

Radio Satellite Communication Untertürkheimer Straße 6-10 . D-66117 Saarbrücken

Telephone: +49 (0)681 598-9100Telefax: -9075

RSC11

issue test report consist of 35 Pages

Page 1 (35)

Independent ETSI compliance test house

Accredited BluetoothTM Test Facility (BQTF)

Test report no.: 4-1023-01-08/03 FCC Part 24/15 V801SA FCC ID: AEZV801SA

CETECOM – ICT Services GmbH Untertürkheimerstr. 6-10 66117 Saarbrücken, Germany

Telephone: +49 (0) 681 / 598-0 Fax: +49 (0) 681 / 598-9075

Table of Contents

- 1 General information
- 1.1 Notes
- 1.2 Testing laboratory
- 1.3 Details of applicant
- 1.3 Application details
- 1.5 Test item
- 1.6 Test specifications
- 2 Technical test
- 2.1 Summary of test results
- 2.2 Test report

1 General information

1.1 Notes

The test results of this test report relate exclusively to the test item specified in 1.5. The CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of the CETECOM ICT Services GmbH.

T	ec.	hni	ical	responsi	ibility	for	area	of	testing	:
---	-----	-----	------	----------	---------	-----	------	----	---------	---

2003-09-05 RSC 8411 Ames H.

Date Section Name Signature

Technical responsibility for area of testing:

2003-09-05 RSC8412 Hausknecht D.

Date Section Name Signature

1.2 Testing laboratory

CETECOM ICT Services GmbH

Untertürkheimer Straße 6 - 10

66117 Saarbrücken

Germany

Telephone : + 49 681 598 - 9100
Telefax : + 49 681 598 - 9075
E-mail : info@ict.cetecom.de
Internet : www.cetecom-ict.de

Accredited testing laboratory

The Test laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025.

DAR registration number: TTI-P-G-166/98

Listed by: Federal Communications Commission (FCC)

Identification/Registration No: 90462

Accredited Bluetooth[™] Test Facility (BQTF)

BLUETOOTH[™] is a trademark owned by Bluetooth SIG, Inc. and licensed to CETECOM

1.3 Details of applicant

Name : SANYO Telecommunications Co., Ltd.

Street: 1-1, Sanyo-cho

City: Daito City, Osaka 574-8534

Country: Japan

Telephone: +81-72-870-6528 Telefax: +81-72-870-6033

Contact : Mr. Yoshihiko Tamura

Telephone: +81-72-870-6528

E-mail: Tamu047599@dt.sanyo.co.jp

1.4 Application details

Date of receipt of application : 2003-07-28
Date of receipt of test item : 2003-08-04
Date of test : 2003-08-08

1.5 Test item:

Type of equipment : Mobile Station (GSM, GPRS)

Type designation : V801SA

Manufacturer : SANYO Telecommunications Co., Ltd.

Street : 1-1, Sanyo-cho

City : Daito City, Osaka 574 – 8534

Country : Japan

Serial number : S/N: K4-112

Additional information :

Frequency : 1850.2 – 1909.8 MHz Type of modulation : 300KGXW / 300KG7W

Number of channels : 300 (PCS1900) Antenna : Integral antenna

Power supply : 3,7V DC NiMH Battery

Output power GSM 1900 : cond : 30.00 dBm Peak,

ERP: 27.58 dBm (Burst); EIRP: 29.68 dBm (Burst)

Temperature range : -30°C - +60°C FCC - ID : AEZV801SA IMEI : 350222000012381

Hardware : 1.02 Software : 0.27302

1.6 Test specifications: FCC Part 24

FCC Part 15

2 Technical test

For Part 24 we use the substitution method (TIA/EIA 603).

All measurements in this report are done in GSM mode. Device is able to transmit data in GPRS mode also. But because the current measurements are performed in PEAK mode no other results from GPRS mode are possible. The only different is the modulation average power, which is 3 dB higher if the product is able to use 2 timeslots in the Up-link.

2.1 Summary of test results

No deviations from the technical specification(s) were ascertained in the course of the tests performed.

FINAL VERDICT: PASS

2.2 Test report

TEST REPORT

Test report no.: 4-1023-01-08/03

Test report no.: 4-1023-01-08/03	Issue Date: 2003-08-11	Page 8 (35)
TEST REPORT REFERENCE		
LIST OF MEASUREMENTS		
PARAMETER TO BE MEASURED		PAGE
Part PCS 1900		
POWER OUTPUT SUBCLA	AUSE § 24.232	9
EMISSIONS LIMITS SUBCLA	AUSE § 24.238	11
TEST EQUIPMENT AND ANCI	LLARIES USED FOR TESTS	26
Test site		28
Photographs of the equipmen	<u>nt</u>	30

POWER OUTPUT

SUBCLAUSE § 24.232

Summery:

This paragraph contains both average, peak output powers and EIRP measurements for the mobile station. In all cases, the peak output power is within the required mask (this mask is specified in the JTC standards, TIA PN3389 Vol. 1 Chap 7, and is no FCC requirement).

Method of Measurements:

The mobile was set up for the max. output power with pseudo random data modulation. The power was measured with R&S Signal Analyzer FSIQ 26 (peak and average)

This measurements were done at 3 frequencies, 1850,2 MHz, 1880,0 MHz and 1909,8 MHz (bottom, middle and top of operational frequency range)

Limits:

Power Step	Nominal Peak Output Power (dBm)	Tolerance (dB)
0	+30	± 2

EIRP Measurements

Description: This is the test for the maximum radiated power from the phone.

Rule Part 24.232(b) specifies that "Mobile/portable stations are limited to 2 watts e.i.r.p. peak power..." and 24.232(c) specifies that "Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage."

Method of Measurement:

- 1. In an anechoic antenna test chamber, a half-wave dipole antenna for the frequency band of interest is placed at the reference center of the chamber. An RF Signal source for the frequency band of interest is connected to the dipole with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A known (measured) power (Pin) is applied to the input of the dipole, and the power received (Pr) at the chamber's probe antenna is recorded.
- 2. A "reference path loss" is established as Pin + 2.1 Pr.
- 3. The EUT is substituted for the dipole at the reference centre of the chamber. The EUT is put into CW test mode and a scan is performed to obtain the radiation pattern.
- 4. From the radiation pattern, the co-ordinates where the maximum antenna gain occurs is identified.
- 5. The EUT is then put into pulse mode at its maximum power level (Power Step 0).
- 6. "Gated mode" power measurements are performed with the receiving antenna placed at the co-ordinates determined in Step 3 to determine the output power as defined in FCC Rule 24.232 (b) and (c). The "reference path loss" from Step 1 is added to this result.
- 7. This value is EIRP since the measurement is calibrated using a half-wave dipole antenna of known gain (2.1 dBi) and known input power (Pin).
- 8. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.1dBi.

Limits:

Power Step	Burst Average EIRP (dBm)			
0	<33			

Power Measurements:

Radiated:

		BURST Peak (dBm)		MODULATION AVERAGE (dBm)	
Frequency	Power Step				
(MHz)		EIRP	ERP	EIRP	ERP
1850.2	0	29.35	27.25	23.35	21.25
1880.0	0	29.68	27.58	23.68	21.58
1909.8	0	29.58	27.48	23.58	21.48
Measurement unce	±3 dB				

EMISSIONS LIMITS

SUBCLAUSE § 24.238

Measurement Procedure:

The following steps outline the procedure used to measure the radiated emissions from the mobile station. The site is constructed in accordance with ANSI C63.4 – 1992 requirements and is recognised by the FCC to be in compliance for a 3 and a 10 meter site. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier that can be as high as 1910 MHz. This was rounded up to 20 GHz. The resolution bandwidth is set as outlined in Part 24.238. The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of the USPCS band.

The final open field emission (here 10m semi-anechoic chamber listed by FCC) test procedure is as follows:

- a) The test item was placed on a 0. 8 meter high non-conductive stand at a 3 meter test distance from the receive antenna.
- b) The antenna output was terminated in a 50 ohm load.
- c) A double ridged waveguide antenna was placed on an adjustable height antenna mast 3 meters from the test item for emission measurements.
- d) Detected emissions were maximized at each frequency by rotating the test item and adjusting the receive antenna height and polarization. The maximum meter reading was recorded. The radiated emission measurements of the harmonics of the transmit frequency through the 10th harmonic were measured with peak detector and I MHz bandwidth. If the harmonic could not be detected above the noise floor, the ambient level was recorded. e)Now each detected emissions were substituted by the Substitution method, in accordance with the TIA/EIA 603.

Measurement Limit:

Sec. 24.238 Emission Limits.

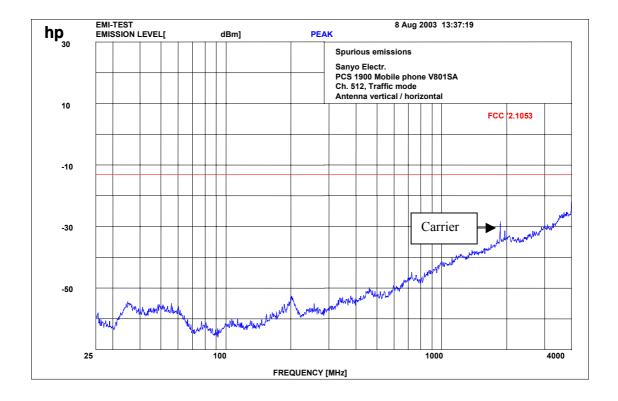
(a) On any frequency outside a licensee's frequency block (e.g. A, D, B, etc.) within the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB. The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

Measurement Results:

Radiated emissions measurements were made only at the upper, center, and lower carrier frequencies of the USPCS band (1850.2 MHz, 1879.8 MHz and 1909.8 MHz). It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the USPCS band into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.

RESULTS OF OPEN FIELD RADIATED TEST FOR FCC-24:

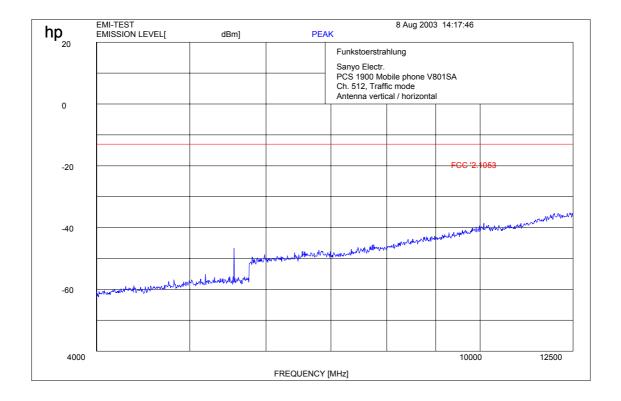
The final open field radiated levels are presented on the next pages.


All measurements were done in horizontal and vertical polarization, the plots shows the worst case. As can be seen from this data, the emissions from the test item were within the specification limit.

RESULTS OF OPEN FIELD RADIATED TEST FOR FCC-24:

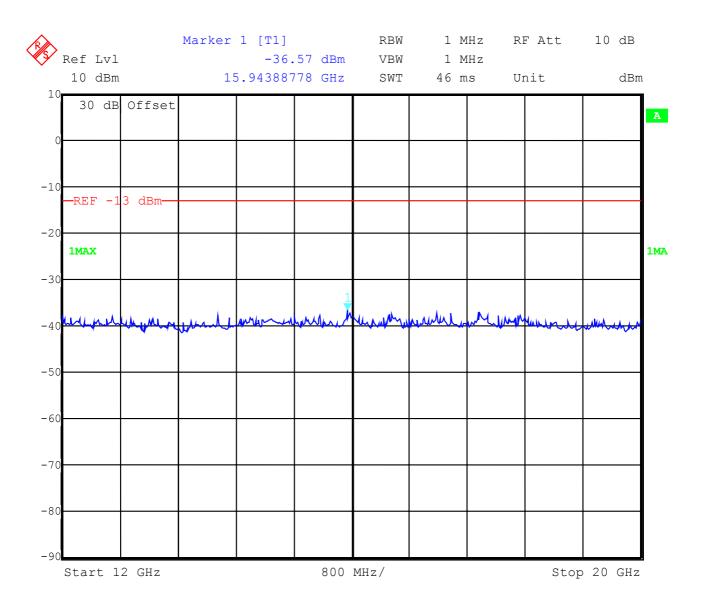
	EMIS	SION LIMITAT	TIONS	
f (MHz)	amplitude of emission (dBm)	limit max. allowed emmision power (dBm)	actual attenuation below frequency of operation (dBc)	results
		CH 512		
1850.2 5551	29.35 -46.8	-13.0 (42.35 dBc)	76.15	carrier complies
1880.0 5640	29.68 -48,2	CH 661 -13.0 (42.68 dBc)	77.88	carrier complies
		CH 810		
1909.8	29.58	-13.0		carrier
5730	-48.4	(42.58 dBc)	77.98	complies
Measurement	uncertainty		± 0.5dB	

Channel 512 (up to 4 GHz)

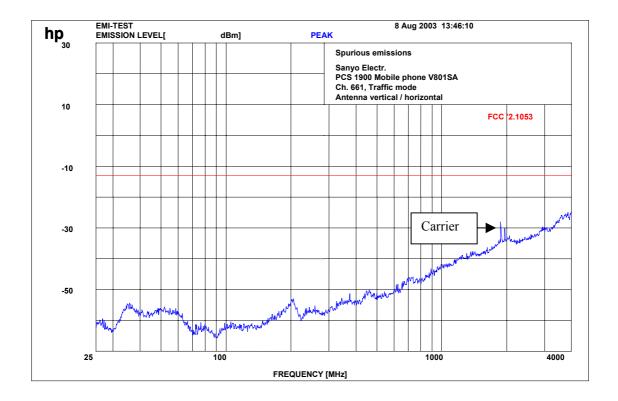

f < 1 GHz: RBW/VBW: 100 kHz $f \ge 1 \text{ GHz}: RBW/VBW 1 \text{ MHz}$

Carrier suppressed with a rejection filter

The peak near the carrier was caused by the simulated base station (not by the test sample)

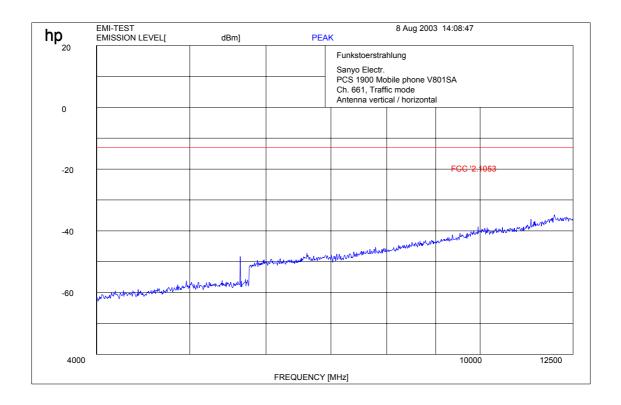

Channel 512 (up to 12 GHz)

f < 1 GHz: RBW/VBW: 100 kHz $f \ge 1 \text{ GHz}: RBW/VBW: 1 \text{ MHz}$



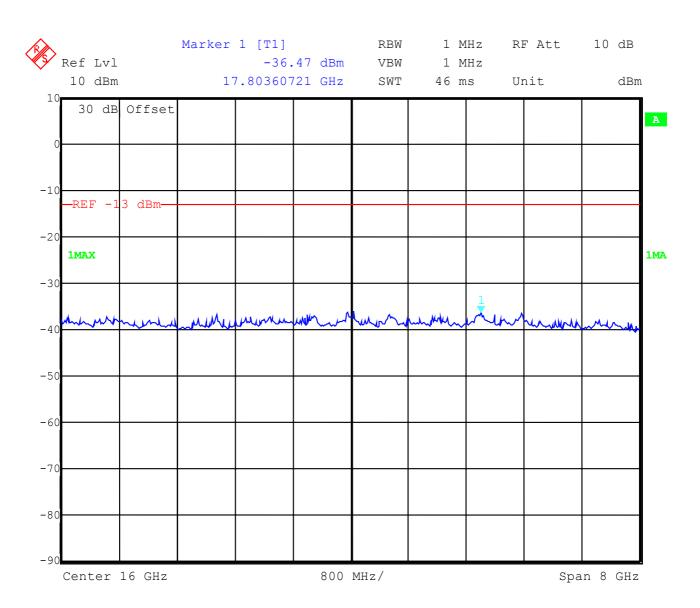
Channel 512:-20 GHz

Channel 661 (up to 4 GHz)

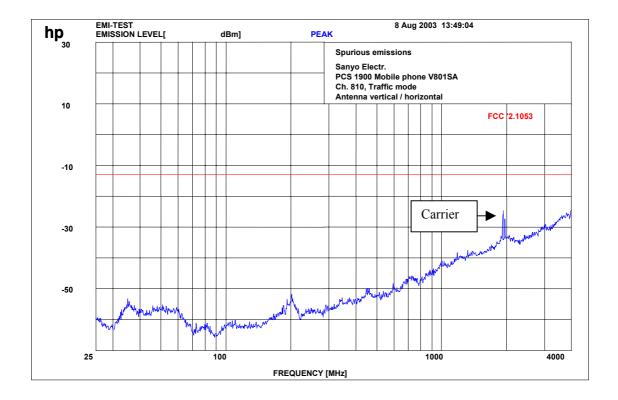

f < 1 GHz: RBW/VBW: 100 kHz $f \ge 1 \text{ GHz}: RBW/VBW: 1 \text{ MHz}$

Carrier suppressed with a rejection filter

The peak near the carrier was caused by the simulated base station (not by the test sample)

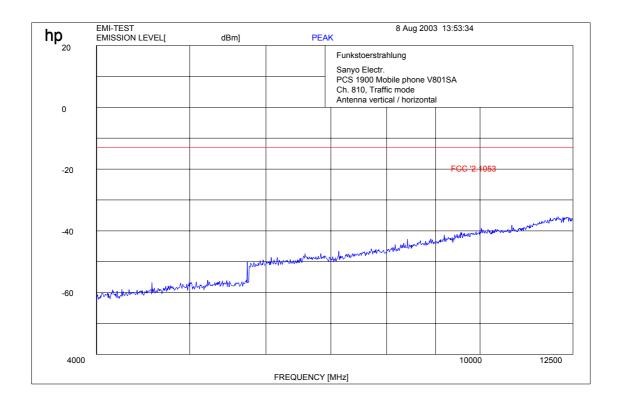

Channel 661 (up to 12 GHz)

f < 1 GHz: RBW/VBW: 100 kHz $f \ge 1 \text{ GHz}: RBW/VBW: 1 \text{ MHz}$



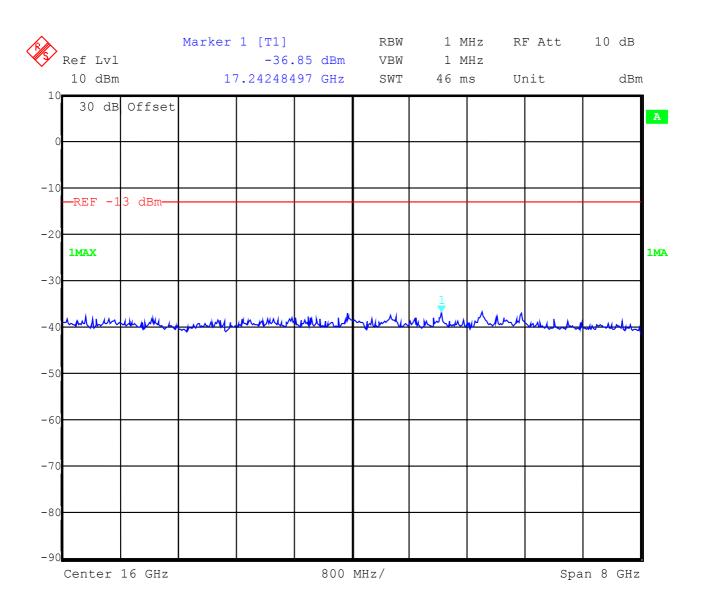
Channel 661: -20 GHz

Channel 810 up to 4 GHz

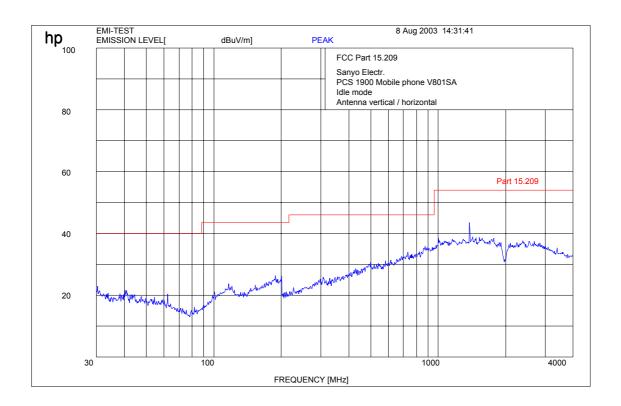

f < 1 GHz : RBW/VBW: 100 kHz $f \ge 1 \text{ GHz} : RBW/VBW 1 \text{ MHz}$

Carrier suppressed with a rejection filter

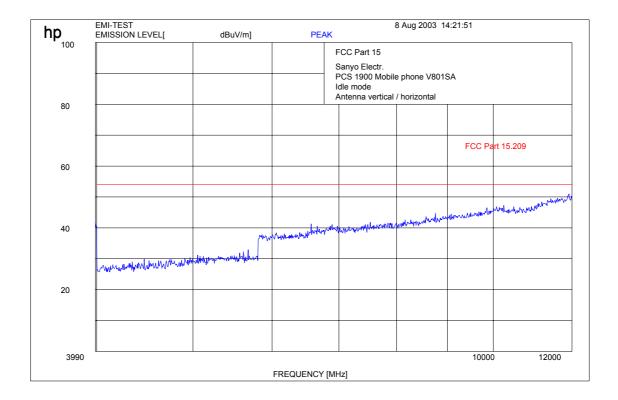
The peak near the carrier was caused by the simulated base station (not by the test sample)


Channel 810 up to 12 GHz

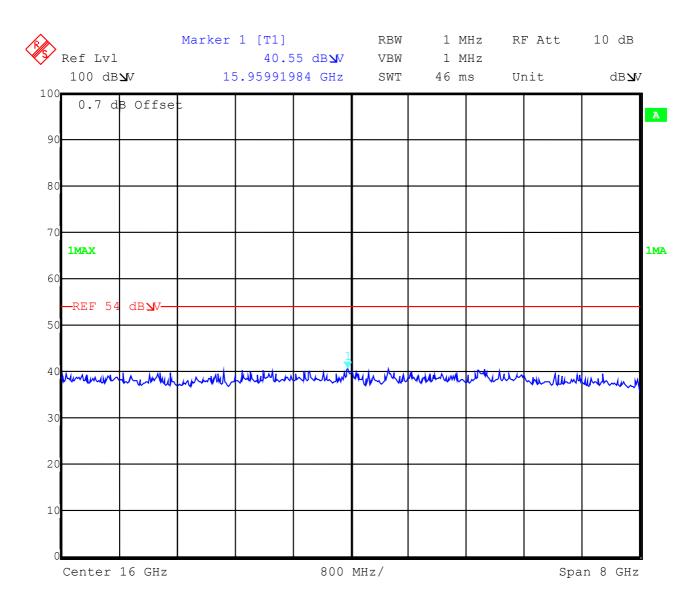
f < 1 GHz: RBW/VBW: 100 kHz $f \ge 1 \text{GHz}$: RBW/VBW 1 MHz


Channel 810: -20 GHz

Idle-Mode (this is valid for all 3 channels and up to 4 GHz)


Results see page 57

f < 1 GHz : RBW/VBW: 100 kHz $f \ge 1 \text{ GHz} : RBW/VBW 1 \text{ MHz}$


Idle-Mode (this is valid for all 3 channels and up to 12 GHz)

f < 1 GHz : RBW/VBW: 100 kHz $f \ge 1 \text{ GHz} : RBW/VBW 1 \text{ MHz}$

Idle-Mode (this is valid for all 3 channels and up to 20 GHz)

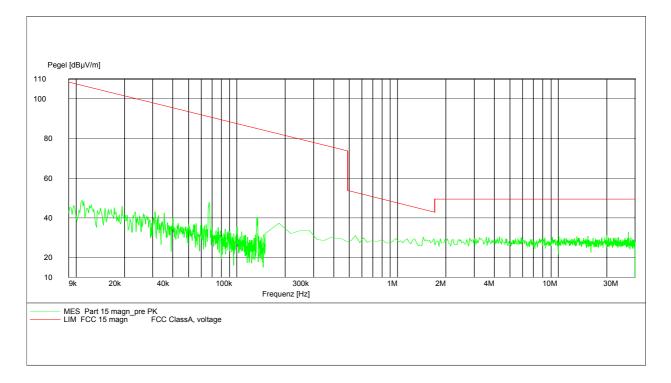
SPURIOUS RADIATION 9kHz – 30 MHz

§ 15.109

Part 15.209 Magnetics

EUT: V-SA702 Manufacturer: Sanyo

Operating Condition: with charging unit, idle mode


Test Site: Cetecom, Room 6

Operator: Ames

Test Specification: Part 15.209 Magnetics

Comment:

Start of Test: 26.06.03 / 07:45:36

TEST EQUIPMENT AND ANCILLARIES USED FOR TESTS

To simplify the identification on each page of the test equipment used, on each page of the test report, each item of test equipment and ancillaries such as cables are identified (numbered) by the Test Laboratory, below.

I 		-		
No	Instrument/Ancillary	Type	Manufacturer	Serial No.
01	Spectrum Analyzer	8566 A	Hewlett-Packard	1925A00257
02	Analyzer Display	8566 A	Hewlett-Packard	1925A00860
03	Oscilloscope	7633	Tektronix	230054
04	Radio Communication	CMTA 54	Rohde & Schwarz	894 043/010
	Analyzer			
05	System Power Supply	6038 A	Hewlett-Packard	2848A07027
06	Signal Generator	8111 A	Hewlett-Packard	2215G00867
07	Signal Generator	8662 A	Hewlett-Packard	2224A01012
08	Function Generator	AFGU	Rohde & Schwarz	862 480/032
09	Regulating Transformer	MPL	Erfi	91350
10	LISN	NNLA 8120	Schwarzbeck	8120331
11	Relay-Matrix	PSU	Rohde & Schwarz	893 285/020
12	Power-Meter	436 A	Hewlett-Packard	2101A12378
13	Power-Sensor	8484 A	Hewlett-Packard	2237A10156
14	Power-Sensor	8482 A	Hewlett-Packard	2237A00616
15	Modulation Meter	9008	Racal-Dana	2647
16	Frequency Counter	5340 A	Hewlett-Packard	1532A03899
17	Anechoic Chamber		MWB	87400/002
18	Spectrum Analyzer	85660 B	Hewlett-Packard	2747A05306
19	Analyzer Display	85662 A	Hewlett-Packard	2816A16541
20	Quasi Peak Adapter	85650 A	Hewlett-Packard	2811A01131
21	RF-Preselector	85685 A	Hewlett-Packard	2833A00768
22	Biconical Antenna	3104	Emco	3758
23	Log. Per. Antenna	3146	Emco	2130
24	Double Ridged Horn	3115	Emco	3088
25	EMI-Testreceiver	ESAI	Rohde & Schwarz	863 180/013
26	EMI-Analyzer-Display	ESAI-D	Rohde & Schwarz	862 771/008
27	Biconical Antenna	HK 116	Rohde & Schwarz	888 945/013
28	Log. Per. Antenna	HL 223	Rohde & Schwarz	825 584/002
29	Relay-Switch-Unit	RSU	Rohde & Schwarz	375 339/002
30	Highpass	HM985955	FSY Microwave	001
31	Amplifier	P42-GA29	Tron-Tech	B 23602
32	Anechoic Chamber		Frankonia	
33	Control Computer	PSM 7	Rohde & Schwarz	834 621/004
34	EMI Test Receiver	ESMI	Rohde & Schwarz	827 063/010
35	EMI Test Receiver	Display	Rohde & Schwarz	829 808/010
-				

			7.5	
No	Instrument/Ancillary	Type	Manufacturer	Serial No.
36	Control Computer	HD 100	Deisel	100/322/93
37	Relay Matrix	PSN	Rohde & Schwarz	829 065/003
38	Control Unit	GB 016 A2	GB 016 A2 Rohde & Schwarz	
39	Relay Switch Unit	RSU	Rohde & Schwarz	316 790/001
40	Power Supply	6032A	Hewlett Packard	2846A04063
41	Spectrum Monitor	EZM	Rohde & Schwarz	883 720/006
42	Measuring Receiver	ESH 3	Rohde & Schwarz	890 174/002
43	Measuring Receiver	ESVP	Rohde & Schwarz	891 752/005
44	Bicon Ant. 20-300MHz	HK 116	Rohde & Schwarz	833 162/011
45	Logper Ant. 0.3-1 GHz	HL 223	Rohde & Schwarz	832 914/010
46	Amplifier 0.1-4 GHz	AFS4	Miteq Inc.	206461
47	Logper Ant. 1-18 GHz	HL 024 A2	Rohde & Schwarz	342 662/002
48	Polarisation Network	HL 024 Z1	Rohde & Schwarz	341 570/002
49	Double Ridged Horn	3115	EMCO	9107-3696
	Antenna 1-26.5 GHz			
50	Microw. Sys. Amplifier	8317A	Hewlett Packard	3123A00105
	0.5- 26.5 GHz			
51	Audio Analyzer	UPD	Rohde & Schwarz	1030.7500.04
52	Controler	PSM 7	Rohde & Schwarz	883 086/026
53	DC V-Network	ESH3-Z6	Rohde & Schwarz	861 406/005
54	DC V-Network	ESH3-Z6	Rohde & Schwarz	893 689/012
55	AC 2 Phase V-Network	ESH3-Z5	Rohde & Schwarz	861 189/014
56	AC 2 Phase V-Network	ESH3-Z5	Rohde & Schwarz	894 981/019
57	AC-3 Phase V-Network	ESH2-Z5	Rohde & Schwarz	882 394/007
58	Power Supply	6032A	Rohde & Schwarz	2933A05441
59	RF-Test Receiver	ESVP.52	Rohde & Schwarz	881 487/021
60	Spectrum Monitor	EZM	Rohde & Schwarz	883 086/026
61	RF-Test Receiver	ESH3	Rohde & Schwarz	881 515/002
62	Relay Matrix	PSU	Rohde & Schwarz	882 943/029
63	Relay Matrix	PSU	Rohde & Schwarz	828 628/007
64	Spectrum Analyzer	FSIQ 26	Rohde & Schwarz	119.6001.27
65	Spectrum Analyzer	HP 8565E	Hewlett Packard	3473A00773
66	•			
67				
68				
	<u> </u>		I .	

Test site



Test site

