# ENGINEERING TEST REPORT

SCANNING RECEIVER Model No.: IC-7800

FCC ID: AFJ259000

Applicant:

ICOM Incorporated 1-1-32, Kamiminami Hirano-ku, Osaka

Парап, 547-003

Tested in Accordance With

## Federal Communications Commission (FCC) 47 CFR, Part 15, Subpart B Scanning Receivers operating in the Frequency Band 0.03-60 MHz

UltraTech's File No.: ICOM-120\_FCC15R

| This Test report is Issued under the Authority of<br>Tri M. Luu, Professional Engineer,<br>Vice President of Engineering<br>UltraTech Group of Labs<br>Date: April 7, 2006 |                      |                                                                                              |                          | THE REAL PROPERTY OF THE REAL |                    |          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------|
| Report Prepared by: Dharmajit Solanki                                                                                                                                      |                      | Tested b                                                                                     | y: Wayne Wu, EMI/R       | FI Technician                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |          |
| Issued Date: April 7, 2006                                                                                                                                                 |                      |                                                                                              |                          | es: October 14, 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ,                  | , 2006   |
|                                                                                                                                                                            |                      | the client to claim produ                                                                    | ct endorsement           | e sample tested is rando<br>by NVLAP or any ageno                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | ernment. |
|                                                                                                                                                                            |                      | Ult                                                                                          | raTech                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |          |
|                                                                                                                                                                            | Website: <u>www.</u> | 3000 Bristol Circle, Oa<br>Tel.: (905) 829-157<br><u>ultratech-labs.com,</u> Email: <u>v</u> | 70 Fax.: (905            | nada, L6H 6G4<br>5) 829-8050<br><u>com,</u> Email: <u>tri@ultratech-la</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | abs.com            |          |
| <b>FC</b><br>31040/SIT                                                                                                                                                     | <b>VC</b> -1376      | <b>Canada</b><br>46390-2049                                                                  | <b>пугар</b><br>200093-0 | SL2-IN-E-1119R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>6</b><br>00-034 | (UL)     |

 $\zeta^{L}$ 

## TABLE OF CONTENTS

| EXHIB        | IT 1.  | INTRODUCTION                                                                                                              | 2      |
|--------------|--------|---------------------------------------------------------------------------------------------------------------------------|--------|
| 1.1.         |        |                                                                                                                           |        |
| 1.2.<br>1.3. | NORN   | TED SUBMITTAL(S)/GRANT(S)                                                                                                 | 2<br>2 |
| EXHIB        |        | PERFORMANCE ASSESSMENT                                                                                                    |        |
| 2.1.         | CLIEN  | NT INFORMATION                                                                                                            | 3      |
| 2.1.         | EOUI   | PMENT UNDER TEST (EUT) INFORMATION                                                                                        |        |
| 2.3.         | EUT'S  | S TECHNICAL SPECIFICATIONS                                                                                                | 4      |
| 2.4.         |        | OF EUT'S PORTS                                                                                                            |        |
| 2.5.         |        | LLARY EQUIPMENT                                                                                                           |        |
| 2.6.         | DRAV   | VING OF TEST SETUP                                                                                                        | 6      |
| EXHIB        | IT 3.  | EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS                                                                  | 6      |
| 3.1.         |        | ATE TEST CONDITIONS                                                                                                       |        |
| 3.2.         | OPER   | ATIONAL TEST CONDITIONS & ARRANGEMENT FOR TEST SIGNALS                                                                    | 6      |
| EXHIB        | IT 4.  | SUMMARY OF TEST RESULTS                                                                                                   | 7      |
| 4.1.         | LOCA   | TION OF TESTS                                                                                                             | 7      |
| 4.2.         |        | ICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS                                                                          |        |
| 4.3.         | MOD    | FICATIONS REQUIRED FOR COMPLIANCE                                                                                         | 7      |
| EXHIB        | IT 5.  | MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS                                                                  | 8      |
| 5.1.         | TEST   | PROCEDURES                                                                                                                | 8      |
| 5.2.         | MEAS   | SUREMENT UNCERTAINTIES                                                                                                    | 8      |
| 5.3.         |        | SUREMENT EQUIPMENT USED                                                                                                   |        |
| 5.4.         |        | NTIAL/PRIMARY FUNCTIONS AS DECLARED BY THE MANUFACTURER                                                                   |        |
| 5.5.         |        | OWERLINE CONDUCTED EMISSIONS [47 CFR 15.107 (A)]<br>IVER ANTENNA POWER SPURIOUS/HARMONIC CONDUCTED EMISSIONS [47 CFR 15.1 |        |
| 5.6.         |        | IVER ANTENNA POWER SPURIOUS/HARMONIC CONDUCTED EMISSIONS [4/ CFR 15.]                                                     | · / -  |
| 5.7.         | RECE   | IVER SPURIOUS/HARMONIC RADIATED EMISSIONS [47 CFR 15.109(A)]                                                              |        |
| 5.8.         |        | ATED EMISSIONS FROM CLASS B UNINTENTIONAL RADIATION (DIGITAL DEVICE) [4                                                   |        |
|              | 15.109 | (B)]                                                                                                                      |        |
| 5.9.         | REQU   | JIREMENTS FOR SCANNING RECEIVERS [47 CFR 15.121]                                                                          |        |
| 5.10.        | SCAN   | INING RECEIVERS CELLULAR BAND REJECTION [47 CFR 15.121(B)]                                                                |        |
| EXHIB        | IT 6.  | MEASUREMENT UNCERTAINTY                                                                                                   |        |
| 6.1.         |        | CONDUCTED EMISSION MEASUREMENT UNCERTAINTY                                                                                |        |
| 6.2.         | RADI   | ATED EMISSION MEASUREMENT UNCERTAINTY                                                                                     |        |
| EXHIB        | IT 7.  | MEASUREMENT METHODS                                                                                                       |        |
| 7.1.         | GENE   | RAL TEST CONDITIONS                                                                                                       |        |

## EXHIBIT 1. INTRODUCTION

#### 1.1. SCOPE

| Reference:                       | FCC Part 15, Subpart B, Sections 15.107, 15.109, 15.111 & 15.121                                                                                                                                                                                                                                             |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Title:                           | Telecommunication - Code of Federal Regulations, CFR 47, Part 15                                                                                                                                                                                                                                             |
| Purpose of Test:                 | To gain FCC Class II Permissive Change Acceptance for Scanning Receivers operating in 0.03 - 60 MHz                                                                                                                                                                                                          |
| Test Procedures:                 | Both conducted and radiated emissions measurements were conducted in accordance with American National Standards Institute ANSI C63.4 - American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz. |
| Environmental<br>Classification: | Commercial, industrial or business environment.                                                                                                                                                                                                                                                              |
| Notes                            | This scanning receiver is a portion of a HF/50 MHz Amateur transceiver.                                                                                                                                                                                                                                      |

## 1.2. RELATED SUBMITTAL(S)/GRANT(S)

None.

## 1.3. NORMATIVE REFERENCES

| Publication            | Year         | Title                                                                                                                                                                     |
|------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FCC CFR<br>Parts 0-19  | 2005         | Code of Federal Regulations – Telecommunication                                                                                                                           |
| ANSI C63.4             | 2003         | American National Standard for Methods of Measurement of Radio-Noise<br>Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of<br>9 kHz to 40 GHz |
| CISPR 22 &<br>EN 55022 | 2003<br>2003 | Limits and Methods of Measurements of Radio Disturbance Characteristics of Information Technology Equipment                                                               |
| CISPR 16-1-1           | 2003         | Specification for radio disturbance and immunity measuring apparatus and methods.<br>Part 1-1: Measuring Apparatus                                                        |
| CISPR 16-2-1           | 2004         | Specification for radio disturbance and immunity measuring apparatus and methods.<br>Part 2-1: Conducted disturbance measurement                                          |

## EXHIBIT 2. PERFORMANCE ASSESSMENT

## 2.1. CLIENT INFORMATION

| APPLICANT       |                                                                                                            |  |
|-----------------|------------------------------------------------------------------------------------------------------------|--|
| Name:           | ICOM Incorporated                                                                                          |  |
| Address:        | 1-1-32, Kamiminami<br>Hirano-ku, Osaka<br>Japan, 547-003                                                   |  |
| Contact Person: | Mr. Takashi Aoki<br>Phone #: +81-66-793-5302<br>Fax #: +81-66-793-0013<br>Email Address: export@icom.co.jp |  |

| MANUFACTURER    |                                                                                                            |  |
|-----------------|------------------------------------------------------------------------------------------------------------|--|
| Name:           | ICOM Incorporated                                                                                          |  |
| Address:        | 1-1-32, Kamiminami<br>Hirano-ku, Osaka<br>Japan, 547-0003                                                  |  |
| Contact Person: | Mr. Takashi Aoki<br>Phone #: +81-66-793-5302<br>Fax #: +81-66-793-0013<br>Email Address: export@icom.co.jp |  |

## 2.2. EQUIPMENT UNDER TEST (EUT) INFORMATION

The following information (with the exception of the Date of Receipt) has been supplied by the applicant.

| Brand Name:            | ICOM Incorporated  |
|------------------------|--------------------|
| Product Name:          | SCANNING RECEIVER  |
| Model Name or Number:  | IC-7800            |
| Serial Number:         | 0101170            |
| Type of Equipment:     | Scanning Receivers |
| External Power Supply: | N/A                |
| Power input source:    | 120 Vac 60Hz       |

## 2.3. EUT'S TECHNICAL SPECIFICATIONS

| RECEIVER                                 |              |  |
|------------------------------------------|--------------|--|
| Equipment Type:     Base Station         |              |  |
|                                          | Mobile       |  |
| Power Supply Requirement:                | 120 VAC 60Hz |  |
| Operating Frequency Range: 0.03 – 60 MHz |              |  |
| RF Input Impedance:                      | 50 Ohms      |  |

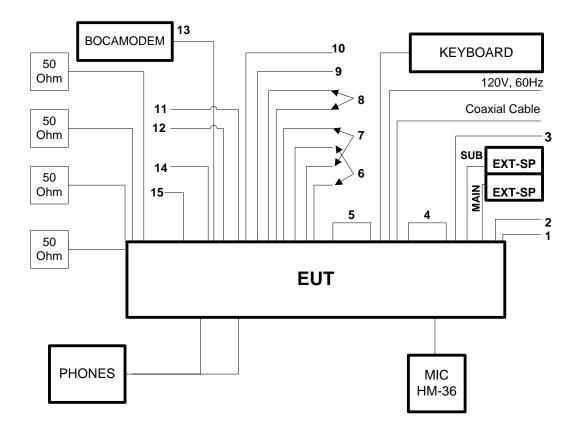
## 2.4. LIST OF EUT'S PORTS

| Port<br>Number | EUT's Port Description | Number of<br>Identical<br>Ports | Connector Type        | Cable Type<br>(Shielded/Non-<br>shielded) |
|----------------|------------------------|---------------------------------|-----------------------|-------------------------------------------|
| 1              | Microphone Port        | 1                               | 8-pin connector       | Non-shielded                              |
| 2              | ELEC-KEY Port          | 1                               | 3-conductor 6.35 mm   | Non-shielded                              |
| 3              | PHONES Port            | 1                               | 3-conductor 6.35 mm   | Non-shielded                              |
| 4              | ALC Ports              | 2                               | Phono (RCA)           | Non-shielded                              |
| 5              | RELAY Port             | 1                               | Phono (RCA)           | Non-shielded                              |
| 6              | EXT-SP Ports           | 2                               | 2-conductor 3.5 mm    | Non-shielded                              |
| 7              | ACC 1 Ports            | 2                               | 8-pin DIN connector   | Non-shielded                              |
| 8              | ACC 2 Ports            | 2                               | 7-pin DIN connector   | Non-shielded                              |
| 9              | KEY Port               | 1                               | 3-conductor 6.35 mm   | Non-shielded                              |
| 10             | KEYBOARD Port          | 1                               | USB connector         | Non-shielded                              |
| 11             | RS-232C Port           | 1                               | D-sub 9-pin connector | Shielded                                  |
| 12             | CI-V Port              | 1                               | 2-conductor 3.5 mm    | Non-shielded                              |
| 13             | EXT-DISPLAY Port       | 1                               | D-sub 15S             | Shielded                                  |
| 14             | Antenna Ports          | 4                               | SO-239                | Shielded                                  |
| 15             | REF I/O Port           | 1                               | BNC                   | Shielded                                  |
| 16             | DC output Port         | 1                               | DC power plug         | Non-shielded                              |
| 17             | Meter Port             | 1                               | 3-conductor 3.5 mm    | Non-shielded                              |
| 18             | EXT KEYPAD             | 1                               | 3-conductor 3.5 mm    | Non-shielded                              |
| 19             | AC power socket        | 1                               | AC power cable        | Non-shielded                              |
| 20             | RX ANT A/B Ports       | 4                               | Antenna jumper cables | Shielded                                  |
| 21             | X-VERTER               | 1                               | Coaxial connector     | Shielded                                  |
| 22             | ETHERNET Port          | 1                               | RJ 45                 | Non-shielded                              |

## 2.5. ANCILLARY EQUIPMENT

The EUT was tested while connected to the following representative configuration of ancillary equipment necessary to exercise the ports during tests:

| Ancillary Equipment # 1 |                  |  |
|-------------------------|------------------|--|
| Description:            | External Speaker |  |
| Brand name:             | ICOM             |  |
| Model Name or Number:   | SP-20            |  |
| Serial Number:          | N/A              |  |
| Cable Type:             | Non-shielded     |  |


| Ancillary Equipment # 2 |                 |  |
|-------------------------|-----------------|--|
| Description:            | Hand Microphone |  |
| Brand name:             | ICOM            |  |
| Model Name or Number:   | HM-36           |  |
| Serial Number:          | N/A             |  |
| Cable Type:             | Non-shielded    |  |

| Ancillary Equipment # 3 |                   |  |
|-------------------------|-------------------|--|
| Description:            | Stereo Headphones |  |
| Brand name:             | VICTOR            |  |
| Model Name or Number:   | HP-D330           |  |
| Serial Number:          | N/A               |  |
| Cable Type:             | Non-shielded      |  |

| Ancillary Equipment # 4 |              |  |  |  |
|-------------------------|--------------|--|--|--|
| Description:            | Keyboard     |  |  |  |
| Brand name:             | ICOM         |  |  |  |
| Model Name or Number:   | K 7000       |  |  |  |
| Serial Number:          | W0204112285  |  |  |  |
| Cable Type:             | Non-shielded |  |  |  |

| Ancillary Equipment # 5                         |           |  |  |  |
|-------------------------------------------------|-----------|--|--|--|
| Description:                                    | Modem     |  |  |  |
| Brand name:                                     | BOCAMODEM |  |  |  |
| Model Name or Number: V. Fast Class, 28.800 bps |           |  |  |  |
| Serial Number:                                  | 05885     |  |  |  |
| Cable Type:                                     | Shielded  |  |  |  |

## 2.6. DRAWING OF TEST SETUP



#### NOTE:

- 1 = KEY connector (3-conductor 6,35 mm)
- 2 = RELAY connector (RCA))
- 3 = EXT KEYPAD connector (3-conductor 3,5 mm)
- 4 = Antenna jumper cable
- 5 = Antenna jumper cable
- 6 = ACC 1 connectors (8-pin DIN)
- 7 = ACC 2 connectors (7-pin DIN)
- 8 = ALC connectors (RCA))
- 9 = METER connector (3-conductor 3,5 mm)
- 10 = DC OUT connector (DC power plug)
- 11 = REF I/O connector (BNC)
- 12 = CI-V connector (2-conductor3.5 mm)
- 13 = RS-232C connector (D-sub9-pin)
- 14 = EXT-DISPLAY connector (D-sub15S)
- 15 = ETHERNET connector (RJ 45)

#### ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel.: 905-829-1570, Fax. : 905-829-8050

## EXHIBIT 3. EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS

### 3.1. CLIMATE TEST CONDITIONS

The climate conditions of the test environment are as follows:

| Temperature:        | 21°C           |
|---------------------|----------------|
| Humidity:           | 51%            |
| Pressure:           | 102 kPa        |
| Power input source: | 120 VAC, 60 Hz |

#### 3.2. OPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TEST SIGNALS

| Operating Modes:            | The receiver was operated in the normal intended during testing |
|-----------------------------|-----------------------------------------------------------------|
| Special Test Software: None |                                                                 |
| Special Hardware Used:      | None                                                            |
| Receiver Test Antenna:      | Receiver's antennas were terminated to a 50 Ohm load.           |

| Receiver Test Signals                                                                                                        |                   |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------|-------------------|--|--|--|
| Frequency Band(s):                                                                                                           | 0.03 - 60 MHz     |  |  |  |
| <b>Test Frequency(ies):</b><br>(Near lowest, near middle & near highest frequencies in<br>the frequency range of operation.) | 30, 45 and 60 MHz |  |  |  |

## EXHIBIT 4. SUMMARY OF TEST RESULTS

## 4.1. LOCATION OF TESTS

All of the measurements described in this report were performed at Ultratech Group of Labs located in the city of Oakville, Province of Ontario, Canada.

- AC Powerline Conducted Emissions were performed in UltraTech's shielded room, 16'(L) by 12'(W) by 12'(H).
- Radiated Emissions were performed at the Ultratech's 3-10 TDK Semi-Anechoic Chamber situated in the Town of Oakville, province of Ontario. This test site been calibrated in accordance with ANSI C63.4, and found to be in compliance with the requirements of Sec. 2.948 of the FCC Rules. The descriptions and site measurement data of the Oakville 3-10 TDK Semi-Anechoic Chamber has been filed with FCC office (FCC File No.: 31040/SIT 1300B3) and Industry Canada office (Industry Canada File No.: IC2049-1). Last Date of Site Calibration: June. 20, 2005.

## 4.2. APPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS

| FCC Part 15,<br>Subpart B                                                            | Test Requirements                                 | Margin Below (-)/Above<br>(+) Limits        | Compliance<br>(Yes/No) |  |
|--------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------|------------------------|--|
| 15.107(a),<br>Class B                                                                | AC Power Line Conducted Emissions<br>Measurements | -9.3 dB @ 0.23 MHz                          | Yes                    |  |
| 15.111(a)Receiver Antenna Power Conducted Emissions<br>for Non-Integral Antenna Port |                                                   | -17.6 dB @ 290 MHz                          | Yes                    |  |
| <b>15.109(a)</b> Receiver Spurious Radiated Emissions                                |                                                   | More than 20 dB below the limit             | Yes                    |  |
| 15.109(b) Radiated Emissions from Class B Unintentional Radiators                    |                                                   | -3.8 dB @ 362.40 MHz                        | Yes                    |  |
| 15.121(b)                                                                            | Scanning Receivers Cellular Band Rejection        | No spurious response detected within 48 dB. | Yes                    |  |

### 4.3. MODIFICATIONS REQUIRED FOR COMPLIANCE

None.

## EXHIBIT 5. MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS

## 5.1. TEST PROCEDURES

This section contains test results only. Details of test methods and procedures can be found in Exhibit 8 of this report.

### 5.2. MEASUREMENT UNCERTAINTIES

The measurement uncertainties stated were calculated in accordance with requirements of UKAS Document NIS 81 with a confidence level of 95%. Please refer to Exhibit 7 for Measurement Uncertainties.

## 5.3. MEASUREMENT EQUIPMENT USED

The measurement equipment used complied with the requirements of the Standards referenced in the Methods & Procedures ANSI C63.4:1992, CISPR 22 and CISPR 16-1.

## 5.4. ESSENTIAL/PRIMARY FUNCTIONS AS DECLARED BY THE MANUFACTURER

The Scanning Receivers was operated as its normal intended mode during testing.

## 5.5. AC POWERLINE CONDUCTED EMISSIONS [47 CFR 15.107 (a)]

#### 5.5.1. Limits

The equipment shall meet the limits of the following table:

| Frequency of  | Class B Conducted Limit (dBµV) |          |  |  |
|---------------|--------------------------------|----------|--|--|
| Emission MHz) | Quasi-peak                     | Average  |  |  |
| 0.15-0.5      | 66 to 56                       | 56 to 46 |  |  |
| 0.5-5         | 56                             | 46       |  |  |
| 5-30          | 60                             | 50       |  |  |

#### 5.5.2. Method of Measurements

ANSI C63-4: 2003

#### 5.5.3. Test Equipment List

| Test Instruments                                | Manufacturer    | Model No. | Serial No. | Frequency Range                      |
|-------------------------------------------------|-----------------|-----------|------------|--------------------------------------|
| Spectrum Analyzer/<br>EMI Receiver              | Hewlett Packard | HP 8593EM | 3412A00103 | 9 kHz – 26.5 GHz                     |
| Transient Limiter                               | Hewlett Packard | 11947A    | 310701998  | 9 kHz – 200 MHz<br>10 dB attenuation |
| L.I.S.N.                                        | EMCO            | 3825/2    | 89071531   | 9 kHz – 200 MHz<br>50 Ohms / 50 μH   |
| 12'x16'x12' RF Shielded RF Shielding<br>Chamber |                 |           |            |                                      |

#### 5.5.4. Test Data

| Frequency<br>(MHz)                                                                                                                                      | RF<br>Level<br>(dBuV) | Receiver<br>Detector<br>(P/QP/AVG) | QP<br>Limit<br>(dBuV) | AVG<br>Limit<br>(dBuV) | Margin<br>(dB) | Pass/<br>Fail | Line<br>Tested<br>(L1/L2) |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------|-----------------------|------------------------|----------------|---------------|---------------------------|--|
| 0.15                                                                                                                                                    | 54.3                  | QP                                 | 65.9                  | 55.9                   | -11.6          | Pass          | L1                        |  |
| 0.15                                                                                                                                                    | 45.7                  | AVG                                | 65.9                  | 55.9                   | -10.2          | Pass          | L1                        |  |
| 0.23                                                                                                                                                    | 53.2                  | QP                                 | 62.6                  | 52.6                   | -9.4           | Pass          | L1                        |  |
| 0.23                                                                                                                                                    | 43.3                  | AVG                                | 62.6                  | 52.6                   | -9.3           | Pass          | L1                        |  |
|                                                                                                                                                         |                       |                                    |                       |                        |                |               |                           |  |
| 0.15                                                                                                                                                    | 54.8                  | QP                                 | 65.8                  | 55.8                   | -11.0          | Pass          | L2                        |  |
| 0.15                                                                                                                                                    | 43.5                  | AVG                                | 65.8                  | 55.8                   | -12.3          | Pass          | L2                        |  |
| 0.23                                                                                                                                                    | 47.3                  | QP                                 | 62.6                  | 52.6                   | -15.3          | Pass          | L2                        |  |
| 0.23                                                                                                                                                    | 38.6                  | AVG                                | 62.6                  | 52.6                   | -14.0          | Pass          | L2                        |  |
| The emissions were scanned from 150 kHz to 30 MHz at AC mains terminal via a LISN, please refer to Plots #1 and 2 for detailed measurement information. |                       |                                    |                       |                        |                |               |                           |  |

#### Plot 1: AC Power Line Conducted Emissions Line Voltage: 120VAC, 60Hz Line tested: L1

| /15:32:<br>/1/2 | 02 MAR 0, 2 006                           |                                         |
|-----------------|-------------------------------------------|-----------------------------------------|
|                 | Signal Freq (MHz) PK Amp QP Amp AV Amp AV | $\triangle_{L2}$                        |
|                 | 10.152125 57.9 54.3 45.7 -1               | 0.2                                     |
|                 | 2 0.2276 00 54.3 53.2 43.3 -9.3           |                                         |
|                 |                                           |                                         |
|                 |                                           |                                         |
|                 | STO                                       | ACTV DET: PEAK                          |
|                 | 30. 00 MHz                                | MEAS DET: PEAK QP AVG                   |
|                 |                                           | MEAS DET: PEAK QP AVG<br>MKR 0 kHz      |
|                 |                                           | 46.95 <sup>UV</sup>                     |
|                 |                                           | 40.35 j= V                              |
| LOG<br>10       |                                           |                                         |
| dB              |                                           |                                         |
|                 |                                           |                                         |
| 10              |                                           |                                         |
|                 |                                           |                                         |
|                 | m how how how how have                    | man |
|                 |                                           |                                         |
| VA<br>SC FC     |                                           |                                         |
|                 |                                           |                                         |
| A CORR          |                                           |                                         |
| START           | ۵ kHz                                     | STOP 0.00 MHz                           |
|                 | #IF BW 9. 0 kHz AVG BW 0 kHz              | SWP Ø sec                               |

#### ULTRATECH GROUP OF LABS 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel.: 905-829-1570, Fax. : 905-829-8050

File #: ICOM-120\_FCC15R April 7, 2006

#### Plot 2: AC Power Line Conducted Emissions Line Voltage: 120VAC, 60Hz Line tested: L2

| /15:37:1<br>/// | 0 MAR 0,2 006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | Signal Freq (MHz) PK Amp QP Amp AV Amp AV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                 | 1 0.154 000 57.4 54.8 43.5 -12.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                 | 2 0.227865 48.8 47.3 38.6 -14. 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 | STAR ACTV DET: PEAK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                 | MEAS DET: PEAK QP AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                 | MKR 0 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                 | 41.73 원시                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| LOG             | REF 7, 0, 0, 1/V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 10              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| dB              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 | White Marken and Marke |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MA<br>SC FC     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 30 FC           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A CORR          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| START           | 0 kHz STOP 0. 00 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                 | #IF BW 9. 0 kHz AVG BW 0 kHz SWP 0 sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

ULTRATECH GROUP OF LABS 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel.: 905-829-1570, Fax. : 905-829-8050 File #: ICOM-120\_FCC15R April 7, 2006

## 5.6. RECEIVER ANTENNA POWER SPURIOUS/HARMONIC CONDUCTED EMISSIONS [47 CFR 15.111(a)]

#### 5.6.1. Limits

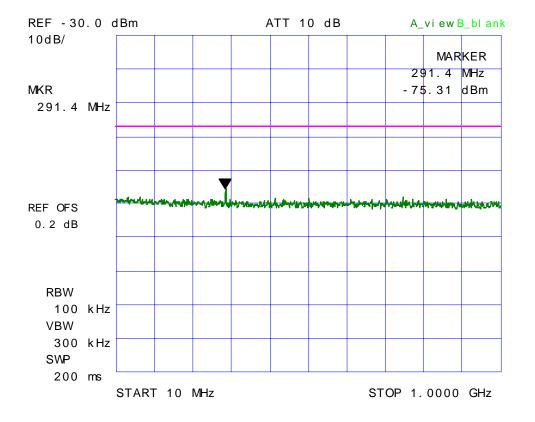
Receivers that operate (tune) in the frequency range 30 to 960 MHz and CB receivers that provides terminals for the connection of an external antenna may be tested to demonstrate compliance with the provisions of §15.109 with the antenna terminals shielded and terminated with a resistive termination equal to the impedance specified for the antenna, provided these receivers also comply with the following: *With the receiver antenna terminal connected to a resistive termination equal to the impedance specified or employed for the antenna, the power at the antenna terminal at frequency within the range from 30 Mhz to 5<sup>th</sup> harmonic of the highest frequency shall not exceed 2.0 nanowatts (or -57 dBm @ 50 Ohm).* 

#### 5.6.2. Method of Measurements

TIA-603-B

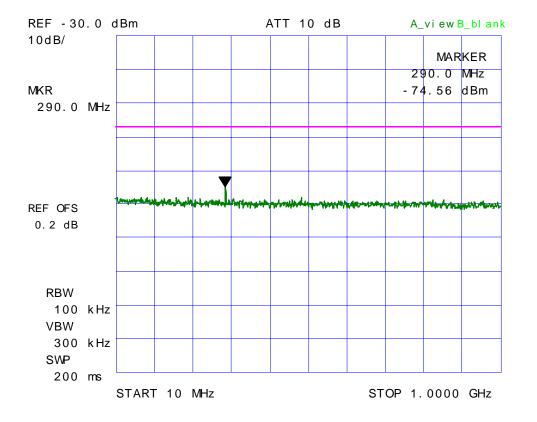
#### 5.6.3. Test Equipment List

| Test Instruments Manufacturer |                 | Model No.     | Serial No. | Frequency<br>Range |
|-------------------------------|-----------------|---------------|------------|--------------------|
| Spectrum Analyzer             | Rohde & Schwarz | FSEK20/B4/B21 | 834157/005 | 9 kHz – 40 GHz     |


#### 5.6.4. Test Arrangement

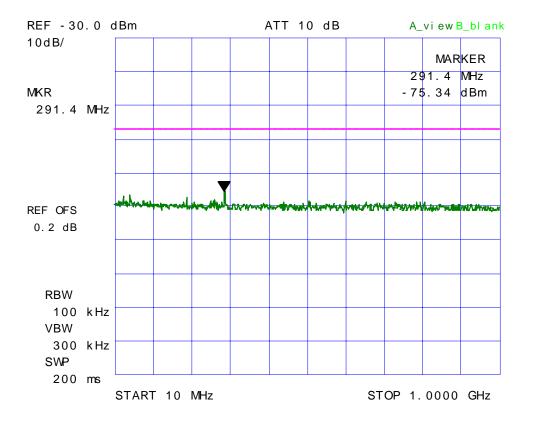


#### 5.6.5. Test Data


Conform. The rf emissions were scanned from 30 MHz to 1 GHz at the Receiver antenna ports 1 & 4 (Ports 2 & 3 are identical as 1); see the following plots (# 3-8) for details.

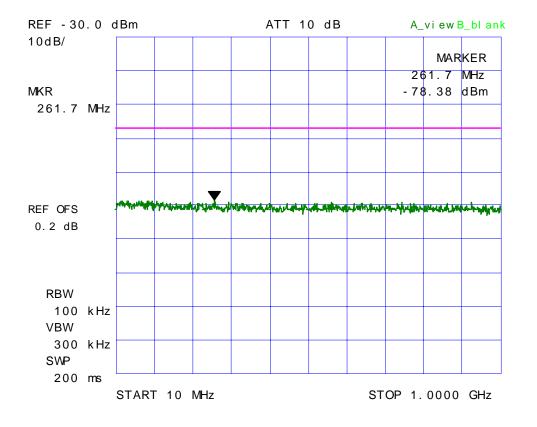
#### Plot 3: Receiver Antenna Power Conducted Emissions @ 30 MHz, Antenna 1



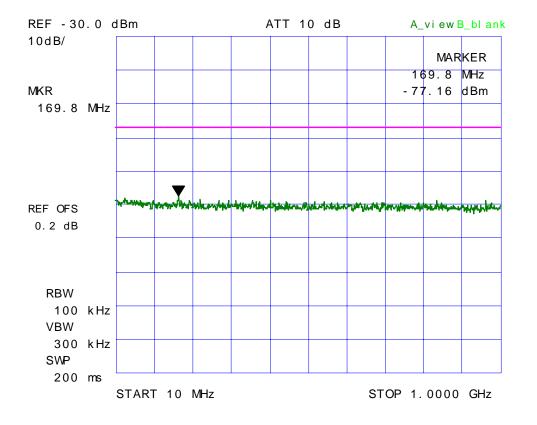

ULTRATECH GROUP OF LABS 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel.: 905-829-1570, Fax. : 905-829-8050 File #: ICOM-120\_FCC15R April 7, 2006

#### Plot 4: Receiver Antenna Power Conducted Emissions @ 45 MHz, Antenna 1

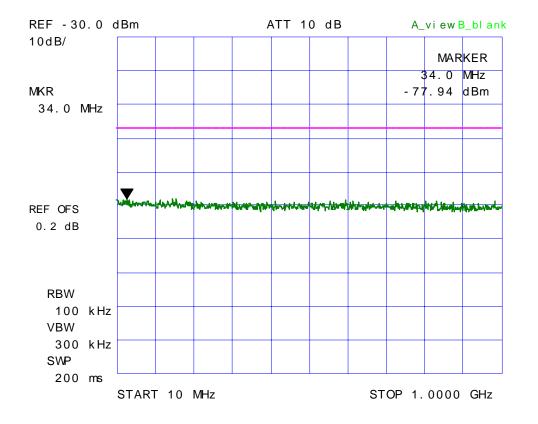



ULTRATECH GROUP OF LABS 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel.: 905-829-1570, Fax. : 905-829-8050 File #: ICOM-120\_FCC15R April 7, 2006

#### Plot 5: Receiver Antenna Power Conducted Emissions @ 60 MHz, Antenna 1




ULTRATECH GROUP OF LABS 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel.: 905-829-1570, Fax. : 905-829-8050 File #: ICOM-120\_FCC15R April 7, 2006


#### Plot 6: Receiver Antenna Power Conducted Emissions @ 30 MHz, Antenna 4



#### Plot 7: Receiver Antenna Power Conducted Emissions @ 45 MHz, Antenna 4



#### Plot 8: Receiver Antenna Power Conducted Emissions @ 60 MHz, Antenna 4



ULTRATECH GROUP OF LABS 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel.: 905-829-1570, Fax. : 905-829-8050 File #: ICOM-120\_FCC15R April 7, 2006

## 5.7. RECEIVER SPURIOUS/HARMONIC RADIATED EMISSIONS [47 CFR 15.109(a)]

#### 5.7.1. Limits

The equipment shall meet the limits of the following table:

| Test Frequency<br>Range (MHz) | Limits @ 3 m<br>(dBµV/m) | EMI Detector<br>Used | Measuring Bandwidth (kHz)           |
|-------------------------------|--------------------------|----------------------|-------------------------------------|
| 30 - 88                       | 40.0                     | Quasi-Peak           | RBW = 120 kHz, VBW <u>≥</u> 120 kHz |
| 88 – 216                      | 43.5                     | Quasi-Peak           | RBW = 120 kHz, VBW <u>≥</u> 120 kHz |
| 216 – 960                     | 46.0                     | Quasi-Peak           | RBW = 120 kHz, VBW <u>≥</u> 120 kHz |
| Above 960                     | 54.0                     | Average              | $RBW = 1 MHz, VBW \ge 1 Hz$         |

#### 5.7.2. Method of Measurements

Please refer to the Exhibit 8 of this test report and ANSI C63-4:1992 for radiated emissions test method.

The EUT shall be scanned from 30 MHz to the 5<sup>th</sup> harmonic of the highest oscillator frequency in the Scanning Receivers or 1 GHz whichever is higher.

#### 5.7.3. Test Equipment List

| Test Instruments        | Manufacturer    | Model No.     | Serial No. | Frequency Range   |
|-------------------------|-----------------|---------------|------------|-------------------|
| Spectrum Analyzer       | Rohde & Schwarz | FSEK20/B4/B21 | 834157/005 | 9 kHz – 40 GHz    |
| Microwave Amplifier     | Hewlett Packard | HP 83017A     | 3116A00661 | 1 GHz to 26.5 GHz |
| Active Loop Antenna     | EMCO            | 6507          | 8906-1167  | 1 kHz – 30 MHz    |
| Biconilog Antenna       | EMCO            | 3143          | 1029       | 20 MHz to 2 GHz   |
| Horn Antenna            | EMCO            | 3155          | 9701-5061  | 1 GHz – 18 GHz    |
| Horn Antenna with Mixer | EMCO            | 3160-09       | 1007       | 18 GHz – 26.5 GHz |
| Horn Antenna with Mixer | EMCO            | 3160-10       | 1001       | 26.5 GHz – 40 GHz |

#### 5.7.4. Test Data

#### 5.7.4.1. Radiated Emissions from the Receiver @ 30 MHz

The emissions were scanned from 30 MHz to 1 GHz at 3 meters distance; all spurious emissions were more than 20 dB below the limit.

#### 5.7.4.2. Radiated Emissions from the Receiver @ 45 MHz

The emissions were scanned from 30 MHz to 1 GHz at 3 meters distance; all spurious emissions were more than 20 dB below the limit.

#### 5.7.4.3. Radiated Emissions from the Receiver @ 60 MHz

The emissions were scanned from 30 MHz to 1 GHz at 3 meters distance; all spurious emissions were more than 20 dB below the limit.

## 5.8. RADIATED EMISSIONS FROM CLASS B UNINTENTIONAL RADIATION (DIGITAL DEVICE) [47 CFR 15.109 (b)]

#### 5.8.1. Limits

The equipment shall meet the limits of the following table:

| Test Frequency<br>Range (MHz) | Class A Limits @ 3 m<br>(dBµV/m) | EMI Detector Used | Measuring Bandwidth (kHz)           |
|-------------------------------|----------------------------------|-------------------|-------------------------------------|
| 30 - 88                       | 40.0                             | Quasi-Peak        | RBW = 120 kHz, VBW ≥ 120 kHz        |
| 88 – 216                      | 43.5                             | Quasi-Peak        | RBW = 120 kHz, VBW <u>≥</u> 120 kHz |
| 216 - 960                     | 46.0                             | Quasi-Peak        | RBW = 120 kHz, VBW <u>≥</u> 120 kHz |
| Above 960                     | 54.0                             | Average           | $RBW = 1 MHz, VBW \ge 1 Hz$         |

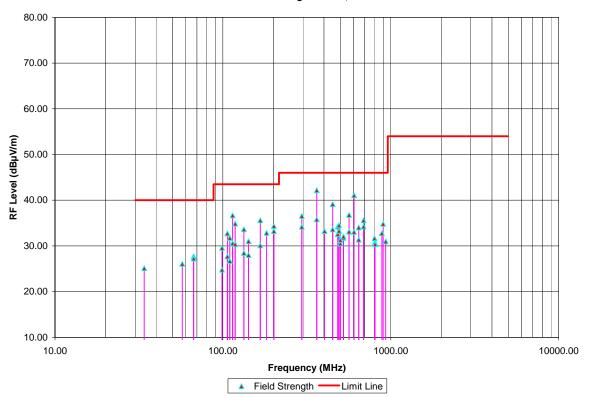
#### 5.8.2. Method of Measurements

Please refer to the Exhibit 5 of this test report and ANSI C63-4:2003 for radiated emissions test method.

The EUT shall be scanned from 30 MHz to the 5<sup>th</sup> harmonic of the highest oscillator frequency in the Scanning Receivers or 1 GHz whichever is higher.

#### 5.8.3. Test Equipment List

| Test Instruments        | Manufacturer    | Model No.     | Serial No.     | Frequency Range   |
|-------------------------|-----------------|---------------|----------------|-------------------|
| Spectrum Analyzer       | Rohde & Schwarz | FSEK20/B4/B21 | 834157/005     | 9 kHz – 40 GHz    |
| Microwave Amplifier     | Hewlett Packard | HP 83017A     | 3116A0066<br>1 | 1 GHz to 26.5 GHz |
| Active Loop Antenna     | EMCO            | 6507          | 8906-1167      | 1 kHz – 30 MHz    |
| Biconilog Antenna       | EMCO            | 3143          | 1029           | 20 MHz to 2 GHz   |
| Horn Antenna            | EMCO            | 3155          | 9701-5061      | 1 GHz – 18 GHz    |
| Horn Antenna with Mixer | EMCO            | 3160-09       | 1007           | 18 GHz – 26.5 GHz |
| Horn Antenna with Mixer | EMCO            | 3160-10       | 1001           | 26.5 GHz – 40 GHz |


#### 5.8.4. Test Data

| Frequency<br>(MHz) | RF<br>Level @ 3m<br>(dBμV/m) | Detector<br>Used<br>(Peak/QP) | Antenna<br>Plane<br>(H/V) | Limit @ 3m<br>(dBµV/m) | Margin<br>(dB) | Pass/<br>Fail |
|--------------------|------------------------------|-------------------------------|---------------------------|------------------------|----------------|---------------|
| 34.00              | 25.14                        | Peak                          | V                         | 40.0                   | -14.9          | Pass          |
| 57.30              | 26.08                        | Peak                          | V                         | 40.0                   | -13.9          | Pass          |
| 67.00              | 27.69                        | Peak                          | V                         | 40.0                   | -12.3          | Pass          |
| 67.00              | 27.24                        | Peak                          | Н                         | 40.0                   | -12.8          | Pass          |
| 98.80              | 29.54                        | Peak                          | V                         | 43.5                   | -14.0          | Pass          |
| 98.80              | 24.79                        | Peak                          | Н                         | 43.5                   | -18.7          | Pass          |
| 106.30             | 27.70                        | Peak                          | V                         | 43.5                   | -15.8          | Pass          |
| 106.30             | 32.74                        | Peak                          | Н                         | 43.5                   | -10.8          | Pass          |
| 110.00             | 31.76                        | Peak                          | V                         | 43.5                   | -11.7          | Pass          |
| 110.00             | 26.70                        | Peak                          | Н                         | 43.5                   | -16.8          | Pass          |
| 114.30             | 36.69                        | Peak                          | V                         | 43.5                   | -6.8           | Pass          |
| 114.30             | 30.56                        | Peak                          | Н                         | 43.5                   | -12.9          | Pass          |
| 118.30             | 34.87                        | Peak                          | V                         | 43.5                   | -8.6           | Pass          |
| 118.30             | 30.39                        | Peak                          | Н                         | 43.5                   | -13.1          | Pass          |
| 133.40             | 33.65                        | Peak                          | V                         | 43.5                   | -9.9           | Pass          |
| 133.40             | 28.45                        | Peak                          | Н                         | 43.5                   | -15.1          | Pass          |
| 142.10             | 31.03                        | Peak                          | V                         | 43.5                   | -12.5          | Pass          |
| 142.10             | 27.99                        | Peak                          | Н                         | 43.5                   | -15.5          | Pass          |
| 167.00             | 35.60                        | Peak                          | V                         | 43.5                   | -7.9           | Pass          |
| 167.00             | 30.11                        | Peak                          | Н                         | 43.5                   | -13.4          | Pass          |
| 182.20             | 32.84                        | Peak                          | V                         | 43.5                   | -10.7          | Pass          |
| 201.40             | 34.36                        | Peak                          | V                         | 43.5                   | -9.1           | Pass          |
| 201.40             | 33.25                        | Peak                          | Н                         | 43.5                   | -10.3          | Pass          |
| 295.30             | 36.54                        | Peak                          | V                         | 46.0                   | -9.5           | Pass          |
| 295.30             | 34.18                        | Peak                          | Н                         | 46.0                   | -11.8          | Pass          |
| 362.40             | 35.80                        | Peak                          | V                         | 46.0                   | -10.2          | Pass          |
| 362.40             | 42.18                        | Peak                          | Н                         | 46.0                   | -3.8           | Pass          |
| 403.30             | 33.25                        | Peak                          | Н                         | 46.0                   | -12.8          | Pass          |
| 442.90             | 38.17                        | Peak                          | Н                         | 46.0                   | -7.8           | Pass          |
| 450.80             | 33.60                        | Peak                          | V                         | 46.0                   | -12.4          | Pass          |
| 450.80             | 39.11                        | Peak                          | Н                         | 46.0                   | -6.9           | Pass          |
| 483.30             | 32.56                        | Peak                          | V                         | 46.0                   | -13.4          | Pass          |
| 483.30             | 34.24                        | Peak                          | Н                         | 46.0                   | -11.8          | Pass          |
| 492.30             | 33.31                        | Peak                          | V                         | 46.0                   | -12.7          | Pass          |

#### **ULTRATECH GROUP OF LABS**

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel.: 905-829-1570, Fax. : 905-829-8050 File #: ICOM-120\_FCC15R April 7, 2006

| 492.30 | 34.50                                                                                                                             | Peak | Н | 46.0 | -11.5 | Pass |
|--------|-----------------------------------------------------------------------------------------------------------------------------------|------|---|------|-------|------|
| 500.70 | 30.52                                                                                                                             | Peak | V | 46.0 | -15.5 | Pass |
| 500.70 | 31.28                                                                                                                             | Peak | Н | 46.0 | -14.7 | Pass |
| 523.10 | 31.76                                                                                                                             | Peak | V | 46.0 | -14.2 | Pass |
| 523.10 | 32.07                                                                                                                             | Peak | Н | 46.0 | -13.9 | Pass |
| 563.90 | 36.76                                                                                                                             | Peak | V | 46.0 | -9.2  | Pass |
| 563.90 | 33.14                                                                                                                             | Peak | Н | 46.0 | -12.9 | Pass |
| 604.00 | 41.07                                                                                                                             | Peak | V | 46.0 | -4.9  | Pass |
| 604.00 | 33.05                                                                                                                             | Peak | Н | 46.0 | -13.0 | Pass |
| 644.20 | 34.05                                                                                                                             | Peak | V | 46.0 | -12.0 | Pass |
| 644.20 | 31.37                                                                                                                             | Peak | Н | 46.0 | -14.6 | Pass |
| 688.80 | 35.63                                                                                                                             | Peak | V | 46.0 | -10.4 | Pass |
| 688.80 | 34.26                                                                                                                             | Peak | Н | 46.0 | -11.7 | Pass |
| 800.50 | 31.66                                                                                                                             | Peak | V | 46.0 | -14.3 | Pass |
| 804.90 | 30.78                                                                                                                             | Peak | V | 46.0 | -15.2 | Pass |
| 804.90 | 30.40                                                                                                                             | Peak | Н | 46.0 | -15.6 | Pass |
| 885.30 | 32.77                                                                                                                             | Peak | V | 46.0 | -13.2 | Pass |
| 885.30 | 30.93                                                                                                                             | Peak | Н | 46.0 | -15.1 | Pass |
| 900.60 | 34.83                                                                                                                             | Peak | V | 46.0 | -11.2 | Pass |
| 900.60 | 31.12                                                                                                                             | Peak | Н | 46.0 | -14.9 | Pass |
| 933.10 | 31.00                                                                                                                             | Peak | V | 46.0 | -15.0 | Pass |
|        | The emissions were scanned from 30 MHz to 1 GHz at 3 Meters distance and all emissions less 20 dB below the limits were recorded. |      |   |      |       |      |



Radiated Emissions Measurements @ 3m OFTS ICOM Scanning Receiver, Model: 7800

ULTRATECH GROUP OF LABS 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel.: 905-829-1570, Fax. : 905-829-8050 File #: ICOM-120\_FCC15R April 7, 2006

Page 25 FCC ID: AFJ259000

## 5.9. REQUIREMENTS FOR SCANNING RECEIVERS [47 CFR 15.121]

#### 5.9.1. FCC Rules

- a. Except as provided in paragraph (c) of this section, scanning receivers and frequency converters designed or marketed for use with scanning receivers, shall:
- (1) Be incapable of operating (tuning), or readily being altered by the user to operate, within the frequency bands allocated to the Cellular Radiotelephone Service in part 22 of this chapter (cellular telephone bands). Scanning receivers capable of ``readily being altered by the user'' include, but are not limited to, those for which the ability to receive transmissions in the cellular telephone bands can be added by clipping the leads of, or installing, a simple component such as a diode, resistor or jumper wire; replacing a plug-in semiconductor chip; or programming a semiconductor chip using special access codes or an external device, such as a personal computer. Scanning receivers, and frequency converters designed for use with scanning receivers, also shall be incapable of converting digital cellular communication transmissions to analog voice audio.
- (2) Be designed so that the tuning, control and filtering circuitry is inaccessible. The design must be such that any attempts to modify the equipment to receive transmissions from the Cellular Radiotelephone Service likely will render the receiver inoperable.
- b. Except as provided in paragraph (c) of this section, scanning receivers shall reject any signals from the Cellular Radiotelephone Service frequency bands that are 38 dB or lower based upon a 12 dB SINAD measurement, which is considered the threshold where a signal can be clearly discerned from any interference that may be present.
- c. Scanning receivers and frequency converters designed or marketed for use with scanning receivers, are not subject to the requirements of paragraphs (a) and (b) of this section provided that they are manufactured exclusively for, and marketed exclusively to, entities described in 18 U.S.C. 2512(2), or are marketed exclusively as test equipment pursuant to Sec. 15.3(dd)
- d. Modification of a scanning receiver to receive transmissions from Cellular Radiotelephone Service frequency bands will be considered to constitute manufacture of such equipment. This includes any individual, individuals, entity or organization that modifies one or more scanners. Any modification to a scanning receiver to receive transmissions from the Cellular Radiotelephone Service frequency bands voids the certification of the scanning receiver, regardless of the date of manufacture of the original unit. In addition, the provisions of Sec. 15.23 shall not be interpreted as permitting modification of a scanning receiver to receiver Cellular Radiotelephone Service transmissions.
- e. Scanning receivers and frequency converters designed for use with scanning receivers shall not be assembled from kits or marketed in kit form unless they comply with the requirements in paragraph (a) through (c) of this section.

- f. Scanning receivers shall have a label permanently affixed to the product, and this label shall be readily visible to the purchaser at the time of purchase. The label shall read as follows: WARNING: MODIFICATION OF THIS DEVICE TO RECEIVE CELLULAR RADIOTELEPHONE SERVICE SIGNALS IS PROHIBITED UNDER FCC RULES AND FEDERAL LAW.
- (3) ``Permanently affixed'' means that the label is etched, engraved, stamped, silkscreened, indelible printed or otherwise permanently marked on a permanently attached part of the equipment or on a nameplate of metal, plastic or other material fastened to the equipment by welding, riveting, or permanent adhesive. The label shall be designed to last the expected lifetime of the equipment in the environment in which the equipment may be operated and must not be readily detachable. The label shall not be a stick-on, paper label.
- (4) When the device is so small that it is not practicable to place the warning label on it, the information required by [[Page 711]] this paragraph shall be placed in a prominent location in the instruction manual or pamphlet supplied to the user and shall also be placed on the container in which the device is marketed. However, the FCC identifier must be displayed on the device.

[64 FR 22561, Apr. 27, 1999, as amended at 66 FR 32582, June 15, 2001]

#### 5.9.2. Declaration for Compliance with FCC §15.121

Comply with FCC 121(a)(1) – This Scanning Receiver is incapable of operating (tuning), or readily being
altered by the user to operate, within the frequency bands allocated to the Cellular Radiotelephone Service
in part 22 of this chapter (cellular telephone bands).

Please refer to original filing for details for compliance with this Rule.

Comply with FCC 121(a)(2) – This Scanning Receiver is designed so that the tuning, control and filtering circuitry is inaccessible. The design is such that any attempts to modify the equipment to receive transmissions from the Cellular Radiotelephone Service likely will render the receiver inoperable.

Please refer to original filing for details for compliance with this Rule.

- Comply with FCC 121(b) Please refer to Section 6.10 of this Test Report for Scanning Receivers Cellular Band Rejection in the next Section of this Test Report
- Comply with FCC 121(c) Not applicable.
- Comply with FCC 121(d) The Users Manual of this Scanning Receiver is provided with the Warning statement as below. Please refer to original filing.

## <u>Warning</u>: Changes or modifications not expressly approved by ICOM Incorporated could void the user's authority to operate the equipment.

- Comply with FCC 121(e) This Scanning Receiver is not be assembled from kits or marketed in kit form.
- Comply with FCC 121(f) This Scanning Receiver has a label permanently affixed to the product and this label is readily visible to the purchaser at the time of purchase. The label reads as follows: WARNING: MODIFICATION OF THIS DEVICE TO RECEIVE CELLULAR RADIOTELEPHONE SERVICE SIGNALS IS PROHIBITED UNDER FCC RULES AND FEDERAL LAW.

## 5.10. SCANNING RECEIVERS CELLULAR BAND REJECTION [47 CFR 15.121(b)]

#### 5.10.1. Limits

Except as provided in paragraph (c) of this section, scanning receivers shall reject any signals from the Cellular Radiotelephone Service frequency bands that are 38 dB or lower based upon a 12 dB SINAD measurement, which is considered the threshold where a signal can be clearly discerned from any interference that may be present.

#### 5.10.2. Method of Measurements

- (1) Connected the EUT as shown in the following block diagram
- (2) Apply a standard RF signal to the receiver input port
- (3) Adjust the audio output signal of the receiver to it's rated value with the distortion less than 10%
- (4) Adjust the RF Signal Generator Output Power produce 12 dB SINAD without the audio output power dropping by more than 3 dB
- (5) Repeat step (4) at lowest, middle and highest channel frequencies across all cellular base station band to establish a reference sensitivity level. The reference sensitivity taken was the lowest, or worse-case sensitivity for all of the bands.
- (6) Adjust the RF RF Signal Generator output to a level of +60 dB above the reference sensitivity obtained in step (5)
- (7) Set the Receiver squelch threshold (the signal required to open the squelch) no greater than +20 dB above the reference sensitivity level.
- (8) Put the receiver in a scanning mode and allow it to scan across it's complete receive range
- (9) If the receiver unsquelched or stopped on any frequency, the display frequency is recorded. The signal generator output level was then adjusted until 12 dB SINAD from the receiver was produced. The signal generator level associated with this response was also noted.
- (10) Repeat this procedure for 3 frequencies in the cellular base station transmit band.
- (11) The difference between the signal generator output for any response recorded and reference sensitivity is the rejection ratio



#### 5.10.3. Test Equipment List

| Test Instruments                | Manufacturer           | Model No. | Serial No. | Frequency Range                                                                                    |
|---------------------------------|------------------------|-----------|------------|----------------------------------------------------------------------------------------------------|
| Radio Communication<br>Test Set | Marconi<br>Instruments | 2955      | 132037/226 | 10 kHz - 1000 MHz including AF & RF Signal Generators, SINAD, DISTORTION, DEVIATION meters and etc |
| RF Signal Generator             | Fluke                  | 6061A     | 4770301    | 10 kHz – 1050 MHz                                                                                  |

#### 5.10.3.1. Test Data

#### Input Level: -40 dBm, Test Modes: SSB, AM & FM

| EUT's Scanning<br>Frequency Band<br>(MHz)                                                                           | Cellular Base<br>Station Transmitter<br>Band<br>(MHz) | RF Signal Level for<br>12 dB SINAD<br>(dBm) | Rejection Ratio<br>(dB) | Maximum<br>Rejection Ratio<br>Limit (dB) |  |
|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------|-------------------------|------------------------------------------|--|
| 0.03 - 60 MHz                                                                                                       | 824.04, 836.4, 848.97<br>869.04, 880.62 &<br>893.97   | - 88.0 to -121.0                            | <-48.0                  | -38.0                                    |  |
| There is no spurious response detected within the above frequency bands with the Rejection Ratio of at least 48 dB. |                                                       |                                             |                         |                                          |  |

## EXHIBIT 6. MEASUREMENT UNCERTAINTY

The measurement uncertainties stated were calculated in accordance with the requirements of NIST Technical Note 1297 and NIS 81 (1994).

## 6.1. LINE CONDUCTED EMISSION MEASUREMENT UNCERTAINTY

| CONTRIBUTION                                                                                                                                                           | PROBABILITY    | UNCERTAINTY (dB) |               |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------|---------------|--|
| (Line Conducted)                                                                                                                                                       | DISTRIBUTION   | 9-150 kHz        | 0.15-30 MHz   |  |
| EMI Receiver specification                                                                                                                                             | Rectangular    | <u>+</u> 1.5     | <u>+</u> 1.5  |  |
| LISN coupling specification                                                                                                                                            | Rectangular    | <u>+</u> 1.5     | <u>+</u> 1.5  |  |
| Cable and Input Transient Limiter calibration                                                                                                                          | Normal (k=2)   | <u>+</u> 0.3     | <u>+</u> 0.5  |  |
| Mismatch: Receiver VRC $\Gamma_1 = 0.03$<br>LISN VRC $\Gamma_R = 0.8(9 \text{ kHz}) 0.2 (30 \text{ MHz})$<br>Uncertainty limits $20\text{Log}(1 \pm \Gamma_1\Gamma_R)$ | U-Shaped       | <u>+</u> 0.2     | <u>+</u> 0.3  |  |
| System repeatability                                                                                                                                                   | Std. deviation | <u>+</u> 0.2     | <u>+</u> 0.05 |  |
| Repeatability of EUT                                                                                                                                                   |                |                  |               |  |
| Combined standard uncertainty                                                                                                                                          | Normal         | <u>+</u> 1.25    | <u>+</u> 1.30 |  |
| Expanded uncertainty U                                                                                                                                                 | Normal (k=2)   | <u>+</u> 2.50    | <u>+</u> 2.60 |  |

Sample Calculation for Measurement Accuracy in 150 kHz to 30 MHz Band:

 $u_{c}(y) = \sqrt{\sum_{i=1}^{m} u_{i}^{2}(y)} = \pm \sqrt{(1.5^{2} + 1.5^{2})/3 + (0.5/2)^{2} + (0.05/2)^{2} + 0.35^{2}} = \pm 1.30 \text{ dB}$ 

 $U = 2u_c(y) = + 2.6 \text{ dB}$ 

ULTRATECH GROUP OF LABS 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel.: 905-829-1570, Fax. : 905-829-8050

## 6.2. RADIATED EMISSION MEASUREMENT UNCERTAINTY

| CONTRIBUTION                                                                                                                                    | PROBABILITY    | UNCERTAINTY ( <u>+</u> dB) |               |
|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------|---------------|
| (Radiated Emissions)                                                                                                                            | DISTRIBUTION   | 3 m                        | 10 m          |
| Antenna Factor Calibration                                                                                                                      | Normal (k=2)   | <u>+</u> 1.0               | <u>+</u> 1.0  |
| Cable Loss Calibration                                                                                                                          | Normal (k=2)   | <u>+</u> 0.3               | <u>+</u> 0.5  |
| EMI Receiver specification                                                                                                                      | Rectangular    | <u>+</u> 1.5               | <u>+</u> 1.5  |
| Antenna Directivit                                                                                                                              | Rectangular    | +0.5                       | +0.5          |
| Antenna factor variation with height                                                                                                            | Rectangular    | <u>+</u> 2.0               | <u>+</u> 0.5  |
| Antenna phase center variation                                                                                                                  | Rectangular    | 0.0                        | <u>+</u> 0.2  |
| Antenna factor frequency interpolation                                                                                                          | Rectangular    | <u>+</u> 0.25              | <u>+</u> 0.25 |
| Measurement distance variation                                                                                                                  | Rectangular    | <u>+</u> 0.6               | <u>+</u> 0.4  |
| Site imperfections                                                                                                                              | Rectangular    | <u>+</u> 2.0               | <u>+</u> 2.0  |
| Mismatch: Receiver VRC $\Gamma_1 = 0.2$<br>Antenna VRC $\Gamma_R = 0.67$ (Bi) 0.3 (Lp)<br>Uncertainty limits 20Log(1 $\pm$ $\Gamma_1\Gamma_R$ ) | U-Shaped       | +1.1<br>-1.25              | <u>+</u> 0.5  |
| System repeatability                                                                                                                            | Std. Deviation | <u>+</u> 0.5               | <u>+</u> 0.5  |
| Repeatability of EUT                                                                                                                            |                | -                          | -             |
| Combined standard uncertainty                                                                                                                   | Normal         | +2.19 / -2.21              | +1.74 / -1.72 |
| Expanded uncertainty U                                                                                                                          | Normal (k=2)   | +4.38 / -4.42              | +3.48 / -3.44 |

Calculation for maximum uncertainty when 3m biconical antenna including a factor of k = 2 is used:

 $U = 2u_c(y) = 2x(+2.19) = +4.38 \text{ dB}$  And  $U = 2u_c(y) = 2x(-2.21) = -4.42 \text{ dB}$ 

## EXHIBIT 7. MEASUREMENT METHODS

## 7.1. GENERAL TEST CONDITIONS

#### 7.1.1. Test Conditions

- The measurement shall be made in the operational mode producing the largest emission in the frequency band being investigated consistent with normal applications.
- An attempt shall be made to maximize the detected radiated emissions, for example moving cables of the equipment, rotating the equipment by 360° and moving the measuring receiving antenna up and down within 1 to 4 meters high.
- Where appropriate, a single tone or a bit stream shall be used to modulate the receiver. The manufacturer shall define the modulation with the highest emission in transmit mode.

#### 7.1.2. Method of Measurements - AC Mains Conducted Emissions

- AC Mains conducted emissions measurements were performed in accordance with the standard against appropriate limits for each detector function.
- The test was performed in the shielded room, 16'(L) by 16'(W) by 12'(H).
- The test was performed were made over the frequency range from 150 kHz to 30 MHz to determine the line-to-ground radio noise voltage which was conducted from the EUT power-input terminals that were directly connected to a public power network.
- The EUT normally received power from another device that connects to the public utility ac power lines, measurements would be made on that device with the EUT in operation to ensure that the device continues to comply with the appropriate limits while providing the EUT with power.
- If the EUT operates only from internal or dedicated batteries, with no provisions for connection to the public utility ac power lines, AC Mains conducted measurements are not required.
- Table-top devices were placed on a platform of nominal size 1 m by 1.5m raised 80 cm above the conducting ground plane.
- The EUT current-carrying power lead, except the ground (safety) lead, was individually connected through a LISN to the power source. All unused 50-Ohm connectors of the LISN was terminated in 50-ohm when not connected to the measuring instruments.
- The line cord of the EUT connected to one LISN which was connected to the measuring instrument. Those power cords for the units of devices not under measurement were connected to a separate multiple ac outlet. Drawings and photographs of typically conducted emission test setups were shown in the Test Report. Each current-carrying conductor of the EUT shall be individually tested.
- The EUT was normally operated with a ground (safety) connection, the EUT was connected to the ground at the LISN through a conductor provided in the lead from the ac power mains to the LISN.
- The excess length of the power cord was folded back and forth in an 8-shape on a wooden strip with a vertical prong located on the top of the LISN case.
- The EUT was set-up in its typical configuration and operated in its various modes as described in this test report.
- A preliminary scan was made by using spectrum analyzer system with the detector function set to PEAK mode (9 KHz RBW, VBW > RBW), frequency span 150KHz - 30MHz.

- The maximum conducted emission for a given mode of operation was found by using the following step-bystep procedure:
  - Step 1. Monitor the frequency range of interest at a fixed EUT azimuth.
  - Step 2. Manipulate the system cables and peripheral devices to produce highest amplitude signal relative to the limit. Note the amplitude and frequency of the suspect signal.
  - Step 3. The effects of various modes of operation is examined. This is done by varying equipment operation modes as step 2 is being performed.
  - Step 4. After completing step 1 through 3, record EUT and peripheral device configuration, mode of operation, cable configuration, signal levels and frequencies for final test.
- Each highest signal level at the maximized test configuration was zoomed in a small frequency span on the spectrum analyzer's display (the manipulation of cables and peripheral devices and EUT operation modes might have to be repeated to obtain the highest signal level with the spectrum analyzer set to PEAK detector mode 9 KHz RBW and VBW > RBW). The spectrum analyzer was then set to CISPR QUASI-PEAK detector mode (10 KHz RBW, 1 MHz VBW) and AVERAGE detector mode (9 kHz RBW, 1 Hz VBW). The final highest RF signal levels and frequencies were record.

#### 7.1.3. Method of Measurements - Electric Field Radiated Disturbance

- The radiated emission measurements were performed at the UltraTech's 3 Meter Open Field Test Site (OFTS) situated in the Town of Oakville, province of Ontario. The Attenuation Characteristics of OFTS have been filed to FCC, Industry Canada, ACA/Austel, NVLap and ITI.
- Radiated emissions measurements were made using the following test instruments:
  - 1. Calibrated EMCO BiconiLog antenna in the frequency range from 30 MHz to 2000 MHz.
  - 2. Calibrated Emco Horn antennas in the frequency range above 1000 MHz (1GHz 40 GHz).
  - 3. Calibrated Advantest spectrum analyzer and pre-selector. In general, the spectrum analyzer would be used as follows:
    - The rf electric field levels were measured with the spectrum analyzer set to PEAK detector (120 KHz VBW and VBW <u>></u> RBW).
    - If any rf emission was observed to be a broadband noise, the spectrum analyzer's CISPR QUASI-PEAK detector (120 KHz RBW and VBW <u>></u> RBW) was then set to measure the signal level.
    - If the signal being measured was narrowband and the ambient field was broadband, the bandwidth of the spectrum analyzer was reduced.
- The EUT was set-up in its typical configuration and operated in its various modes as described in this test report.
- The frequencies of emissions was first detected. Then the amplitude of the emissions was measured at the specified measurement distance using required antenna height, polarization, and detector characteristics.
- During this process, cables and peripheral devices were manipulated within the range of likely configuration.

• For each mode of operation required to be tested, the frequency spectrum was monitored. Variations in antenna heights (from 1 meter to 4 meters above the ground plane), antenna polarization (horizontal plane and vertical plane), cable placement and peripheral placement were explored to produce the highest amplitude signal relative to the limit.

The maximum radiated emission for a given mode of operation was found by using the following step-bystep procedure:

- Step 1: Monitor the frequency range of interest at a fixed antenna height and EUT azimuth.
- Step 2: Manipulate the system cables to produce highest amplitude signal relative to the limit. Note the amplitude and frequency of the suspect signal.
- Step 3: Rotate the EUT 360 degrees to maximize the suspected highest amplitude signal. If the signal or another at a different frequency is observed to exceed the previously noted highest amplitude signal by 1 dB or more, go back to the azimuth and repeat Step 2. Otherwise, orient the EUT azimuth to repeat the highest amplitude observation and proceed.
- Step 4: Move the antenna over its full allowed range of travel (1 to 4 meters) to maximize the suspected highest amplitude signal. If the signal or another at a different frequency is observed to exceed the previously noted highest amplitude signal by 1 dB or more, return to Step 2 with the highest amplitude observation and proceed.
- Step 5: Change the polarization of the antenna and repeat Step 2 through 4. Compare the resulting suspected highest amplitude signal with that found for the other polarization. Select and note the higher of the two signals. This signal is termed the highest observed signal with respect to the limit for this EUT operational mode.
- Step 6: The effects of various modes of operation is examined. This is done by varying the equipment modes as steps 2 through 5 are being performed.
- Step 7: After completing steps 1 through 6, record the final highest emission level, frequency, antenna polarization and detector mode of the measuring instrument.

#### Calculation of Field Strength:

The field strength is calculated by adding the calibrated antenna factor and cable factor, and subtracting the Amplifier gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

| Where | FS | = | Field Strength            |
|-------|----|---|---------------------------|
|       | RA | = | Receiver/Analyzer Reading |
|       | AF | = | Antenna Factor            |
|       | CF | = | Cable Attenuation Factor  |
|       | AG | = | Amplifier Gain            |

<u>Example</u>: If a receiver reading of 60.0 dB $\mu$ V is obtained, the antenna factor of 7.0 dB/m and cable factor of 1.0 dB are added, and the amplifier gain of 30 dB is subtracted. The actual field strength will be:

Field Level =  $60 + 7.0 + 1.0 - 30 = 38.0 \text{ dB}\mu\text{V/m}$ .

Field Level =  $10^{(38/20)} = 79.43 \,\mu\text{V/m}$ .