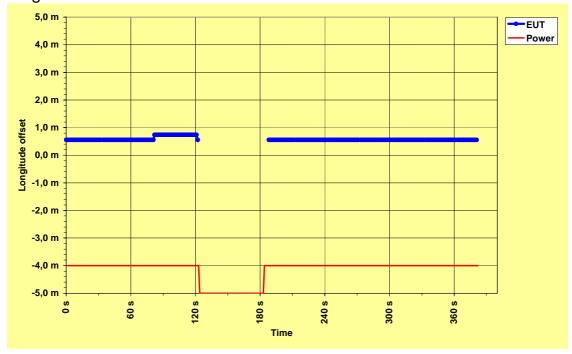
EUT was isolated from power for 60s.

EUT locked on to GPS simulation within less than two minutes and provided a valid positon fix. A performance check was carried out after 2 minutes of operation.

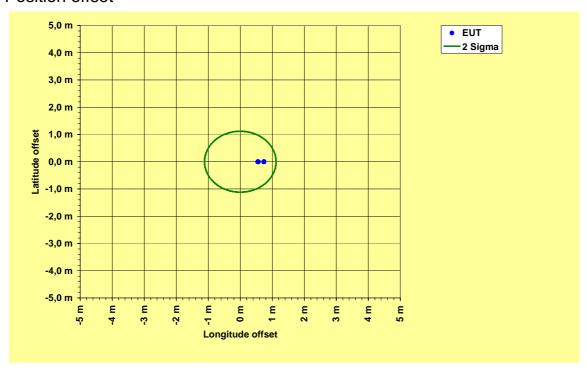
2 Sigma value of performence check: 1.12m


Test result: Passed

For details of validation of recorded data see the following pages.


Test Report No. BSH/46162/4321440/10-2 Date: 2010/12/03 page 67 of 107

Latitude


Longitude offset

Position offset

B.5 § 5.6.9 Effects of specific interfering signals

Reference position

Made by FREIE UND HANSESTADT HAMBURG Vermessungsamt –VA311-

Description of point	geocentrically co-ordinates (WGS84)		geodetical geographical co-ordinates (WGS84)		Gauß-Krüger (Bessel)	
	x(m)	3740601.680	N	53° 32′ 49".49049	x(m)	5935502.790
North	y(m)	657439.492	Е	9° 58' 6".10408	y(m)	3564257.804
	z(m)	5107029.673	Height over Ellipsoid	95.900 m	Altitude above sea level	55.969 m
	x(m)	3740618.106	N	53° 32′ 48".81889	x(m)	5935482.027
South	y(m)	657442.338	Е	9° 58' 6".10189	y(m)	3564258.046
	z(m)	5107017.296	Height over Ellipsoid	95.849 m	Altitude above sea level	55.917

Date: 2010/12/03

Accuracy of survey = 0.02 m - last survey dated 2009-05-04

B.5.1 § 5.6.9.1 L-Band interference GPS

In a normal operating mode, using an appropriate signal source, the EUT shall be subjected to radiation of 3 W/m² at a frequency of 1636.5 MHz for 10 min. The signal shall be removed and a performance check shall be carried out.

Conditions of tests performed – Real GPS signal

Frequency: 1636.5 MHz
Radiation: 3 W/m²
Duration of test: 10 min

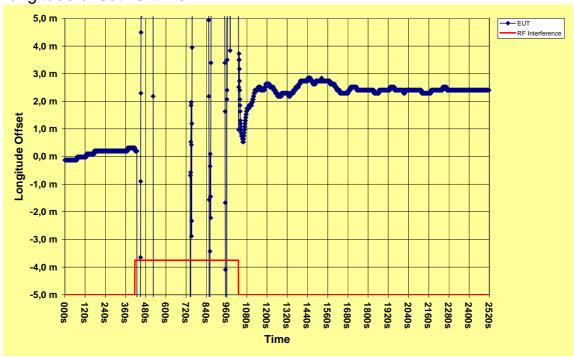
Test results

After removing the signal, the performance of the EUT was checked and found operating properly.

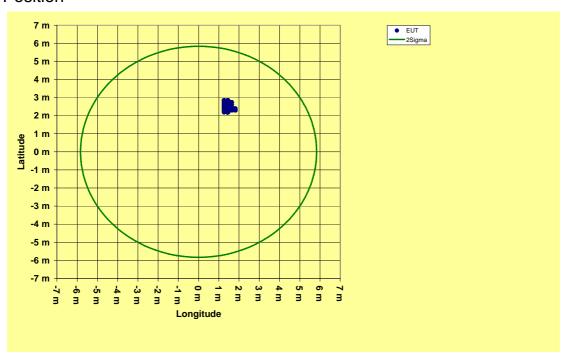
Position accuracy: 5.83m (2 sigma)


Test result: Passed

For details of validation of recorded data see the following pages.


Test Report No. BSH/46162/4321440/10-2 Date: 2010/12/03 page 71 of 107

Latitude offset vs. time


Longitude offset vs. time

Position

B.5.2 §5.6.9.2 S- Band interference

In a normal operating mode, using an appropriate signal source, the EUT shall be subjected to radiation consisting of a burst of 10 pulses, each 1.0 to 1.5 μ s long on a duty cycle of 1600:1 at a frequency in the range of 2.9 to 3.1 GHz at a power density of approximately 7.5 kW/ m². This condition shall be maintained for 10 min with the bursts of pulses repeated every 3 s.

The signal shall be removed and a performance check shall be carried out.

Conditions of tests performed- Real GPS signal

Frequency range: 2.9 to 3.1 GHz
Radiation: 7.5 kW/m²
Duration of test: 10 min

Test results

After removing the signal, the performance of the EUT was checked and found operating properly.

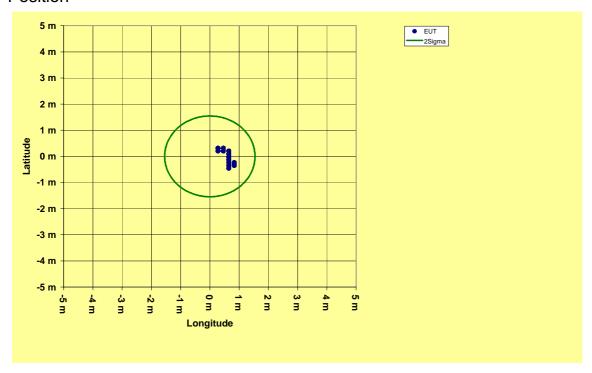
Position accuracy: 1.54m (2 sigma)

Test result: Passed

For details of validation of recorded data see the following pages.

Test Report No. BSH/46162/4321440/10-2 Date: 2010/12/03 page 74 of 107

Latitude offset vs. time


Longitude offset vs. time

Position

B.6 § 5.6.10 Position update

B.6.1 § 5.6.10.1 Slow speed update rate

The EUT shall be placed upon a platform, moving in approximately a straight line, at a speed of 5 knots ±1 knots. The position output of the EUT shall be checked at intervals of 10 s, over a period of 10 min. The output position shall be observed to be updated on each occasion.

This test may be carried out by a simulator.

The minimum resolution of position, i.e. latitude and longitude shall be checked by observation during §5.6.10.1.

Record the IEC 61162 output of the EUT during this test and confirm that received positions at the end of each interval are in compliance with the real or simulated reference position.

Conditions of tests performed

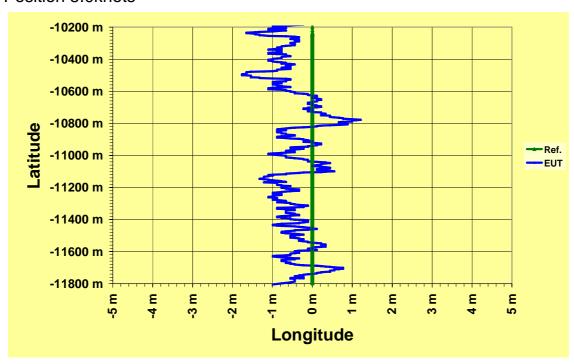
Tests performed by using a simulator

Test result: Passed

For details of validation of recorded data see the following pages.

Test Report No. BSH/46162/4321440/10-2 Date: 2010/12/03

Latitude 5.0knots


Longitude 5.0knots

Position 5.0knots

B.6.2 § 5.6.10.2 High speed update rate

The EUT shall be placed upon a platform, moving in approximately a straight line, at a speed of 50 knots ±5 knots. The position output of the EUT shall be checked at intervals of 10 s, over a period of 10 min. The output position shall be observed to be updated on each occasion.

This test may be carried out by a simulator with a speed of 70 knots at intervals of 0.5 s.

The minimum resolution of position, i.e. latitude and longitude shall be checked by observation during 5.6.10.2.

Record the IEC 61162 output of the EUT during this test and confirm that received positions at the end of each interval are in compliance with the real or simulated reference position.

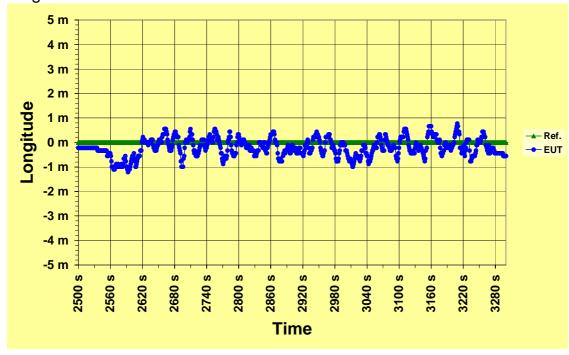
Date: 2010/12/03

Conditions of tests performed

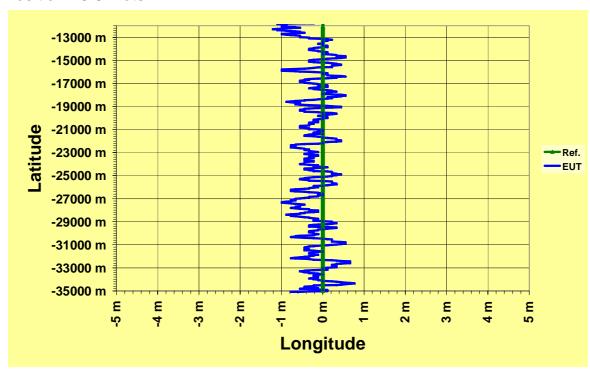
Tests performed by using a simulator

Test result: Passed

For details of validation of recorded data see the following pages.


Test Report No. BSH/46162/4321440/10-2

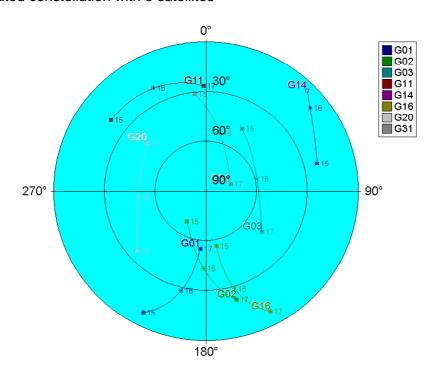
Latitude 70.0knots


Longitude 70.0knots

Position 70.0knots

B.7 § 5.6.12 Failure warnings and status indication

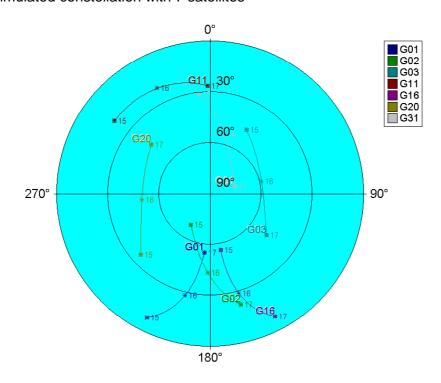
B.7.1 Simulation scenarios for test of RAIM functionality


Reference position

Made by GPS-Simulator

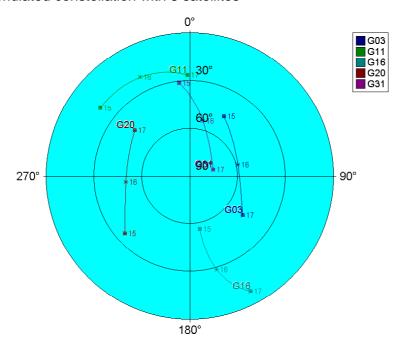
	geocentrically co-ordinates (WGS84)
Latitude	0.00000000000 ° N
Longitude	0.00000000000 ° E

Simulated constellations

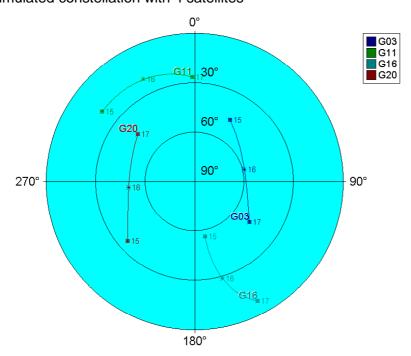

Simulated constellation with 8 satellites

Test Report No. BSH/46162/4321440/10-2 Date: 2010/12/03 page 83 of 107

Simulated constellation with 7 satellites



Simulated constellation with 6 satellites



Simulated constellation with 5 satellites

Simulated constellation with 4 satellites

page 86 of 107

RAIM test scenario

Scenario: W224_1500_8_TO_4_SAT_RAMP_SHORT.SCEN;3

15:00:00 Pseudorange - Ramp: 500 m 4 min. Ramp up, 1 min. Hold, 4 min. Ramp down Sat.-Ids: 1, 2, 3, 11, 14, 16, 20, 31

	8 S	atell	ites			7 S	atell	ites			6 S	atell	ites			5 S	atelli	ites			4	Sate	ellite	s	
00:00:00	00:15:00	00:19:00	00:20:00	00:24:00	00:27:00	00:28:00	00:32:00	00:33:00	00:37:00	00:40:00	00:41:00	00:45:00	00:46:00	00:50:00	00:53:00	00:54:00	00:58:00	00:59:00	01:03:00	01:06:00	01:07:00	01:11:00	01:12:00	01:16:00	01:19:00
Sat. Off	Ramp up	Ramp hold	Ramp down	Ramp end	Sat. Off	Ramp up	Ramp hold	Ramp down	Ramp end	Sat. Off	Ramp up	Ramp hold	Ramp down	Ramp end	Sat. Off	Ramp up	Ramp hold	Ramp down	Ramp end	Sat. Off	Ramp up	Ramp hold	Ramp down	Ramp end	
13		1	7		14		١	ა		2		-	_		1		2	2		31		5	3		
22																									
25																									
27																									
28																									

Test Report No. BSH/46162/4321440/10-2 Date: 2010/12/03

B.7.2 § 5.6.12.2 Test of integrity monitoring using RAIM

This test applies to 4.3.11.2.

For AIS systems this test is carried out to ensure that a RAIM algorithm is implemented and the faulty satellite exclusion is used to minimize the risk of false position calculation. For less than 5 SVs (Space Vehicles) RAIM is unreliable or unavailable.

Test result: Passed

For details of validation of recorded data see the following pages.

Test Report No. BSH/46162/4321440/10-2 Date: 2010/12/03 page 87 of 107

Latitude offset, quality indicator and available SVs vs. time

Longitude offset, quality indicator and available SVs vs. time

B.8 § 5.6.13 Accuracy of COG and SOG

The EUT shall be set up on an appropriate mobile unit or simulator and all outputs indicating course over ground shall be monitored.

At a constant forward direction, the forward speed shall be within 0 knots to 1 knot. Ten seconds after being in the range, measurements shall be made for a duration of 2 min. This cycle shall be repeated for all speed ranges of the table below.

Table - Accuracy of COG

Speed range (knots)	Tested value	Accuracy of COG output to user
0 to ≤1 knot	(~0.5 kn)	Unreliable or nor available
>1 to ≤17 knots	(~14.52 kn)	±3°
> 17 knots	(~24.3 kn)	±1°

Required results

The test results shall be observed the display and the approved interface.

For SOG tests, no reading of the speed indicator shall differ from the constant speed being applied at the time by more than 2 % of that speed or 0.2 knots, whichever is the greater.

For COG tests, the difference between the reference direction and measured course over ground of in each test cycle shall not exceed the limits in the table.

Conditions of tests performed

Tests performed by using a simulator

Test result: Passed

For details of validation of recorded data see the following pages.

Test Report No. BSH/46162/4321440/10-2 Date: 2010/12/03 page 89 of 107

Validity of COG and SOG information

Method of testing

Check digital interface with IEC 61162. With the EUT normally operating, preclude invalid position by reducing the number of received satellites. Investigate the content of the resultant AIS VDO Messages.

Required result

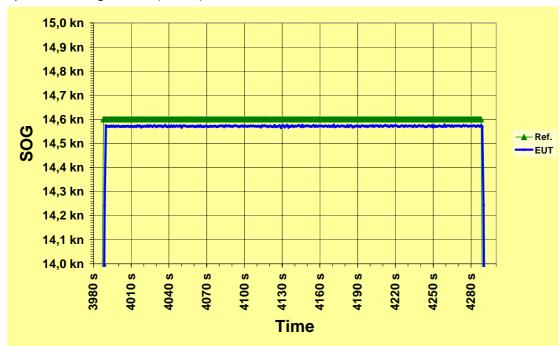
Observe that the COG and SOG information contained in AIS VDO message of IEC 61162 is replaced by "default values".

Date: 2010/12/03

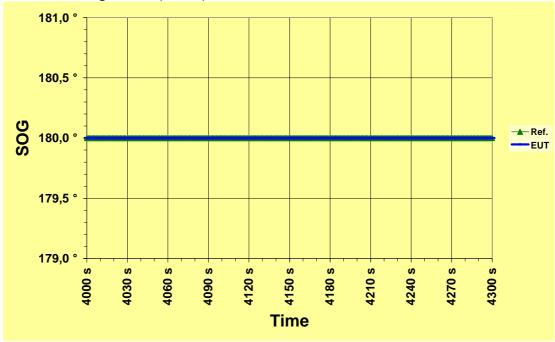
Test result: Passed

Test Report No. BSH/46162/4321440/10-2

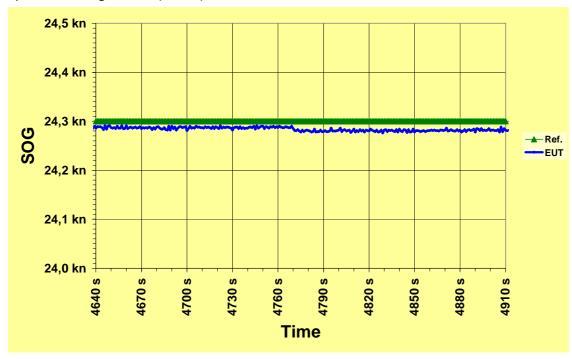
Speed over ground (SOG) vs. time, @ 0.48 Knots



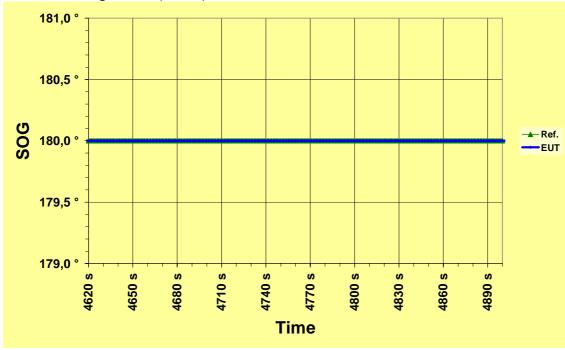
Course over ground (COG) vs. time, @ 0.48Knots



Speed over ground (SOG) vs. time, @ 14.6Knots



Course over ground (COG) vs. time, @14.6Knots



Speed over ground (SOG) vs. time, @ 24.3Knots

Course over ground (COG) vs. time, @ 24.3Knots

B.9 § 5.7.2 Testing interference

B.9.1 § 5.7.2.4.1 Interference conditions

Interference conditions, including broadband noise centred at 1575.42 MHz, continuous wave interference (CWI), and pulsed interference shall be simulated. For the pulsed interference tests, a pulse-modulated carrier (CW) with peak carrier level of –20 dBm and duty factor of 10 % shall be used. The interference values are shown in the three tables below.

Broadband interference values						
Noise bandwidth (MHz)	Requested total RMS power (dBm)	Applied interference				
1	-110.5	-110.5 dBm at 1MHz				

Pulsed interference values					
Frequency (MHz)	Pulse width (ms)	Applied interference			
1575.42	1	1 ms at 1575.42 MHz			

Continuous wave interference (CWI) values					
Frequency (MHz)	Requested power (dBm)	Applied interference			
1575.42	-120.5	-120 dBm at 1575.42 MHz			
1626.0	+8.0	-80 dBm at 1596.0 MHz			

Test Report No. BSH/46162/4321440/10-2 Date: 2010/12/03 page 94 of 107

§ 5.7.2.4.2 Test procedures

- a) The equipment under test is subjected to one of the interference sources.
- b) The simulator scenario shall be engaged and the satellite signals turned on.
- c) The equipment under test shall be powered and initialised.
- d) While the EUT is providing position solutions, the interference shall be applied to the equipment under test, and the level of the interference shall be adjusted to the required value.
- e) When steady-state accuracy is reached, record a minimum of 100 position and HDOP value as reported by the EUT at a rate of one sample every 2 min.
- f)Repeat this cycle for any remaining interference source.

B.9.1.1 § 5.7.2.4.3 Required results

Pass/fail determination

If the EUT reports a position with a normalised error greater than 10 m or fails to report a position in more than 5 % of the samples, a test failure is declared.

Remark: Due to normalizing of the position error in reference to an HDOP of 4, values for normalized error can show wide ranges in case of measured HDOP values around 1.0 or even below. Test passed, if the calculated position is well within GPS position accuracy level defined by IEC61108-1 Ed. 2 (for standard GPS= 13.0m).

Conditions of tests performed

Tests performed using a simulator, date: 2010/10/21.

Broadband noise (-110.5dBm @ 1MHz bandwidth)

13:12 - 2010/10/21	Test start
13:15:00	Interference start
13:25:00	Interference stop
14:23 - 2010/10/21	Test end

Test Report No. BSH/46162/4321440/10-2 Date: 2010/12/03 page 95 of 107

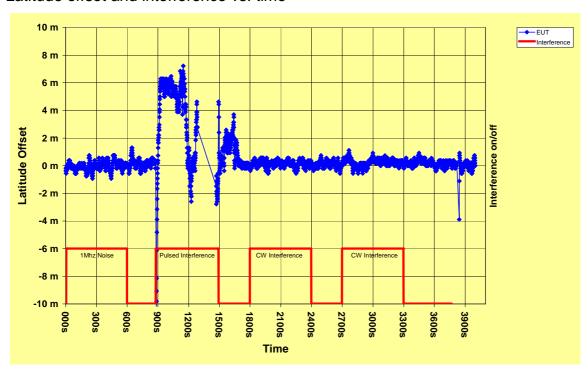
Pulsed interference (-20 dBm at 1575.42 MHz with 1 ms pulse width)

13:12 - 2010/10/21	Test start
13:30:00	Interference start
13:40:00	Interference stop
14:23 - 2010/10/21	Test end

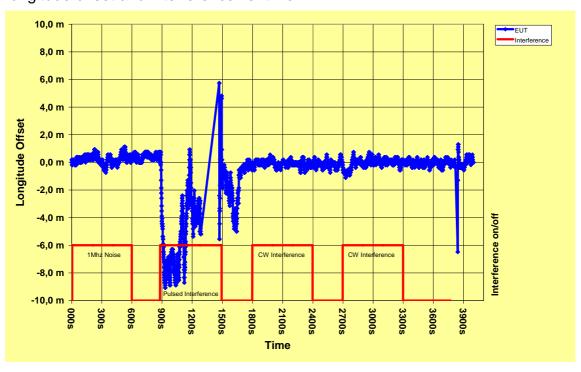
Continuous wave interference (-120.5 dBm at 1575.42 MHz)

13:12 - 2010/10/21	Test start
13:45:00	Interference start
13:55:00	Interference stop
14:23 - 2010/10/21	Test end

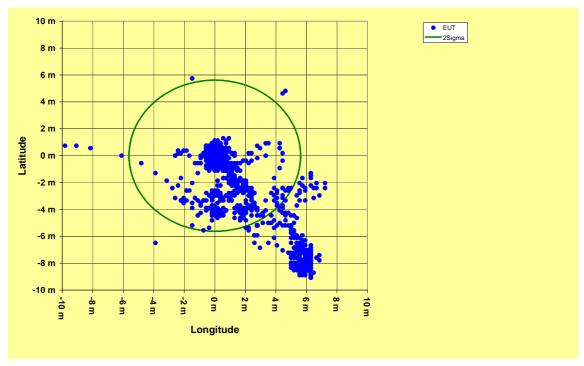
Continuous wave interference (-80 dBm at 1596 MHz)


13:12 - 2010/10/21	Test start
14:00:00	Interference start
14:10:00	Interference stop
14:23 - 2010/10/21	Test end

Test result: Test passed


For details of validation of recorded data see the following pages.

Latitude offset and interference vs. time


Longitude offset and interference vs. time

Position offset during all interference scenarios

Note: 2 Sigma value during all interference conditions: 5.62m

B.9.2 § 5.7.2.5 Reaquisition test

Method of test

The reacquisition test is designed to simulate a temporary loss of signal, such as Passing under a bridge. To determine the re-acquisition pass/fail criteria, consider a single trial where the EUT provides a valid position fix that is within required accuracy at 30 s from restoration of the satellite signals, and maintains a tracking status for at least the next 60 s. This unit is considered to have passed one trial.

§ 5.7.2.5.1 Re-acquisition test procedures § 5.7.2.5.2 Interference conditions

The interference condition to be tested is shown below. This is a broadband noise Value centred at 1575.42 MHz.

Noise bandwidth (MHz)	Total RMS power (dBm)
1	-110.5

§ 5.7.2.6 Re-acquisition scenarios

§ 5.7.2.6.1 Test procedures

- a) The equipment under test is subjected to the broadband interference source.
- b) The simulator scenario shall be engaged and the satellite signals turned on.
- c) The equipment under test shall be powered and initialised.
- d) The EUT shall be allowed to reach steady-state accuracy before the satellites are to be switched off.
- e) The simulator RF output shall be removed for 30 s.
- f) The simulator RF output shall be restored to the EUT.
- g) After 30 s record a position and HDOP value as reported by the EUT. If after 30 s, no position report has been sent from the receiver, record a trial failure and go to step i).
- h) Ensure that the receiver continues position reporting for the next 60 s.
- i) Go to Step d) and repeat as required. (note that if the simulator scenario is reset, some receivers may require purging of all previous data to enable proper operation. This is due to the persistence of time data in the receiver and the inability of the receiver's software to deal with a backward transition in time).

Test Report No. BSH/46162/4321440/10-2 Date: 2010/12/03 page 99 of 107

B.9.2.1 § 5.7.2.6.2 Required results

Pass/fail determination

A failure by the EUT to provide a position output after 30 s, reporting a position with normalised error greater than 10 m, or failing to continue position reporting for 60 s after sampling indicates a failure mode, and results in declaring a trial failure. To determine the reacquisition time pass/fail criteria, the test disposition table shall be used.

Conditions of tests performed

Tests performed using a simulator.

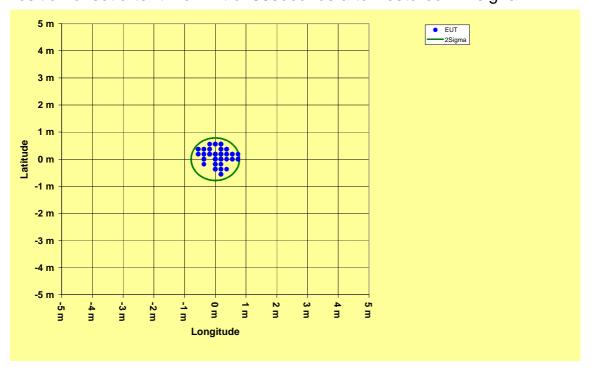
13:12 - 2010/10/21	Test start
14:15:40	Satellite signal shielded
14:16:10	shield removed
14:23 - 2010/10/21	Test end

Date: 2010/12/03

Test result: Passed

For details of validation of recorded data see the following pages.

Latitude offset vs. time


Longitude offset vs. time

Position offset after time limit of 30seconds after restored RF signal

Note: 2 Sigma value 90sec after RF- signal had been restored: 0.79m

Annex C - Photos of equip ment under test

EUT at testside, BSH Hamburg

Date: 2010/12/03

Test Report No. BSH/46162/4321440/10-2

EUT – Equipment 1 id tag

