Engineering test report

UHF Transceivers Model No.: IC-F4031S FCC ID: AFJ292702 IC: 202D-292702

Tested For **ICOM Incorporated** 1-1-32, Kamiminami, Hirano-ku Osaka, Japan, 547-0003

In accordance with

SAR (Specific Absorption Rate) Requirements using guidelines established in IEEE C95.1-1992, FCC OET Bulletin 65 (Supplement C) and Industry Canada RSS-102 (Issue 4)

UltraTech's File No.: ICOM-287Q-SAR

This Test report is Issued under the Authority of Tri M. Luu, Professional Engineer, Vice President of Engineering UltraTech Group of Labs

Date: February 1, 2012

Report Prepared by:	Tested by:
Steven Lu	Steven Lu
Issued Date:	Test Dates:
February 1, 2012	December 12, 2011~ Jan. 4, 2012

The results in this Test Report apply only to the sample(s) tested, which has been randomly selected.

UltraTech Group of Labs

3000 Bristol Circle, Oakville, Ontario, Canada, L6H 6G4 Tel.: (905) 829-1570 Fax.: (905) 829-8050 Website: <u>www.ultratech-labs.com</u>, Email: <u>vic@ultratech-labs.com</u>, Email: <u>tri@ultratech-labs.com</u>

FCC

1309

91038

46390-2049

NVLAP Lab Code 200093-0

SL2-IN-E-1119R

Նուրլուրլո

TABLE OF CONTENTS

1.1. SCOPE 1 1.2. REFERENCES 1 EXHIBIT 2. PERFORMANCE ASSESSMENT 2 2.1. CLIENT AND MANUFACTURER INFORMATION 2 2.1. DEVICE UNDER TEST (D.U.T.) DESCRIPTION 3 2.2.1. Photograph of D.U.T. 3 2.2.1. Distorph of D.U.T. 3 2.2.1. LISTOF D.U.T.'S ACCESSORIES: 4 2.3.1. LISTOF D.U.T.'S ACCESSORIES: 4 2.3.4. Liston Chargeable Battery (MN: BP-232WP) 4 2.3.5. Speaker-microphone (MN: BM-160LA). 6 2.3.6. Speaker-microphone (MN: HM-160LA). 6 2.3.7. Speaker-microphone (MN: HM-165LA). 7 2.3.8. Speaker-microphone (MN: HM-151LA). 7 2.3.9. Speaker-microphone (MN: HM-151LA). 7 2.3.1. LOCATION OF TESTES 9	EXHIBIT	1. INTRODUCTION	1
12. REFERENCES 1 EXHIBIT 2. PERFORMANCE ASSESSMENT 2 2.1. CLIENT AND MANUFACTURER INFORMATION 2 2.2. DEVICE UNDER TEST (D.U.T. DESCRIPTION 3 2.3. LIST OF D.U.T.'S ACCESSORIES: 4 2.3.1. Li-ion Chargeable Battery (MN: BP-232WP) 4 2.3.2. Belt-clip (MN: MB-94) 4 2.3.3. Speaker-microphone (MN: HM-1651A) 5 2.3.4. Cut Antenna: FA-SCO2U (Blue Ring) 5 2.3.5. Speaker-microphone (MN: HM-1651A) 6 2.3.6. Speaker-microphone (MN: HM-1551A) 7 2.3.8. Speaker-microphone (MN: HM-1531A) 7 2.3.9. Speaker-microphone (MN: HM-1531A) 7 2.4. SPECIAL CHANGES ON THE D.UT. 'S HARDWARE/SOFTWARE FOR TESTING PURPOSES. 9 2.6. SPECIFIC OPERATING CONDITIONS 9 9 2.6. SPECIFIC OPERATING CONDITIONS 9 2.7. Added Speaker-microphone KN: HM-158LA 10 3.1. LOCATION OF TESTS 10 3.1. LOCATION OF TESTS 10 3.2.1.	1.1.	SCOPE	
2.1. CLIENT AND MANUFACTURER INFORMATION 2 2.2. DEVICE UNDER TEST (D.U.T.) DESCRIPTION 3 2.2.1. Photograph of D.U.T. 3 2.3. LIST OF D.U.T.'S ACCESSORIES: 4 2.3.1. LI-ION Chargeable Battery (M.N: BP-232WP) 4 2.3.2.1. Del-Cip (M.N: MB-94) 4 2.3.3. Antennas: FA-SC72U (Blue Ring) 5 2.3.4. Cut Antenna: FA-SC72U (White Ring) 5 2.3.5. Speaker-microphone (M.N: HM-166LA) 6 2.3.6. Speaker-microphone (M.N: HM-158LA) 7 2.3.7. Speaker-microphone (M.N: HM-158LA) 7 2.3.8. Speaker-microphone (M.N: HM-158LA) 7 2.3.9. Speaker-microphone (M.N: HM-158LA) 7 2.3.9. Speaker-microphone (M.N: HM-158LA) 8 2.4. SPECIAL CHANGES ON THE D.U.T.'S HARDWARE/SOFTWARE FOR TESTING PURPOSES. 9 2.5. ANCILLARY EQUIPMENT 9 9 2.6. SPECIAL CHANGES ON THE D.U.T.'S HARDWARE/SOFTWARE FOR TESTING PURPOSES. 9 2.1. Added Cut Antenna test* 10 3.2.1. Added Speaker-microphone Accessories te			
2.2. DEVICE UNDER TEST (D. UT.) DESCRIPTION 3 2.2.1. Photograph of D.U.T. 3 2.3. LIST OF D.U.T.'S ACCESSORIES: 4 2.3.1. Li-ion Chargeable Battery (M.N: BP-232WP) 4 2.3.2. Seli-clig (MN: MB-94) 4 2.3.3. Antennas: FA-SC72U (Blue Ring) 5 2.3.4. Cut Antenna: FA-SC72U (Blue Ring) 5 2.3.5. Speaker-microphone (MN: HM-166LA) 6 2.3.6. Speaker-microphone (MN: HM-165LA) 7 2.3.8. Speaker-microphone (MN: HM-15SLA) 7 2.3.9. Speaker-microphone (MN: HM-15SLA) 7 2.4. SPECIAL CHANGES ON THE D.U.T.'S HARDWARE/SOFTWARE FOR TESTING PURPOSES 9 2.4. SPECIAL CHANGES ON THE D.U.T.'S HARDWARE/SOFTWARE FOR TESTING PURPOSES 9 2.6. SPECIFIC OPERATING CONDITIONS 9 9 2.6. SPECIFIC OPERATING CONDITIONS 9 9 2.1. LOCATION OF TEST RESULTS 10 3.1. 10 3.2.1. Added da Speaker-microphone Accessories test* 10 3.2.1. Added Speaker-microphone Sories test* 10	EXHIBIT	2. PERFORMANCE ASSESSMENT	2
2.2. DEVICE UNDER TEST (D. UT.) DESCRIPTION 3 2.2.1. Photograph of D.U.T. 3 2.3. LIST OF D.U.T.'S ACCESSORIES: 4 2.3.1. Li-ion Chargeable Battery (M.N: BP-232WP) 4 2.3.2. Seli-clig (MN: MB-94) 4 2.3.3. Antennas: FA-SC72U (Blue Ring) 5 2.3.4. Cut Antenna: FA-SC72U (Blue Ring) 5 2.3.5. Speaker-microphone (MN: HM-166LA) 6 2.3.6. Speaker-microphone (MN: HM-165LA) 7 2.3.8. Speaker-microphone (MN: HM-15SLA) 7 2.3.9. Speaker-microphone (MN: HM-15SLA) 7 2.4. SPECIAL CHANGES ON THE D.U.T.'S HARDWARE/SOFTWARE FOR TESTING PURPOSES 9 2.4. SPECIAL CHANGES ON THE D.U.T.'S HARDWARE/SOFTWARE FOR TESTING PURPOSES 9 2.6. SPECIFIC OPERATING CONDITIONS 9 9 2.6. SPECIFIC OPERATING CONDITIONS 9 9 2.1. LOCATION OF TEST RESULTS 10 3.1. 10 3.2.1. Added da Speaker-microphone Accessories test* 10 3.2.1. Added Speaker-microphone Sories test* 10	2.1.	CLIENT AND MANUFACTURER INFORMATION	2
2.3. LIST OF D'UT, S ACCESSORIES: 4 2.3.1. Li-ion Chargeable Battery (M/N: BP-232WP) 4 2.3.2. Belt-clip (M/N: MB-94) 4 2.3.3. Antennas: FA-SCT2U (Blue Ring) 5 2.3.4. Cut Antenna: FA-SCTUU (White Ring) 5 2.3.5. Speaker-microphone (M/N: HM-168LWP) 6 2.3.6. Speaker-microphone (M/N: HM-159IA) 7 2.3.7. Speaker-microphone (M/N: HM-158IA) 7 2.3.8. Speaker-microphone (M/N: HM-153IA) 7 2.3.9. Speaker-microphone (M/N: HM-153IA) 7 2.4. SPECIAL CHANGES ON THE D.U.T. SHARDWARE/SOFTWARE FOR TESTING PURPOSES 9 2.5. ANCILLARY EQUIPMENT 9 2.6. SPECIFIC OPERATING CONDITIONS 9 2.7. Added Speaker-microphone Accessories test* 10 3.1. LOCATION OF TEST RESULTS 10 3.1. LOCATION OF TEST RESULTS 10 3.2. APPLICABILITY & SUMMARY OF SAR RESULTS 10 3.2.1. Added Speaker-microphone Raccessories test* 11 3.3.1. Body Configuration Results for Cut Antenna (FA-SC61UC) 13 3.3.2. Head Configuration Results for Cut Antenna (FA-SC61UC) 13 3.3.3. Body Configuration Results for Cut Antenna (FA-SC61UC) 13 3.3.3. B			
2.3.1 Li-ion Chargeable Battery (M/N: BP-232WP) 4 2.3.2 Belt-clip (M/N: MB-94) 4 2.3.3 Antennas: FA-SC72U (Blue Ring) 5 2.3.4 Cut Antenna: FA-SC71U (Blue Ring) 5 2.3.5 Speaker-microphone (M/N: HM-1681WP) 6 2.3.6 Speaker-microphone (M/N: HM-1501A) 6 2.3.7 Speaker-microphone (M/N: HM-1591A) 7 2.3.8 Speaker-microphone (M/N: HM-153LA) 7 2.3.9 Speaker-microphone (M/N: HM-153LA) 7 2.3.9 Speaker-microphone (M/N: HM-153LA) 7 2.4 SPECIAL CHANGES ON THE D.U.T'S HARDWARE/SOFTWARE FOR TESTING PURPOSES 9 2.5 ANCILLARY EQUIPMENT 9 9 2.6 SPECIFIC OPERATING CONDITIONS 9 9 2.6 SPECIFIC OPERATING CONDITIONS 9 10 3.1 LOCATION OF TESTS 10 10 3.2.1 Added Cut Antenna test* 11 13. 3.3.1 Body Configuration Results for Cut Antenna (FA-SC61UC) 13 13 3.3.1 Body Configuration Results for Cut Antenna (FA-SC61UC) 13	2.2.1	Photograph of D.U.T.	
2.3.2. Belt-clip (M/N: HB-94) 4 2.3.3. Amemas: FA-SC72U (Blue Ring) 5 2.3.4. Cut Antenna: FA-SC1U (White Ring) 5 2.3.5. Speaker-microphone (M/N: HM-168LWP) 6 2.3.6. Speaker-microphone (M/N: HM-168LWP) 6 2.3.7. Speaker-microphone (M/N: HM-159LA) 7 2.3.8. Speaker-microphone (M/N: HM-159LA) 7 2.3.9. Speaker-microphone (M/N: HM-153LA) 8 2.3.9. Speaker-microphone (M/N: HM-153LA) 8 2.3.9. Speaker-microphone (M/N: HM-153LA) 8 2.4. SPECIAL CHANGES ON THE D.U.T.'S HARDWARE/SOFTWARE FOR TESTING PURPOSES 9 2.5. SPECIFIC OPERATING CONDITIONS 9 2.6. SPECIFIC OPERATING CONDITIONS 9 2.6. SPECIFIC OPERATING CONDITIONS 9 2.7. Added Speaker-microphone Accessories test* 10 3.1. LOCATION OF TESTS 10 3.2. Added Cut Antenna tests 10 3.2.1. Added Speaker-microphones: Antennas (FA-SC72U) 12 3.3.1. Body Configuration Results for Cut Antenna (FA-SC61UC)	2.3.		
2.3.3. Antennas: FA-SC2U (Blue Ring) 5 2.3.4. Cut Antenna: FA-SC6UC (While Ring) 5 2.3.5. Speaker-microphone (M/N: HM-168LWP) 6 2.3.6. Speaker-microphone (M/N: HM-168LWP) 6 2.3.7. Speaker-microphone (M/N: HM-158LA) 7 2.3.8. Speaker-microphone (M/N: HM-158LA) 7 2.3.9. Speaker-microphone (M/N: HM-158LA) 7 2.3.9. Speaker-microphone (M/N: HM-158LA) 7 2.4. SPECIAL CHANGES ON THE D.U.T.'S HARDWARE/SOFTWARE FOR TESTING PURPOSES. 9 2.5. ANCILLARY EQUIPMENT 9 9 2.6. SPECIFIC OPERATING CONDITIONS 9 9 2.6. SPECIFIC OPERATING CONDITIONS 9 10 3.1. LOCATION OF TESTS 10 10 3.2. Added Speaker-microphone Accessories test* 10 3.2.1. Added Cut Antenna test* 11 3.3.1. Body Configuration Results for Cut Antenna (FA-SC61UC) 12 3.3.1. Body Configuration Results for Cut Antenna (FA-SC61UC) 14 EXHIBIT 4. SAR SYSTEM CONFIGURATION 15	2.3.1		
2.3.4. Cut Antenna: FA-SC61UC (White Ring) 5 2.3.5. Speaker-microphone (MN: HM-166LA) 6 2.3.6. Speaker-microphone (MN: HM-166LA) 7 2.3.8. Speaker-microphone (MN: HM-159LA) 7 2.3.8. Speaker-microphone (MN: HM-153LA) 7 2.3.9. Speaker-microphone (MN: HM-153LA) 7 2.3.9. Speaker-microphone (MN: HM-153LA) 8 2.4. SPECIAL CHANGES ON THE D.U.T.'S HARDWARE/SOFTWARE FOR TESTING PURPOSES. 9 2.5. ANCILLARY EQUIPMENT 9 2.6. SPECIFIC OPERATING CONDITIONS 99 EXHIBIT 3. SUMMARY OF TEST RESULTS 10 3.1. LOCATION OF TESTS 10 3.2. Added Speaker-microphone Accessories test* 10 3.2.1. Added Speaker-microphone Accessories test* 11 3.3. SudMARY OF MEASUREMENT RESULTS 10 3.3.1. Body Configuration Results for Cut Antenna (FA-SC61UC) 13 3.3.3. Body Configuration Results for Cut Antenna (FA-SC61UC) 13 3.3.3. Body Configuration Results for Cut Antenna (FA-SC61UC) 14 EXHIBIT 4. <td></td> <td></td> <td></td>			
2.3.5. Speaker-microphone (M/N: HM-168LWP) 6 2.3.6. Speaker-microphone (M/N: HM-166LA) 6 2.3.7. Speaker-microphone (M/N: HM-159LA) 7 2.3.8. Speaker-microphone (M/N: HM-158LA) 7 2.3.9. Speaker-microphone (M/N: HM-153LA) 7 2.3.9. Speaker-microphone (M/N: HM-153LA) 8 2.4. SPECIAL CHANGES ON THE D.U.T.'S HARDWARE/SOFTWARE FOR TESTING PURPOSES 9 2.5. ANCILLARY EQUIPMENT 9 9 2.6. SPECIFIC OPERATING CONDITIONS 10 3.1. DCATION OF TEST RESULTS 10 3.2.			
2.3.6. Špeaker-microphone (M/N: HM-150LA)			
2.3.7. Špeaker-microphone (M/N: HM-159LA) 7 2.3.8. Speaker-microphone (M/N: HM-158LA) 7 2.3.9. Speaker-microphone (M/N: HM-153LA) 8 2.4. SPECIAL CHANGES ON THE D.U.T.'S HARDWARE/SOFTWARE FOR TESTING PURPOSES. 9 2.5. ANCILLARY EQUIPMENT 9 2.6. SPECIFIC OPERATING CONDITIONS 90 EXHIBIT 3. SUMMARY OF TEST RESULTS 10 3.1. LOCATION OF TESTS 10 3.2. APPLICABILITY & SUMMARY OF SAR RESULTS 10 3.2.1. Added Speaker-microphone Accessories test* 10 3.2.1. Added Cut Antenna test* 11 3.3.1. Body Configuration Results for Added Speaker-microphones: Antennas (FA-SC72U) 12 3.3.1. Body Configuration Results for Cut Antenna (FA-SC61UC) 13 3.3.3. Body Configuration Results for Cut Antenna (FA-SC61UC) 14 EXHIBIT 4. SAR SYSTEM CONFIGURATION 15 4.1. DASY5 System Specification 15 4.1.2. DASY5 SystEM Specification 15 4.1.3. SAR TEST PHANTOMS 19 4.2.2. ELI 4.0 Ph			
2.3.8. Speaker-microphone (M/N: HM-158LA) 7 2.3.9. Speaker-microphone (MN: HM-153LA) 8 2.4. SPECIAL CHANGES ON THE D.U.T.'S HARDWARE/SOFTWARE FOR TESTING PURPOSES 9 2.5. ANCILLARY EQUIPMENT 9 2.6. SPECIPC OPERATING CONDITIONS 9 2.6. SPECIPC OPERATING CONDITIONS 9 EXHIBIT 3. SUMMARY OF TEST RESULTS 10 3.1. LOCATION OF TESTS 10 3.2. APPLICABILITY & SUMMARY OF SAR RESULTS 10 3.2.1. Added Speaker-microphone Accessories test* 10 3.2.2. Added Cut Antenna test* 11 3.3. Body Configuration Results for Added Speaker-microphones: Antennas (FA-SC72U) 12 3.3.1. Body Configuration Results for Cut Antenna (FA-SC61UC) 13 3.3.3. Body Configuration Results for Cut Antenna (FA-SC61UC) 14 EXHIBIT 4. SAR SYSTEM CONFIGURATION 15 4.1. DASYS System OVERVIEW 15 4.1. DASYS System OVERVIEW 15 4.1.2. DASYS System OVERVIEW 19 4.2.1. DASYS System Specifi			
2.3.9. Speaker-microphone (MN: HM-153LA). 8 2.4. SPECIAL CHANGES ON THE D.U.T.'S HARDWARE/SOFTWARE FOR TESTING PURPOSES. 9 2.5. ANCILLARY EQUIPMENT 9 2.6. SPECIFIC OPERATING CONDITIONS 9 EXHIBIT 3. SUMMARY OF TEST RESULTS 10 3.1. LOCATION OF TESTS 10 3.2. APPLICABILITY & SUMMARY OF SAR RESULTS 10 3.2.1. Added Speaker-microphone Accessories test* 10 3.2.1. Added Supermicrophone Accessories test* 11 3.3. SUMMARY OF MEASUREMENT RESULTS 10 3.2.2. Added Configuration Results for Added Speaker-microphones: Antennas (FA-SC72U) 12 3.3.1. Body Configuration Results for Cut Antenna (FA-SC61UC) 12 3.3.3. Body Configuration Results for Cut Antenna (FA-SC61UC) 14 EXHIBIT 4. SAR SYSTEM CONFIGURATION 15 4.1. DASY5 System OVERVIEW 15 4.1.1. DASY5 System Specification 15 4.1.2. DASY5 SYSTEM block diagram 18 4.2.2. SAR TSYTPHANTOMS 19 4.2.1. SAR TSYTPH			
2.4. SPECIAL CHANGES ON THE D.U.T.'S HARDWARE/SOFTWARE FOR TESTING PURPOSES. 9 2.5. ANCILLARY EQUIPMENT 9 2.6. SPECIFIC OPERATING CONDITIONS. 9 EXHIBIT 3. SUMMARY OF TEST RESULTS 10 3.1. LOCATION OF TESTS 10 3.2. APPLICABLITY & SUMMARY OF SAR RESULTS. 10 3.2.1. Added Speaker-microphone Accessories test* 10 3.2.2. Added Cut Antenna test* 11 3.3. Body Configuration Results for Added Speaker-microphones: Antennas (FA-SC72U) 12 3.3.1. Body Configuration Results for Cut Antenna (FA-SC61UC) 13 3.3.3. Body Configuration Results for Cut Antenna (FA-SC61UC) 14 EXHIBIT 4. SAR SYSTEM CONFIGURATION 15 4.1. DASYS System Specification 15 4.1.1. DASYS System Specification 18 4.2. SAR TEST PHANTOMS 19 4.2.1. SAM Twin Phantom 19 4.2.2. ELI 4.0 Phantom 19 4.2.2. ELI 4.0 Phantom 20 5.1.3. SAR DATA ACQUISITION METHODOLOGY 20			
2.5. ANCILLARY EQUIPMENT 9 2.6. SPECIFIC OPERATING CONDITIONS 9 EXHIBIT 3. SUMMARY OF TEST RESULTS 10 3.1. LOCATION OF TESTS 10 3.2. APPLICABILITY & SUMMARY OF SAR RESULTS 10 3.2.1. Added Speaker-microphone Accessories test* 10 3.2.2. Added Cut Antenna test* 10 3.3.3. SUMMARY OF MEASUREMENT RESULTS 12 3.3.1. Body Configuration Results for Cut Antenna (FA-SC61UC) 12 3.3.2. Head Configuration Results for Cut Antenna (FA-SC61UC) 13 3.3.3. Body Configuration Results for Cut Antenna (FA-SC61UC) 14 EXHIBIT 4. SAR SYSTEM CONFIGURATION 15 4.1. DASY5 System OVERVIEW 15 4.1.1. DASY5 System Specification 15 4.1.2. DASY5 System Specification 19 4.2.3. SAR MTwin Phantom 19 4.2.4.0 Phantom 19 4.2.2. ELI 4.0 Phantom 20 5.1.3. SAR MASUREMENT PROCEDURE 20 5.1.4. Unterpolation, Extrapolation and Detection of Maxima. 23 5.1.3. Evaluation Errors 23 5.1.3. Evaluation Errors 23 5.1.3. Evaluation Errors 23			
2.6. SPECIFIC OPERATING CONDITIONS 9 EXHIBIT 3. SUMMARY OF TEST RESULTS 10 3.1. LOCATION OF TESTS 10 3.2. APPLICABILITY & SUMMARY OF SAR RESULTS 10 3.2.1. Added Speaker-microphone Accessories test* 10 3.2.1. Added Cut Antenna test* 10 3.2.2. Added Cut Antenna test* 11 3.3.3. Body Configuration Results for Added Speaker-microphones: Antennas (FA-SC72U) 12 3.3.1. Body Configuration Results for Cut Antenna (FA-SC61UC) 13 3.3.3. Body Configuration Results for Cut Antenna (FA-SC61UC) 13 3.3.3. Body Configuration Results for Cut Antenna (FA-SC61UC) 14 EXHIBIT 4. SAR SYSTEM CONFIGURATION 15 4.1. DASY5 System Specification 15 4.1. DASY5 SAR SYSTEM block diagram 18 4.2. SAR TEST PHANTOMS 19 4.2.1. SAM Twin Phantom 19 4.2.2. ELI 4.0 Phantom 19 4.2.3. SAR DATA ACQUISITION METHODOLOGY 20 5.1.4. Interpolation and Detection of Maxima 2			
EXHIBIT 3.SUMMARY OF TEST RESULTS103.1.LOCATION OF TESTS103.2.APPLICABILITY & SUMMARY OF SAR RESULTS103.2.1.Added Speaker-microphone Accessories test*103.2.2.Added Cut Antenna test*113.3.SUMMARY OF MEASUREMENT RESULTS123.3.1.Body Configuration Results for Added Speaker-microphones: Antennas (FA-SC72U)123.3.2.Head Configuration Results for Cut Antenna (FA-SC61UC)133.3.3.Body Configuration Results for Cut Antenna (FA-SC61UC)14EXHIBIT 4.SAR SYSTEM CONFIGURATION154.1.DASY5 System OVERVIEW154.1.1.DASY5 System Specification154.1.2.DASY5 System Specification154.1.3.SAR TEST PHANTOMS194.2.4.SAR TEST PHANTOMS194.2.1.SAR Mathematication and Detection of Maxima205.1.3.Evaluation Errors23EXHIBIT 6.MEASUREMENT RESURE236.1.TEST CONFIGURATIONS25			
3.1. LOCATION OF TESTS 10 3.2. APPLICABILITY & SUMMARY OF SAR RESULTS 10 3.2.1. Added Speaker-microphone Accessories test* 10 3.2.2. Added Cut Antenna test* 11 3.3. SUMMARY OF MEASUREMENT RESULTS 11 3.3. Body Configuration Results for Added Speaker-microphones: Antennas (FA-SC72U) 12 3.3.1. Body Configuration Results for Cut Antenna (FA-SC61UC) 13 3.3.3. Body Configuration Results for Cut Antenna (FA-SC61UC) 14 EXHIBIT 4. SAR SYSTEM CONFIGURATION 15 4.1. DASY5 System OVERVIEW. 15 4.1.1. DASY5 System Specification 15 4.1.2. DASY5 SAR SYSTEM block diagram. 18 4.2.3. SAR TEST PHANTOMS. 19 4.2.4. SAR MEASUREMENT PROCEDURE. 19 4.2.5. ELI 4.0 Phantom 19 4.2.6. ELI 4.0 Phantom 20 5.1.1. Interpolation, Extrapolation and Detection of Maxima 23 5.1.2. Averaging and Determination of Spatial Peak SAR 23 5.1.3. Evaluation Errors 23 <td></td> <td></td> <td></td>			
3.2. APPLICABILITY & SUMMARY OF SAR RESULTS 10 3.2.1. Added Speaker-microphone Accessories test* 10 3.2.2. Added Cut Antenna test* 11 3.3. SUMMARY OF MEASUREMENT RESULTS 12 3.3.1. Body Configuration Results for Added Speaker-microphones: Antennas (FA-SC72U) 12 3.3.2. Head Configuration Results for Cut Antenna (FA-SC61UC) 13 3.3.3. Body Configuration Results for Cut Antenna (FA-SC61UC) 14 EXHIBIT 4. SAR SYSTEM CONFIGURATION 15 4.1. DASY5 System OVERVIEW 15 4.1.1. DASY5 System Specification 15 4.1.2. DASY5 System Specification 15 4.1.3. SAM Twin Phantom 19 4.2.4.3 SAR TEST PHANTOMS 19 4.2.1. SAM Twin Phantom 19 4.2.2. ELI 4.0 Phantom 19 4.2.1. SAR MEASUREMENT PROCEDURE 20 5.1.1. Interpolation, Extrapolation and Detection of Maxima 22 5.1.2. Averaging and Determination of Spatial Peak SAR 23 5.1.3. Evaluation Errors 23 5.1.3. Evaluation Errors 23 5.1.4. THEPOLATION S. ETST DATA 25 6.1. TEST CONFIGURATIONS 25			
3.2.1. Added Speaker-microphone Accessories test*			
3.2.2. Added Cut Antenna test*			
3.3.SUMMARY OF MEASUREMENT RESULTS123.3.1.Body Configuration Results for Added Speaker-microphones: Antennas (FA-SC72U)123.3.2.Head Configuration Results for Cut Antenna (FA-SC61UC)133.3.3.Body Configuration Results for Cut Antenna (FA-SC61UC)14EXHIBIT 4.SAR SYSTEM CONFIGURATION154.1.DASY5 System OVERVIEW154.1.DASY5 System OVERVIEW154.1.1.DASY5 System Specification154.1.2.DASY5 SAR SYSTEM block diagram184.2.SAR Test PHANTOMS194.2.1.SAM Twin Phantom194.2.2.ELI 4.0 Phantom194.2.3.SAR DATA ACQUISITION METHODOLOGY205.1.SAR MEASUREMENT PROCEDURE205.1.1.Interpolation, Extrapolation and Detection of Maxima225.1.2.Averaging and Determination of Spatial Peak SAR235.1.3.Evaluation Errors23EXHIBIT 6.MEASUREMENTS, EXAMINATIONS & TEST DATA256.1.TEST CONFIGURATIONS25			
3.3.1.Body Configuration Results for Added Speaker-microphones: Antennas (FA-SC72U)123.3.2.Head Configuration Results for Cut Antenna (FA-SC61UC)133.3.3.Body Configuration Results for Cut Antenna (FA-SC61UC)14EXHIBIT 4.SAR SYSTEM CONFIGURATION154.1.DASY5 System OVERVIEW154.1.DASY5 System OVERVIEW154.1.DASY5 System Specification154.1.DASY5 System block diagram164.2.SAR TEST PHANTOMS194.2.1.SAM Twin Phantom194.2.2.ELI 4.0 Phantom194.2.2.ELI 4.0 Phantom205.1.SAR MEASUREMENT PROCEDURE205.1.1.Interpolation, Extrapolation and Detection of Maxima225.1.2.Averaging and Determination of Spatial Peak SAR235.1.3.Evaluation Errors236.1.TEST CONFIGURATIONS25			
3.3.2.Head Configuration Results for Cut Antenna (FA-SC61UC)133.3.3.Body Configuration Results for Cut Antenna (FA-SC61UC)14EXHIBIT 4.SAR SYSTEM CONFIGURATION154.1.DASY5 System OVERVIEW154.1.DASY5 System Specification154.1.1.DASY5 System Specification154.1.2.DASY5 SAR SYSTEM block diagram184.2.SAR TEST PHANTOMS194.2.1.SAM Twin Phantom194.2.2.ELI 4.0 Phantom194.2.2.ELI 4.0 Phantom205.1.SAR MEASUREMENT PROCEDURE205.1.1.Interpolation, Extrapolation and Detection of Maxima225.1.2.Averaging and Determination of Spatial Peak SAR235.1.3.Evaluation Errors23EXHIBIT 6.MEASUREMENTS, EXAMINATIONS & TEST DATA256.1.TEST CONFIGURATIONS25			
3.3.3.Body Configuration Results for Cut Antenna (FA-SC61UC).14EXHIBIT 4.SAR SYSTEM CONFIGURATION154.1.DASY5 System OVERVIEW.154.1.1.DASY5 System Specification154.1.2.DASY5 SAR SYSTEM block diagram.184.2.SAR TEST PHANTOMS194.2.1.SAM Twin Phantom194.2.2.ELI 4.0 Phantom194.2.2.ELI 4.0 Phantom205.1.SAR MEASUREMENT PROCEDURE205.1.1.Interpolation, Extrapolation and Detection of Maxima.225.1.2.Averaging and Determination of Spatial Peak SAR235.1.3.Evaluation Errors23EXHIBIT 6.MEASUREMENTS, EXAMINATIONS & TEST DATA256.1.TEST CONFIGURATIONS25			
EXHIBIT 4.SAR SYSTEM CONFIGURATION154.1.DASY5 System OVERVIEW154.1.1.DASY5 System Specification154.1.2.DASY5 SAR SYSTEM block diagram184.2.SAR TEST PHANTOMS194.2.1.SAM Twin Phantom194.2.2.ELI 4.0 Phantom194.2.2.ELI 4.0 Phantom195.1.SAR DATA ACQUISITION METHODOLOGY205.1.SAR MEASUREMENT PROCEDURE205.1.1.Interpolation, Extrapolation and Detection of Maxima225.1.2.Averaging and Determination of Spatial Peak SAR235.1.3.Evaluation Errors23EXHIBIT 6.MEASUREMENTS, EXAMINATIONS & TEST DATA256.1.TEST CONFIGURATIONS25			
4.1. DASY5 System OVERVIEW	3.3.3		
4.1.1.DASY5 System Specification154.1.2.DASY5 SAR SYSTEM block diagram184.2.SAR TEST PHANTOMS194.2.1.SAM Twin Phantom194.2.2.ELI 4.0 Phantom194.2.2.ELI 4.0 Phantom205.1.SAR DATA ACQUISITION METHODOLOGY205.1.SAR MEASUREMENT PROCEDURE205.1.1.Interpolation, Extrapolation and Detection of Maxima225.1.2.Averaging and Determination of Spatial Peak SAR235.1.3.Evaluation Errors23EXHIBIT 6.MEASUREMENTS, EXAMINATIONS & TEST DATA256.1.TEST CONFIGURATIONS25			
4.1.2.DASY5 SAR SYSTEM block diagram.184.2.SAR TEST PHANTOMS.194.2.1.SAM Twin Phantom194.2.2.ELI 4.0 Phantom.194.2.2.ELI 4.0 Phantom205.1.SAR DATA ACQUISITION METHODOLOGY205.1.SAR MEASUREMENT PROCEDURE.205.1.1.Interpolation, Extrapolation and Detection of Maxima.225.1.2.Averaging and Determination of Spatial Peak SAR235.1.3.Evaluation Errors236.1.TEST CONFIGURATIONS25	4.1.		
4.2. SAR TEST PHANTOMS194.2.1. SAM Twin Phantom194.2.2. ELI 4.0 Phantom194.2.2. ELI 4.0 Phantom19 EXHIBIT 5. SAR DATA ACQUISITION METHODOLOGY205.1. SAR MEASUREMENT PROCEDURE205.1.1. Interpolation, Extrapolation and Detection of Maxima225.1.2. Averaging and Determination of Spatial Peak SAR235.1.3. Evaluation Errors23 EXHIBIT 6. MEASUREMENTS, EXAMINATIONS & TEST DATA256.1. TEST CONFIGURATIONS25			
4.2.1.SAM Twin Phantom194.2.2.ELI 4.0 Phantom19EXHIBIT 5.SAR DATA ACQUISITION METHODOLOGY205.1.SAR MEASUREMENT PROCEDURE205.1.1.Interpolation, Extrapolation and Detection of Maxima225.1.2.Averaging and Determination of Spatial Peak SAR235.1.3.Evaluation Errors23EXHIBIT 6.MEASUREMENTS, EXAMINATIONS & TEST DATA256.1.TEST CONFIGURATIONS25		0	
4.2.2.ELI 4.0 Phantom19EXHIBIT 5.SAR DATA ACQUISITION METHODOLOGY205.1.SAR MEASUREMENT PROCEDURE205.1.1.Interpolation, Extrapolation and Detection of Maxima225.1.2.Averaging and Determination of Spatial Peak SAR235.1.3.Evaluation Errors236.1.TEST CONFIGURATIONS25			
EXHIBIT 5.SAR DATA ACQUISITION METHODOLOGY205.1.SAR MEASUREMENT PROCEDURE.205.1.1.Interpolation, Extrapolation and Detection of Maxima.225.1.2.Averaging and Determination of Spatial Peak SAR235.1.3.Evaluation Errors236.1.TEST CONFIGURATIONS25			
5.1. SAR MEASUREMENT PROCEDURE. 20 5.1.1. Interpolation, Extrapolation and Detection of Maxima. 22 5.1.2. Averaging and Determination of Spatial Peak SAR 23 5.1.3. Evaluation Errors 23 EXHIBIT 6. MEASUREMENTS, EXAMINATIONS & TEST DATA 25 6.1. TEST CONFIGURATIONS 25	4.2.2	P. ELI 4.0 Phantom	19
5.1.1.Interpolation, Extrapolation and Detection of Maxima.225.1.2.Averaging and Determination of Spatial Peak SAR235.1.3.Evaluation Errors23EXHIBIT 6.MEASUREMENTS, EXAMINATIONS & TEST DATA256.1.TEST CONFIGURATIONS25	EXHIBIT	5. SAR DATA ACQUISITION METHODOLOGY	20
5.1.2. Averaging and Determination of Spatial Peak SAR 23 5.1.3. Evaluation Errors 23 EXHIBIT 6. MEASUREMENTS, EXAMINATIONS & TEST DATA 25 6.1. TEST CONFIGURATIONS 25	5.1.	SAR MEASUREMENT PROCEDURE	
5.1.2. Averaging and Determination of Spatial Peak SAR 23 5.1.3. Evaluation Errors 23 EXHIBIT 6. MEASUREMENTS, EXAMINATIONS & TEST DATA 25 6.1. TEST CONFIGURATIONS 25			
EXHIBIT 6.MEASUREMENTS, EXAMINATIONS & TEST DATA256.1.TEST CONFIGURATIONS25	5.1.2	2. Averaging and Determination of Spatial Peak SAR	
6.1. TEST CONFIGURATIONS	5.1.3		
	EXHIBIT	6. MEASUREMENTS, EXAMINATIONS & TEST DATA	25
	61	TEST CONFIGURATIONS	25
	0.2.		20

ULTRATECH GROUP OF LABS

File #: ICOM-287Q-SAR February 1, 2012

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

FCC ID: AFJ292702, IC: 202D-292702

6.2.1.	Equipment Configuration	
6.2.2.	Exercising Equipment	
	OGRAPHS OF TISSUE DEPTH	
	TOGRAPHS OF D.U.T. POSITION	
6.4.1.	Body Configuration for Added Speaker-microphone: Antennas (FA-SC72U)	
6.4.2.	Head Configuration for Added Cut Antenna (FA-SC61UC)	
6.4.3.	Body Configuration for Added Cut Antenna (FA-SC61UC)	
6.5. SAR	MEASUREMENT DATA	
6.5.1.	Body Configuration Results for Added Speaker-microphones: Antenna (FA-SC72U)	
6.5.2.	Head Configuration Result for Cut Antenna (FA-SC61UC)	
6.5.3.	Body Configuration Result for Cut Antenna (FA-SC61UC)	
EXHIBIT 7.	SAR MEASUREMENT SYSTEM VERIFICATION	107
7.1. Stat	NDARD SOURCE	
7.2. Stat	NDARD SOURCE INPUT POWER MEASUREMENT	
7.3. Syst	em Validation Procedure	
7.4. VER	FICATION RESULTS	109
7.4.1.	Reference SAR values at 450 MHz*	
7.4.2.	Verification at 450 MHz	
EXHIBIT 8.	D.U.T. POWER MEASUREMENT	
8.1.1.	RF conducted output power measurement	
8.1.2.	SAR drift measurement	
EXHIBIT 9.	TISSUE DIELECTRIC PARAMETER CALIBRATION	
	ILATED TISSUE	
9.2. MEA	SUREMENT OF ELECTRICAL CHARACTERISTICS OF SIMULATED TISSUE	
9.2.1.	Equipment set-up	
	Measurement procedure	
9.3. Simu	ILATED TISSUE MEASUREMENT RESULTS	
9.3.1.	450 MHz Brain Tissue	
9.3.2.	450 MHz Muscle Tissue	
EXHIBIT 10.	SAR MEASUREMENT UNCERTAINTY	
10.1. M	EASUREMENT UNCERTAINTY EVALUATION FOR SAR TEST	
EXHIBIT 11.	ADDITIONAL TEST INSTRUMENTS LIST	
EXHIBIT 12.	PROBE CALIBRATION CERTIFICATE	
EXHIBIT 13.	VALIDATION DIPOLE CALIBRATION CERTIFICATE	

ULTRATECH GROUP OF LABS

File #: ICOM-287Q-SAR February 1, 2012

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

EXHIBIT 1. INTRODUCTION

1.1. SCOPE

Reference:	SAR (Specific Absorption Rate) Requirements					
	IEEE C95.1-1992,					
	FCC OET Bulletin 65 (Supplement C Edition 01-01)					
	Industry Canada RSS-102 (Issue 4).					
Title	Safety Levels with respect to human exposure to Radio Frequency Electromagnetic Fields					
	Guideline for Evaluating the Environmental Effects of Radio Frequency Radiation					
Purpose of Test:	To verify compliance with Federal regulated SAR requirements in Canada and the US.					
Method of Measurements:	IEEE C95.1-1992, FCC OET Bulletin 65 (Supplement C Edition 01-01) and Industry Canada					
	RSS-102 (Issue 4)					
Device Category	Portable					
Exposure Category	Occupational/Controlled					

1.2. REFERENCES

The methods and procedures used for the measurements contained in this report are details in the following reference standards:

Publications	Year	Title		
IEEE Std. 1528	2003	Draft Recommended practice for determining the Peak Spatial-Average Specific Absorption rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques.		
Industry Canada RSS-102	2010	"Evaluation Procedure for Mobile and Portable Radio Transmitters with respect to Health Canada's Safety Code 6 for Exposure of Humans to Radio Frequency Fields"		
NCRP Report No.86	1986	"Biological Effects and Exposure Criteria for radio Frequency Electromagnetic Fields"		
FCC OET Bulletin 65	2001	"Evaluating Compliance with FCC Guidelines for Human Exposure to radio Frequency Fields"		
ANSI/IEEE C95.3	2002	"Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave"		
ANSI/IEEE C95.1	2005	"Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3kHz to 300GHz"		
IEC 62209-2	2010	Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures – Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)		
Health Canada's Safety Code 6	2009	Limits of Human Exposure to Radiofrequency Electromagnetic Energy in the Frequency Range from 3 kHz to 300 GHz		

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com File #: ICOM-287Q-SAR February 1, 2012

EXHIBIT 2. PERFORMANCE ASSESSMENT

2.1. **CLIENT AND MANUFACTURER INFORMATION**

APPLICANT:		
Name:	ICOM Incorporated	
Address:	-1-32, Kamiminami,	
	Hirano-ku, Osaka	
	Japan, 547-0003	
Contact Person:	Mr. Takayuki Watanabe	
	Phone #: +81-66-793-5302	
	Fax #: +81-66-793-0013	
	Email Address: <u>export@icom.co.jp</u>	

MANUFACTURER:		
Name:	ICOM Incorporated	
Address:	1-32, Kamiminami,	
	Hirano-ku, Osaka	
	Japan, 547-0003	
Contact Person:	Mr. Takayuki Watanabe	
	Phone #: +81-66-793-5302	
	Fax #: +81-66-793-0013	
	Email Address: <u>export@icom.co.jp</u>	

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com File #: ICOM-287Q-SAR February 1, 2012

DEVICE UNDER TEST (D.U.T.) DESCRIPTION 2.2.

Trade Name	ICOM Inc.
Type/Model Number	IC-F4031S
Type of Equipment	Licensed Non-Broadcast Transceiver
Serial Number	7300001
Transmitter Frequency Band	450 ~ 512 MHz
Rated RF Power	4 Watts conducted (High)
Modulation Employed	FM
Antenna	¹ / ₄ Helical whip antenna (M/N: FA-SC72U, 470-520 MHz, -1.9dBi, blue ring)
	¹ / ₄ Helical whip cut antenna (M/N: FA-SC61UC, 360-520 MHz, -1.3dBi, white ring)
Power Supply	Rechargeable Li-Ion battery pack (M/N: BP-232WP, 7.4 V, 2250mAh)
Primary User Functions of D.U.T.	UHF Transceivers

The following is the information provided by the applicant.

2.2.1. Photograph of D.U.T

< D.U.T.'s front and rear view without battery and antenna >

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com File #: ICOM-287Q-SAR February 1, 2012

2.3. LIST OF D.U.T.'S ACCESSORIES:

2.3.1. Li-ion Chargeable Battery (M/N: BP-232WP)

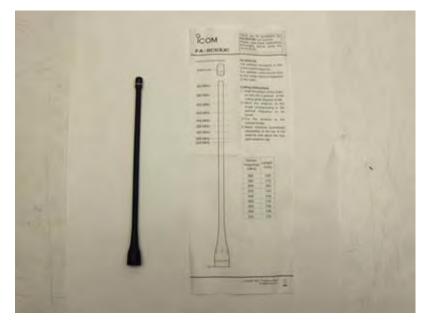
< BP-265 Li-ion Battery >

Belt-clip (M/N: MB-94) 2.3.2.

< MB-94 Belt-clip >

ULTRATECH GROUP OF LABS

•


3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com File #: ICOM-287Q-SAR February 1, 2012

2.3.3. Antennas: FA-SC72U (Blue Ring)

< FA-SC72U (Blue Ring) >

2.3.4. Cut Antenna: FA-SC61UC (White Ring)

< FA-SC61UC cut antenna (White Ring) >

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com File #: ICOM-287Q-SAR February 1, 2012

2.3.5. Speaker-microphone (M/N: HM-168LWP)

< HM-168LWP Speaker-Microphone >

2.3.6. Speaker-microphone (M/N: HM-166LA)

< HM-166LA Speaker-Microphone >

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com File #: ICOM-287Q-SAR February 1, 2012

2.3.7. Speaker-microphone (M/N: HM-159LA)

< HM-159LA Speaker-Microphone >

2.3.8. Speaker-microphone (M/N: HM-158LA)

< HM-158LA Speaker-Microphone >

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com File #: ICOM-287Q-SAR February 1, 2012

2.3.9. Speaker-microphone (MN: HM-153LA)

< HM-153LA Speaker-Microphone >

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com File #: ICOM-287Q-SAR February 1, 2012

2.4. SPECIAL CHANGES ON THE D.U.T.'S HARDWARE/SOFTWARE FOR TESTING PURPOSES

N/A

2.5. ANCILLARY EQUIPMENT

N/A

2.6. SPECIFIC OPERATING CONDITIONS

N/A

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u> File #: ICOM-287Q-SAR February 1, 2012

EXHIBIT 3. SUMMARY OF TEST RESULTS 3.1. LOCATION OF TESTS

All of the measurements described in this report were performed at UltraTech Group of Labs located at:

3000 Bristol Circle, in the city of Oakville, Province of Ontario, Canada.

All measurements were performed in UltraTech's shielded chamber, 16' x 13' x 8'.

3.2. APPLICABILITY & SUMMARY OF SAR RESULTS

3.2.1. Added Speaker-microphone Accessories test*

Because the highest measured body SAR value ($SAR_{1g} = 3.87 \text{ W/Kg}$) on a high frequency (485.1MHz) using the added speaker-microphone accessories is lower than the original measured highest body SAR value ($SAR_{1g} = 4.52 \text{ W/Kg}$) under the similar test configuration as shown above, we did not need to evaluate SAR for the body configurations in each frequency band using updated accessories as per FCC permissive change policy guidelines.

SAR Body Result under the similar configuration with added speaker-microphone:

#	Configuration	Antenna Position	Frequency [MHz]	Channel	MAX SAR _{1g} [W/Kg]
*	Occupational/Controlled Ex	posure Categor	y Limit		8.0
	 ¹/₄ helical whip antenna (M/N: FA-SC72U, 470~520 MHz, blue ring) 50% duty cycle for PTT MB-94 Belt Clip Speaker Microphone: HM-166LA 	FIX	485.1	Middle	3.87

Original Worst Case SAR Body Results: from ICOM-133-SAR Report

#	Configuration	Antenna Position	Frequency [MHz]	Channel	MAX SAR _{1g} [W/Kg]
*	Occupational/Controlled Ex	posure Categor	y Limit		8.0
	 ¹/₄ helical whip antenna (M/N: FA-SC72U, 470~520 MHz, blue ring) 50% duty cycle for PTT MB-94 Belt Clip Headset: HS-97 + VOX/PTT Case: VS-1L 	FIX	485.1	Middle	4.52

^{*} Refer to KDB 178919 D01, Sec 5(b)

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

File #: ICOM-287Q-SAR February 1, 2012

3.2.2. Added Cut Antenna test*

The maximum peak spatial - average SAR measured was found to be **1.87** W/Kg for head configuration and **3.41** W/Kg for body configuration with 50% usage-based time-averaging applied for PTT device.

For body configuration tests, all the supplied body-worn accessories were checked through pre-scans and confirmed that those options were not affecting SAR compliance. Therefore the final evaluation for body configuration was performed only with M/N: MB-94 Belt Clip, M/N: HM-166LA Speaker Microphone and M/N: BP-232WP Li-ion rechargeable battery pack.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

File #: ICOM-287Q-SAR February 1, 2012

^{*} Refer to KDB 178919 D01, Sec 5(b)

3.3. SUMMARY OF MEASUREMENT RESULTS^{*}

3.3.1. Body Configuration Results for Added Speaker-microphones: Antennas (FA-SC72U)

#	Configuration	Antenna Position	Frequency [MHz]	SAR _{1g} [W/Kg]	MAX SAR _{1g} [W/Kg]	
*	Occupational/Controlled Exposure Category Limit					
01	 ¹/₄ helical whip antenna (M/N: FA-SC72U, 470~520 MHz, blue ring) 50% duty cycle for PTT MB-94 Belt Clip Speaker Microphone: HM-153LA 	FIX	485.1	3.68		
02	 ¹/₄ helical whip antenna (M/N: FA-SC72U, 470~520 MHz, blue ring) 50% duty cycle for PTT MB-94 Belt Clip Speaker Microphone: HM-158LA 	FIX	485.1	3.63		
03	 ¹/₄ helical whip antenna (M/N: FA-SC72U, 470~520 MHz, blue ring) 50% duty cycle for PTT MB-94 Belt Clip Speaker Microphone: HM-159LA 	FIX	485.1	3.53		
04	 ¹/₄ helical whip antenna (M/N: FA-SC72U, 470~520 MHz, blue ring) 50% duty cycle for PTT MB-94 Belt Clip Speaker Microphone: HM-166LA 	FIX	485.1	3.87	3.87	
05	 ¹/₄ helical whip antenna (M/N: FA-SC72U, 470~520 MHz, blue ring) 50% duty cycle for PTT MB-94 Belt Clip Speaker Microphone: HM-168LWP 	FIX	485.1	3.47		

*

ULTRATECH GROUP OF LABS

 3000 Bristol Circle, Oakville, Ontario,
 Canada L6H 6G4

 Tel. #:
 905-829-1570, Fax. #: 905-829-8050,
 Email: vic@ultratech-labs.com,
 Website: http://www.ultratech-labs.com

#	Configuration	Antenna Position	Frequency [MHz]	Channel	MAX SAR _{1g} [W/Kg]	
*	Occupational/Controlled Exposure Category Limit					
6	¹ / ₄ helical whip cut antenna (M/N: FA-SC61UC, 360~520 MHz, white ring)	FIX	460	Low	1.76	
7	50% duty cycle for PTT	FIX	486	Middle	1.40	
8	Antenna Length=142mm	FIX	512	High	1.23	
9	¹ / ₄ helical whip antenna (M/N: FA-SC61UC, 360~520 MHz, white ring)	FIX	450	Low	1.15	
10	50% duty cycle for PTT	FIX	480	Middle	1.54	
11	Antenna Length=136mm	FIX	512	High	1.50	
12	¹ / ₄ helical whip antenna (M/N: FA-SC61UC, 360~520 MHz, white ring)	FIX	450	Low	1.09	
13	50% duty cycle for PTT Antenna Length=129mm	FIX	500	Middle	1.87	
14		FIX	512	High	1.80	
15		FIX	475	Option	-	

3.3.2. Head Configuration Results for Cut Antenna (FA-SC61UC)

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u> File #: ICOM-287Q-SAR February 1, 2012

#	Configuration	Antenna Position	Frequency [MHz]	Channel	MAX SAR _{1g} [W/Kg]
*	Occupational/Controlled Exposure Category Limit				8.0
16	¹ / ₄ helical whip cut antenna (M/N: FA-SC61UC, 360~520 MHz, white ring)	FIX	460	Low	3.28
17	50% duty cycle for PTT;	FIX	486	Middle	2.56
18	Antenna Length=142mm MB-94 Clip, HM-166LA Speaker Microphone	FIX	512	High	2.10
19	¹ / ₄ helical whip antenna (M/N: FA-SC61UC, 360~520 MHz, white ring)	FIX	450	Low	2.10
20	50% duty cycle for PTT;	FIX	480	Middle	3.26
21	Antenna Length=136mm MB-94 Clip, HM-166LA Speaker Microphone	FIX	512	High	2.59
22	¹ / ₄ helical whip antenna (M/N: FA-SC61UC, 360~520 MHz, white ring)	FIX	450	Low	2.10
23	50% duty cycle for PTT;	FIX	500	Middle	3.41
24	Antenna Length=129mm MB-94 Clip, HM-166LA Speaker Microphone	FIX	512	High	3.20
25		FIX	475	Option	-

3.3.3. Body Configuration Results for Cut Antenna (FA-SC61UC)

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com File #: ICOM-287Q-SAR February 1, 2012

FCC ID: AFJ292702, IC: 202D-292702

EXHIBIT 4. SAR SYSTEM CONFIGURATION 4.1. DASY5 SYSTEM OVERVIEW

4.1.1. DASY5 System Specification

Positioning Equipment	Computer
DASAY5 Measurement Server	Type: HP Compaq dc7800p Convertible
Data Acquisition Electronics (DAE)	CPU : Intel® Core™ 2 Duo E8500
Light Beam Unit	Memory : 2GB RAM
Device Holder	Operating System : Windows XP Professional
Robot (STAUBLI TX90)	Monitor : HP L1950g LCD

4.1.1.1. DASY5 Measurement Server

The DASY5 measurement server is based on a PC/104 CPU board with a 400MHz Intel ULV Celeron, 128MB chipdisk and 128MB RAM. The necessary circuits for communication with the DAE4 (or DAE3) electronics box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY5 I/O board, which is directly connected to the PC/104 bus of the CPU board.

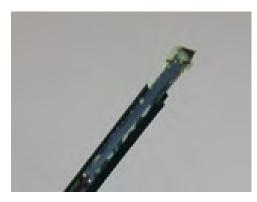
ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

File #: ICOM-287Q-SAR February 1, 2012 The measurement server performs all real-time data evaluation of field measurements and surface detection, controls robot movements and handles safety operation. The PC operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with an expansion port which is reserved for future applications. Please note that this expansion port does not have a standardized pinout, and therefore only devices provided by SPEAG can be connected. Devices from any other supplier could seriously damage the measurement server.

4.1.1.2. Data Acquisition Electronics


The data acquisition electronics (DAE4 or DAE3) consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of both the DAE4 as well as of the DAE3 box is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

4.1.1.3. Dosimetric Probes

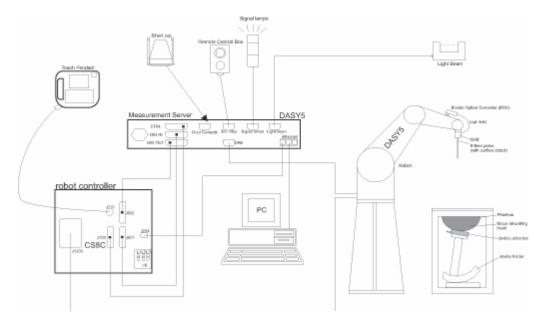
These probes are specially designed and calibrated for use in liquids with high permittivity. They should not be used in air, since the spherical isotropy in air is poor (-2 dB). The dosimetric probes have special calibrations in various liquids at different frequencies.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com File #: ICOM-287Q-SAR February 1, 2012

Construction	Symmetrical design with triangular core
	Interleaved sensors
	Built-in shielding against static charges
	PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Calibration	Basic Broad Band Calibration in air
	Conversion Factors (CF) for HSL 900 and HSL 1750
	Additional CF for other liquids and frequencies
Frequency	10 MHz to 4 GHz
	Linearity $\pm 0.2 \text{ dB}$ (30 MHz to 4 GHz)
Directivity	\pm 0.2 dB in HSL (rotation around probe axis)
	\pm 0.3 dB in tissue material (rotation normal to probe axis)
Dynamic Range	$5 \ \mu W/g \text{ to} > 100 \ m W/g$
	Linearity: $\pm 0.2 \text{ dB}$
Dimensions	Overall length: 330 mm (Tip: 20 mm)
	Tip diameter: 3.9 mm (Body: 12 mm)
	Distance from probe tip to dipole centers: 2.0 mm

4.1.1.3.1. ES3DV3 Isotropic E-Filed Probe


4.1.1.3.2.	X3DV4 Isotropic E-Filed Probe		
Construction	Symmetrical design with triangular core		
	Built-in shielding against static charges		
	PEEK enclosure material (resistant to organic solvents, e.g., DGBE)		
Calibration	Basic Broad Band Calibration in air		
	Conversion Factors (CF) for HSL 900 and HSL 1750		
	Additional CF for other liquids and frequencies		
Frequency	10 MHz to > 6 GHz		
	Linearity: $\pm 0.2 \text{ dB}$ (30 MHz to 6 GHz)		
Directivity	\pm 0.3 dB in HSL (rotation around probe axis)		
	\pm 0.5 dB in tissue material (rotation normal to probe axis)		
Dynamic Range	$10 \mu W/g \text{ to} > 100 \text{mW/g}$		
	Linearity: $\pm 0.2 \text{ dB}$ (noise: typically < 1 μ W/g)		
Dimensions	Overall length: 330 mm (Tip: 20 mm)		
	Tip diameter: 2.5 mm (Body: 12 mm)		
	Typical distance from probe tip to dipole centers: 1 mm		

ULTRATECH GROUP OF LABS

•

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

4.1.2. DASY5 SAR SYSTEM block diagram

ULTRATECH GROUP OF LABS

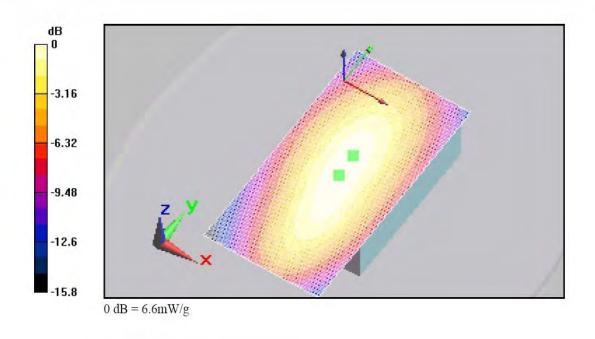
3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com File #: ICOM-287Q-SAR February 1, 2012


4.2. SAR TEST PHANTOMS

4.2.1. SAM Twin Phantom

For Head mounted devices placed next to the ear, the phantom used in the evaluation of the RF exposure of the user of the wireless device is an IEEE P1528 compliant SAM Twin phantom, shaped like a human head and filled with a mixture simulating the dielectric characteristics of the brain. A left sided head and a right head are evaluated to determine the worst case orientation for SAR.

4.2.2. ELI 4.0 Phantom

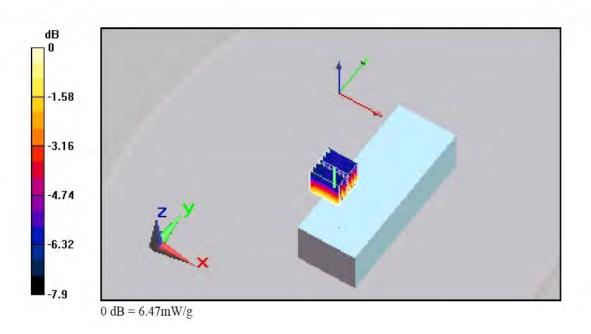

For body mounted and frontal held push-to-talk devices, an IEC 62209-2 compliant Oval Flat Phantom (ELI 4.0) with a base plate thickness of 2mm is used.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com File #: ICOM-287Q-SAR February 1, 2012

EXHIBIT 5. SAR DATA ACQUISITION METHODOLOGY 5.1. SAR MEASUREMENT PROCEDURE

The goal of the measurement process is to scan the phantom over a selected area in order to find the region of highest levels of RF energy and then to obtain a single value for the peak spatial-average of SAR over a volume that would contain one gram (in the shape of a cube) of biological tissue. The test procedure, of course, measures SAR in the simulated tissue.



< Area scan >

The software requests the user to move the probe to locations at two extreme corners of a rectangle that encloses the area to be scanned. An arbitrary origin and the spatial resolution for the scan are also specified. Under program control, the scan is performed automatically by the robot-guided probe.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com File #: ICOM-287Q-SAR February 1, 2012

< Zoom Scan >

The DASY5 software includes all numerical procedures necessary to evaluate the spatial peak SAR values.

Based on the Draft: SCC-34, SC-2, WG-2 - Computational Dosimetry, IEEE P1529/D0.0 (Draft Recommended Practice for Determining the Spatial-Peak Specific Absorption Rate (SAR) Associated with the Use of Wireless Handsets - Computational Techniques), a new algorithm has been implemented. The spatial-peak SAR can be computed over any required mass.

The base for the evaluation is a "cube" measurement in a volume of (30mm)3 (7x7x7 points). The measured volume must include the 1 g and 10 g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan. If the 10g cube or both cubes are not entirely inside the measured volumes, the system issues a warning regarding the evaluated spatial peak values within the postprocessing engine (SEMCAD X). This means that if the measured volume is shifted, higher values might be possible. To get the correct values you can use a finer measurement grid for the area scan. In complicated field distributions, a large grid spacing for the area scan might miss some details and give an incorrectly interpolated peak location.

The entire evaluation of the spatial peak values is performed within the postprocessing engine (SEMCAD X). The system always gives the maximum values for the 1 g and 10 g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- 1. extraction of the measured data (grid and values) from the Zoom Scan
- 2. calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- 3. generation of a high-resolution mesh within the measured volume
- 4. interpolation of all measured values from the measurement grid to the high-resolution grid
- 5. extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com File #: ICOM-287Q-SAR February 1, 2012

6. calculation of the averaged SAR within masses of 1 g and 10 g

The significant parts are outlined in more detail within the following sections.

5.1.1. Interpolation, Extrapolation and Detection of Maxima

The probe is calibrated at the center of the dipole sensors which is located 1 to 2.7mm away from the probe tip. During measurements, the probe stops shortly above the phantom surface, depending on the probe and the surface detecting system. Both distances are included as parameters in the probe configuration file. The software always knows exactly how far away the measured point is from the surface. As the probe cannot directly measure at the surface, the values between the deepest measured point and the surface must be extrapolated.

In DASY5, the choice of the coordinate system defining the location of the measurement points has no influence on the uncertainty of the interpolation, Maxima Search and extrapolation routines. The interpolation, extrapolation and maximum search routines are all based on the modified Quadratic Shepard's method.

Thereby, the interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation. The DASY5 routines construct a once-continuously differentiable function that interpolates the measurement values as follows:

- For each measurement point a trivariate (3-D) / bivariate (2-D) quadratic is computed. It interpolates the measurement values at the data point and forms a least-square fit to neighboring measurement values.
- the spatial location of the quadratic with respect to the measurement values is is attenuated by an inverse distance weighting. This is performed since the calculated quadratic will fit measurement values at nearby points more accurate than at points located further away.
- After the quadratics are calculated for at all measurement points, the interpolating function is calculated as a weighted average of the quadratics.

There are two control parameters that govern the behavior of the interpolation method. One specifies the number of measurement points to be used in computing the least-square fits for the local quadratics. These measurement points are the ones nearest the input point for which the quadratic is being computed. The second parameter specifies the number of measurement points that will be used in calculating the weights for the quadratics to produce the final function. The input data points used there are the ones nearest the point at which the interpolation is desired. Appropriate defaults are chosen for each of the control parameters

The trivariate quadratics that have been previously computed for the 3-D interpolation and whose input data are at the closest distance from the phantom surface, are used in order to extrapolate the fields to the surface of the phantom.

In order to determine all the field maxima in 2-D (Area Scan) and 3-D (Zoom Scan), the measurement grid is refined by a default factor of 10 and the interpolation function is used to evaluate all field values between corresponding measurement points. Subsequently, a linear search is applied to find all the candidate maxima. In a last step, non physical maxima are removed and only those maxima which are within 2 dB of the global maximum value are retained.

Important: To be processable by the interpolation/extrapolation scheme, the Area Scan requires at least 6 measurement points. The Cube Scan requires at least 10 measurement points to allow an application of these algorithms.

In the Area Scan, the gradient of the interpolation function is evaluated to find all the extrema of the SAR distribution. The uncertainty on the locations of the extrema is less than 1/20 of the grid size. Only local maxima within -2 dB of the global maximum are searched and passed for the Cube Scan measurement.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

File #: ICOM-287Q-SAR February 1, 2012 In the Cube Scan, the interpolation function is used to extrapolate the Peak SAR from the lowest measurement points to the inner phantom surface (the extrapolation distance). The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5mm.

5.1.2. Averaging and Determination of Spatial Peak SAR

The interpolated data is used to average the SAR over the 1g and 10g cubes by spatially discretizing the entire measured volume. The resolution of this spatial grid used to calculate the averaged SAR is 1mm or about 42875 interpolated points. The resulting volumes are defined as cubical volumes containing the appropriate tissue parameters that are centered at the location. The location is defined as the center of the incremental volume (voxel).

The spatial-peak SAR must be evaluated in cubical volumes containing a mass that is within 5% of the required mass. The cubical volume centered at each location, as defined above, should be expanded in all directions until the desired value for the mass is reached, with no surface boundaries of the averaging volume extending beyond the outermost surface of the considered region. In addition, the cubical volume should not consist of more than 10% of air. If these conditions are not satisfied then the center of the averaging volume is moved to the next location. Otherwise, the exact size of the final sampling cube is found using an inverse polynomial approximation algorithm, leading to results with improved accuracy. If one boundary of the averaging volume reaches the boundary of the measured volume during its expansion, it will not be evaluated at all. Reference is kept of all locations used and those not used for averaging the SAR. All average SAR values are finally assigned to the centered location in each valid averaging volume.

All locations included in an averaging volume are marked to indicate that they have been used at least once. If a location has been marked as used, but has never been assigned to the center of a cube, the highest averaged SAR value of all other cubical volumes which have used this location for averaging, is assigned to this location. Only those locations that are not part of any valid averaging volume should be marked as unused. For the case of an unused location, a new averaging volume must be constructed which will have the unused location centered at one surface of the cube. The remaining five surfaces are expanded evenly in all directions until the required mass is enclosed, regardless of the amount of included air. Of the six possible cubes with one surface centered on the unused location, the smallest cube is used, which still contains the required mass.

If the final cube containing the highest averaged SAR touches the surface of the measured volume, an appropriate warning is issued within the postprocessing engine.

5.1.3. Evaluation Errors

5.1.3.1. Cube shape

The mentioned procedures search for the maximum averaged 1g and 10g volumes of cubical shape according to the ANSII and ICNIRP standard. A density of 1000 kg/m3 is used to represent the head tissue density and not the tissue simulating liquid density.

5.1.3.2. Extrapolation

For the extrapolation the distance must be specified in the Area Scan and Zoom Scan Jobs. The distance is defined as the distance between the probe sensor center and the phantom surface. The recommended distance is 4-5 mm.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com File #: ICOM-287Q-SAR February 1, 2012

5.1.3.3. Boundary effects

The dosimetric probes are calibrated in a gradient field with energy flow and decay in direction of the probe axis. During calibration the probe tip is completely surrounded by the simulating solution. If the probe is used in the immediate vicinity of a media boundary, the field in the probe is altered due to interaction with the field in the boundary and the probe sensitivity changes. The influence of the boundary effect depends on the probe construction, the media parameters and the probe orientation with respect to the boundary. It disappears at a distance of 1mm (E1D-probe) to 5mm (ET3D-probes) between the probe tip and the boundary. The boundary effect must be considered in the extrapolation to the surface.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com File #: ICOM-287Q-SAR February 1, 2012

EXHIBIT 6. MEASUREMENTS, EXAMINATIONS & TEST DATA 6.1. TEST CONFIGURATIONS

D.U.T. Information		Condition		
Product Name	UHF Transceiver	Robot Type	6 Axis	
Model Number	IC-F4031S	Scan Type	SAR - Area/Zoom/Att. Vs Depth	
Serial Number	7300001	Measured Field	Е	
Frequency Band [MHz]	450-512	Phantom Type	2 _{mm} base Flat Phantom	
Frequency Tested [MHz]	450,460,475,480,485.1,486,500,512	Phantom Position	Waist	
Rated Conducted Power [W]	4W (High power mode)	Room Temperature [°C]	24.0 ± 1	
Antenna Type	ICOM Helical whip stubby antenna (M/N: FA-SC72U, 470-520 MHz, blue ring)	Room Humidity [%]	40 ± 10	
	ICOM helical whip cut antenna (M/N: FA-SC61UC, 360~520 MHz, white ring)			
Modulation	FM	Tissue Temperature [°C]	20.0 ± 1	
Worst Case Duty Cycle	50 %			
Duty Cycle Tested	100 %			
Source(or Usage)-Based Time-Average Factor	0.5 (mechanical PTT button)			

Type of Tissue	Brain	Muscle
Test Frequency [MHz]	450	450
Target Conductivity [S/m]	0.87	0.94
Measured Conductivity [S/m]	0.87 (0.3 %)	0.94 (-0.1 %)
Target Dielectric Constant	43.5	56.7
Measured Dielectric Constant	43.4 (-0.3 %)	56.3 (-0.8 %)
Penetration Depth (Plane Wave Excitation) [mm]	42.8	44.5
Probe Model Number	ES3DV3	ES3DV3
Probe Serial Number	3208	3208
Probe Orientation	Isotropic	Isotropic
Probe Sensor Offset [mm]	1	1
Probe Tip Diameter [mm]	3.9	3.9
Conversion Factor (γ)	7.1 (+/- 8%)	7.0 (+/- 8%)

ULTRATECH GROUP OF LABS

File #: ICOM-287Q-SAR February 1, 2012

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>

6.2. GENERAL TEST SETUP

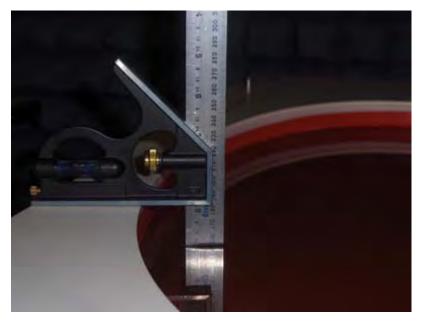
6.2.1. Equipment Configuration

Power and signal distribution, grounding, interconnecting cabling and physical placement of equipment of a test system shall simulate the typical application and usage in so far as is practicable, and shall be in accordance with the relevant product specifications of the manufacturer.

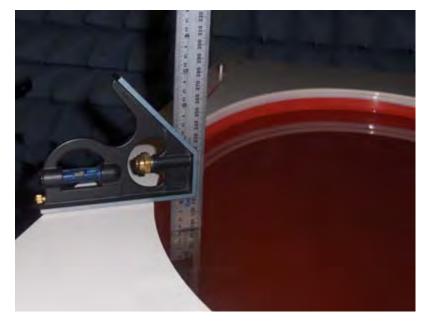
The configuration that tends to maximize the D.U.T's emission or minimize its immunity is not usually intuitively obvious and in most instances selection will involve some trial and error testing. For example, interface cables may be moved or equipment re-orientated during initial stages of testing and the effects on the results observed.

Only configurations within the range of positions likely to occur in normal use need to be considered.

The configuration selected shall be fully detailed and documented in the test report, together with the justification for selecting that particular configuration.


6.2.2. Exercising Equipment

The exercising equipment and other auxiliary equipment shall be sufficiently decoupled from the D.U.T. so that the performance of such equipment does not significantly influence the test results.


ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com File #: ICOM-287Q-SAR February 1, 2012

6.3. PHOTOGRAPHS OF TISSUE DEPTH

< Phantom filled with head tissue: liquid level = 150mm \pm 5mm >

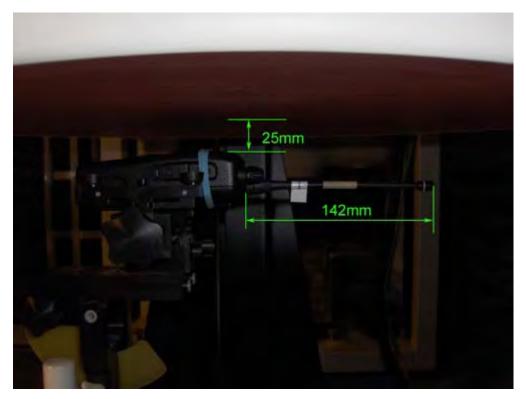
< Phantom filled with body tissue liquid: liquid level = 150mm \pm 5mm >

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u> File #: ICOM-287Q-SAR February 1, 2012

6.4. PHOTOGRAPHS OF D.U.T. POSITION

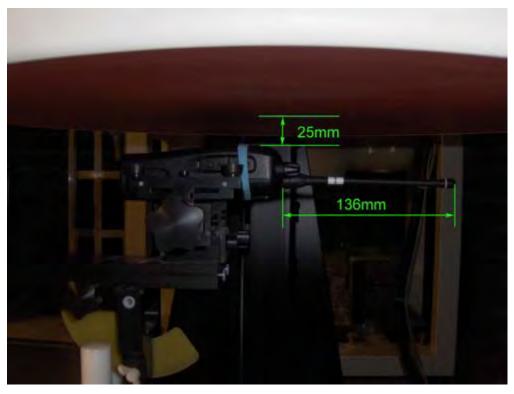
6.4.1. Body Configuration for Added Speaker-microphone: Antennas (FA-SC72U)



Back side of EUT in parallel to the phantom with the belt-clip (M/N: MB-94) in contact, attached 5 different- type Speaker-microphones separately

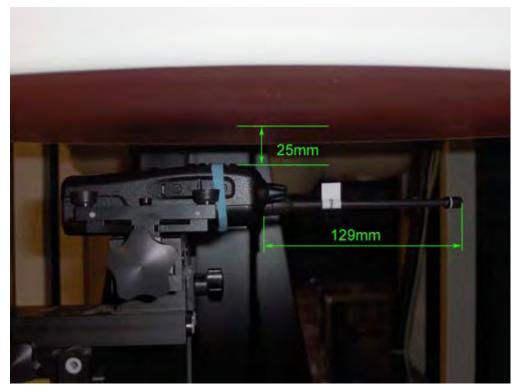
ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u> File #: ICOM-287Q-SAR February 1, 2012


6.4.2. Head Configuration for Added Cut Antenna (FA-SC61UC)

< FA-SC61UC cut antenna with the length of 142mm > Remark: Distance between EUT and phantom = 25 mm

ULTRATECH GROUP OF LABS


3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com File #: ICOM-287Q-SAR February 1, 2012

< FA-SC61UC cut antenna with the length of 136mm >
Remark: Distance between EUT and phantom = 25 mm

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com File #: ICOM-287Q-SAR February 1, 2012

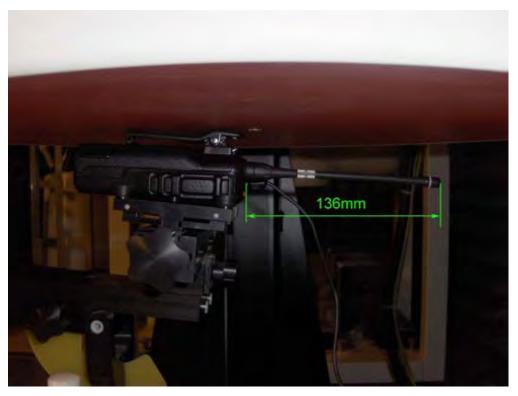
< FA-SC61UC cut antenna with the length of 129mm >
Remark: Distance between EUT and phantom = 25 mm

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com File #: ICOM-287Q-SAR February 1, 2012

6.4.3. Body Configuration for Added Cut Antenna (FA-SC61UC)

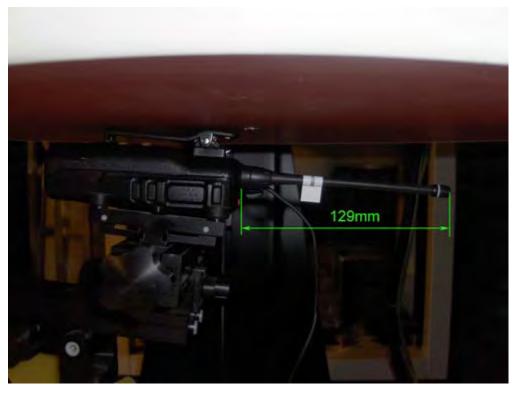
Back side of EUT in parallel to the phantom with the belt-clip in contact, Belt-clip (M/N: MB-94) and Speakermicrophone (M/N: HM-166LA)



< FA-SC61UC cut antenna with the length of 142mm >

Remark: Belt clip touch the phantom bottom

ULTRATECH GROUP OF LABS


3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com File #: ICOM-287Q-SAR February 1, 2012

< FA-SC61UC cut antenna with the length of 136mm > Remark: Belt clip touch the phantom bottom

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com File #: ICOM-287Q-SAR February 1, 2012

< FA-SC61UC cut antenna with the length of 129mm > Remark: Belt clip touch the phantom bottom

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com File #: ICOM-287Q-SAR February 1, 2012

6.5. SAR MEASUREMENT DATA

6.5.1. Body Configuration Results for Added Speaker-microphones: Antenna (FA-SC72U)

#	Configuration	Antenna Position	Frequency [MHz]	SAR _{1g} [W/Kg]	MAX SAR _{1g} [W/Kg]	
*	Occupational/Controlled Exposure Category Limit					
01	 ¹/₄ helical whip antenna (M/N: FA-SC72U, 470~520 MHz, blue ring) 50% duty cycle for PTT MB-94 Belt Clip Speaker Microphone: HM-153LA 	FIX	485.1	3.68		
02	 ¹/₄ helical whip antenna (M/N: FA-SC72U, 470~520 MHz, blue ring) 50% duty cycle for PTT MB-94 Belt Clip Speaker Microphone: HM-158LA 	FIX	485.1	3.63		
03	 ¹/₄ helical whip antenna (M/N: FA-SC72U, 470~520 MHz, blue ring) 50% duty cycle for PTT MB-94 Belt Clip Speaker Microphone: HM-159LA 	FIX	485.1	3.53		
04	 ¹/₄ helical whip antenna (M/N: FA-SC72U, 470~520 MHz, blue ring) 50% duty cycle for PTT MB-94 Belt Clip Speaker Microphone: HM-166LA 	FIX	485.1	3.87	3.87	
05	 ¹/₄ helical whip antenna (M/N: FA-SC72U, 470~520 MHz, blue ring) 50% duty cycle for PTT MB-94 Belt Clip Speaker Microphone: HM-168LWP 	FIX	485.1	3.47		

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u> File #: ICOM-287Q-SAR February 1, 2012

6.5.1.1. ¹/₄ helical whip antenna (M/N: FA-SC72U); Belt Clip (M/N: MB-94), Speaker Microphone (M/N: HM-153LA); 485.1 MHz; #01

Test Laboratory: Ultratech Group of Labs File Name: ICOM-287Q FA-SC72U Body 481.5MHz(Mf) 153LA.da52

DUT: ICOM UHF Transceiver; Type: IC-F4031S; Serial: 7300001

Communication System: CW; Frequency: 485.1 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 485.1 MHz; $\sigma = 0.965 \text{ mho/m}$; $\varepsilon_r = 55.773$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

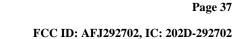
DASY5 Configuration:

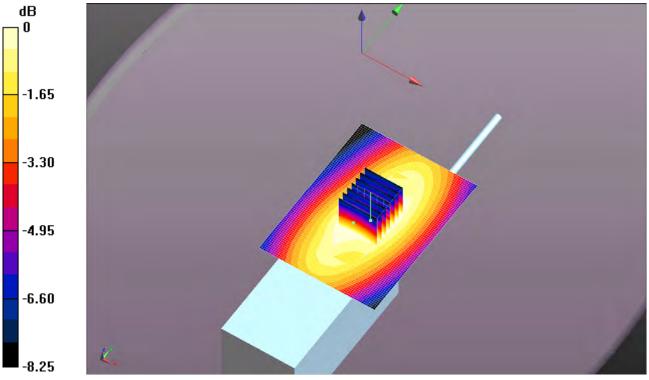
- Probe: ES3DV3 SN3208; ConvF(7, 7, 7); Calibrated: 3/15/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 3.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn874;
- Phantom: ELI 4.0; Type: QD OVA 001 BB; Serial: 1057
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

Configuration_Body_FA-SC72U_Mf/Body Back, d=0mm, Pin=4W (ES-Probe)/FindMax (11x41x1): Measurement grid: dx=20mm, dy=20mm

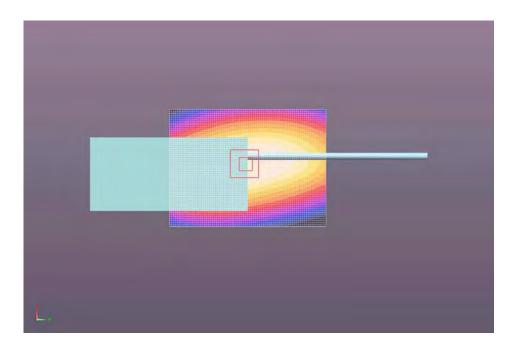
Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 8.350 mW/g

Configuration Body FA-SC72U Mf/Body Back, d=0mm, Pin=4W (ES-Probe)/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm

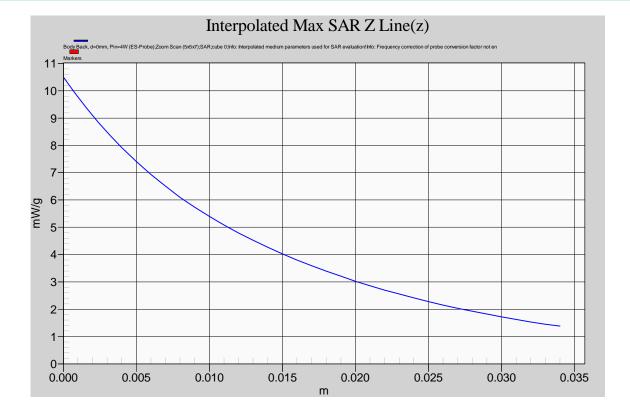

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 8.602 mW/g


Configuration_Body_FA-SC72U_Mf/Body Back, d=0mm, Pin=4W (ES-Probe)/Zoom Scan (5x5x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 92.847 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 10.5040SAR(1 g) = 7.35 mW/g; SAR(10 g) = 5.33 mW/g (SAR corrected for target medium)

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 7.932 mW/g


ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com File #: ICOM-287Q-SAR February 1, 2012



0 dB = 7.930 mW/g = 17.99 dB mW/g

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com File #: ICOM-287Q-SAR February 1, 2012

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com File #: ICOM-287Q-SAR February 1, 2012

6.5.1.2. ¹/₄ helical whip antenna (M/N: FA-SC72U); Belt Clip (M/N: MB-94), Speaker Microphone (M/N: HM-158LA); 485.1 MHz; #02

Test Laboratory: Ultratech Group of Labs File Name: ICOM-287Q FA-SC72U Body 481.5MHz(Mf) 158LA.da52

DUT: ICOM UHF Transceiver; Type: IC-F4031S; Serial: 7300001

Communication System: CW; Frequency: 485.1 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 485.1 MHz; $\sigma = 0.965 \text{ mho/m}$; $\varepsilon_r = 55.773$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

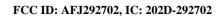
DASY5 Configuration:

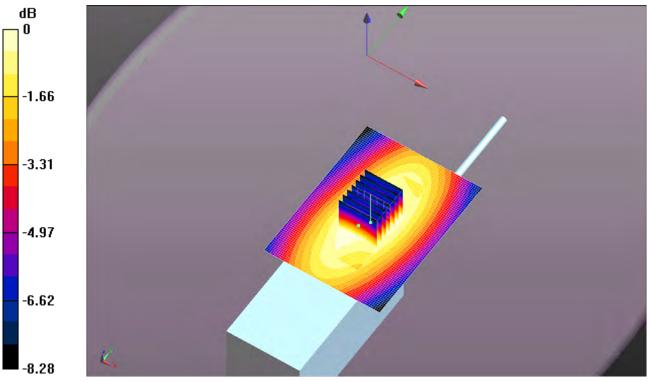
- Probe: ES3DV3 SN3208; ConvF(7, 7, 7); Calibrated: 3/15/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 3.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn874;
- Phantom: ELI 4.0; Type: QD OVA 001 BB; Serial: 1057
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

Configuration_Body_FA-SC72U_Mf/Body Back, d=0mm, Pin=4W (ES-Probe)/FindMax (11x41x1): Measurement grid: dx=20mm, dy=20mm

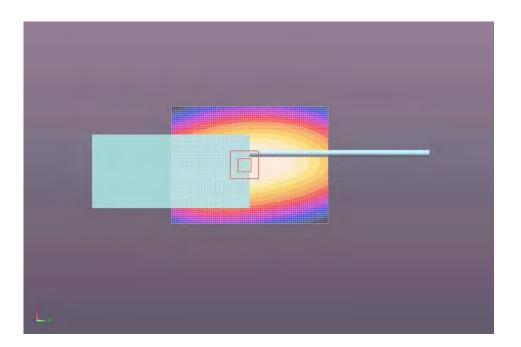
Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 8.323 mW/g

Configuration Body FA-SC72U Mf/Body Back, d=0mm, Pin=4W (ES-Probe)/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm

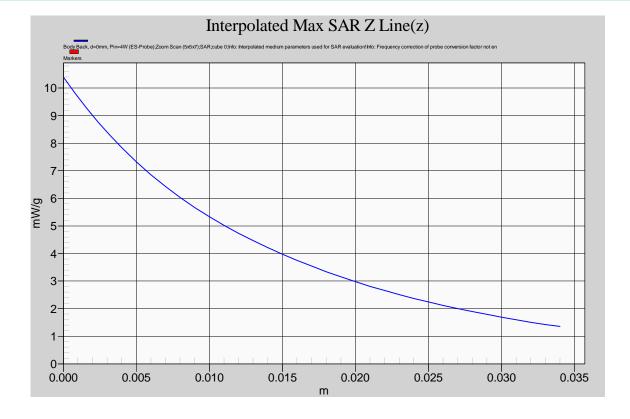

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 8.452 mW/g


Configuration_Body_FA-SC72U_Mf/Body Back, d=0mm, Pin=4W (ES-Probe)/Zoom Scan (5x5x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 92.773 V/m; Power Drift = -0.19 dB Peak SAR (extrapolated) = 10.3980SAR(1 g) = 7.26 mW/g; SAR(10 g) = 5.26 mW/g (SAR corrected for target medium)

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 7.847 mW/g


ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com File #: ICOM-287Q-SAR February 1, 2012



0 dB = 7.850 mW/g = 17.90 dB mW/g

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com File #: ICOM-287Q-SAR February 1, 2012

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com File #: ICOM-287Q-SAR February 1, 2012

6.5.1.3. ¹/₄ helical whip antenna (M/N: FA-SC72U); Belt Clip (M/N: MB-94), Speaker Microphone (M/N: HM-159LA); 485.1 MHz; #03

Test Laboratory: Ultratech Group of Labs File Name: ICOM-287Q FA-SC72U Body 481.5MHz(Mf) 159LA.da52

DUT: ICOM UHF Transceiver; Type: IC-F4031S; Serial: 7300001

Communication System: CW; Frequency: 485.1 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 485.1 MHz; $\sigma = 0.965 \text{ mho/m}$; $\varepsilon_r = 55.773$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

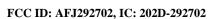
DASY5 Configuration:

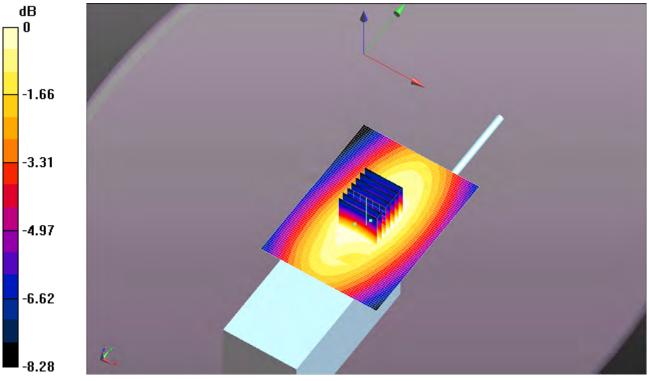
- Probe: ES3DV3 SN3208; ConvF(7, 7, 7); Calibrated: 3/15/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 3.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn874;
- Phantom: ELI 4.0; Type: QD OVA 001 BB; Serial: 1057
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

Configuration_Body_FA-SC72U_Mf/Body Back, d=0mm, Pin=4W (ES-Probe)/FindMax (11x41x1): Measurement grid: dx=20mm, dy=20mm

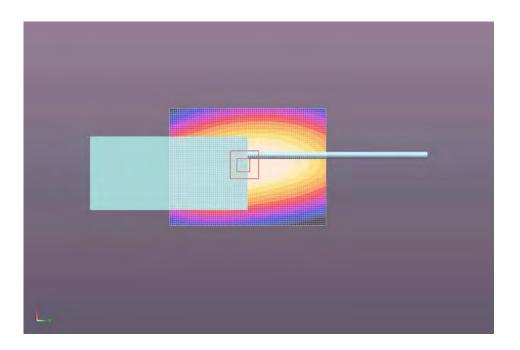
Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 8.249 mW/g

Configuration Body FA-SC72U Mf/Body Back, d=0mm, Pin=4W (ES-Probe)/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm

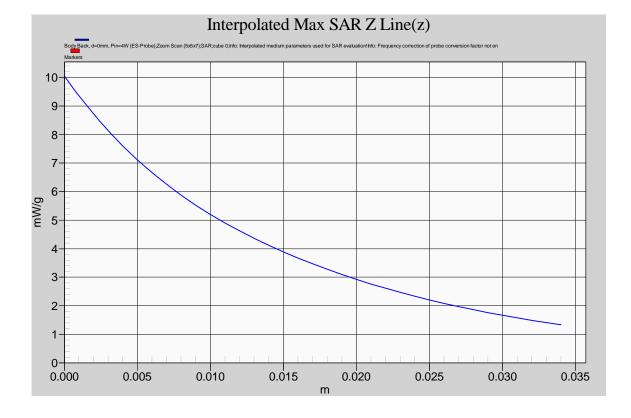

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 8.218 mW/g


Configuration_Body_FA-SC72U_Mf/Body Back, d=0mm, Pin=4W (ES-Probe)/Zoom Scan (5x5x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 92.045 V/m; Power Drift = -0.0057 dB Peak SAR (extrapolated) = 10.0530SAR(1 g) = 7.05 mW/g; SAR(10 g) = 5.12 mW/g (SAR corrected for target medium)

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 7.609 mW/g


ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com File #: ICOM-287Q-SAR February 1, 2012



0 dB = 7.610 mW/g = 17.63 dB mW/g

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com File #: ICOM-287Q-SAR February 1, 2012

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u> File #: ICOM-287Q-SAR February 1, 2012

6.5.1.4. ¹/₄ helical whip antenna (M/N: FA-SC72U); Belt Clip (M/N: MB-94), Speaker Microphone (M/N: HM-166LA); 485.1 MHz; #04

Test Laboratory: Ultratech Group of Labs File Name: <u>ICOM-287Q_FA-SC72U_Body_481.5MHz(Mf)_166LA.da52</u>

DUT: ICOM UHF Transceiver; Type: IC-F4031S; Serial: 7300001

Communication System: CW; Frequency: 485.1 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 485.1 MHz; σ = 0.965 mho/m; ϵ_r = 55.773; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: ES3DV3 SN3208; ConvF(7, 7, 7); Calibrated: 3/15/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 3.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn874;
- Phantom: ELI 4.0; Type: QD OVA 001 BB; Serial: 1057
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

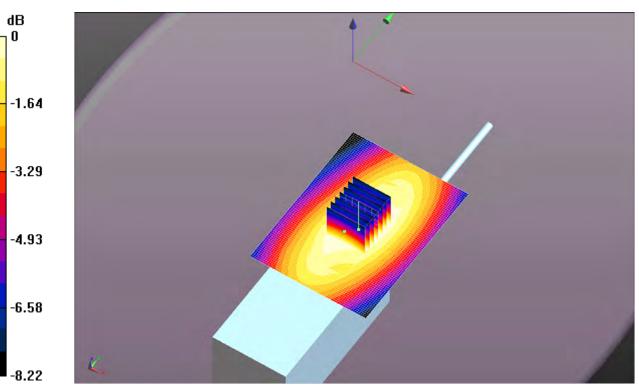
Configuration_Body_FA-SC72U_Mf/Body Back, d=0mm, Pin=4W (ES-Probe)/FindMax (11x41x1): Measurement grid: dx=20mm, dy=20mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 8.924 mW/g

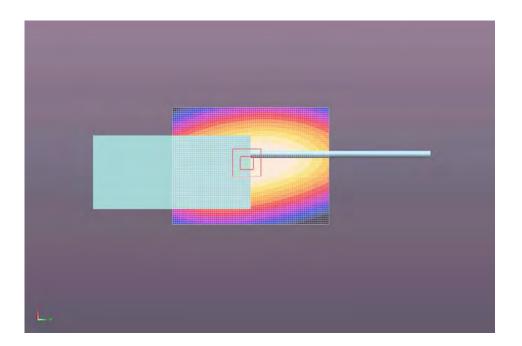
Configuration_Body_FA-SC72U_Mf/Body Back, d=0mm, Pin=4W (ES-Probe)/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 9.029 mW/g

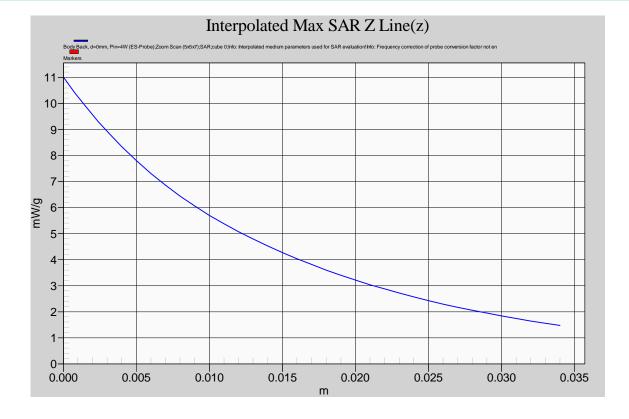
Configuration_Body_FA-SC72U_Mf/Body Back, d=0mm, Pin=4W (ES-Probe)/Zoom Scan (5x5x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.718 V/m; Power Drift = -0.11 dB Peak SAR (extrapolated) = 11.0160


SAR(1 g) = 7.73 mW/g; SAR(10 g) = 5.61 mW/g (SAR corrected for target medium)

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 8.344 mW/g


ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>


0 dB = 8.340 mW/g = 18.42 dB mW/g

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com File #: ICOM-287Q-SAR February 1, 2012

FCC ID: AFJ292702, IC: 202D-292702

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com File #: ICOM-287Q-SAR February 1, 2012

6.5.1.5. ¹/₄ helical whip antenna (M/N: FA-SC72U); Belt Clip (M/N: MB-94), Speaker Microphone (M/N: HM-168LWP); 485.1 MHz; #05

Test Laboratory: Ultratech Group of Labs File Name: <u>ICOM-287Q_FA-SC72U_Body_481.5MHz(Mf)_168LWP.da52</u>

DUT: ICOM UHF Transceiver; Type: IC-F4031S; Serial: 7300001

Communication System: CW; Frequency: 485.1 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 485.1 MHz; σ = 0.965 mho/m; ϵ_r = 55.773; ρ = 1000 kg/m³ Phantom section: Flat Section

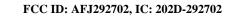
DASY5 Configuration:

- Probe: ES3DV3 SN3208; ConvF(7, 7, 7); Calibrated: 3/15/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 3.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn874;
- Phantom: ELI 4.0; Type: QD OVA 001 BB; Serial: 1057
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

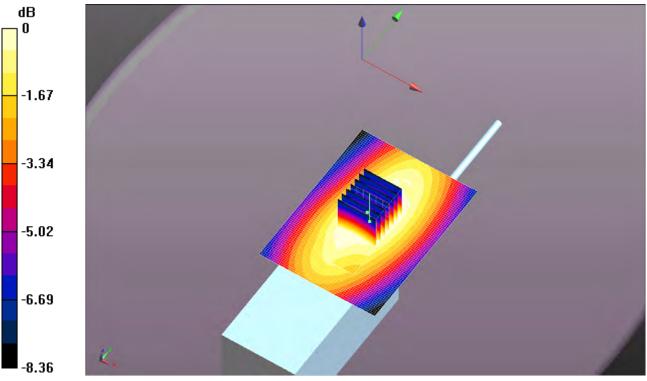
Configuration_Body_FA-SC72U_Mf/Body Back, d=0mm, Pin=4W (ES-Probe)/FindMax (11x41x1): Measurement grid: dx=20mm, dy=20mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 8.271 mW/g

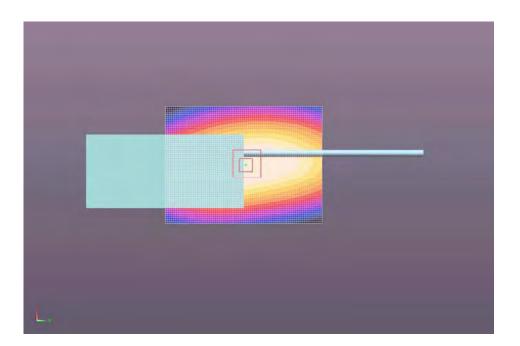
Configuration_Body_FA-SC72U_Mf/Body Back, d=0mm, Pin=4W (ES-Probe)/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm


Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 8.186 mW/g

Configuration_Body_FA-SC72U_Mf/Body Back, d=0mm, Pin=4W (ES-Probe)/Zoom Scan (5x5x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 93.748 V/m; Power Drift = -0.12 dB Peak SAR (extrapolated) = 9.9500 SAR(1 g) = 6.93 mW/g; SAR(10 g) = 5.01 mW/g (SAR corrected for target medium)


Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 7.485 mW/g

ULTRATECH GROUP OF LABS


3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

Page 49

0 dB = 7.490 mW/g = 17.49 dB mW/g

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com File #: ICOM-287Q-SAR February 1, 2012

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u> File #: ICOM-287Q-SAR February 1, 2012

#	Configuration	Antenna Position	Frequency [MHz]	Channel	MAX SAR _{1g} [W/Kg]	
*	Occupational/Controlled Exposure Category Limit					
6	¹ / ₄ helical whip cut antenna (M/N: FA-SC61UC, 360~520 MHz, white ring) 50% duty cycle for PTT Antenna Length=142mm	FIX	460	Low	1.76	
7		FIX	486	Middle	1.40	
8		FIX	512	High	1.23	
9	 ¹/₄ helical whip antenna (M/N: FA-SC61UC, 360~520 MHz, white ring) 50% duty cycle for PTT Antenna Length=136mm 	FIX	450	Low	1.15	
10		FIX	480	Middle	1.54	
11		FIX	512	High	1.50	
12	¹ / ₄ helical whip antenna (M/N: FA-SC61UC, 360~520 MHz, white ring) 50% duty cycle for PTT Antenna Length=129mm	FIX	450	Low	1.09	
13		FIX	500	Middle	1.87	
14		FIX	512	High	1.80	
15		FIX	475	Option	-	

6.5.2. Head Configuration Result^{*} for Cut Antenna (FA-SC61UC)

*

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

• All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

File #: ICOM-287Q-SAR February 1, 2012

6.5.2.1. ¹/₄ helical whip cut antenna (M/N: FA-SC61UC), length=142mm; 460 MHz; #6

Test Laboratory: Ultratech Group of Labs File Name: <u>ICOM-2870 FA-SC61UC=142mm Head 460MHz(Lf).da52</u>

DUT: ICOM UHF Transceiver; Type: IC-F4031S; Serial: 7300001

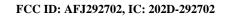
Communication System: CW; Frequency: 460 MHz; Duty Cycle: 1:1 Medium parameters used: f = 460 MHz; σ = 0.882 mho/m; ϵ_r = 43.174; ρ = 1000 kg/m³ Phantom section: Flat Section

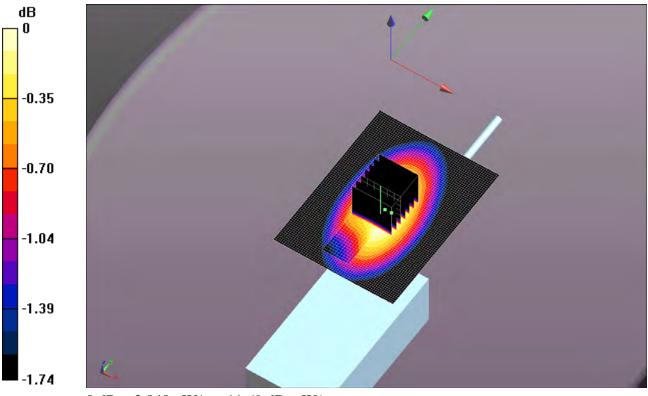
DASY5 Configuration:

- Probe: ES3DV3 SN3208; ConvF(7.1, 7.1, 7.1); Calibrated: 3/15/2011
- Sensor-Surface: 3.4mm (Mechanical Surface Detection), Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn874;
- Phantom: ELI 4.0; Type: QD OVA 001 BB; Serial: 1057
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

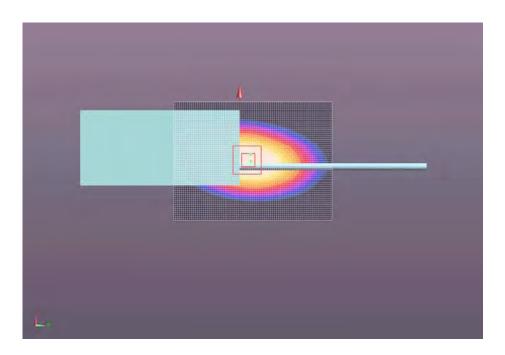
Configuration_Head_FA-SC61UC=142mm_LF/Front Face, d=25mm, Pin=4W (ES-Probe)/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 3.945 mW/g

Maximum value of SAR (interpolated) = 3.945 mw/g


Configuration_Head_FA-SC61UC=142mm_LF/Front Face, d=25mm, Pin=4W (ES-Probe)/Zoom Scan (5x5x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 65.821 V/m; Power Drift = -0.11 dB Peak SAR (extrapolated) = 4.8440 SAR(1 g) = 3.51 mW/g; SAR(10 g) = 2.62 mW/g (SAR corrected for target medium) Maximum value of SAR (measured) = 3.715 mW/g


Configuration_Head_FA-SC61UC=142mm_LF/Front Face, d=25mm, Pin=4W (ES-Probe)/FindMax (11x41x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 3.837 mW/g

ULTRATECH GROUP OF LABS


File #: ICOM-287Q-SAR February 1, 2012

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

0 dB = 3.840 mW/g = 11.69 dB mW/g

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com File #: ICOM-287Q-SAR February 1, 2012

m

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario,Canada L6H 6G4Tel. #:905-829-1570, Fax. #: 905-829-8050,Email: vic@ultratech-labs.com,Website: http://www.ultratech-labs.com,

File #: ICOM-287Q-SAR February 1, 2012

6.5.2.2. ¹/₄ helical whip cut antenna (M/N: FA-SC61UC), length=142mm; 486 MHz; #7

Test Laboratory: Ultratech Group of Labs File Name: ICOM-287Q FA-SC61UC=142mm Head 486MHz(Mf).da52

DUT: ICOM UHF Transceiver; Type: IC-F4031S; Serial: 7300001

Communication System: CW; Frequency: 486 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 486 MHz; σ = 0.902 mho/m; ϵ_r = 42.589; ρ = 1000 kg/m³ Phantom section: Flat Section

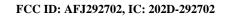
DASY5 Configuration:

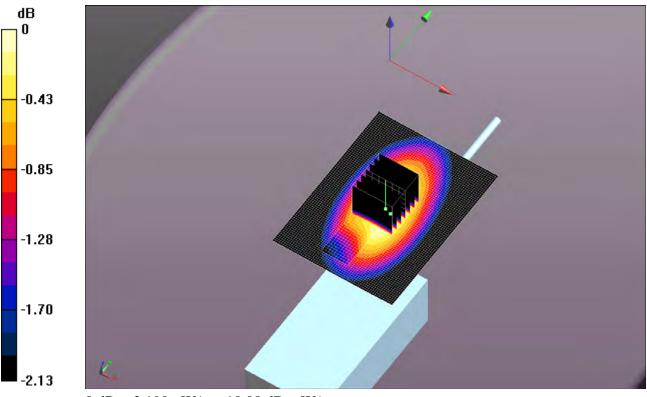
- Probe: ES3DV3 SN3208; ConvF(7.1, 7.1, 7.1); Calibrated: 3/15/2011
- Sensor-Surface: 3.4mm (Mechanical Surface Detection), Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn874;
- Phantom: ELI 4.0; Type: QD OVA 001 BB; Serial: 1057
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

Configuration_Head_FA-SC61UC=142mm_MF/Front Face, d=25mm, Pin=4W (ES-Probe)/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm

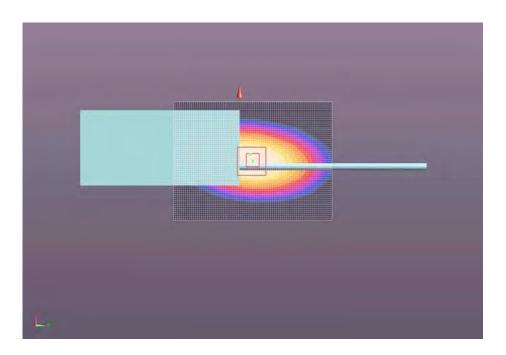
Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 3.247 mW/g

Configuration_Head_FA-SC61UC=142mm_MF/Front Face, d=25mm, Pin=4W (ES-Probe)/Zoom Scan (5x5x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 58.990 V/m; Power Drift = -0.17 dB Peak SAR (extrapolated) = 3.9680 SAR(1 g) = 2.8 mW/g; SAR(10 g) = 2.08 mW/g (SAR corrected for target medium)


Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 3.035 mW/g


Configuration_Head_FA-SC61UC=142mm_MF/Front Face, d=25mm, Pin=4W (ES-Probe)/FindMax (11x41x1): Measurement grid: dx=20mm, dy=20mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 3.194 mW/g


ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com


0 dB = 3.190 mW/g = 10.08 dB mW/g

ULTRATECH GROUP OF LABS

•

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com File #: ICOM-287Q-SAR February 1, 2012

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com File #: ICOM-287Q-SAR February 1, 2012

6.5.2.3. ¹/₄ helical whip cut antenna (M/N: FA-SC61UC), length=142mm; 512 MHz; #8

Test Laboratory: Ultratech Group of Labs File Name: ICOM-287Q FA-SC61UC=142mm Head 512MHz(Hf).da52

DUT: ICOM UHF Transceiver; Type: IC-F4031S; Serial: 7300001

Communication System: CW; Frequency: 512 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 512 MHz; $\sigma = 0.923 \text{ mho/m}$; $\varepsilon_r = 42.099$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

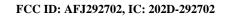
DASY5 Configuration:

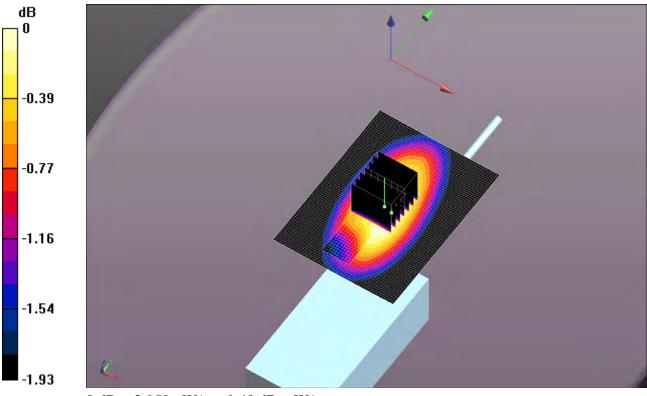
- Probe: ES3DV3 SN3208; ConvF(7.1, 7.1, 7.1); Calibrated: 3/15/2011
- Sensor-Surface: 3.4mm (Mechanical Surface Detection), Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn874;
- Phantom: ELI 4.0; Type: QD OVA 001 BB; Serial: 1057
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

Configuration_Head_FA-SC61UC=142mm_HF/Front Face, d=25mm, Pin=4W (ES-Probe)/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm

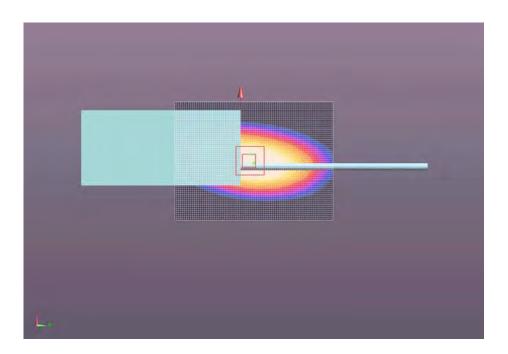
Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 3.058 mW/g

Configuration Head FA-SC61UC=142mm HF/Front Face, d=25mm, Pin=4W (ES-Probe)/Zoom Scan (5x5x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.135 V/m; Power Drift = -0.11 dB Peak SAR (extrapolated) = 3.5220SAR(1 g) = 2.46 mW/g; SAR(10 g) = 1.83 mW/g (SAR corrected for target medium)

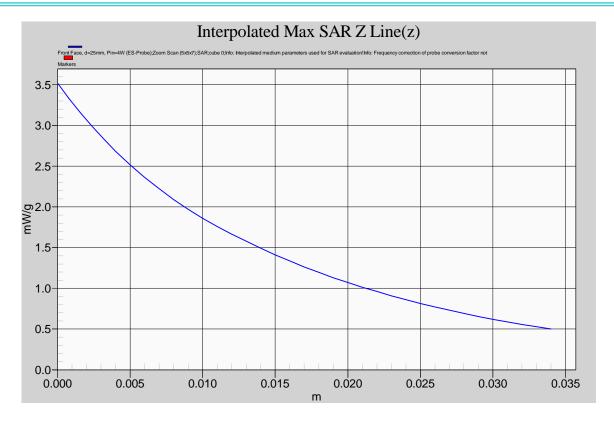

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 2.684 mW/g


Configuration Head FA-SC61UC=142mm_HF/Front Face, d=25mm, Pin=4W (ES-Probe)/FindMax (11x41x1): Measurement grid: dx=20mm, dy=20mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 2.950 mW/g


ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com


0 dB = 2.950 mW/g = 9.40 dB mW/g

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com File #: ICOM-287Q-SAR February 1, 2012

Page 59

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u> File #: ICOM-287Q-SAR February 1, 2012

6.5.2.4. ¹/₄ helical whip cut antenna (M/N: FA-SC61UC), length=136mm; 450 MHz; #9

Test Laboratory: Ultratech Group of Labs File Name: ICOM-2870 FA-SC61UC=136mm Head 450MHz(Lf).da52

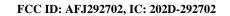
DUT: ICOM UHF Transceiver; Type: IC-F4031S; Serial: 7300001

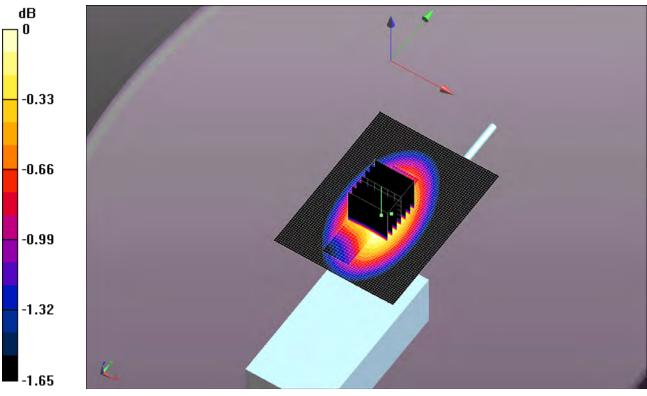
Communication System: CW; Frequency: 450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 450 MHz; σ = 0.872 mho/m; ϵ_r = 43.381; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

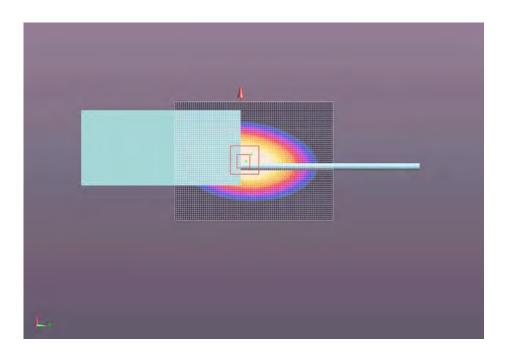
- Probe: ES3DV3 SN3208; ConvF(7.1, 7.1, 7.1); Calibrated: 3/15/2011
- Sensor-Surface: 3.4mm (Mechanical Surface Detection), Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn874;
- Phantom: ELI 4.0; Type: QD OVA 001 BB; Serial: 1057
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

Configuration_Head_FA-SC61UC=136mm_LF/Front Face, d=25mm, Pin=4W (ES-Probe)/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.547 mW/g

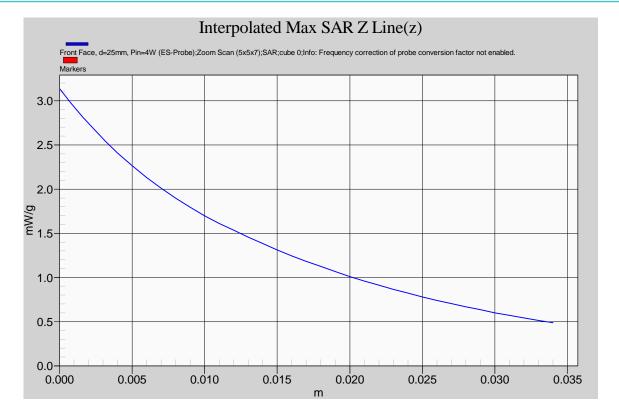

Configuration_Head_FA-SC61UC=136mm_LF/Front Face, d=25mm, Pin=4W (ES-Probe)/Zoom Scan (5x5x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 53.097 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 3.1370 SAR(1 g) = 2.3 mW/g; SAR(10 g) = 1.72 mW/g (SAR corrected for target medium) Maximum value of SAR (measured) = 2.411 mW/g


Configuration_Head_FA-SC61UC=136mm_LF/Front Face, d=25mm, Pin=4W (ES-Probe)/FindMax (11x41x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 2.467 mW/g

ULTRATECH GROUP OF LABS


File #: ICOM-287Q-SAR February 1, 2012

3000 Bristol Circle, Oakville, Ontario,Canada L6H 6G4Tel. #:905-829-1570, Fax. #: 905-829-8050,Email: vic@ultratech-labs.com,Website: http://www.ultratech-labs.com



0 dB = 2.470 mW/g = 7.85 dB mW/g

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com File #: ICOM-287Q-SAR February 1, 2012

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u> File #: ICOM-287Q-SAR February 1, 2012

6.5.2.5. ¹/₄ helical whip cut antenna (M/N: FA-SC61UC), length=136mm; 480 MHz; #10

Test Laboratory: Ultratech Group of Labs File Name: ICOM-287Q FA-SC61UC=136mm Head 480MHz(Mf).da52

DUT: ICOM UHF Transceiver; Type: IC-F4031S; Serial: 7300001

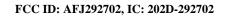
Communication System: CW; Frequency: 480 MHz; Duty Cycle: 1:1 Medium parameters used: f = 480 MHz; σ = 0.898 mho/m; ϵ_r = 42.692; ρ = 1000 kg/m³ Phantom section: Flat Section

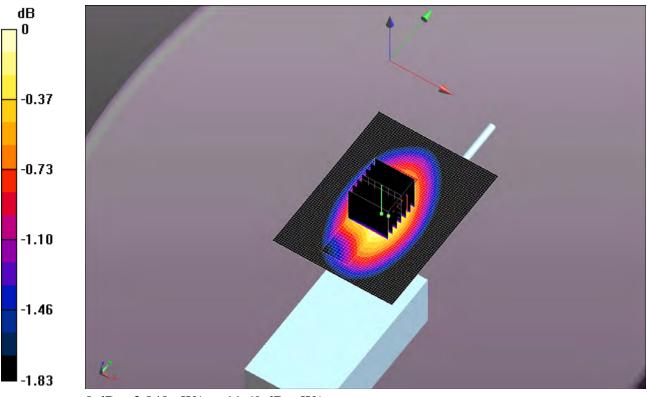
DASY5 Configuration:

- Probe: ES3DV3 SN3208; ConvF(7.1, 7.1, 7.1); Calibrated: 3/15/2011
- Sensor-Surface: 3.4mm (Mechanical Surface Detection), Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn874;
- Phantom: ELI 4.0; Type: QD OVA 001 BB; Serial: 1057
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

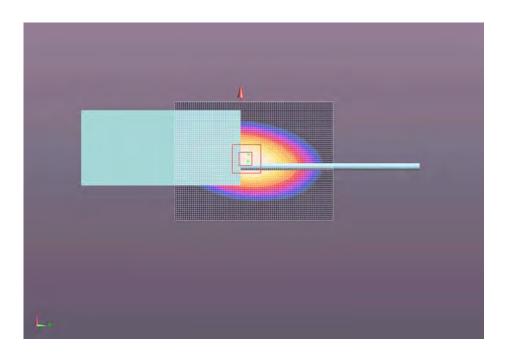
Configuration_Head_FA-SC61UC=136mm_MF/Front Face, d=25mm, Pin=4W (ES-Probe)/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 3.852 mW/g

Configuration_Head_FA-SC61UC=136mm_MF/Front Face, d=25mm, Pin=4W (ES-Probe)/Zoom Scan (5x5x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 64.898 V/m; Power Drift = -0.13 dB Peak SAR (extrapolated) = 4.3150


SAR(1 g) = 3.07 mW/g; SAR(10 g) = 2.29 mW/g (SAR corrected for target medium) Maximum value of SAR (measured) = 3.310 mW/g


Configuration_Head_FA-SC61UC=136mm_MF/Front Face, d=25mm, Pin=4W (ES-Probe)/FindMax (11x41x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 3.838 mW/g

ULTRATECH GROUP OF LABS


File #: ICOM-287Q-SAR February 1, 2012

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>

0 dB = 3.840 mW/g = 11.69 dB mW/g

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com File #: ICOM-287Q-SAR February 1, 2012

Interpolated Max SAR Z Line(z) Front Face, d=25mm, Pin=4W (ES-Probe);Zoom Scan (5x5x7);SAR;cube 0;Info: Frequency correction of probe conversion factor not enabled. Markers 4.5 4.0 3.5 3.0 б/Лш 2.0 1.5 1.0 0.5 0.0-0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 m

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u> File #: ICOM-287Q-SAR February 1, 2012

6.5.2.6. ¹/₄ helical whip cut antenna (M/N: FA-SC61UC), length=136mm; 512 MHz; #11

Test Laboratory: Ultratech Group of Labs File Name: <u>ICOM-2870 FA-SC61UC=136mm Head 512MHz(Hf).da52</u>

DUT: ICOM UHF Transceiver; Type: IC-F4031S; Serial: 7300001

Communication System: CW; Frequency: 512 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 512 MHz; σ = 0.923 mho/m; ϵ_r = 42.099; ρ = 1000 kg/m³ Phantom section: Flat Section

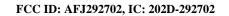
DASY5 Configuration:

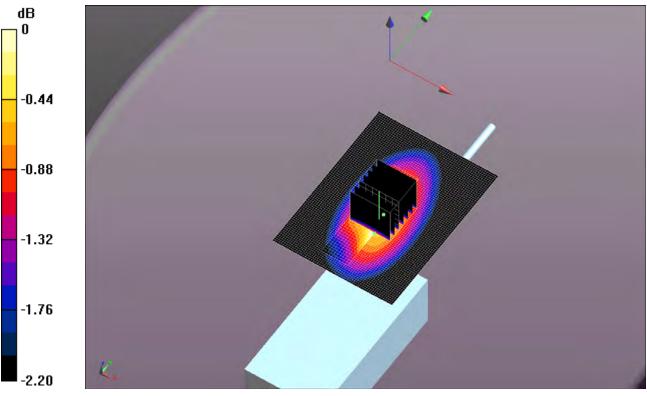
- Probe: ES3DV3 SN3208; ConvF(7.1, 7.1, 7.1); Calibrated: 3/15/2011
- Sensor-Surface: 3.4mm (Mechanical Surface Detection), Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn874;
- Phantom: ELI 4.0; Type: QD OVA 001 BB; Serial: 1057
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

Configuration_Head_FA-SC61UC=136mm_HF/Front Face, d=25mm, Pin=4W (ES-Probe)/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm

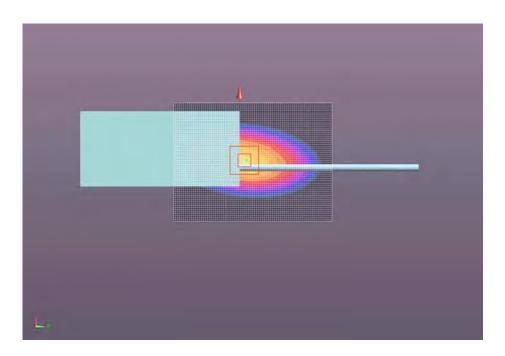
Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 3.532 mW/g

Configuration_Head_FA-SC61UC=136mm_HF/Front Face, d=25mm, Pin=4W (ES-Probe)/Zoom Scan (5x5x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 62.411 V/m; Power Drift = -0.11 dB Peak SAR (extrapolated) = 4.3040 SAR(1 g) = 3 mW/g; SAR(10 g) = 2.22 mW/g (SAR corrected for target medium)

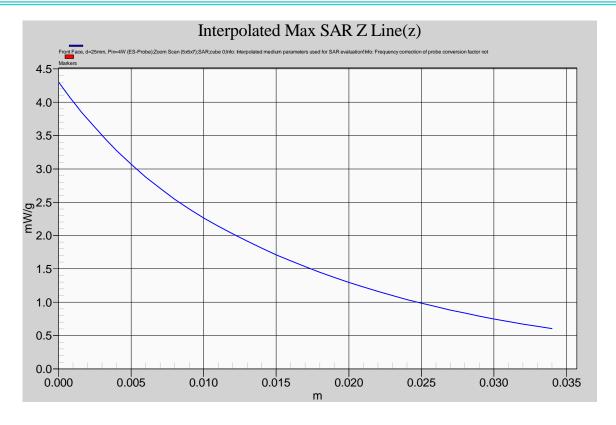

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 3.275 mW/g


Configuration_Head_FA-SC61UC=136mm_HF/Front Face, d=25mm, Pin=4W (ES-Probe)/FindMax (11x41x1): Measurement grid: dx=20mm, dy=20mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 3.894 mW/g


ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com


0 dB = 3.890 mW/g = 11.80 dB mW/g

ULTRATECH GROUP OF LABS

•

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com File #: ICOM-287Q-SAR February 1, 2012

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u> File #: ICOM-287Q-SAR February 1, 2012

6.5.2.7. ¹/₄ helical whip cut antenna (M/N: FA-SC61UC), length=129mm; 450 MHz; #12

Test Laboratory: Ultratech Group of Labs File Name: <u>ICOM-2870_FA-SC61UC=129mm_Head_450MHz(Lf).da52</u>

DUT: ICOM UHF Transceiver; Type: IC-F4031S; Serial: 7300001

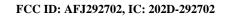
Communication System: CW; Frequency: 450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 450 MHz; σ = 0.872 mho/m; ϵ_r = 43.381; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

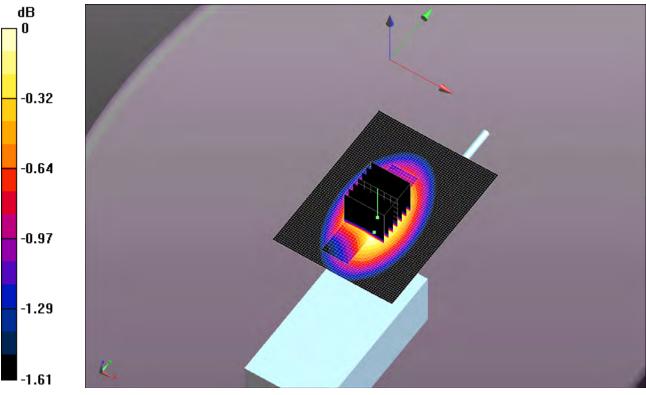
- Probe: ES3DV3 SN3208; ConvF(7.1, 7.1, 7.1); Calibrated: 3/15/2011
- Sensor-Surface: 3.4mm (Mechanical Surface Detection), Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn874;
- Phantom: ELI 4.0; Type: QD OVA 001 BB; Serial: 1057
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

Configuration_Head_FA-SC61UC=129mm_LF/Front Face, d=25mm, Pin=4W (ES-Probe)/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.355 mW/g

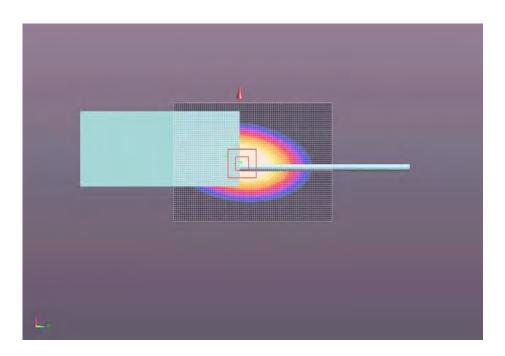
Maximum value of SAR (interpolated) = 2.355 mW/g


Configuration_Head_FA-SC61UC=129mm_LF/Front Face, d=25mm, Pin=4W (ES-Probe)/Zoom Scan (5x5x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 50.950 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 2.9520 SAR(1 g) = 2.17 mW/g; SAR(10 g) = 1.61 mW/g (SAR corrected for target medium) Maximum value of SAR (measured) = 2.272 mW/g

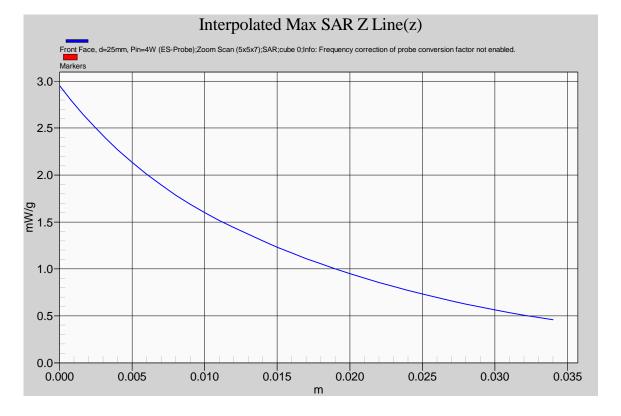
Configuration_Head_FA-SC61UC=129mm_LF/Front Face, d=25mm, Pin=4W (ES-Probe)/FindMax (11x41x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 2.272 mW/g


ULTRATECH GROUP OF LABS

File #: ICOM-287Q-SAR February 1, 2012


3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>

Page 71


0 dB = 2.270 mW/g = 7.12 dB mW/g

ULTRATECH GROUP OF LABS

•

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com File #: ICOM-287Q-SAR February 1, 2012

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u> File #: ICOM-287Q-SAR February 1, 2012

6.5.2.8. ¹/₄ helical whip cut antenna (M/N: FA-SC61UC), length=129mm; 500 MHz; #13

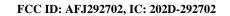
Test Laboratory: Ultratech Group of Labs File Name: ICOM-287Q FA-SC61UC=129mm Head 500MHz(Mf).da52

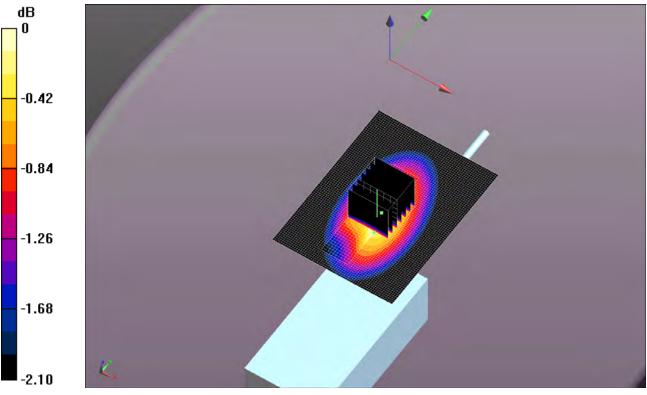
DUT: ICOM UHF Transceiver; Type: IC-F4031S; Serial: 7300001

Communication System: CW; Frequency: 500 MHz; Duty Cycle: 1:1 Medium parameters used: f = 500 MHz; $\sigma = 0.913 \text{ mho/m}$; $\varepsilon_r = 42.298$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

DASY5 Configuration:

- Probe: ES3DV3 SN3208; ConvF(7.1, 7.1, 7.1); Calibrated: 3/15/2011
- Sensor-Surface: 3.4mm (Mechanical Surface Detection), Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn874;
- Phantom: ELI 4.0; Type: QD OVA 001 BB; Serial: 1057
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

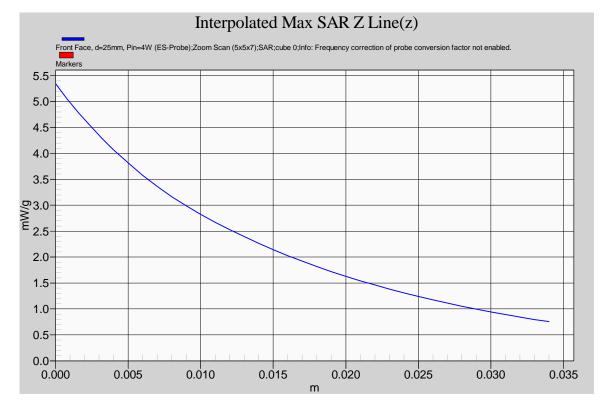

Configuration_Head_FA-SC61UC=129mm_MF/Front Face, d=25mm, Pin=4W (ES-Probe)/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 4.348 mW/g


Configuration Head FA-SC61UC=129mm MF/Front Face, d=25mm, Pin=4W (ES-Probe)/Zoom Scan (5x5x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 69.077 V/m; Power Drift = -0.08 dBPeak SAR (extrapolated) = 5.3440SAR(1 g) = 3.74 mW/g; SAR(10 g) = 2.77 mW/g (SAR corrected for target medium) Maximum value of SAR (measured) = 4.066 mW/g

Configuration_Head_FA-SC61UC=129mm_MF/Front Face, d=25mm, Pin=4W (ES-Probe)/FindMax (11x41x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 4.549 mW/g


ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com File #: ICOM-287Q-SAR February 1, 2012



0 dB = 4.550 mW/g = 13.16 dB mW/g

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com File #: ICOM-287Q-SAR February 1, 2012

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u> File #: ICOM-287Q-SAR February 1, 2012

6.5.2.9. ¹/₄ helical whip cut antenna (M/N: FA-SC61UC), length=129mm; 512 MHz; #14

Test Laboratory: Ultratech Group of Labs File Name: ICOM-287Q FA-SC61UC=129mm Head 512MHz(Hf).da52

DUT: ICOM UHF Transceiver; Type: IC-F4031S; Serial: 7300001

Communication System: CW; Frequency: 512 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 512 MHz; $\sigma = 0.923 \text{ mho/m}$; $\varepsilon_r = 42.099$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

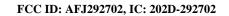
DASY5 Configuration:

- Probe: ES3DV3 SN3208; ConvF(7.1, 7.1, 7.1); Calibrated: 3/15/2011
- Sensor-Surface: 3.4mm (Mechanical Surface Detection), Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn874;
- Phantom: ELI 4.0; Type: QD OVA 001 BB; Serial: 1057
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

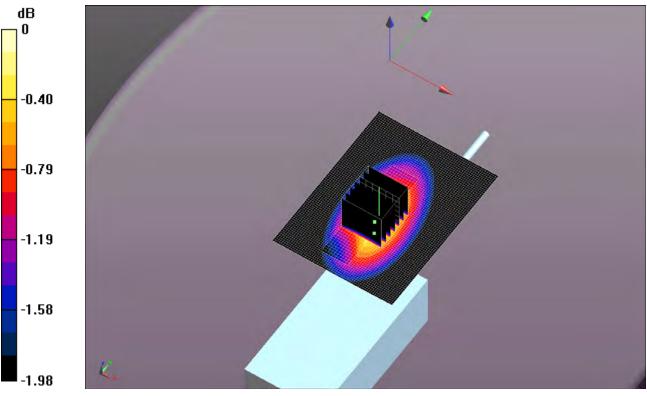
Configuration_Head_FA-SC61UC=129mm_HF/Front Face, d=25mm, Pin=4W (ES-Probe)/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 4.254 mW/g

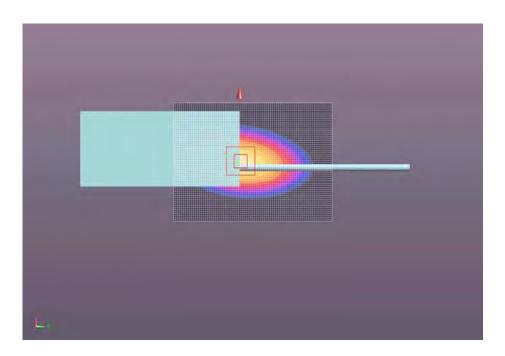
Configuration Head FA-SC61UC=129mm HF/Front Face, d=25mm, Pin=4W (ES-Probe)/Zoom Scan (5x5x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 67.115 V/m; Power Drift = -0.20 dB Peak SAR (extrapolated) = 5.1590SAR(1 g) = 3.6 mW/g; SAR(10 g) = 2.68 mW/g (SAR corrected for target medium)


Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 3.944 mW/g

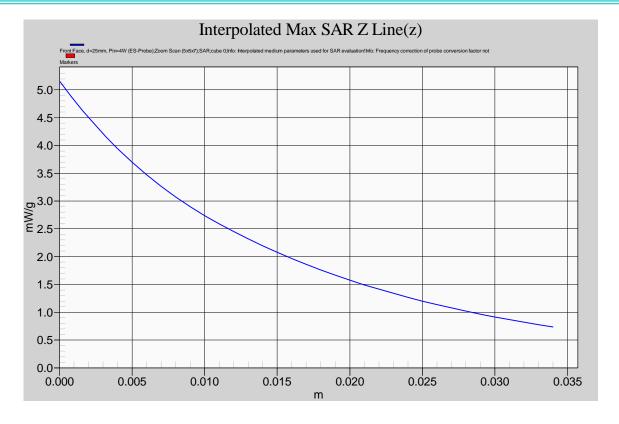
Configuration Head FA-SC61UC=129mm_HF/Front Face, d=25mm, Pin=4W (ES-Probe)/FindMax (11x41x1): Measurement grid: dx=20mm, dy=20mm


Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 4.458 mW/g

ULTRATECH GROUP OF LABS


3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

Page 77



0 dB = 4.460 mW/g = 12.99 dB mW/g

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com File #: ICOM-287Q-SAR February 1, 2012

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u> File #: ICOM-287Q-SAR February 1, 2012

#	Configuration	Antenna Position	Frequency [MHz]	Channel	MAX SAR _{1g} [W/Kg]
*	Occupational/Controlled Exposure Category Limit				8.0
16	¹ / ₄ helical whip cut antenna (M/N: FA-SC61UC, 360~520 MHz, white ring)	FIX	460	Low	3.28
17	50% duty cycle for PTT; Antenna Length=142mm MB-94 Clip, HM-166LA Speaker Microphone	FIX	486	Middle	2.56
18		FIX	512	High	2.10
19	¹ / ₄ helical whip antenna (M/N: FA-SC61UC, 360~520 MHz, white ring)	FIX	450	Low	2.10
20	50% duty cycle for PTT; Antenna Length=136mm MB-94 Clip, HM-166LA Speaker Microphone	FIX	480	Middle	3.26
21		FIX	512	High	2.59
22	 ¹/₄ helical whip antenna (M/N: FA-SC61UC, 360~520 MHz, white ring) 50% duty cycle for PTT; Antenna Length=129mm MB-94 Clip, HM-166LA Speaker Microphone 	FIX	450	Low	2.10
23		FIX	500	Middle	3.41
24		FIX	512	High	3.20
25		FIX	475	Option	-

6.5.3. Body Configuration Result^{*} for Cut Antenna (FA-SC61UC)

*

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>

• All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

File #: ICOM-287Q-SAR February 1, 2012

6.5.3.1. ¹/₄ helical whip cut antenna (M/N: FA-SC61UC), length=142mm; Belt Belt Clip (M/N: MB-94), Speaker Microphone (M/N: HM-166LA); 460 MHz; #16

Test Laboratory: Ultratech Group of Labs File Name: <u>ICOM-287Q FA-SC61UC=142mm Body 460MHz(Lf).da52</u>

DUT: ICOM UHF Transceiver; Type: IC-F4031S; Serial: 7300001

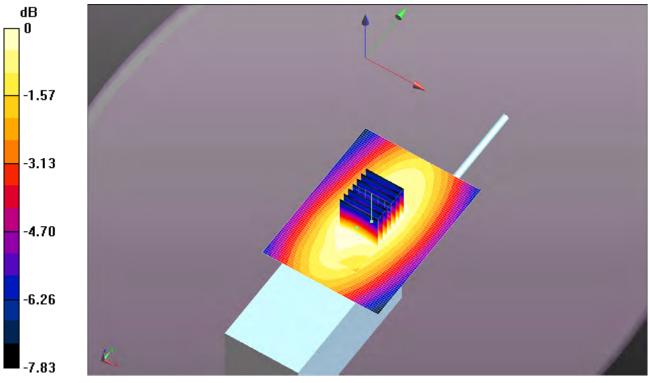
Communication System: CW; Frequency: 460 MHz; Duty Cycle: 1:1 Medium parameters used: f = 460 MHz; σ = 0.946 mho/m; ϵ_r = 56.164; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

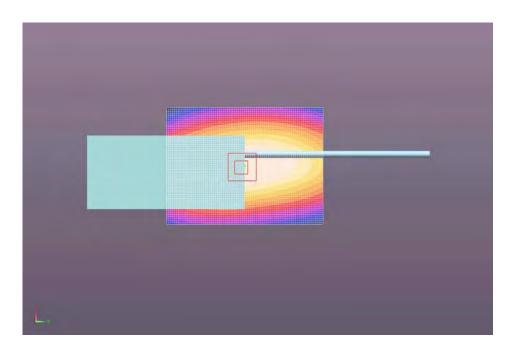
- Probe: ES3DV3 SN3208; ConvF(7, 7, 7); Calibrated: 3/15/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 3.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn874;
- Phantom: ELI 4.0; Type: QD OVA 001 BB; Serial: 1057
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

Configuration_Body_FA-SC61UC=142mm_Lf/Body Back, d=0mm, Pin=4W (ES-Probe)/FindMax (11x41x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 7.655 mW/g

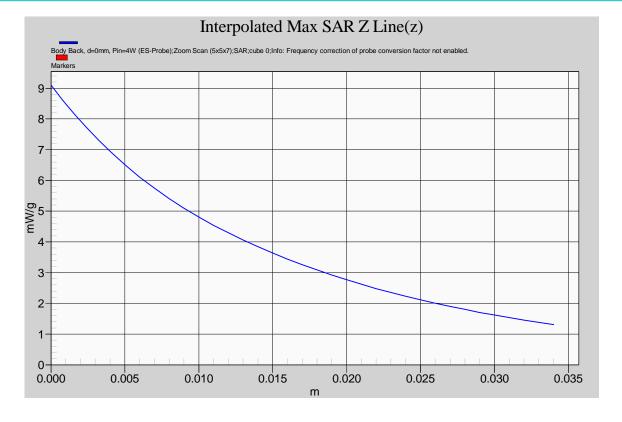
Configuration_Body_FA-SC61UC=142mm_Lf/Body Back, d=0mm, Pin=4W (ES-Probe)/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 7.526 mW/g


Configuration_Body_FA-SC61UC=142mm_Lf/Body Back, d=0mm, Pin=4W (ES-Probe)/Zoom Scan (5x5x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 90.564 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 9.0960 SAR(1 g) = 6.55 mW/g; SAR(10 g) = 4.79 mW/g (SAR corrected for target medium) Maximum value of SAR (measured) = 6.935 mW/g

ULTRATECH GROUP OF LABS


File #: ICOM-287Q-SAR February 1, 2012

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com


0 dB = 6.930 mW/g = 16.81 dB mW/g

ULTRATECH GROUP OF LABS

•

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com File #: ICOM-287Q-SAR February 1, 2012

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u> File #: ICOM-287Q-SAR February 1, 2012

6.5.3.2. ¹/₄ helical whip cut antenna (M/N: FA-SC61UC), length=142mm; Belt Belt Clip (M/N: MB-94), Speaker Microphone (M/N: HM-166LA); 486 MHz; #17

Test Laboratory: Ultratech Group of Labs File Name: <u>ICOM-287Q FA-SC61UC=142mm Body 486MHz(Mf).da52</u>

DUT: ICOM UHF Transceiver; Type: IC-F4031S; Serial: 7300001

Communication System: CW; Frequency: 486 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 486 MHz; $\sigma = 0.966$ mho/m; $\epsilon_r = 55.753$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

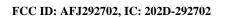
DASY5 Configuration:

- Probe: ES3DV3 SN3208; ConvF(7, 7, 7); Calibrated: 3/15/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 3.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn874;
- Phantom: ELI 4.0; Type: QD OVA 001 BB; Serial: 1057
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

Configuration_Body_FA-SC61UC=142mm_Mf/Body Back, d=0mm, Pin=4W (ES-Probe)/FindMax (11x41x1): Measurement grid: dx=20mm, dy=20mm

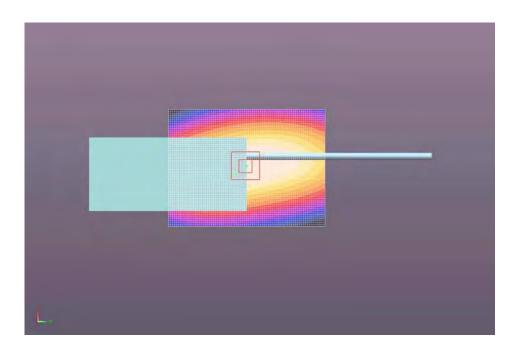
Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 5.761 mW/g

Configuration_Body_FA-SC61UC=142mm_Mf/Body Back, d=0mm, Pin=4W (ES-Probe)/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm

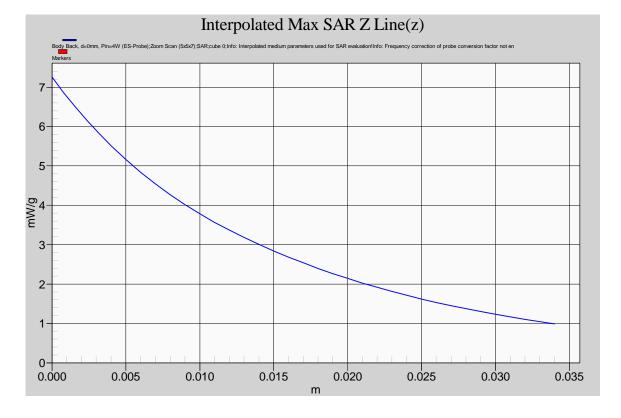

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 5.917 mW/g

Configuration_Body_FA-SC61UC=142mm_Mf/Body Back, d=0mm, Pin=4W (ES-Probe)/Zoom Scan (5x5x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 77.210 V/m; Power Drift = -0.16 dB Peak SAR (extrapolated) = 7.2520 SAR(1 g) = 5.11 mW/g; SAR(10 g) = 3.72 mW/g (SAR corrected for target medium)

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 5.513 mW/g


ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com


0 dB = 5.510 mW/g = 14.82 dB mW/g

ULTRATECH GROUP OF LABS

•

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com File #: ICOM-287Q-SAR February 1, 2012

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u> File #: ICOM-287Q-SAR February 1, 2012

6.5.3.3. ¹/₄ helical whip cut antenna (M/N: FA-SC61UC), length=142mm; Belt Belt Clip (M/N: MB-94), Speaker Microphone (M/N: HM-166LA); 512MHz; #18

Test Laboratory: Ultratech Group of Labs File Name: <u>ICOM-287Q_FA-SC61UC=142mm_Body_512MHz(Hf).da52</u>

DUT: ICOM UHF Transceiver; Type: IC-F4031S; Serial: 7300001

Communication System: CW; Frequency: 512 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 512 MHz; $\sigma = 0.989$ mho/m; $\epsilon_r = 55.44$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

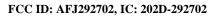
DASY5 Configuration:

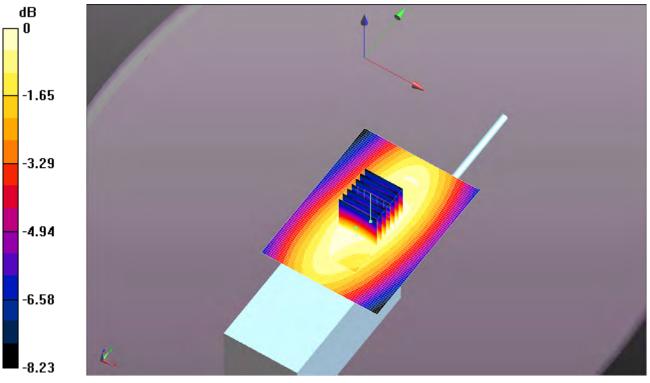
- Probe: ES3DV3 SN3208; ConvF(7, 7, 7); Calibrated: 3/15/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 3.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn874;
- Phantom: ELI 4.0; Type: QD OVA 001 BB; Serial: 1057
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

Configuration_Body_FA-SC61UC=142mm_Hf/Body Back, d=0mm, Pin=4W (ES-Probe)/FindMax (11x41x1): Measurement grid: dx=20mm, dy=20mm

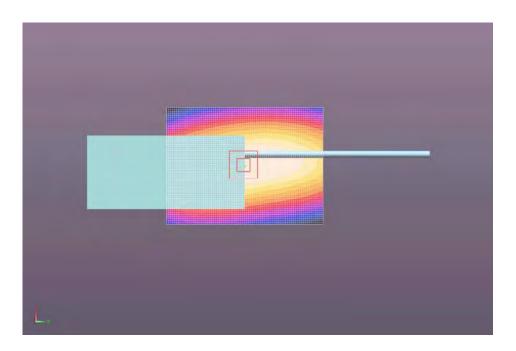
Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 4.733 mW/g

Configuration_Body_FA-SC61UC=142mm_Hf/Body Back, d=0mm, Pin=4W (ES-Probe)/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm


Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 4.882 mW/g


Configuration_Body_FA-SC61UC=142mm_Hf/Body Back, d=0mm, Pin=4W (ES-Probe)/Zoom Scan (5x5x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 69.585 V/m; Power Drift = -0.13 dB Peak SAR (extrapolated) = 6.0230 SAR(1 g) = 4.19 mW/g; SAR(10 g) = 3.05 mW/g (SAR corrected for target medium)

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 4.562 mW/g


ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com File #: ICOM-287Q-SAR February 1, 2012

0 dB = 4.560 mW/g = 13.18 dB mW/g

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com File #: ICOM-287Q-SAR February 1, 2012

Page 87

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u> File #: ICOM-287Q-SAR February 1, 2012

6.5.3.4. ¹/₄ helical whip cut antenna (M/N: FA-SC61UC), length=136mm; Belt Belt Clip (M/N: MB-94), Speaker Microphone (M/N: HM-166LA); 450 MHz; #19

Test Laboratory: Ultratech Group of Labs File Name: ICOM-287Q FA-SC61UC=136mm Body 450MHz(Lf).da52

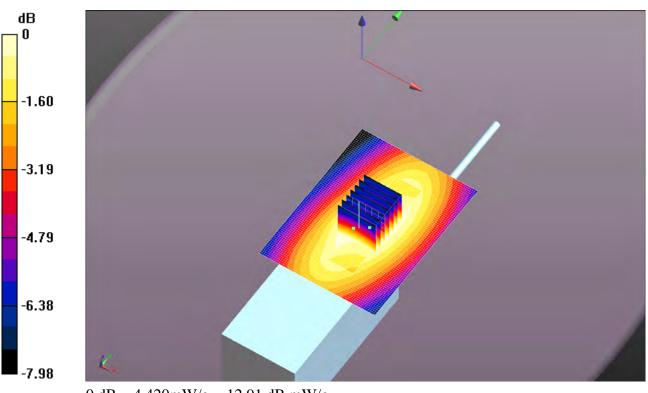
DUT: ICOM UHF Transceiver; Type: IC-F4031S; Serial: 7300001

Communication System: CW; Frequency: 450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 450 MHz; $\sigma = 0.939 \text{ mho/m}$; $\varepsilon_r = 56.261$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

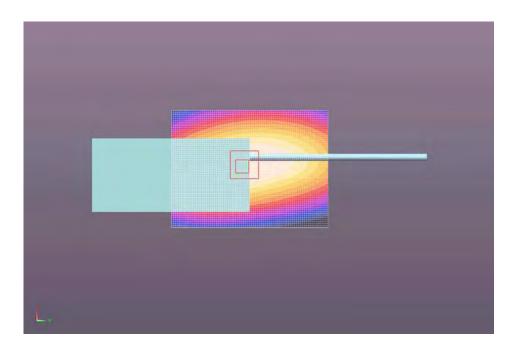
DASY5 Configuration:

- Probe: ES3DV3 SN3208; ConvF(7, 7, 7); Calibrated: 3/15/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 3.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn874;
- Phantom: ELI 4.0; Type: QD OVA 001 BB; Serial: 1057
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

Configuration Body FA-SC61UC=136mm Lf/Body Back, d=0mm, Pin=4W (ES-Probe)/FindMax (11x41x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 4.453 mW/g

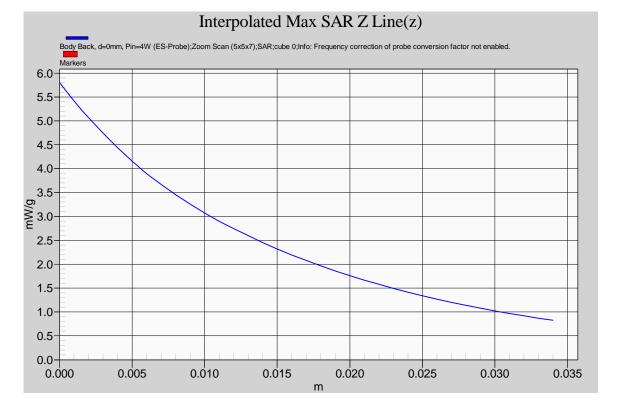

Configuration_Body_FA-SC61UC=136mm_Lf/Body Back, d=0mm, Pin=4W (ES-Probe)/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 4.743 mW/g

Configuration Body FA-SC61UC=136mm Lf/Body Back, d=0mm, Pin=4W (ES-Probe)/Zoom Scan (5x5x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 68.828 V/m; Power Drift = -0.10 dB Peak SAR (extrapolated) = 5.7970SAR(1 g) = 4.2 mW/g; SAR(10 g) = 3.08 mW/g (SAR corrected for target medium) Maximum value of SAR (measured) = 4.421 mW/g


ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

February 1, 2012 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com


0 dB = 4.420 mW/g = 12.91 dB mW/g

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com File #: ICOM-287Q-SAR February 1, 2012

FCC ID: AFJ292702, IC: 202D-292702

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u> File #: ICOM-287Q-SAR February 1, 2012

6.5.3.5. ¹/₄ helical whip cut antenna (M/N: FA-SC61UC), length=136mm; Belt Belt Clip (M/N: MB-94), Speaker Microphone (M/N: HM-166LA); 480 MHz; #20

Test Laboratory: Ultratech Group of Labs File Name: <u>ICOM-287Q FA-SC61UC=136mm Body 480MHz(Mf).da52</u>

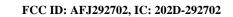
DUT: ICOM UHF Transceiver; Type: IC-F4031S; Serial: 7300001

Communication System: CW; Frequency: 480 MHz; Duty Cycle: 1:1 Medium parameters used: f = 480 MHz; σ = 0.961 mho/m; ϵ_r = 55.78; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

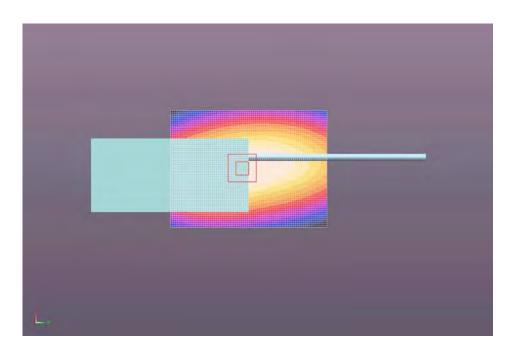
- Probe: ES3DV3 SN3208; ConvF(7, 7, 7); Calibrated: 3/15/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 3.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn874;
- Phantom: ELI 4.0; Type: QD OVA 001 BB; Serial: 1057
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

Configuration_Body_FA-SC61UC=136mm_Mf/Body Back, d=0mm, Pin=4W (ES-Probe)/FindMax (11x41x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 7.592 mW/g

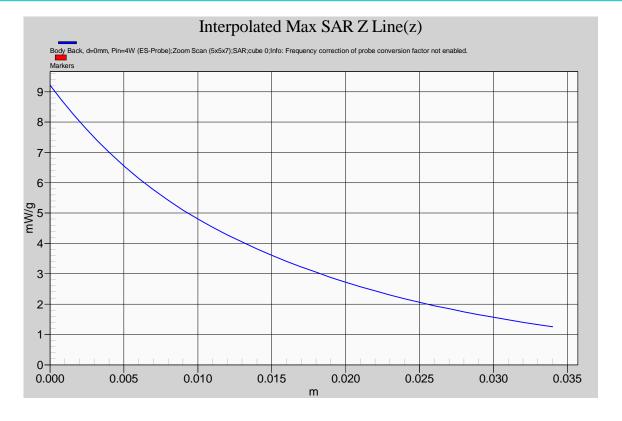

Configuration_Body_FA-SC61UC=136mm_Mf/Body Back, d=0mm, Pin=4W (ES-Probe)/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 7.568 mW/g

Configuration_Body_FA-SC61UC=136mm_Mf/Body Back, d=0mm, Pin=4W (ES-Probe)/Zoom Scan (5x5x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 88.185 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 9.2130 SAR(1 g) = 6.52 mW/g; SAR(10 g) = 4.75 mW/g (SAR corrected for target medium) Maximum value of SAR (measured) = 7.000 mW/g

ULTRATECH GROUP OF LABS


File #: ICOM-287Q-SAR February 1, 2012

3000 Bristol Circle, Oakville, Ontario,Canada L6H 6G4Tel. #:905-829-1570, Fax. #: 905-829-8050,Email: vic@ultratech-labs.com,Website: http://www.ultratech-labs.com,



0 dB = 7.000 mW/g = 16.90 dB mW/g

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com File #: ICOM-287Q-SAR February 1, 2012

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u> File #: ICOM-287Q-SAR February 1, 2012

6.5.3.6. ¹/₄ helical whip cut antenna (M/N: FA-SC61UC), length=136mm; Belt Belt Clip (M/N: MB-94), Speaker Microphone (M/N: HM-166LA); 512 MHz; #21

Test Laboratory: Ultratech Group of Labs File Name: <u>ICOM-287Q FA-SC61UC=136mm Body 512MHz(Hf).da52</u>

DUT: ICOM UHF Transceiver; Type: IC-F4031S; Serial: 7300001

Communication System: CW; Frequency: 512 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 512 MHz; $\sigma = 0.989$ mho/m; $\epsilon_r = 55.44$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: ES3DV3 SN3208; ConvF(7, 7, 7); Calibrated: 3/15/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 3.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn874;
- Phantom: ELI 4.0; Type: QD OVA 001 BB; Serial: 1057
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

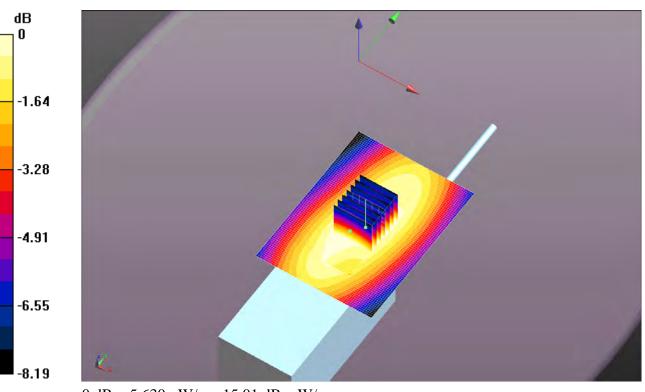
Configuration_Body_FA-SC61UC=136mm_Hf/Body Back, d=0mm, Pin=4W (ES-Probe)/FindMax (11x41x1): Measurement grid: dx=20mm, dy=20mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 5.911 mW/g

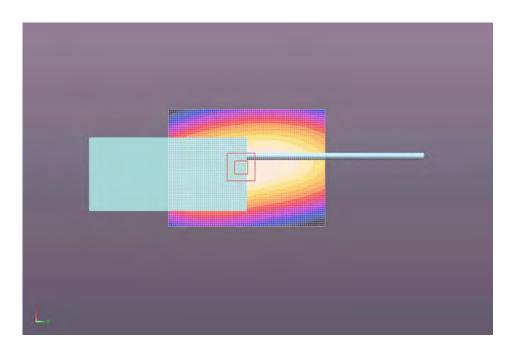
Configuration_Body_FA-SC61UC=136mm_Hf/Body Back, d=0mm, Pin=4W (ES-Probe)/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 6.048 mW/g

Configuration_Body_FA-SC61UC=136mm_Hf/Body Back, d=0mm, Pin=4W (ES-Probe)/Zoom Scan (5x5x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 77.482 V/m; Power Drift = -0.17 dB Peak SAR (extrapolated) = 7.4280 SAR(1 g) = 5.18 mW/g; SAR(10 g) = 3.77 mW/g (SAR corrected for target medium)

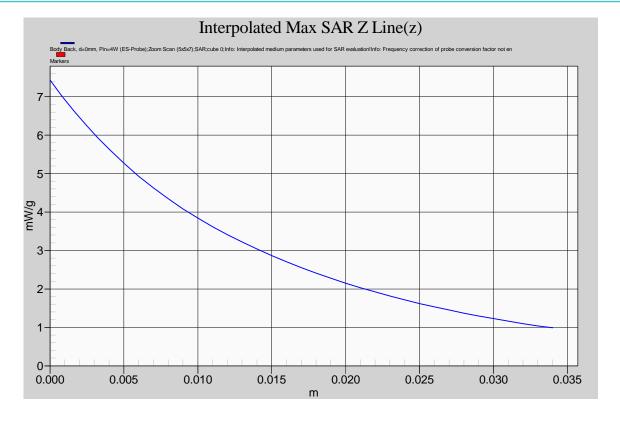

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 5.633 mW/g

ULTRATECH GROUP OF LABS


File #: ICOM-287Q-SAR February 1, 2012

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

0 dB = 5.630 mW/g = 15.01 dB mW/g



ULTRATECH GROUP OF LABS

•

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com File #: ICOM-287Q-SAR February 1, 2012

FCC ID: AFJ292702, IC: 202D-292702

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u> File #: ICOM-287Q-SAR February 1, 2012

6.5.3.7. ¹/₄ helical whip cut antenna (M/N: FA-SC61UC), length=129mm; Belt Belt Clip (M/N: MB-94), Speaker Microphone (M/N: HM-166LA); 450 MHz; #22

Test Laboratory: Ultratech Group of Labs File Name: <u>ICOM-287Q FA-SC61UC=129mm Body 450MHz(Lf).da52</u>

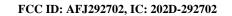
DUT: ICOM UHF Transceiver; Type: IC-F4031S; Serial: 7300001

Communication System: CW; Frequency: 450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 450 MHz; σ = 0.939 mho/m; ϵ_r = 56.261; ρ = 1000 kg/m³ Phantom section: Flat Section

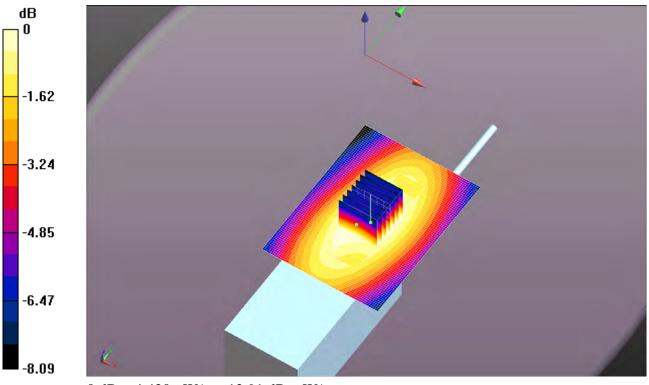
DASY5 Configuration:

- Probe: ES3DV3 SN3208; ConvF(7, 7, 7); Calibrated: 3/15/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 3.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn874;
- Phantom: ELI 4.0; Type: QD OVA 001 BB; Serial: 1057
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

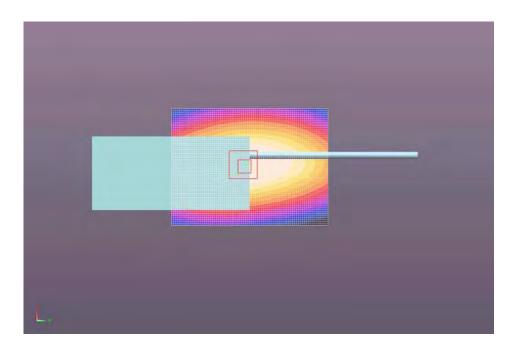
Configuration_Body_FA-SC61UC=129mm_Lf/Body Back, d=0mm, Pin=4W (ES-Probe)/FindMax (11x41x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 4.729 mW/g


Configuration_Body_FA-SC61UC=129mm_Lf/Body Back, d=0mm, Pin=4W (ES-Probe)/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 4.855 mW/g

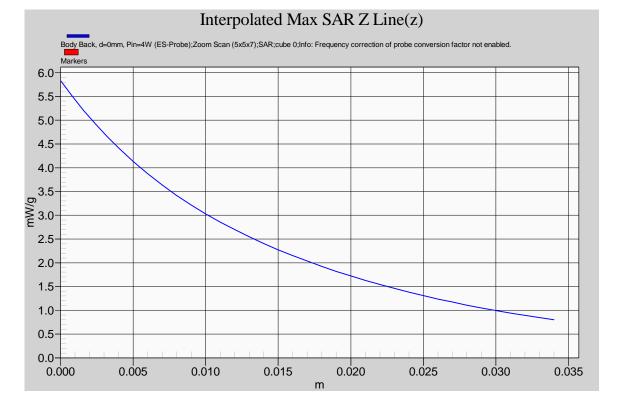
Configuration_Body_FA-SC61UC=129mm_Lf/Body Back, d=0mm, Pin=4W (ES-Probe)/Zoom Scan (5x5x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 70.443 V/m; Power Drift = -0.19 dB Peak SAR (extrapolated) = 5.8310 SAR(1 g) = 4.2 mW/g; SAR(10 g) = 3.05 mW/g (SAR corrected for target medium) Maximum value of SAR (measured) = 4.419 mW/g


ULTRATECH GROUP OF LABS

File #: ICOM-287Q-SAR February 1, 2012


3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

Page 99



0 dB = 4.420 mW/g = 12.91 dB mW/g

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com File #: ICOM-287Q-SAR February 1, 2012

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u> File #: ICOM-287Q-SAR February 1, 2012

6.5.3.8. ¹/₄ helical whip cut antenna (M/N: FA-SC61UC), length=129mm; Belt Belt Clip (M/N: MB-94), Speaker Microphone (M/N: HM-166LA); 500 MHz; #23

Test Laboratory: Ultratech Group of Labs File Name: <u>ICOM-287Q FA-SC61UC=129mm Body 500MHz(Mf).da52</u>

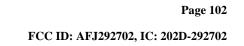
DUT: ICOM UHF Transceiver; Type: IC-F4031S; Serial: 7300001

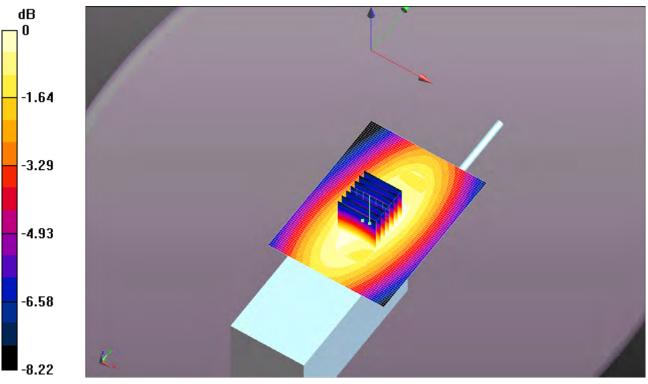
Communication System: CW; Frequency: 500 MHz; Duty Cycle: 1:1 Medium parameters used: f = 500 MHz; σ = 0.978 mho/m; ϵ_r = 55.56; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

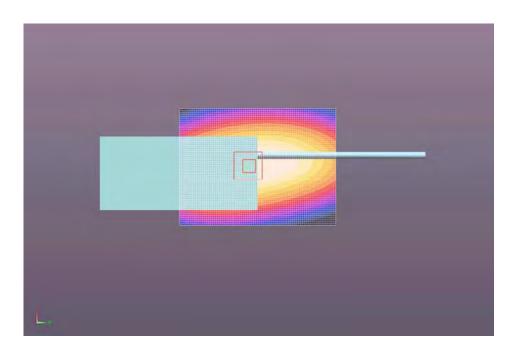
- Probe: ES3DV3 SN3208; ConvF(7, 7, 7); Calibrated: 3/15/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 3.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn874;
- Phantom: ELI 4.0; Type: QD OVA 001 BB; Serial: 1057
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

Configuration_Body_FA-SC61UC=129mm_Mf/Body Back, d=0mm, Pin=4W (ES-Probe)/FindMax (11x41x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 7.946 mW/g


Configuration_Body_FA-SC61UC=129mm_Mf/Body Back, d=0mm, Pin=4W (ES-Probe)/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 7.925 mW/g


Configuration_Body_FA-SC61UC=129mm_Mf/Body Back, d=0mm, Pin=4W (ES-Probe)/Zoom Scan (5x5x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 88.819 V/m; Power Drift = -0.20 dB Peak SAR (extrapolated) = 9.7740 SAR(1 g) = 6.81 mW/g; SAR(10 g) = 4.95 mW/g (SAR corrected for target medium) Maximum value of SAR (measured) = 7.409 mW/g

ULTRATECH GROUP OF LABS


File #: ICOM-287Q-SAR February 1, 2012

3000 Bristol Circle, Oakville, Ontario,Canada L6H 6G4Tel. #:905-829-1570, Fax. #: 905-829-8050,Email: vic@ultratech-labs.com,Website: http://www.ultratech-labs.com

0 dB = 7.410 mW/g = 17.40 dB mW/g

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com File #: ICOM-287Q-SAR February 1, 2012

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u> File #: ICOM-287Q-SAR February 1, 2012

6.5.3.9. ¹/₄ helical whip cut antenna (M/N: FA-SC61UC), length=129mm; Belt Belt Clip (M/N: MB-94), Speaker Microphone (M/N: HM-166LA); 512 MHz; #24

Test Laboratory: Ultratech Group of Labs File Name: <u>ICOM-287Q_FA-SC61UC=129mm_Body_512MHz(Hf).da52</u>

DUT: ICOM UHF Transceiver; Type: IC-F4031S; Serial: 7300001

Communication System: CW; Frequency: 512 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 512 MHz; $\sigma = 0.989$ mho/m; $\epsilon_r = 55.44$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

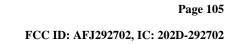
DASY5 Configuration:

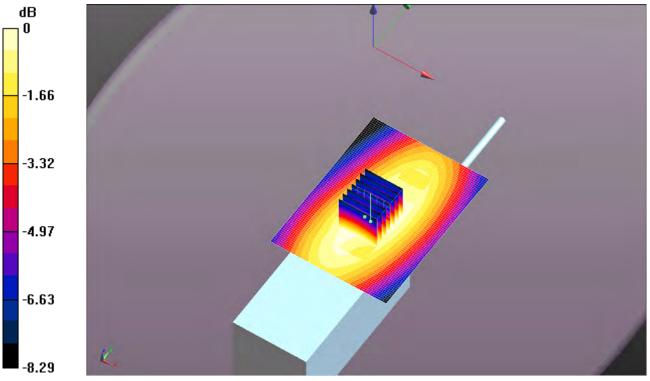
- Probe: ES3DV3 SN3208; ConvF(7, 7, 7); Calibrated: 3/15/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 3.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn874;
- Phantom: ELI 4.0; Type: QD OVA 001 BB; Serial: 1057
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

Configuration_Body_FA-SC61UC=129mm_Hf/Body Back, d=0mm, Pin=4W (ES-Probe)/FindMax (11x41x1): Measurement grid: dx=20mm, dy=20mm

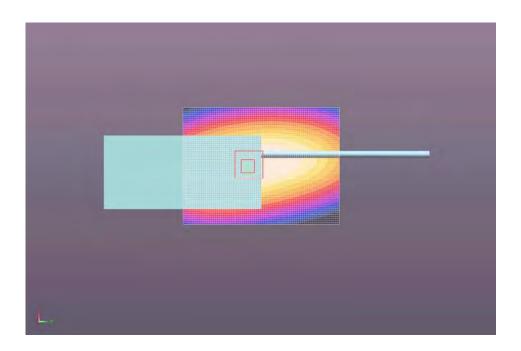
Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 7.257 mW/g

Configuration_Body_FA-SC61UC=129mm_Hf/Body Back, d=0mm, Pin=4W (ES-Probe)/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm

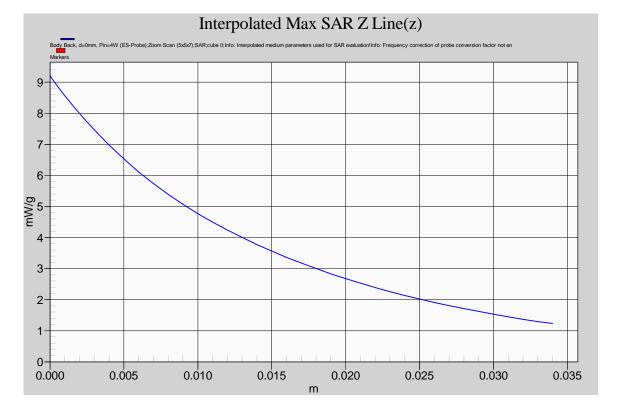

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 7.482 mW/g


Configuration_Body_FA-SC61UC=129mm_Hf/Body Back, d=0mm, Pin=4W (ES-Probe)/Zoom Scan (5x5x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 84.851 V/m; Power Drift = -0.13 dB Peak SAR (extrapolated) = 9.1920 SAR(1 g) = 6.4 mW/g; SAR(10 g) = 4.65 mW/g (SAR corrected for target medium)

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 6.980 mW/g

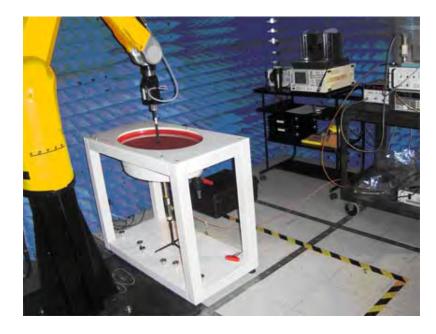

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u> File #: ICOM-287Q-SAR February 1, 2012



0 dB = 6.980 mW/g = 16.88 dB mW/g

ULTRATECH GROUP OF LABS


3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com File #: ICOM-287Q-SAR February 1, 2012

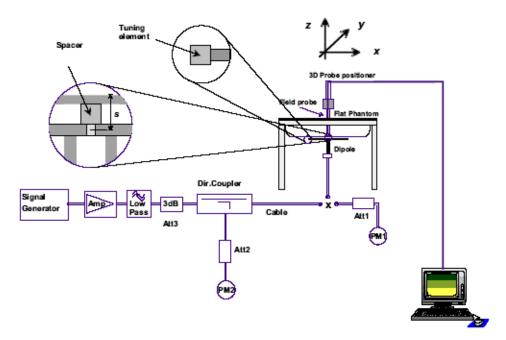
ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u> File #: ICOM-287Q-SAR February 1, 2012

EXHIBIT 7. SAR MEASUREMENT SYSTEM VERIFICATION

7.1. STANDARD SOURCE

A half-wave dipole is positioned below the bottom of the phantom and centered with its axis parallel to the longest side of the phantom. The distance between the liquid filled phantom bottom surface and the center of the dipole axis, *s*, is chosen as specified IEEE 1528 at the specific test frequency (i.e. 15 mm at 835 MHz). A low loss and low dielectric constant spacer is used to establish the correct distance between the top surface of the dipole and the bottom surface of the phantom.



ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u> File #: ICOM-287Q-SAR February 1, 2012

7.2. STANDARD SOURCE INPUT POWER MEASUREMENT

The system validation is performed as shown below or in Figure 7.1 in IEEE 1528.

First the power meter PM1 (including attenuator Att1) is connected to the cable to measure the forward power at the location of the dipole connector (X). The signal generator is adjusted for the desired forward power at the dipole connector (taking into account the attenuation of Att1) as read by power meter PM2. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2. If the signal generator does not allow adjustment in 0.01dB steps, the remaining difference at PM2 must be taken into consideration. PM3 records the reflected power from the dipole to ensure that the value is not changed from the previous value. The reflected power was verified to be at least 20dB below the forward power.

7.3. SYSTEM VALIDATION PROCEDURE

A complete 1g-averaged SAR measurement is performed. The measured 1g-averaged SAR value is normalized to a forward power of 1W to a half-wave dipole and compared with the reference SAR value for the reference dipole and flat phantom shown in columns 2 and 3 of Table 7.1 in IEEE 1528.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com File #: ICOM-287Q-SAR February 1, 2012

7.4. VERIFICATION RESULTS

7.4.1. Reference SAR values at 450 MHz*

	Head Tissue	Body Tissue
Reference SAR _{1g [W/Kg]}	4.58	4.69
Reference SAR _{peak [W/Kg]}	6.75	6.82
Measured SAR _{1g [W/Kg]}	4.40	4.56
Measured SAR _{peak [W/Kg]}	7.01	7.06

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

File #: ICOM-287Q-SAR February 1, 2012

^{*} SAR values in 7.4.1 are normalized to a forward power of 1 W.

7.4.2. Verification at 450 MHz

7.4.2.1. Verification for 450MHz Head Tissue:

Test Laboratory: Ultratech Group of Labs File Name: <u>Sys.Ver.Check-D450MHz_ICOM_Head.da52</u>

DUT: Dipole 450 MHz D450V3; Type: SA AAD 045 CA; Serial: 1063

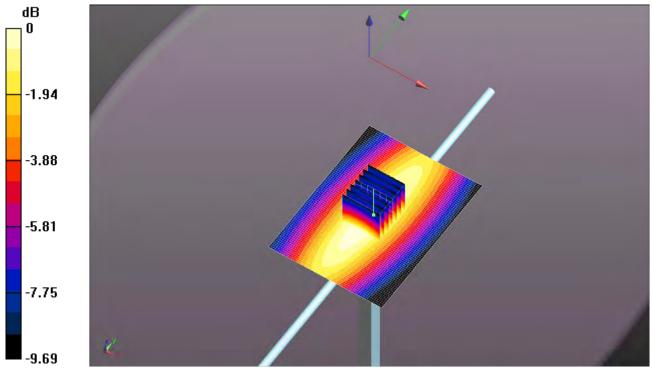
Communication System: CW; Frequency: 450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 450 MHz; σ = 0.872 mho/m; ϵ_r = 43.381; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

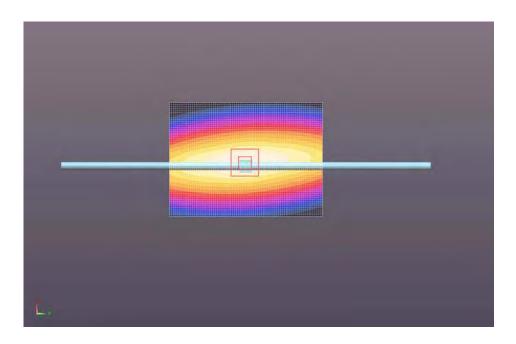
- Probe: ES3DV3 - SN3208; ConvF(7.1, 7.1, 7.1); Calibrated: 3/15/2011

- Sensor-Surface: 3.4mm (Mechanical Surface Detection)

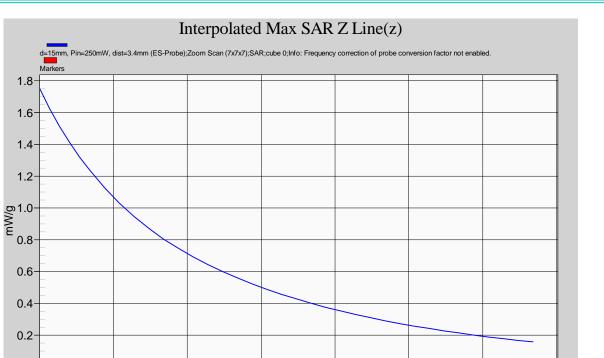
- Electronics: DAE4 Sn874;
- Phantom: ELI 4.0; Type: QD OVA 001 BB; Serial: 1057
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)


System Verification Configuration for 450MHz_Head/d=15mm, Pin=250mW, dist=3.4mm (ES-Probe)/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.262 mW/g

System Verification Configuration for 450MHz_Head/d=15mm, Pin=250mW, dist=3.4mm (ES-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 37.873 V/m; Power Drift = -0.13 dB Peak SAR (extrapolated) = 1.7520 SAR(1 g) = 1.1 mW/g; SAR(10 g) = 0.728 mW/g Maximum value of SAR (measured) = 1.236 mW/g


ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u> File #: ICOM-287Q-SAR February 1, 2012



0 dB = 1.240 mW/g = 1.87 dB mW/g

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com File #: ICOM-287Q-SAR February 1, 2012

m

0.020

0.025

0.030

0.035

0.015

ULTRATECH GROUP OF LABS

0.0

0.005

0.010

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com File #: ICOM-287Q-SAR February 1, 2012

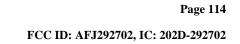
7.4.2.2. Verification for 450MHz Body Tissue:

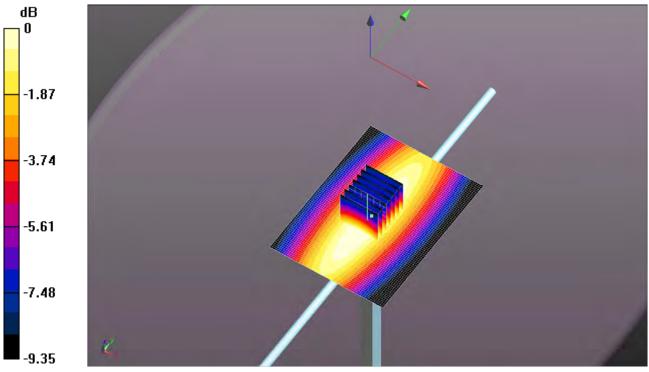
Test Laboratory: Ultratech Group of Labs File Name: <u>Sys.Ver.Check-D450MHz_ICOM_Body.da52</u>

DUT: Dipole 450 MHz D450V3; Type: SA AAD 045 CA; Serial: 1063

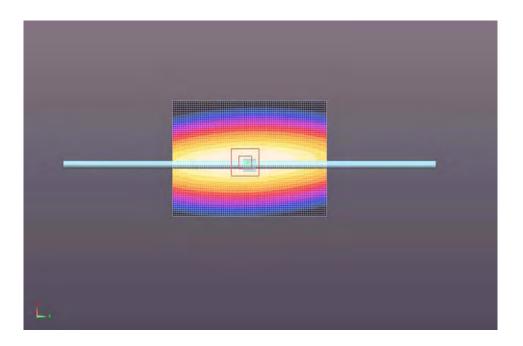
Communication System: CW; Frequency: 450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 450 MHz; σ = 0.939 mho/m; ϵ_r = 56.261; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

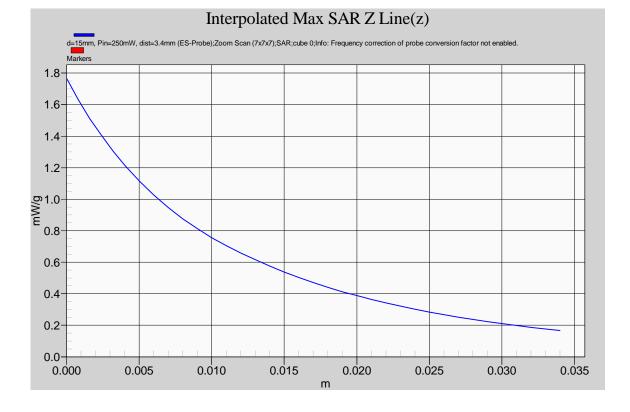

- Probe: ES3DV3 SN3208; ConvF(7, 7, 7); Calibrated: 3/15/2011
- Sensor-Surface: 3.4mm (Mechanical Surface Detection), Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn874;
- Phantom: ELI 4.0; Type: QD OVA 001 BB; Serial: 1057
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)


System Verification Configuration for 450MHz_Body/d=15mm, Pin=250mW, dist=3.4mm (ES-Probe)/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.276 mW/g

System Verification Configuration for 450MHz_Body/d=15mm, Pin=250mW, dist=3.4mm (ES-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 37.145 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 1.7660 SAR(1 g) = 1.14 mW/g; SAR(10 g) = 0.762 mW/g Maximum value of SAR (measured) = 1.217 mW/g


ULTRATECH GROUP OF LABS

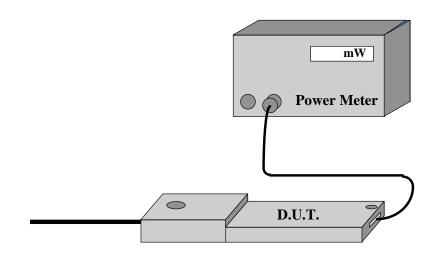
3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u> File #: ICOM-287Q-SAR February 1, 2012



0 dB = 1.220 mW/g = 1.73 dB mW/g

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com File #: ICOM-287Q-SAR February 1, 2012



ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com File #: ICOM-287Q-SAR February 1, 2012

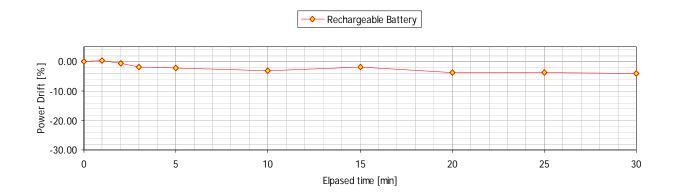
EXHIBIT 8. D.U.T. POWER MEASUREMENT

Whenever possible, a conducted power measurement is performed. To accomplish this, we utilize a fully charged battery, a calibrated power meter and a cable adapter provided by the manufacturer. The data of the cable and related circuit losses are also provided by the manufacturer. The power measurement is then performed across the operational band and the channel with the highest output power is recorded.

Power measurement is performed before and after the SAR to verify if the battery was delivering full power at the time of testing. A difference in output power would determine a need for battery replacement and to repeat the SAR test.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u> File #: ICOM-287Q-SAR February 1, 2012


8.1.1. **RF** conducted output power measurement

Fundamental Frequency (MHz)	Measured RF output power conducted (W)
450	4.09
460	3.82
475	3.88
480	3.63
485.1	3.80
486	3.78
500	3.62
512	3.55

8.1.2. SAR drift measurement

The local SAR was measured at the arbitrary location in the vicinity of the antenna fed point in the simulated tissue at 485.1 MHz during the period of 30 minute for rechargeable Li-ion battery pack.

The power (SAR) drift after 30 minutes of the continuous transmission at the maximum power level was found to be less than ± 5 %.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com File #: ICOM-287Q-SAR February 1, 2012

EXHIBIT 9. TISSUE DIELECTRIC PARAMETER CALIBRATION

9.1. SIMULATED TISSUE

Simulated Tissue: Suggested in a paper by George Hartsgrove and colleagues in University of Ottawa Ref.: Bioelectromagnetics 8:29-36 (1987)

Ingredient	Quantity
Water	40.4 %
Sugar	56.0 %
Salt	2.5 %
HEC	1.0 %
Bactericide	0.1 %

Table 9.1 Example of composition of simulated tissue

This simulated tissue is mainly composed of water, sugar and salt. At higher frequencies, in order to achieve the proper conductivity, the solution does not contain salt. Also, at these frequencies, D.I. water and alcohol is preferred.

Target Frequency	Неа	ad	Bo	ody
(MHz)	ε _r	σ (S/m)	ε _r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 - 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

 $(\varepsilon_r = relative \ permittivity, \ \sigma = conductivity \ and \ \rho = 1000 \ Kg/m^{3^*})$

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario,Canada L6H 6G4Tel. #:905-829-1570, Fax. #: 905-829-8050,Email: vic@ultratech-labs.com,Website: http://www.ultratech-labs.com

^{*} The actual mass density of the equivalent tissue varies based on the composition of the tissue from 990 Kg/m³ to 1,300 Kg/m³.

9.2. MEASUREMENT OF ELECTRICAL CHARACTERISTICS OF SIMULATED TISSUE

HP Dielectric Strength Probe System (open-ended coaxial transmission-line probe/sensor) was used.

9.2.1. Equipment set-up

The equipment consists of a probe connected to one port of a vector network analyzer. The probe is an open-ended coaxial line, as shown in Figure 9.2.1.1. Cylindrical coordinates (ρ , ϕ , z) are used where ρ is the radial distance from the axis, ϕ is the angular displacement around the axis, z is the displacement along the axis, a is the inner conductor radius, and b is the outer conductor inner radius.

The sample holder is a non-metallic container that is large compared with the size of the probe immersed in it. A probe with an outer diameter b of 2 to 4 mm is suitable for the measurement of tissue-equivalent materials in the 300 MHz to 3 GHz frequency range. This probe size is commensurate with sample volumes of 50 cc or higher. Larger probes of up to 7 mm outer diameter b may be used with larger sample volumes. A flange is typically included to better represent the infinite ground-plane assumption used in admittance calculations.

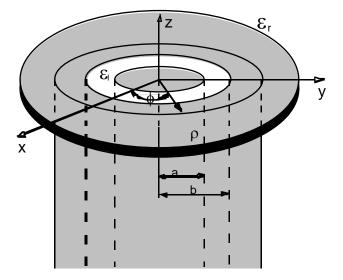


Figure 9.2.1. An open-ended coaxial probe with inner and outer radii a and b, respectively

The accuracy of the short-circuit measurement should be verified for each calibration at a number of frequencies. A short circuit can be achieved by gently pressing a piece of aluminum foil against the open end. For best electrical contact, the probe end should be flat and free of oxidation. Larger the sensors generally have better foil short-circuit repeatability. It is possible to obtain good contact with some commercial 4.6 mm probes using the metal-disk short-circuit supplied with the kit. For best repeatability, it may be necessary to press the disk by hand.

The network analyzer is configured to measure the magnitude and phase of the admittance. A one-port reflection calibration is performed at the plane of the probe by placing materials for which the reflection coefficient can be calculated in contact with the probe. Three standards are needed for the calibration, typically a short circuit, air, and de-ionized water at a well-defined temperature (other reference liquids such as methanol or ethanol may be used for calibration). The calibration is a key part of the measurement procedure, and it is therefore important to ensure that it

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com File #: ICOM-287Q-SAR February 1, 2012

has been performed correctly. It can be checked by re-measuring the short circuit to ensure that a reflection coefficient of $\Gamma = -1.0$ (linear units) is obtained consistently.

9.2.2. Measurement procedure

- a) Configure and calibrate the network analyzer and probe system.
- b) Place the sample in a non-metallic container and immerse the probe. A fixture or clamp is recommended to stabilize the probe, mounted such that the probe face is at an angle with respect to the liquid surface to minimize trapped air bubbles beneath the flange.
- c) Measure the complex admittance with respect to the probe aperture.
- d) Compute the complex relative permittivity $\varepsilon_r = \varepsilon'_r j\sigma/\omega\varepsilon_0$.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com File #: ICOM-287Q-SAR February 1, 2012

9.3. SIMULATED TISSUE MEASUREMENT RESULTS

Tissue calibration type	HP Dielectric Strength Prol	be System (M/N: 85070C)
Tissue calibration date [MM/DD/YYYY]	12/01/2011	12/01/2011
Tissue calibrated by	Steven Lu	Steven Lu
Room temperature [°C]	23.3	23.3
Room humidity [%]	40	40
Simulated tissue temperature [°C]	20.8	20.8
Tissue calibration frequency [MHz]	450	450
Tissue Type	Brain	Muscle
Target conductivity [S/m]	0.87	0.94
Target dielectric constant	43.5	56.7
Composition (by weight) [%]	DI Water (38.56 %) Sugar (56.32 %) Salt (3.95 %) HEC (0.25 %) Bactericide (0.92 %)	DI Water (51.16 %) Sugar (46.78 %) Salt (1.49 %) HEC (0.13 %) Bactericide (0.44 %)
Measured conductivity [S/m]	0.87(0.3%)	0.94(-0.1%)
Measured dielectric constant	43.4(-0.3%)	56.3(-0.8 %)
Penetration depth (plane wave excitation)	_{mm]} 42.8	44.5

9.3.1. 450 MHz Brain Tissue

	Meas. after 5min			DI Water at 20°C			Init. Meas.		
Frequency [MHz]	ε'	ε"	σ [S/m]	ε'	ε"	σ [S/m]	ε'	ε"	σ [S/m]
415.000	44.1748	36.5529	0.84	80.1801	2.0598	0.05	43.9515	36.7574	0.85
450.000	43.3806	34.8435	0.87	80.1432	2.1755	0.05	43.1705	35.0638	0.88
485.000	42.6133	33.3978	0.90	80.0768	2.2617	0.06	42.3974	33.3631	0.90

9.3.2. 450 MHz Muscle Tissue

	Meas. after 5min		DI Water at 20°C			Init. Meas.			
Frequency [MHz]	ε'	ε"	σ [S/m]	ε'	ε"	σ [S/m]	ε'	ε"	σ [S/m]
415.000	56.7904	39.3890	0.91	80.1801	2.0598	0.05	56.7817	39.2875	0.91
450.000	56.2612	37.5228	0.94	80.1432	2.1755	0.05	56.2354	37.3939	0.94
485.000	55.7747	35.7805	0.97	80.0768	2.2617	0.06	55.7405	35.6624	0.96

ULTRATECH GROUP OF LABS

File #: ICOM-287Q-SAR February 1, 2012

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>

EXHIBIT 10. SAR MEASUREMENT UNCERTAINTY

10.1. MEASUREMENT UNCERTAINTY EVALUATION FOR SAR TEST

Error Description	Uncertainty value	Prob. Dist.	Div.	(c _i) 1g	(c _i) 10g	Std. Unc. (1g)	Std. Unc. (10g)	(vi) v _{eff}
Measurement System				8	8			- Ch
Probe Calibration	±5.5 %	Ν	1	1	1	±5.5 %	±5.5 %	∞
Axial Isotropy	±4.7 %	R	$\sqrt{3}$	0.7	0.7	±1.9 %	±1.9 %	∞
Hemispherical Isotropy	±9.6 %	R	$\sqrt{3}$	0.7	0.7	±3.9 %	±3.9 %	x
Boundary Effects	±1.0 %	R	$\sqrt{3}$	1	1	±0.6 %	±0.6 %	x
Linearity	±4.7 %	R	$\sqrt{3}$	1	1	±2.7 %	±2.7 %	x
System Detection Limits	±1.0 %	R	$\sqrt{3}$	1	1	±0.6 %	±0.6 %	x
Readout Electronics	±0.3 %	R	$\sqrt{3}$	1	1	±0.3 %	±0.3 %	x
Response Time	±0.8 %	Ν	1	1	1	±0.5 %	±0.5 %	x
Integration Time	±2.6 %	R	$\sqrt{3}$	1	1	±1.5 %	±1.5 %	∞
RF Ambient Noise	±3.0 %	R	$\sqrt{3}$	1	1	±1.7 %	±1.7 %	x
RF Ambient Reflections	±3.0 %	R	$\sqrt{3}$	1	1	±1.7 %	±1.7 %	x
Probe Positioner	±0.4 %	R	$\sqrt{3}$	1	1	±0.2 %	±0.2 %	x
Probe Positioning	±2.9 %	R	$\sqrt{3}$	1	1	±1.7 %	±1.7 %	x
Max. SAR Eval.	±1.0 %	R	$\sqrt{3}$	1	1	±0.6 %	±0.6 %	∞
Test Sample Related								
Device Positioning	±2.9 %	N	1	1	1	±2.9 %	±2.9 %	145
Device Holder	±3.6 %	N	1	1	1	±3.6 %	±3.6 %	5
Power Drift	±5.0 %	R	$\sqrt{3}$	1	1	±2.9 %	±2.9 %	∞
Phantom and Setup								
Phantom Uncertainty	±4.0 %	R	$\sqrt{3}$	1	1	±2.3 %	±2.3 %	∞
Liquid Conductivity (target)	±5.0 %	R	$\sqrt{3}$	0.64	0.43	±1.8 %	±1.2 %	x
Liquid Conductivity (meas.)	±2.5 %	Ν	1	0.64	0.43	±1.6 %	±1.1 %	∞
Liquid Permittivity (target)	±5.0 %	R	$\sqrt{3}$	0.6	0.49	±1.7 %	±1.4 %	∞
Liquid Permittivity (meas.)	±2.5 %	Ν	1	0.6	0.49	±1.5 %	±1.2 %	∞
Combined Std. Uncertainty						±10.7 %	±10.5 %	387
Expanded STD Uncertainty						±21.4 %	±21.0 %	

ULTRATECH GROUP OF LABS

File #: ICOM-287Q-SAR February 1, 2012

3000 Bristol Circle, Oakville, Ontario,Canada L6H 6G4Tel. #:905-829-1570, Fax. #: 905-829-8050,Email: vic@ultratech-labs.com,Website: http://www.ultratech-labs.com

File #: ICOM-287Q-SAR

February 1, 2012

EXHIBIT 11. ADDITIONAL TEST INSTRUMENTS LIST

Name	Туре	Serial Number (SN)	Calibration Date (or Due Date)
Signal Generator	HP 8648C	3443U00391	Due Date: Dec. 14, 2012
Dipole Antenna	D450V3	1063	Aug. 22, 2011
Power Meter (HP)	HP 436A	2347A17246	Due Date: Aug. 15, 2012
	HP 436A	2709A27515	Due Date: Aug. 15, 2012
Directional Coupler (narda)	Model 3020A	35482	N/A
Spectrum Analyzer (ADVANTEST)	R3271	15050203	Due Date: Aug. 19, 2012
Network Analyzer (HP)	8753D	3410J02042	Due Date: Aug. 17, 2012
RF Amplifier (RF Bay, Inc)	MPA-12-30	21100106	N/A

EXHIBIT 12. PROBE CALIBRATION CERTIFICATE

See Appendix 1.

EXHIBIT 13. VALIDATION DIPOLE CALIBRATION CERTIFICATE

See Appendix 2.

ULTRATECH GROUP OF LABS

•

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com