11. ADJUSTMENT PROCEDURES

5-1 PREPARATION

■ REQUIRED TEST EQUIPMENT

EQUIPMENT	GRADE	AND RANGE	EQUIPMENT	GRADE AND RANGE
DC power supply	Output voltage Current capacity	: 11–40 V DC : 5 A or more	Oscilloscope	Frequency range : DC-100 MHz Measuring range : 0.01-10 V
Frequency counter	Frequency range Frequency accuracy Sensitivity	: 0.1–200 kHz : ±1 ppm or better : 100 mV or better	Terminator	$\begin{array}{llllllllllllllllllllllllllllllllllll$
Crystal detector	Input frequency Peak input level Average input level	: At least 10 GHz : At least 1 W : At least 100 mW	Attenuator	Power attenuation : 20, 23 and 50 dB Peak power level : At least 100 W Average power level : At least 5 W
Standard signal generator (SSG)	Frequency range Output level	: 10 kHz–10 GHz : 0.1 μV–32 mV	Spectrum analyzer	Frequency range : At least 10 GHz Spectrum bandwidth: ±100 kHz or more
Directional coupler	Power attenuation :	: 20 dB	DC voltmeter	Input impedance : 50 k Ω /V DC or better
			DC ammeter	Measurement capability: 5 A

5-2 ANTENNA ADJUSTMENT

5-2-1 PROOFREADING OF TEST EQUIPMENT

- ① Connect a spectrum analyzer, standard signal generator and 100% reflective metal plate instead of antenna to the directional coupler as shown below.
- Adjustment condition
 - Set the SSG as:
 - Frequency : 9.41 GHz
 - Set the spectrum analyzer as:

Center frequency : 9.41 GHz

Frequency span : 200 MHz

③ Preset the spectrum waveform to 0 dB adjusting by the SSG output level.

5-2-2 ADJUSTMENT OF ANT UNIT

① Remove the metal plate and replace the antenna, and connect to the directional coupler.

NOTE: Do not place any objects within 5 meters. (or if can not remove the object, place a wave absorber on the front of the scanner radiator.)

- ② EX-2714; Radome Watching the spectrum analyzer, turn MP24 on the ANT unit to minimum spectrum level. After adjustment, lock MP24 tightening MP25.
 - EX-2780; Open array Watching the spectrum analyzer, turn MP11 on the CHASSIS unit to minimum spectrum level. After adjustment, lock MP11 tightening MP53.

③ Verify the spectrum level is more than −14 dB.

VALUE	ADJUSTMENT POINT	
0 dB	SSG output level	

ADJUSTMENT POINT

Minimum	MP24 (EX-2714; Radome) MP11 (EX-2780; Open array)
–14 dB	Verify

VALUE

EX-2714 (Radome)

EX-2780 (Open array)

5-3 SCANNER ADJUSTMENT

EX-2714 (Radome)

NOTE: Preheating is necessary for magnetron for 90 sec.

① Connect the SCANNER UNIT and test equipment as shown below.

1) PREPARATION BEFORE ADJUSTMENTS

- ① Preset the adjustment points on the PA unit.
 - R18 : center position
 - R54, R58, R62, R66: 1/3 rotated position
- 2 Connect the DISPLAY UNIT to SCANNER UNIT and turn power ON.
- Verify the voltage at the each check point on the PA unit. CP8: 10.0 to 11.2 V
 - CP9: 4.8 to 5.2 V

WARNING: Approx 4 kV of high voltages are used in PA unit. **BEWARE** of high voltage when adjusting this unit.

Contor position

Center position 1/3 rotated position

CK. POINT	VALUE	ADJUSTMENT POINT
CP8	10.0 to 11.2 V	Verify
CP9	4.8 to 5.2 V	Verify

2) MAGNETRON ADJUSTMENT

- ① Connect an oscilloscope to the check point CP11 on the PA unit.
- ② Watching the oscilloscope, adjust R64 on the PA unit while 8 NM transmitting, and set the voltage to 5.4 V at (A) point as illustration at right.

CK. POINT	VALUE	ADJUSTMENT POINT
CP11	5.4 V	R18

3) PULSE WIDTH ADJUSTMENT

- 1 Connect an oscilloscope to the directional coupler through the detector.
- ② Watching the oscilloscope, adjust R54 on the PA unit while 8 NM transmitting, and set the pulse width to 900 nS.
- 3 Adjust R58 on the PA unit while 4 NM transmitting, and set the pulse width to 350 nS.
- ④ Adjust R62 on the PA unit while 2 NM transmitting, and set the pulse width to 250 nS.
- (5) Adjust R66 on the PA unit while 1 NM transmitting, and set the pulse width to 80 nS.
- 6 Verify this adjustment from step 2.

VALUE	ADJUSTMENT POINT
900 nS	R54
350 nS	R58
250 nS	R62
80 nS	R66

NOTE: In this adjustment, pulse width is measured when the detector output voltage is 70% of peak voltage.

