ENGINEERING TEST REPORT

UHF P25 Trunking Handheld Transceiver Model No.: IC-F9021B, IC-F9021S and IC-F9021T FCC ID: AFJ307802

Applicant:

ICOM Incorporated

1-1-32, Kamiminami, Hirano-ku Osaka, Japan 547-0003

Tested in Accordance With

Federal Communications Commission (FCC) 47 CFR, Parts 2, 22, 74, 80 and 90 (Subpart I)

UltraTech's File No.: ICOM-382Q_FCC90

This Test report is Issued under the Authority of

Tri M. Luu

Vice President of Engineering UltraTech Group of Labs

Date: December 04, 2014

Report Prepared by: Dharmajit Solanki

Issued Date: December 04, 2014

Tested by: Wei Wu

Test Dates: November 25-29, 2014

- The results in this Test Report apply only to the sample(s) tested, and the sample tested is randomly selected.
- This report must not be used by the client to claim product endorsement by NVLAP or any agency of the US Government.

UltraTech

3000 Bristol Circle, Oakville, Ontario, Canada, L6H 6G4 Tel.: (905) 829-1570 Fax.: (905) 829-8050

Website: www.ultratech-labs.com, Email: vic@ultratech-labs.com, Email: tri@ultratech-labs.com

91038

1309

46390-2049

NVLAP LAB

 $ar{L}$

SL2-IN-E-1119R

CA2049

TL363 B

TPTDP DA1300

TABLE OF CONTENTS

EXHIBI	IT 1.	INTRODUCTION	1
1.1. 1.2. 1.3.	RELA	ETED SUBMITTAL(S)/GRANT(S)IATIVE REFERENCES	1
EXHIBI	IT 2.	PERFORMANCE ASSESSMENT	2
2.1. 2.2. 2.3. 2.4.	EQUII EUT'S	TT INFORMATION PMENT UNDER TEST (EUT) INFORMATION TECHNICAL SPECIFICATIONS DF EUT'S PORTS	2 3
EXHIBI	IT 3.	EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS	4
3.1. 3.2.		ATE TEST CONDITIONSATIONAL TEST SIGNALS	
EXHIBI	IT 4.	SUMMARY OF TEST RESULTS	5
4.1. 4.2. 4.3.	APPLI	TION OF TESTSCABILITY & SUMMARY OF EMISSION TEST RESULTSFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES	5
EXHIBI	IT 5.	MEASUREMENTS DATA	(
5.1. 5.2. 5.3.	FIELD	WER OUTPUT [§§ 2.1046, 22.565, 74.461, 80.215 & 90.205]	0].7
EXHIBI	IT 6.	TEST EQUIPMENT LIST	14
EXHIBI	IT 7.	MEASUREMENT UNCERTAINTY	15
7.1.	RADI	ATED EMISSION MEASUREMENT UNCERTAINTY	15
EXHIBI	IT 8.	MEASUREMENT METHODS	16
8.1. 8.2. 8.3. 8.4. 8.5.	RADIA FREQ EMISS	OUCTED POWER MEASUREMENTS	17 20 21
8.6		SIENT FREQUENCY BEHAVIOR	

EXHIBIT 1. INTRODUCTION

1.1. SCOPE

Reference:	FCC Parts 2, 22, 74, 80 and 90 (Subpart I)	
Title:	Code of Federal Regulations (CFR), Title 47 Telecommunication – Parts 2, 22, 74, 80 and 90 (Subpart I)	
Purpose of Test:	Class II Permissive Change	
Test Procedures:	Both conducted and radiated emissions measurements were conducted in accordance with TIA/EIA Standard TIA/EIA-603-D – Land Mobile FM or PM Communications Equipment Measurement and performance Standards.	

1.2. RELATED SUBMITTAL(S)/GRANT(S)

None

1.3. NORMATIVE REFERENCES

Publication	Year	Title	
FCC CFR Parts 0-19, 80-End	2014	Code of Federal Regulations – Telecommunication	
ANSI C63.4	2009	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz	
TIA/EIA 603, Edition D	2010	Land Mobile FM or PM Communications Equipment Measurement and Performance Standards	

Page 1 of 22

EXHIBIT 2. PERFORMANCE ASSESSMENT

2.1. CLIENT INFORMATION

APPLICANT	
Name:	Icom Incorporated
Address:	1-1-32, Kamiminami Hirano-ku, Osaka Japan, 547-0003
Contact Person:	Mr. Hideji Fujishima Phone #: +81-6 6793-8424 Fax #: +81-6 6793-3336 Email Address: world_support@icom.co.jp

MANUFACTURER	
Name:	Icom Incorporated
Address:	1-1-32, Kamiminami Hirano-ku, Osaka Japan, 547-0003
Contact Person:	Mr. Hideji Fujishima Phone #: +81-6 6793-8424 Fax #: +81-6 6793-3336 Email Address: world_support@icom.co.jp

2.2. EQUIPMENT UNDER TEST (EUT) INFORMATION

The following information (with the exception of the Date of Receipt) has been supplied by the applicant.

Brand Name:	ICOM Incorporated	
Product Name:	UHF P25 Trunking Handheld Transceiver	
Model Name or Number:	IC-F9021T	
Serial Number:	5500301	
Type of Equipment:	Licensed Non-Broadcast UHF Transceiver	
Power Supply Requirement:	7.5 VDC nominal	
Transmitting/Receiving Antenna Type:	Non-integral	
Primary User Functions of EUT:	UHF Transceiver	

Page 2 of 22

2.3. EUT'S TECHNICAL SPECIFICATIONS

TRANSMITTER		
Equipment Type:	Portable	
Intended Operating Environment:	Commercial, Industrial or Business	
Power Supply Requirement:	7.5 VDC nominal	
RF Output Power Rating:	5 Watts(High) / 1 Watt(Low)	
Operating Frequency Range:	450-512 MHz	
RF Output Impedance:	50 Ohms	
Channel Spacing:	25 KHz, 12.5 KHz	
Occupied Bandwidth (99%):	10.64 KHz (for 25 KHz Channel Spacing)8.02 KHz (for 12.5 KHz Channel Spacing)	
Emission Designation:	16K0F3E, 11K0F3E, 8K10F1E, 8K10F1D	
Antenna Connector Type:	SMA	

^{*} For an average case of commercial telephony, the Necessary Bandwidth is calculated as follows:

For FM Voice Modulation:

Channel Spacing = 25 KHz, D = 5 KHz max, K = 1, M = 3 KHz

 $B_n = 2M + 2DK = 2(3) + 2(5)(1) = 16 KHz$

Emission designation: 16K0F3E

Channel Spacing = 12.5 KHz, D = 2.5 KHz max, K = 1, M = 3 KHz

 $B_n = 2M + 2DK = 2(3) + 2(2.5)(1) = 11 KHz$

Emission designation: 11K0F3E

For FM Data Modulation:

Channel Spacing = 12.5 KHz, R = 9600 bps, D = 3111 Hz, S = 4, K = 0.518

 B_n = (R/log₂S) + 2DK = 8023 \cong **8.1 KHz** Emission designation: 8K10F1E, 8K10F1D

2.4. LIST OF EUT'S PORTS

Port Number	EUT's Port Description	Number of Identical Ports	Connector Type	Shielded/Non-shielded
1	Antenna Connector	1	SMA	Shielded
2	SP/MIC Jack	1	Plug-in Jack	N/A

ULTRATECH GROUP OF LABS

Page 3 of 22

EXHIBIT 3. EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS

3.1. CLIMATE TEST CONDITIONS

The climate conditions of the test environment are as follows:

Temperature:	21°C - 24°C
Humidity:	45% to 58%
Pressure:	102 kPa
Power Input Source:	7.5 VDC Nominal

3.2. OPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TEST SIGNALS

Operating Modes:	The transmitter was operated in a continuous transmission mode with the carrier modulated as specified in the Test Data.
Special Test Software:	N/A
Special Hardware Used:	N/A
Transmitter Test Antenna:	The EUT is tested with the antenna port terminated to a 50 Ohms RF Load.

Transmitter Test Signals		
Frequency Band(s):	450-512 MHz	
Test Frequencies: (Near lowest, near middle & near highest frequencies in the frequency range of operation.)	450.1, 485.1 and 511.9 MHz	
Transmitter Wanted Output Test Signals:		
Transmitter Power (measured maximum output power):	5 Watts High and 1 Watt Low	
Normal Test Modulation:	FM Voice	
Modulating signal source:	External	

Page 4 of 22

FCC ID: AFJ307802

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

EXHIBIT 4. SUMMARY OF TEST RESULTS

4.1. LOCATION OF TESTS

All of the measurements described in this report were performed at Ultratech Group of Labs located in the city of Oakville, Province of Ontario, Canada.

Radiated Emissions were performed at the Ultratech's 3-10 TDK Semi-Anechoic Chamber situated in the Town of Oakville, province of Ontario. This test site been calibrated in accordance with ANSI C63.4, and found to be in compliance with the requirements of Sec. 2.948 of the FCC Rules. The descriptions and site measurement data of the Oakville 3-10 TDK Semi-Anechoic Chamber has been filed with FCC office (FCC File No.: 91038) and Industry Canada office (Industry Canada File No.: 2049A-3). Expiry Date: 2017-04-02.

4.2. APPLICABILITY & SUMMARY OF EMISSION TEST RESULTS

FCC Section(s)	Test Requirements	Applicability (Yes/No)
2.1046, 22.565, 74.461, 80.215 & 90.205	RF Power Output	Yes
2.1047(a) & 90.242(b)(8)	Audio Frequency Response	See Note 1
2.1047(b), 74.463 & 80.213	Modulation Limiting	See Note 1
2.1049, 74.462, 80.211(f), 90.209 & 90.210	Occupied Bandwidth, Emission Limitation & Emission Mask	See Note 1
2.1051, 2.1057, 22.359(a), 80.211(f)(3), & 90.210	Spurious Emissions at Antenna Terminals	See Note 1
2.1053, 2.1057, 22.359(a), 80.211(f)(3), & 90.210	Field Strength of Spurious Emissions	Yes
2.1055, 22.355, 74.464 80.209 & 90.213	Frequency Stability	Yes
74.462(c) & 90.214	Transient Frequency Behavior	See Note 1
1.1307, 1.1310 & 2.1091	RF Exposure Limit	See Note 1

Note 1: Please refer to original filing for details as modification performed in this Class II Permissive Change will not affect these measurements.

4.3. MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES

None

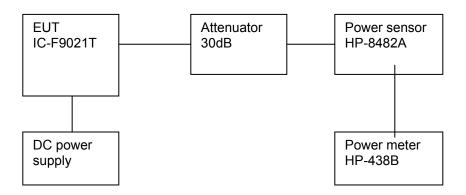
4.3.1. DEVIATION OF STANDARD TEST PROCEDURES

None

Page 5 of 22

EXHIBIT 5. MEASUREMENTS DATA

5.1. RF POWER OUTPUT [§§ 2.1046, 22.565, 74.461, 80.215 & 90.205]


5.1.1. Limits

Refer to FCC 47 CFR 22.565, 74.461, 80.215 and 90.205 for specification details.

5.1.2. Method of Measurements

Refer to Section 8.1 (Conducted) and 8.2 (Radiated) of this report for measurement details

5.1.3. Test Arrangement

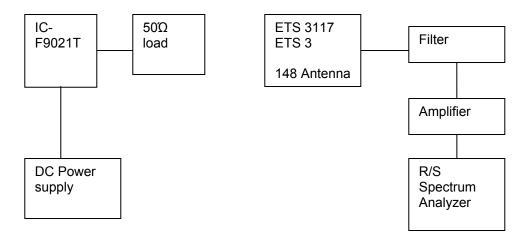
5.1.4. Test Data

Power Setting	Fundamental	Measured (Average) Power		Power Rating	
	Frequency (MHz)	(dBm)	(W)	(dBm)	(W)
High Power Level, 5.0 W	450.1	37.16	5.20	36.99	5.0
	485.1	37.42	5.52	36.99	5.0
	511.9	37.15	5.19	36.99	5.0
Low Power Level, 1.0 W	450.1	30.31	1.07	30.00	1.0
	485.1	30.64	1.16	30.00	1.0
	511.9	30.48	1.12	30.00	1.0

Page 6 of 22

5.2. FIELD STRENGHT OF SPURIOUS EMISSIONS [§§ 2.1053, 2.1057, 22.359(a), 74.462, 80.211(f)(3) & 90.210]

5.2.1. Limits


Emissions shall be attenuated below the mean output power of the transmitter as follows:

FCC Rules	Attenuation Limit (dBc)
§ 22.359(a)	At least 43 + 10 log (P) dB.
§ 74.462	At least 43 + 10 log (P) dB.
§ 80.211(f)(3),	At least 43 + 10 log ₁₀ (mean power in watts) dB
§ 90.210(b)	At least 43 + 10 log (P) dB
§ 90.210(d)	At least 50 + 10 log (P) dB or 70 dB, whichever is the lesser attenuation.
§ 90.210(e)	At least 55 + 10 log (P) or 65 dB, whichever is the lesser attenuation.

5.2.2. Method of Measurements

The spurious/harmonic ERP measurements are using substitution method specified in Section 8.2 of this report.

5.2.3. Test Arrangement

5.2.4. Test Data

Remarks:

- There was no discernable spurious/harmonic emission detected on the pre-scans for different channel spacing
 and modulation types. Therefore, the following radiated emissions were performed at 12.5 kHz channel spacing
 operation, and the results were compared with the more stringent limit for the worst-case.
- The radiated emissions were performed with high power setting at 3 m distance to represents the worst-case test configuration.
- The emissions were scanned from 30 MHz to 10th harmonics (5 GHz); all spurious emissions that are in excess of -35 dB below the specified limit shall be recorded.

Test Frequency (MHz): 450.1

Power conducted (dBm): 37.16

Limit (dBm): -20.0

Lillit (abili).	-20.0					
Frequency (MHz)	E-Field (dBµV/m)	EMI Detector (Peak/QP)	Antenna Polarization (H/V)	ERP measured (dBm)	Limit (dBm)	Margin (dB)
900.20	65.57	Peak	V	-36.29	-20.0	-16.3
900.20	65.30	Peak	Н	-36.56	-20.0	-16.6
1350.30	64.69	Peak	V	-37.85	-20.0	-17.9
1350.30	63.07	Peak	Н	-39.47	-20.0	-19.5
1800.40	64.59	Peak	V	-37.98	-20.0	-18.0
1800.40	62.32	Peak	Н	-40.25	-20.0	-20.3
2250.50	56.40	Peak	V	-46.02	-20.0	-26.0
2250.50	59.01	Peak	Н	-43.41	-20.0	-23.4
2700.60	60.95	Peak	V	-40.68	-20.0	-20.7
2700.60	64.36	Peak	Н	-37.27	-20.0	-17.3
3150.70	56.11	Peak	V	-47.07	-20.0	-27.1
3150.70	59.11	Peak	Н	-44.07	-20.0	-24.1
3600.80	60.44	Peak	V	-42.45	-20.0	-22.5
3600.80	62.05	Peak	Н	-40.84	-20.0	-20.8
4050.90	53.79	Peak	V	-50.33	-20.0	-30.3
4050.90	53.32	Peak	Н	-50.80	-20.0	-30.8
4501.00	57.75	Peak	V	-46.29	-20.0	-26.3
4501.00	58.68	Peak	Н	-44.88	-20.0	-24.9

Page 8 of 22

Test Frequency (MHz): 485.1

Power conducted (dBm): 37.42

Limit (dBm): -20.0

Limit (dBm):	nit (dBm): -20.0					
Frequency (MHz)	E-Field (dBµV/m)	EMI Detector (Peak/QP)	Antenna Polarization (H/V)	ERP Measured (dBm)	Limit (dBm)	Margin (dB)
970.20	61.45	Peak	V	-38.49	-20.0	-18.5
970.20	53.84	Peak	Н	-46.10	-20.0	-26.1
1455.30	61.33	Peak	V	-37.53	-20.0	-17.5
1455.30	61.19	Peak	Н	-37.67	-20.0	-17.7
1940.40	61.38	Peak	V	-36.48	-20.0	-16.5
1940.40	65.37	Peak	Н	-32.49	-20.0	-12.5
2425.50	66.17	Peak	V	-35.01	-20.0	-15.0
2425.50	68.17	Peak	Н	-31.73	-20.0	-11.7
2910.60	53.17	Peak	V	-47.00	-20.0	-27.0
2910.60	57.42	Peak	Н	-42.75	-20.0	-22.8
3395.70	65.00	Peak	V	-34.60	-20.0	-14.6
3395.70	67.53	Peak	Н	-32.07	-20.0	-12.1
3880.80	50.08	Peak	V	-50.03	-20.0	-30.0
3880.80	51.46	Peak	Н	-48.65	-20.0	-28.7
4365.90	59.72	Peak	V	-40.99	-20.0	-21.0
4365.90	66.57	Peak	Н	-34.14	-20.0	-14.1
4851.00	54.86	Peak	V	-45.20	-20.0	-25.2
4851.00	56.14	Peak	Н	-43.92	-20.0	-23.9

Test Frequency (MHz): 511.9

Power conducted (dBm): 37.15

Limit (dBm): -20.0

Limit (abin):	_	20.0					
Frequency (MHz)	E-Field (dBµV/m)	EMI Detector (Peak/QP)	Antenna Polarization (H/V)	ERP Measured (dBm)	Limit (dBm)	Margin (dB)	
1023.80	66.65	Peak	V	-36.48	-20.0	-16.5	
1023.80	64.46	Peak	Н	-38.67	-20.0	-18.7	
1535.70	63.98	Peak	V	-38.52	-20.0	-18.5	
1535.70	64.51	Peak	Н	-37.99	-20.0	-18.0	
2047.60	59.35	Peak	V	-43.64	-20.0	-23.6	
2047.60	59.33	Peak	Н	-43.66	-20.0	-23.7	
2559.50	61.39	Peak	V	-41.61	-20.0	-21.6	
2559.50	65.74	Peak	Н	-37.26	-20.0	-17.3	
3071.40	56.68	Peak	V	-44.68	-20.0	-24.7	
3071.40	61.12	Peak	Н	-40.24	-20.0	-20.2	
3583.30	64.72	Peak	V	-36.72	-20.0	-16.7	
3583.30	67.09	Peak	Н	-34.35	-20.0	-14.4	
4095.20	52.16	Peak	V	-50.23	-20.0	-30.2	
4095.20	56.65	Peak	Н	-45.74	-20.0	-25.7	
4607.10	51.56	Peak	V	-54.07	-20.0	-34.1	
4607.10	53.20	Peak	Н	-52.43	-20.0	-32.4	
5119.00	55.04	Peak	V	-47.81	-20.0	-27.8	
5119.00	56.96	Peak	Н	-45.89	-20.0	-25.9	

Page 11 of 22 FCC ID: AFJ307802

5.3. FREQUENCY STABILITY [§§ 2.1055, 22.355, 74.464, 80.209 & 90.213]

5.3.1. Limits

§22.355 Frequency tolerance

Frequency Tolerance for Transmitters in the Public Mobile Services						
Frequency range (MHz) Base, fixed (ppm) Mobile ≤3 watts (ppm) Mobile ≤3 watts (ppm)						
50 to 450	5.0	5.0	50.0			
2.50 to 512 2.5 5.0 5.0						

§74.464 Frequency tolerance

For operations on frequencies above 25 MHz using authorized bandwidths up to 30 kHz, the licensee of a remote pickup broadcast station or system shall maintain the operating frequency of each station in compliance with the frequency tolerance requirements of §90.213 of this chapter. For all other operations, the licensee of a remote pickup broadcast station or system shall maintain the operating frequency of each station in accordance with the following:

	Tolerance (percent)			
Frequency range	Base station Mobile station			
300 to 500 MHz, all powers	.00025	.0005		

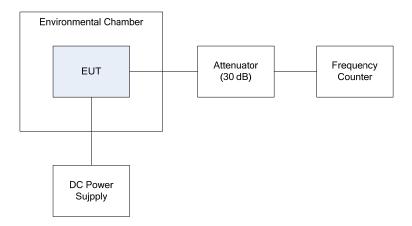
§80.209 Transmitter frequency tolerances

(a) The frequency tolerance requirements applicable to transmitters in the maritime services are shown in the following table. Tolerances are given as parts in 10° unless shown in Hz.

Frequency bands and categories of stations	Tolerances ¹
(7) Band 400-466 MHz:	
(i) EPIRBs operating on 406-406.1 MHz	5.
(ii) On-board stations	5.
(iii) Radiolocation and telecommand stations.	5.

¹Transmitters authorized prior to January 2, 1990, with frequency tolerances equal to or better than those required after this date will continue to be authorized in the maritime services provided they retain approval and comply with the applicable standards in this part.

§90.213 Frequency stability


Minimum Frequency Stability (ppm)					
Fraguency range (MHz)	Fixed and base stations	Mobile stations			
Frequency range (MHz)	Fixed and base stations	Over 2 watts output power	2 watts or less output power		
421-512	¹³⁴ 2.5	² 5	² 5		

¹In the 421-512 MHz band, fixed and base stations with a 12.5 kHz channel bandwidth must have a frequency stability of 1.5 ppm. Fixed and base stations with a 6.25 kHz channel bandwidth must have a frequency stability of 0.5 ppm.

5.3.2. Method of Measurements

Refer to Section 8.3 of this report for measurement details.

5.3.3. Test Arrangement

²In the 421-512 MHz band, mobile stations designed to operate with a 12.5 kHz channel bandwidth must have a frequency stability of 2.5 ppm. Mobile stations designed to operate with a 6.25 kHz channel bandwidth must have a frequency stability of 1.0 ppm.

³Paging transmitters operating on paging-only frequencies must operate with frequency stability of 5 ppm in the 150-174 MHz band and 2.5 ppm in the 421-512 MHz band.

⁴Control stations may operate with the frequency tolerance specified for associated mobile frequencies.

5.3.4. Test Data

Test Frequency:	450.1 MHz
Full Power Level:	37.16 dBm
Frequency Tolerance Limit:	<u>+</u> 1 ppm or <u>+</u> 450 Hz
Max. Frequency Tolerance Measured:	-172 Hz or 0.38 ppm
Input Voltage Rating:	7.5 Vdc (Nominal)

	Frequency Drift (Hz)				
Ambient Temperature (°C)	Supply Voltage (Nominal) 7.5 Vdc	Supply Voltage (just before transmitter turned off) 5.6 Vdc	Supply Voltage (115% of Nominal) 8.6 Vdc		
-30	-172				
-20	-171				
-10	-100				
0	-91				
+10	-43				
+20	-39	08	61		
+30	-32				
+40	70				
+50	107				
+60	133				

EXHIBIT 6. TEST EQUIPMENT LIST

Test Instruments	Manufacturer	Model No.	Serial No.	Operating Range	Cal. Due Date
Spectrum Analyzer	R/S	FSEK	834157/005	9 KHz – 40 GHz	03-Jan-15
Attenuator (30dB)	Aeroflex/Weinschel	46-30-34	BR9127	DC-18 GHz	Note 1
High Pass Filter	Mini Circuit	SHP 250		Cut off 230 MHz	Note 1
Power Meter	Hewlett Packard	438A	3008A06729	100K50G sensor depondent	10-Apr-15
Power Sensor	Hewlett Packard	8482A	US37295944	100KHz-4.2GHZ	26-Feb-15
Environmental Chamber	Envirotronics	SSH32C	11994847-S- 11059	-60 to 177 degree C	16-Apr-15
Power supply	Tenma	72-7295	490300297	1-40V DC 5A	
Horn antenna	ETS-LINDGREN	3117	119425	1-18GHz	02-May-15
Preamplifier	COM-POWER	PA-103A	161243	10MHz-1GHz	30-Jun-15
Preamplifier	A H System	PAM-0118	225	20MHz-18GHz	05-Apr-15
Antenna	ETS	3148	1101	200-2000 MHz	14-Apr-15
Frequency counter	EIP	545A	2683	10Hz-18 GHz	07-Apr-15
High Pass Filter	Mini Circuit	SHP 600		Cut off 560 MHz	Note 1
Attenuator (10dB)	Aeroflex/Weinschel	24-10-34	BK8612	DC-8.5 GHz	Note 1
Attenuator (20dB)	Pasternack	PE7019-20	RFI-001	DC-18 GHz	Note 1
Attenuator (20dB)	Aeroflex/Weinschel	23-20-34	BK7876	DC-18 GHz	Note 1

^{*}Note 1: Internal Verification/Calibration check

Page 14 of 22

EXHIBIT 7. MEASUREMENT UNCERTAINTY

The measurement uncertainties stated were calculated in accordance with the requirements of CISPR 16-4-2 @ IEC:2003 and JCGM 100:2008 (GUM 1995) – Guide to the Expression of Uncertainty in Measurement.

7.1. RADIATED EMISSION MEASUREMENT UNCERTAINTY

	Radiated Emission Measurement Uncertainty @ 3m, Horizontal (30-1000 MHz):	Measured (dB)	Limit (dB)
u _c	Combined standard uncertainty: $u_c(y) = \sqrt{\sum_{i=1}^{m} u_i^2(y)}$	<u>+</u> 2.39	<u>+</u> 2.6
U	Expanded uncertainty U: $U = 2u_c(y)$	<u>+</u> 4.79	<u>+</u> 5.2

	Radiated Emission Measurement Uncertainty @ 3m, Vertical (30-1000 MHz):	Measured (dB)	Limit (dB)
u _c	Combined standard uncertainty: $u_c(y) = \sqrt{\sum_{i=1}^{m} u_i^2(y)}$	<u>+</u> 2.39	<u>+</u> 2.6
U	Expanded uncertainty U: U = 2u _c (y)	<u>+</u> 4.78	<u>+</u> 5.2

	Radiated Emission Measurement Uncertainty @ 3 m, Horizontal & Vertical (1 – 18 GHz):	Measured (dB)	Limit (dB)
u _c	Combined standard uncertainty: $u_c(y) = \sqrt{\sum_{i=1}^{m} u_i^2(y)}$	<u>+</u> 1.87	Under consideration
U	Expanded uncertainty U: U = 2u _c (y)	<u>+</u> 3.75	Under consideration

Page 15 of 22

EXHIBIT 8. MEASUREMENT METHODS

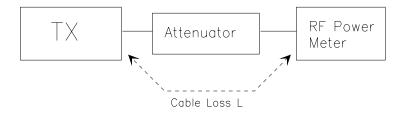
8.1. CONDUCTED POWER MEASUREMENTS

- The following shall be applied to the combination(s) of the radio device and its intended antenna(e).
- If the RF level is user adjustable, all measurements shall be made with the highest power level available to the user for that combination.
- The following method of measurement shall apply to both conducted and radiated measurements.
- The radiated measurements are performed at the Ultratech Calibrated Open Field Test Site.
- The measurement shall be performed using normal operation of the equipment with modulation.

Test procedure shall be as follows:

Step 1: Duty Cycle measurements if the transmitter's transmission is transient

- ➤ Using a EMI Receiver with the frequency span set to 0 Hz and the sweep time set at a suitable value to capture the envelope peaks and the duty cycle of the transmitter output signal;
- The duty cycle of the transmitter, x = Tx on / (Tx on + Tx off) with 0<x<1, is measure and recorded in the test report. For the purpose of testing, the equipment shall be operated with a duty cycle that is equal or more than 0.1.


Step 2: Calculation of Average EIRP. See Figure 1

- The average output power of the transmitter shall be determined using a wideband, calibrated RF average power meter with the power sensor with an integration period that exceeds the repetition period of the transmitter by a factor 5 or more. The observed value shall be recorded as "A" (in dBm);
- The e.i.r.p. shall be calculated from the above measured power output "A", the observed duty cycle x, and the applicable antenna assembly gain "G" in dBi, according to the formula:

EIRP = A + G + 10log(1/x)

 $\{X = 1 \text{ for continuous transmission } => 10log(1/x) = 0 dB\}$

Figure 1.

Page 16 of 22

8.2. RADIATED POWER MEASUREMENTS (ERP & EIRP) USING SUBSTITUTION METHOD

8.2.1. MAXIMIZING RF EMISSION LEVEL (E-FIELD)

- (a) The measurements were performed with full rf output power and modulation.
- (b) Test was performed at listed 3m open area test site (listed with FCC, IC, ITI, NVLAP, ACA & VCCI).
- (c) The transmitter under test was placed at the specified height on a non-conducting turntable (80 cm height)
- (d) The BICONILOG antenna (20 MHz to 1 GHz) or HORN antenna (1 GHz to 18 GHz) was used for measuring.
- (e) Load an appropriate correction factors file in EMI Receiver for correcting the field strength reading level

Total Correction Factor recorded in the EMI Receiver = Cable Loss + Antenna Factor E ($dB\mu V/m$) = Reading ($dB\mu V$) + Total Correction Factor (dB/m)

(f) Set the EMI Receiver and #2 as follows:

Center Frequency: test frequency
Resolution BW: 100 KHz
Video BW: same
Detector Mode: positive
Average: off

Span: 3 x the signal bandwidth

- (g) The test antenna was lowered or raised from 1 to 4 meters until the maximum signal level was detected.
- (h) The transmitter was rotated through 360° about a vertical axis until a higher maximum signal was received.
- (i) The test antenna was lowered or raised again from 1 to 4 meters until a maximum was obtained. This level was recorded.
- (j) The recorded reading was corrected to the true field strength level by adding the antenna factor, cable loss and subtracting the pre-amplifier gain.
- (k) The above steps were repeated with both transmitters' antenna and test receiving antenna placed in vertical and horizontal polarization. Both readings with the antennas placed in vertical and horizontal polarization shall be recorded.
- (I) Repeat for all different test signal frequencies.

Page 17 of 22

8.2.2. Measuring the EIRP of Spurious/Harmonic Emissions using Substitution Method

(a) Set the EMI Receiver (for measuring E-Field) and Receiver #2 (for measuring EIRP) as follows:

Center Frequency: equal to the signal source

100 KHz Resolution BW: Video BW: VBW > RBW Detector Mode: positive Average: off

Span: 3 x the signal bandwidth

(b) Load an appropriate correction factors file in EMI Receiver for correcting the field strength reading level

Total Correction Factor recorded in the EMI Receiver = Cable Loss + Antenna Factor E (dBuV/m) = Reading (dBuV) + Total Correction Factor (dB/m)

- (c) Select the frequency and E-field levels obtained in the Section 8.2.1 for ERP/EIRP measurements.
- (d) Substitute the EUT by a signal generator and one of the following transmitting antenna (substitution antenna):
 - DIPÓLE antenna for frequency from 30-1000 MHz or
- HORN antenna for frequency above 1 GHz }.
 (e) Mount the transmitting antenna at 1.5 meter high from the ground plane.
- Use one of the following antenna as a receiving antenna:
 - DIPOLE antenna for frequency from 30-1000 MHz or
 - HORN antenna for frequency above 1 GHz }
- (g) If the DIPOLE antenna is used, tune it's elements to the frequency as specified in the calibration manual.
- (h) Adjust both transmitting and receiving antenna in a VERTICAL polarization.
- (i) Tune the EMI Receivers to the test frequency.
- (j) Lower or raise the test antenna from 1 to 4 meters until the maximum signal level was detected.
 (k) The transmitter was rotated through 360° about a vertical axis until a higher maximum signal was received.
 (l) Lower or raise the test antenna from 1 to 4 meters until the maximum signal level was detected.
- (m) Adjust input signal to the substitution antenna until an equal or a known related level to that detected from the transmitter was obtained in the test receiver.
- (n) Record the power level read from the Average Power Meter and calculate the ERP/EIRP as follows:

Total Correction factor in EMI Receiver # 2 = L2 - L1 + G1

Where: Actual RF Power fed into the substitution antenna port after corrected.

Power output from the signal generator P1: P2: Power measured at attenuator A input P3: Power reading on the Average Power Meter

EIRP: EIRP after correction ERP: ERP after correction

- (o) Adjust both transmitting and receiving antenna in a HORIZONTAL polarization, then repeat step (k) to (o)
- (p) Repeat step (d) to (o) for different test frequency
- (q) Repeat steps (c) to (j) with the substitution antenna oriented in horizontal polarization.
- (r) Actual gain of the EUT's antenna is the difference of the measured EIRP and measured RF power at the RF port. Correct the antenna gain if necessary.

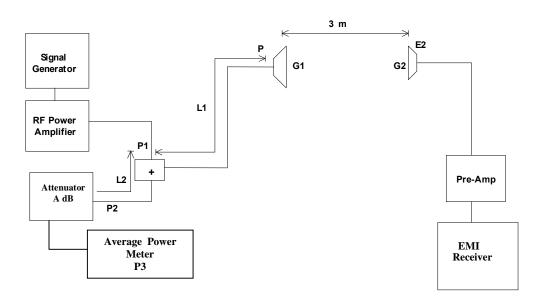
ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

File #: ICOM-382Q FCC90 December 04, 2014

Page 18 of 22


Test Site

Test Antenna

TX

Figure 3

EMI Receiver

8.3. FREQUENCY STABILITY

Refer to FCC @ 2.1055.

- (a) The frequency stability shall be measured with variation of ambient temperature as follows: From -30 to +50 centigrade except that specified in subparagraph (2) & (3) of this paragraph.
- (b) Frequency measurements shall be made at extremes of the specified temperature range and at intervals of not more than 10 centigrade through the range. A period of time sufficient to stabilize all of the components of the oscillator circuit at each temperature level shall be allowed prior to frequency measurement. The shortterm transient effects on the frequency of the transmitter due to keying (except for broadcast transmitters) and any heating element cycling normally occurring at each ambient temperature level also shall be shown. Only the portion or portions of the transmitter containing the frequency determining and stability circuitry need be subjected to the temperature variation test.
- (d) The frequency stability supply shall be measured with variation of primary supply voltage as follows:
 - (1) Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.
 - (2) For hand carried, battery powered equipment, reduce primary supply voltage to the battery operating end point which shall be specified by the manufacturer.
 - (3) The supply voltage shall be measured at the input to the cable normally provide with the equipment, or at the power supply terminals if cables are not normally provided. Effects on frequency of transmitter keying (except for broadcast transmitters) and any heating element cycling at the nominal supply voltage and at each extreme also shall be shown.
- (e) When deemed necessary, the Commission may require tests of frequency stability under conditions in addition to those specifically set out in paragraphs (a), (b), (c) and (d) of this section. (For example, measurements showing the effect of proximity to large metal objects, or of various types of antennas, may be required for portable equipment).

Page 20 of 22

8.4. **EMISSION MASK**

Voice or Digital Modulation Through a Voice Input Port @ 2.1049(c)(i):- The transmitter was modulated by a 2.5 KHz tone signal at an input level 16 dB greater than that required to produce 50% modulation (e.g.: +2.5 KHz peak deviation at 1 KHz modulating frequency). The input level was established at the frequency of maximum response of the audio modulating circuit.

Digital Modulation Through a Data Input Port @ 2.1049(h):- Transmitters employing digital modulation techniques - when modulated by an input signal such that its amplitude and symbol rate represent the maximum rated conditions under which the equipment will be operated. The signal shall be applied through any filter networks, pseudo-random generators or other devices required in normal service. Additionally, the Emission Masks shall be shown for operation with any devices used for modifying the spectrum when such devices are operational at the discretion of the user.

The following EMI Receiver bandwidth shall be used for measurement of Emission Mask/Out-of-Band Emission Measurements:

- (1) For 25 KHz Channel Spacing: RBW = 300 Hz
- For 12.5 KHz or 6.25 KHz Channel Spacings: RBW = 100 Hz (2)

The all cases the Video Bandwidth shall be equal or greater than the measuring bandwidth.

8.5. SPURIOUS EMISSIONS (CONDUCTED)

With transmitter modulation characteristics described in Out-of-Band Emissions measurements @ 2.1049, the transmitter spurious and harmonic emissions were scanned. The spurious and harmonic emissions were measured with the EMI Receiver controls set as RBW = 30 KHz minimum, VBW > RBW and SWEEP TIME = AUTO). The transmitter was operated at a full rated power output, and modulated as follows:

FCC 47 CFR 2.1057 - Frequency spectrum to be investigated: The spectrum was investigated from the lowest radio generated in the equipment up to at least the 10th harmonic of the carrier frequency or to the highest frequency practicable in the present state of the art of measuring techniques, whichever is lower. Particular attention should be paid to harmonics and subharmonics of the carrier frequency. Radiation at the frequencies of multiplier stages should be checked. The

amplitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be reported.

FCC 47 CFR 2.1051 - Spurious Emissions at Antenna Terminal: The radio frequency voltage or powers generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna. Curves or equivalent data shall show the magnitude of the harmonic and other spurious emission that can be detected when the equipment is operated under the conditions specified in 2.1049 as appropriate. The magnitude of spurious emissions, which are attenuated more than 20 dB below the permissible value, need not be specified.

Page 21 of 22

8.6. TRANSIENT FREQUENCY BEHAVIOR

- 1. Connect the transmitter under tests as shown in the above block diagram
- 2. Set the signal generator to the assigned frequency and modulate with a 1 KHz tone at ±12.5 KHz deviation and its output level to be 50 dB below the transmitter rf output at the test receiver end.
- 3. Set the horizontal sweep rate on the storage scope to 10 milliseconds per division and adjust the display to continuously view the 1000 Hz tone from the Demodulator Output Port (DOP) of the Test Receiver. Adjust the vertical scale amplitude control of the scope to display the 1000 Hz at +4 divisions vertical Center at the display.
- 4. Adjust the scope so it will trigger on an increasing magnitude from the RF trigger signal of the transmitter under test when the transmitter was turned on. Set the controls to store the display.
- 5. The output at the DOP, due to the change in the ratio of the power between the signal generator input power and transmitter output power will, because of the capture effect of the test receiver, produce a change in display: For the first part of the sweep it will show the 1 KHz test signal. Then once the receiver's demodulator has been captured by the transmitter power, the display will show the frequency difference from the assigned frequency to the actual transmitter frequency versus time. The instant when the 1 KHz test signal is completely suppressed (including any capture time due to phasing) is considered to be t_{on}. The trace should be maintained within the allowed divisions during the period t₁ and t₂.
- 6. During the time from the end of t₂ to the beginning of t₃ the frequency difference should not exceed the limits set by the FCC in Part 90.214 and the outlined in the Carrier Frequency Stability sections. The allowed limit is equal to FCC frequency tolerance limits specified in FCC 90.213.
- 7. Repeat the above steps when the transmitter was turned off for measuring t₃.

Page 22 of 22