PCTEST ENGINEERING LABORATORY, INC.

DUT: Dipole 835 MHz; Type: D835V2; Serial: 406

Communication System: CW; Frequency: 835 MHz;Duty Cycle: 1:1 Medium: 835 Brain ($\sigma = 0.90$ mho/m, $\varepsilon_r = 40.24$, $\rho = 1000$ kg/m³) Phantom section: Flat Section; Space: 1.5 cm

Test Date: 01-06-2004; Ambient Temp: 22.5°C; Tissue Temp: 20.8°C

Probe: ES3DV2 - SN3022; ConvF(6.1, 6.1, 6.1); Calibrated: 9/23/2003 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE3 SN330; Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1197 Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.8 Build 62

835MHz Dipole Validation

Area Scan (61x121x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Input Power = 24.0 dBm (250 mW) SAR(1 g) = 2.41 mW/g; SAR(10 g) = 1.56 mW/g Target SAR(1g) = 2.375 mW/g; Deviation = +1.47 %

 $0 \, dB = 2.83 \, mW/g$

PCTEST ENGINEERING LABORATORY, INC.

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 502

Communication System: CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium: 1900 Brain ($\sigma = 1.39$ mho/m, $\varepsilon_r = 41.89$, $\rho = 1000$ kg/m³) Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-05-2004; Ambient Temp: 21.8°C; Tissue Temp: 20.4°C

Probe: ES3DV2 - SN3022; ConvF(5, 5, 5); Calibrated: 9/23/2003 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE3 SN330; Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1197 Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.8 Build 62

1900MHz Dipole Validation

Area Scan (41x51x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmInput Power = 20.0 dBm (100 mW) SAR(1 g) = 3.58 mW/g; SAR(10 g) = 1.79 mW/g Target SAR(1g) = 3.97 mW/g; Deviation = -9.82 %

APPENDIX C: PROBE CALIBRATION

Client

PC Test

GALIBRATION	DERTHOAT		
Object(s)	ES3DV2 - SN	3022	
Calibration procedure(s)	QA CAL-01.v2 Calibration pro	cedure for dosimetric E-field prob	2 8
Calibration date:	September 23,	2003	
Condition of the calibrated item	In Tolerance (a	ccording to the specific calibration	n document)
This calibration statement documen 17025 international standard.	ts traceability of M&TE u	ised in the calibration procedures and conformity of	the procedures with the ISO/IEC
All calibrations have been conducte	d in the closed laboratory	/ facility: environment temperature 22 +/- 2 degrees	Celsius and humidity < 75%.
Calibration Equipment used (M&TE	critical for calibration)		
Model Type	1D #	Cal Date (Calibrated by Certificate No.)	Scheduled Calibration
Power meter EPM E4419B	GB41293874	2-Apr-03 (METAS, No 252-0250)	Anr-04
Power sensor E4412A	MY41495277	2-Apr-03 (METAS, No 252-0250)	Αρτ-04
Reference 20 dB Attenuator	SN: 5086 (20b)	3-Apr-03 (METAS No. 251-0340	Apr-04
Fluke Process Calibrator Type 702	SN: 6295803	8-Sep-03 (Sintrel SCS No. E-030020)	Sep-04
Power sensor HP 8481A	MY41092180	18-Sep-02 (Agilent, No. 20020918)	In house check: Oct 03
RF generator HP 8684C	US3642U01700	4-Aug-99 (SPEAG, in house check Aug-02)	In house check: Aug-05
Network Analyzer HP 8753E	US37390585	18-Oct-01 (Agilent, No. 24BR1033101)	In house check: Oct 03
	Name	Function	Signature
Calibrated by:	Katja Pokovic	Laboratory Director	Polonie Hotza
			100
Approved by:	Niels Kuster	Quality Manager	1. 205
		*	Date issued: October 5, 2003
This calibration certificate is issued a Calibration Laboratory of Schmid &	as an intermediate solutic Partner Engineering AG	on until the accreditation process (based on ISO/IEC is completed.	C 17025 International Standard) for

Probe ES3DV2

S

SN:3022

Manufactured: Last calibration:

April 15, 2003 September 23, 2003

e

D

a

a

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

DASY - Parameters of Probe: ES3DV2 SN:3022

Sensitiv	ity in Free S	bace		Diode C	ompress	sion	
	NormX	1.00	μV/(V/m) ²		DCP X	95	mV
	NormY	1.04	μ V/(V/m) ²		DCP Y	95	mV
	NormZ	0.98	μV/(V/m) ²		DCP Z	95	mV
Sensitiv	ity in Tissue	Simu	llating Liquid				
Head	900 MH2	:	ε _r = 41.5 ± 5%	σ =	0.97 ± 5% ı	mho/m	
Valid for f=8	300-1000 MHz with	Head T	issue Simulating Liquid	according to) EN 50361, F	P1528-200X	
	ConvF X	6.1	± 9.5% (k=2)		Boundary e	effect:	
	ConvF Y	6.1	± 9.5% (k=2)		Alpha	0.32	
	ConvF Z	6.1	± 9.5% (k=2)		Depth	1.65	
Head	1800 MHz	2	ε _r = 40.0 ± 5%	a =	1.40 ± 5% r	mho/m	
Valid for f=1	1710-1910 MHz with	n Head	Tissue Simulating Liquid	l according	to EN 50361,	P1528-200)	(
	ConvF X	5.0	± 9.5% (k=2)		Boundary e	effect:	
	ConvF Y	5.0	± 9.5% (k=2)		Alpha	0.25	
	ConvF Z	5.0	± 9.5% (k=2)		Depth	2.30	
Bounda	ry Effect						
Head	900 MHz	:	Typical SAR gradient	: 5 % per m	m		

Probe Tip to	o Boundary	1 mm	2 mm
SAR _{be} [%]	Without Correction Algorithm	5.5	2.5
SAR _{be} [%]	With Correction Algorithm	0.1	0.4

Head 1800 MHz Typical SAR gradient: 10 % p	er mm
--	-------

Probe Tip to Boundary	1 mm	2 mm
SAR _{be} [%] Without Correction Algorithm	7.1	4.4
SAR _{be} [%] With Correction Algorithm	0.0	0.1

Sensor Offset

Probe Tip to Sensor Center	2.0	mm
----------------------------	-----	----

Receiving Pattern (ϕ , θ = 0°

Isotropy Error (\phi), \theta = 0°

Frequency Response of E-Field

(TEM-Cell:ifi110, Waveguide R22)

Dynamic Range f(SAR_{brain})

Head	900 MHz		ε r = 41.5 ± 5% σ [:]	= 0.97 ± 5% mho/	/m
Valid for f=	800-1000 MHz with H	ead T	issue Simulating Liquid according	to EN 50361, P1528	3-200X
	ConvF X	6.1	± 9.5% (k=2)	Boundary effect	
	ConvF Y	6.1	± 9.5% (k=2)	Alpha	0.32
	ConvF Z	6.1	± 9.5% (k=2)	Depth	1.65
land	4000 MU-			- 4 40 1 50/	f
пеац			ε _r = 40.0 Ι 5% σ	= 1.40 I 5% mno/	m
Valid for f=1	1710-1910 MHz with	Head	Tissue Simulating Liquid according	; to EN 50361, P152	28-200X
	ConvF X	5.0	± 9.5% (k=2)	Boundary effect	:
	ConvF Y	5.0	± 9.5% (k=2)	Alpha	0.25
	ConvF Z	5.0	± 9.5% (k=2)	Depth	2.30

Body	900 MHz		$\epsilon_{\rm r}$ = 55.0 ± 5%	σ = 1.05 ± 5% m	nho/m
Valid for f=	800-1000 MHz with B	lody T	issue Simulating Liquid accor	ding to OET 65 Sup	pi. C
	ConvF X	6.0	± 9.5% (k=2)	Boundary ef	fect:
	ConvF Y	6.0	± 9.5% (k=2)	Alpha	0.38
	ConvF Z	6.0	± 9.5% (k=2)	Depth	1.47
Body	1800 MHz		ε _r = 53.3 ± 5%	σ = 1.52 ± 5% n	nho/m
Valid for f=	1710-1910 MHz with	Body	Tissue Simulating Liquid acco	rding to OET 65 Su	ppl. C
	ConvF X	4.5	± 9.5% (k=2)	Boundary ef	fect:
	ConvF Y	4.5	± 9.5% (k=2)	Alpha	0.22
	ConvF Z	4.5	± 9.5% (k=2)	Depth	3.42

Head	2450 MHz		ε _r = 39.2 ± 5% σ ⁻¹	= 1.80 ± 5% mho	/m
Valid for f=:	2400-2500 MHz with	Head	Tissue Simulating Liquid according	g to EN 50361, P152	28-200X
	ConvF X	4.5	± 9.5% (k=2)	Boundary effect	:
	ConvF Y	4.5	± 9.5% (k=2)	Alpha	0.42
	ConvF Z	4.5	± 9.5% (k=2)	Depth	1.56
Body	2450 MHz		ε . = 52.7 ± 5% σ	= 1.95 ± 5% mbo	/m
Valid for f=2	2400-2500 MHz with I	Body	Tissue Simulating Liquid according	to OET 65 Suppl.	C
	ConvF X	4.2	± 9.5% (k=2)	Boundary effect	:
	ConvF Y	4.2	± 9.5% (k=2)	Alpha	0.42
	ConvF Z	4.2	± 9.5% (k=2)	Depth	1.65

Head	5200 MHz	2	ε _r = 36.0 ± 5% σ =	• 4.66 ± 5% mho/	/m
Valid for f=	4940-5460 MHz witl	n Head	Tissue Simulating Liquid according	to OET65-SuppC	
	ConvF X	2.60	± 16.6% (k=2)	Boundary effect	:
	ConvF Y	2.60	± 16.6% (k=2)	Alpha	0.93
	ConvF Z	2.60	± 16.6% (k=2)	Depth	1.50
Body	5200 MHz	:	ε _r = 49.0 ± 5% σ =	[±] 5.30 ± 5% mho/	'n
Valid for f=	4940-5460 MHz with	n Body '	Tissue Simulating Liquid according	to OET65-SuppC	
	ConvF X	1.80	± 16.6% (k=2)	Boundary effect	:
	ConvF Y	1.80	± 16.6% (k=2)	Alpha	1.05
	ConvF Z	1.80	± 16.6% (k=2)	Depth	1.60

Head	5800 N	/IHz	ε _r = 35.3 ± 5%	σ = 5.27 ± 5% mho /	m
Valid for f	=5510-6090 MHz	with Head	Tissue Simulating Liquid ac	cording to OET65-SuppC	
	ConvF X	2.15	± 16.6% (k=2)	Boundary effect	
	ConvF Y	2.15	± 16.6% (k=2)	Alpha	1.04
	ConvF Z	2.15	± 16.6% (k=2)	Depth	1.50
Body	5800 N	11 Hz	ε _r = 48.2 ± 5%	σ = 6.0 ± 5% mho/n	ı
Valid for f	=5510-6090 MHz	with Body	Tissue Simulating Liquid ac	cording to OET65-SuppC	
	ConvF X	1.57	± 16.6% (k=2)	Boundary effect:	
	ConvF Y	1.57	± 16.6% (k=2)	Alpha	1.15
	ConvF Z	1.57	± 16.6% (k=2)	Depth	1.70

Deviation from Isotropy in HSL

Error ($\theta \phi$), f = 900 MHz

Additional Conversion Factors

for Dosimetric E-Field Probe

Type:	ES3DV2
Serial Number:	3022
Place of Assessment:	Zurich
Date of Assessment:	December 3, 2003
Probe Calibration Date:	September 23, 2003

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 900 MHz or at 1800 MHz.

Assessed by:

Dosimetric E-Field Probe ES3DV2 SN:3022

Conversion factor (± standard deviation)

1950 MHz	ConvF	4.7 ± 9.5%	$\mathbf{g}_{r} = 40.0 \pm 5\%$ $\mathbf{\sigma} = 1.40 \pm 5\%$ mho/m (head tissue)
1950 MHz	ConvF	4. 3± 9.5%	$8_{r} = 53.3 \pm 5\%$ $\mathbf{\sigma} = 1.52 \pm 5\%$ mho/m (body tissue)

Additional Conversion Factors for Dosimetric E-Field Probe

S

е

a

q

Туре:	ES3DV2
Serial Number:	3022
Place of Assessment:	Zurich
Date of Assessment:	October 3, 2003
Probe Calibration Date:	September 23, 2003

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 900 MHz or at 1800 MHz.

Assessed by:

plou: Mate

Dosimetric E-Field Probe ES3DV2 SN:3022

Conversion factor (± standard deviation)

150 MHz	ConvF	8.5 ± 8%	$\varepsilon_r = 52.3 \pm 5\%$ $\sigma = 0.76 \pm 5\% \text{ mho/m}$ (head tissue)
150 MHz	ConvF	8.0 ± 8%	$\varepsilon_r = 61.9 \pm 5\%$ $\sigma = 0.80 \pm 5\% \text{ mho/m}$ (body tissue)
450 MHz	ConvF	7.1±8%	$\varepsilon_r = 43.5 \pm 5\%$ $\sigma = 0.87 \pm 5\%$ mho/m (head tissue)
450 MHz	ConvF	7.2 ± 8%	$\epsilon_r = 56.7 \pm 5\%$ $\sigma = 0.94 \pm 5\% \text{ mho/m}$ (body tissue)

Additional Conversion Factors

for Dosimetric E-Field Probe

Type:	ES3DV2
Serial Number:	3022
Place of Assessment:	Zurich
Date of Assessment:	November 28, 2003
Probe Calibration Date:	September 23, 2003

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 900 MHz or at 1800 MHz.

Assessed by:

Dosimetric E-Field Probe ES3DV2 SN:3022

Conversion factor (± standard deviation)

1600 MHz	ConvF	5.2 ± 8%	$\epsilon_r = 40.3 \pm 5\%$ $\sigma = 1.29 \pm 5\%$ mho/m (head tissue)
1600 MHz	ConvF	4.9 ± 8%	$\epsilon_r = 53.8 \pm 5\%$ $\sigma = 1.40 \pm 5\%$ mho/m (body tissue)

Additional Conversion Factors

for Dosimetric E-Field Probe

Type:	ES3DV2
Serial Number:	3022
Place of Assessment:	Zurich
Date of Assessment:	December 9, 2003
Probe Calibration Date:	September 23, 2003

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 900 MHz or at 1800 MHz.

Assessed by:

s p e a g

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Dosimetric E-Field Probe ES3DV2 SN:3022

Conversion factor (± standard deviation)

2140 MHz

ConvF **4.5 ± 8%**

 $\epsilon_r = 39.8 \pm 5\%$ $\sigma = 1.49 \pm 5\%$ mho/m (brain tissue)