Ref NO.	Description						
L1001	6.8nH						
L1003	8.2nH						
L1005	5.6nH						
L1101	4.7nH						
L1103	6.8nH						
L1104	150nH						
L1106	27nH						
L1107	10nH						
L1108	8.2nH						
L1109	47nH						
L1110	47nH						
L1111	120nH						
L1112	120nH						
L1115	39nH						
L1116	47nH						
L1118	5.6nH						
L1119	6.8nH						
L1120	2.2nH						
L1121	220nH						
L1122	220nH						
L1123	3.3nH						
L1130	2.2nH						
L1201	12nH						
L1202	12nH						
L1203	56nH						
L1204	56nH						
L1301	27nH						
L1302	27nH						
L1303	4.7nH						
L1304	4.7nH						
L1305	10nH						
L1308	22nH						
L1401	3.9nH						
L1402	1.5nH						
L1403	12nH						
L1404	15nH						
L1405	10nH						
L1406	1.2nH						
L1420	5.6nH						
L1422	6.8nH						
L1430	2.7nH						
L1431	2.7nH						
L1432	4.7nH						
L1433	4.7nH						
							l
							l
							l

Ref NO.	Description	Ref NO.	Description	Ref NO.	Description	Ref NO.	Description
C1001	1.5pF	C1313	100pF	C1521	10uF		
C1002	8pF	C1314	0.01uF	C1522	0.01uF		
C1005	100pF	C1315	47pF	C1523	1000pF		
C1100	0.01uF	C1316	47pF	C1524	100pF		
C1101	1pF	C1317	47pF	C1525	100pF		
C1102	0.1uF	C1318	100pF	C1526	1000pF		
C1108	1000pF	C1319	8pF	C1527	1000pF		
C1109	1000pF	C1320	3300pF	C1528	1000pF		
C1110	2pF	C1321	3300pF	C1529	0.01uF		
C1111	100pF	C1322	100pF	C1530	4700pF		
C1112	1000pF	C1323	1000pF	C1531	0.47uF		
C1113	100pF	C1324	0.01uF	C1532	0.022uF		
C1114	10pF	C1325	0.01uF	C1540	0.1uF		
C1115	100pF	C1326	1000pF	C1603	1000pF		
C1117	0.1uF	C1327	0.022uF	C1801	100pF		
C1118	56pF	C1328	0.47uF	C1802	100pF		
C1119	100pF	C1329	560pF	C1803	1uF		
C1120	1000pF	C1330	1000pF	C1804	2.2uF		
C1121	18pF	C1331	100pF	C1805	2.2uF		
C1122	1.5pF	C1332	100pF	C1807	100pF		
C1123	0.01uF	C1333	12pF	C1808	1uF		
C1124	12pF	C1334	0.1uF	C1809	2.2uF		
C1127	100pF	C1335	4pF	C1810	2.2uF		
C1128	100pF	C1336	4pF	C1811	1uF		
C1130	1pF	C1403	100pF	C1813	10uF		
C1135	39pF	C1404	100pF				
C1136	39pF	C1405	1000pF				
C1139	100pF	C1406	1000pF				
C1140	1000pF	C1407	1000pF				
C1141	33pF	C1410	10pF				
C1142	1000pF	C1411	10pF				
C1143	100pF	C1412	10pF				
C1144	1000pF	C1413	0.01uF				
C1145	33pF	C1414	9pF				
C1146	1000pF	C1415	15pF				
C1147	3pF	C1416	15pF				
C1148		C1417	4.7uF		-		
C1153	2pF	C1418	15pF		<u> </u>		
C1154		C1419	15pF				
C1155	100pF	C1420	6pF				
C1160	1000pF	C1421	3pF				
C1105	0.5pF	C1422	15pF				
C1108	1.5pF	C1423	10pF				
C1201	0.01UF	C1425			<u> </u>		
C1202	4700pF	C1426			├ ───┤		
C1203		C1427			┼───┤		
C1200	0.01uF	C1428			┼───┤		
C1208	0.01uF	C1429	100pF		┼───┤		
C1209	0.01UF	C1430			<u> </u>		
C1210	0.22UF	C1431	0.01UF		├────┤		
C1211	1000pr	C1434	1000pr				
01212	тооорг	01433	тооорг	I			

C1213	0.01uF	C1438	1.5pF		
C1214	100pF	C1445	1000pF		
C1215	0.01uF	C1450	4pF		
C1216	1000pF	C1501	0.01uF		
C1217	22pF	C1503	100pF		
C1219	22pF	C1504	1uF		
C1305	22pF	C1505	0.1uF		
C1308	1000pF	C1506	1000pF		
C1309	0.1uF	C1507	10uF		
C1310	4700pF	C1508	0.022uF		
C1311	0.1uF	C1509	0.22uF		
C1312	0.01uF	C1520	0.01uF		

Ref NO.	Description						
R1001	0	R1419	1.2k				
R1002	0	R1420	0				
R1005	0	R1426	0				
R1101	0	R1428	0				
R1105	0	R1500	0				
R1106	6.8k	R1501	680				
R1108	10	R1502	15k				
R1109	3.3k	R1503	47k				
R1110	1k	R1504	4.7k				
R1112	8.2k	R1505	120k				
R1114	68	R1506	100k				
R1115	10	R1507	4.7k				
R1116	10	R1508	10k				
R1120	4.7k	R1509	27				
R1121	10k	R1510	1k				
R1201	1k	R1511	3.9k				
R1202	10	R1512	220				
R1203	10	R1513	0				
R1204	1k	R1514	1k				
R1205	10k	R1515	1k				
R1206	10k	R1516					
R1207	4.7k	R1517	51				
R1208	8.2k	R1518	1k				
R1209	100	R1519	1k				
R1210	0	R1520	1k				
R1211	0	R1801	1				
R1212	0	R1802	1				
R1220	10k	R1805	1				
R1281	1k	R1806	1				
R1282	1k	R1810	0				
R1283	1k						
R1284	1k						
R1285	1k						
R1286	1k						
R1287	1k						
R1288	1k						
R1301	1k						
R1302	1k						
R1304	0						
R1305	0						
R1306	10k						
R1307	0						
R1308	12k						
R1309	1k						
R1310	6.2k						
R1311	10k						
R1312	10k						
R1320	0						
R1322	47						
R1331	0						
R1400	10k						
R1401	0						

R1406	150			
R1408	0			
R1409	1k			
R1410	0			
R1411	56			
R1412	56			
R1413	56k			
R1414	1k			
R1415	3.9k			
R1416	10k			
R1417	1.8k			
R1418	22k			

Reference No.	Function	Part No.
	PLL Synthesizer	
IC 151	PLL IC	MB15F73SP
X1502	PCS/AMPS VCO	YK509MDB097M1750B
Q1502	Transister	HN7G03FU
	<u>Transmitter</u>	
IC143	PCS Power Amplifier	RF2153
X144	AMPS Power Amplifie	PA3100 2
IC141	Switch	uPG158TB
IC142	Invert IC	TC7SU04FU
IC162	Temp Sens.	LM20M7X
Q1401,1402	Transister	HN7G03FU
D1401,1402	Diode	HSC88
X101	Diplexer	LFDP15N0039A
XF102	PCS Duplexer	DFYK1R88C1R96HHJ
XF103	AMPS Duplexer	EFSD836MB1Z1
XF143	PCS Isolator	CE0421R88DCB
XF146	AMPS Isolator	CE053R836DCA
XF141	PCS SAW Filter	SAFC1867.5T1897.5ML1DO
XF144	AMPS SAW Filter	SRF836NJC31
XF142	PCS Coupler	LDC10B190J1880
XF145	AMPS Coupler	LDC10B15010836
/11 1 10		
	Regulator	
IC181_182	Regulator(3 0V/3 0V)	R5321D003A
IC183	$\frac{1}{2} \frac{1}{2} \frac{1}$	R1121N201B
10105		
	Receiver	
IC113	I NA/Miyor	RFR3100
IC119	PCSINA	NF34018
IC112	AMPS I NA	CN01096B
IC114		
01101 1102	Transistor	HN7C03EU
¥F119	PCS RE SAW Filter	M196NW2BP_KE00541
XF112 XF111	AMPS RE SAW Filter	SAEC881 5ME1A0T
X1111 X114	PCS IF SAW Filter	B4910
XF113	AMPS IF SAW Filter	SAEC85 380MA15X
XI 115		SALCOJ.SOUMATJA
	IF AGC Circuit	<u> </u>
IC131	TX ACC+Miver IC	RET3100
IC121	RX AGC IC	IFR3000
01201 1301	Transistor	DTC144FF
Q1201,1301	Diode	HVC202A
01202 1202	Diode	DAN235F
¥1202,1002	Dione	
	TCX0 Circuit	
¥1501	TCYO	KT18 ECV30A 10 680M
01501	Transistar	25C/6/0
A1201	11 411515101	600404J
1	I	

 Tentative Specification of ISOLATOR

 Tentative SPEC No.
 : NCE64-P0822A

 Part Number
 : CE0401G88DCB000TT1

 Old Part Number
 : CE0401R88DCB

Written by <u>M. Kawashima</u>				
Checked by Y. Ohtani				
Date	19/ Apr./ '00			

A>: Revised by MK on May/19/'00

1. Electrical				
Frequency Range	1850~1910 MHz			
Operating Temp.	-35~+85°C	+20~+30°C		
Insertion Loss	0.6 dB max.	A> 0.5 dB max.		
Isolation	14 dB min.	A> 15 dB min.		
VSWR				
Forward	1.6 max.	max.		
Reverse	1.6 max.	max.		
Rating Power	2.5 W	max.		
Reflection Power	ection Power 0.6 W max.			
Impedance	50 Ω			
Attenuation	A> (*) 3700~3820	MHz 10 dB min.		
Absolute value	(*) 5550~5730MHz 15dB min.			

Note1: Case surface temperature should be less than 100°C under the operation.

2: The specifications and dimensions in this spec. may be subject to change without notice.

3: (*) will not be measured in regular production. This value always meets the specification.

2: Mechanical (Figure, Circuit, Port)

Standard

Preliminary Specification of I	SOLATOR		
Preliminary SPEC No.	:NCE64-P0637G		
Part Number	:CE0521R88DCB		
1. Electrical			
Frequency Range	1850~19	910 MHz	
Operating Temp.	-35~+85°C	+20~+30°C	
Insertion Loss	0.6 dB max.	dB max.	
Isolation	B> 14 dB min.	B> 15 dB min.	
VSWR			
Forward	1.6 max.	max.	
Reverse	1.6 max.	max.	
Rating Power	2.5 W max.		
Reflection Power	0.6 W max.		
Impedance	50 Ω		
Attenuation	F>C>(*) 3700~3820MHz	3 dB min.(-35~+85°C	
Absolute value	C> (*) 5550~5730MHz	10 dB min.(-35~+85°C)	
Nate 4. Once a surface to see a stress of a suld be lace they 40000 we don't be an end			

25/ Feb/ '97 A>:Rev. by T.Y. on 28/Oct./'97 B>:Rev. by M.K. on 7/Jan./'98 C>:Rev. by T.J. on 28/Jan./'98 D>:Rev. by T.J. on 9/Feb./'98 E>:Rev. by T.J. on 13/Feb./'98 F>:Rev. by T.J. on 23/Mar./'98 G>:Rev. by T.Y. on 21/Jun./'99

Y.Nakamura

K.Matsunaga

Note1: Case surface temperature should be less than 100°C under the operation.

C> Note2: (*) will not be measured in regular production. This value always meets the specification.

2. Mechanical (Figure, Circuit, Port)

A>D>E>G>

1 : OUT 6 : IN 2,3,4,5 : GROUND

Written by

Date

Checked by

TOLERANCES UNLESS OTHERWISE SPECIFIED : +/-0.2 **DIMENSIONS : mm**

Preliminary Specification of	SOLATOR		Written by	M.Kawashima
Preliminary SPEC No.	:NCE64-P0768D	_	Checked by	<u>K.Matsunaga</u>
Part Number	:CE053R836DCA	_	Date	24/ Dec./ '98
1. Electrical			A>: Rev. b	y T.Y. on 20/Jan./'99
Frequency Range	824~8	49 MHz	B>: Rev. b	y M.K on 22/Feb/'99
Operating Temp.	-35~+85°C	+20~+30°C	C>: Rev. b	y T.Y. on 16/Mar./'99
Insertion Loss	0.65 dB max.	0.55 dB max.	D>: Rev. b	y 1.Y. on 10/May./99
Isolation	13 dB min.	15 dB min.		
VSWR				
Forward	1.5 max.	max.		
Reverse	1.5 max.	max.		
Rating Power	2.5 W	/ max.		
Reflection Power	0.6 W max.			
Impedance	50 Ω			
Attenuation	(*) 1648~169	8MHz 15 dB min.		
Absolute value	B> (*) 2472~254	7MHz 20 dB min.		

Note1 : Case surface temperature should be less than 100°C under the operation.

2 : The specifications and dimensions in this spec. may be subject to change without notice.

3: (*) will not be measured in regular production. This value always meets the specification.

2: Mechanical(Figure, Circuit, Port) A>C>D>

1 : IN 6 : OUT 2,3,4,5 : GROUND

TOLERANCES UNLESS OTHERWISE SPECIFIED : +/-0.2 DIMENSIONS : mm

Preliminary Specification of	GIGAFIL®	Written by	T.Yamamoto
Preliminary SPEC No.	: NBF61-P4250	Checked by	Y.Ohtani
Part Number	: DFYK1R88C1R96HHJB	Date	_8/Teb./2000

1. Electrical		
	TX→ANT	ANT-→RX
Center Frequency	FT : 1880.0 MHz	FR : 1960.0 MHz
Poles	BPF3+BEF1	BPF5
Band Width (BW)	FT ± 30.0 MHz	FR ± 30.0 MHz
IL at BW		
0~+35°C	3.0 dB max.	4.0 dB max
-30~+85°C	3.4 dB max.	4.1 dB max.
Ripple at BW	2.6 dB max.	3.0 dB max.
VSWR at BW	1.8 max.	2.0 max.
Group Delay at BW	nsec max.	nsec max.
Input Power	1.0 W max.	1.0 W max.
Attenuation	1930~1990MHz 40 dB min.	(0~+35°C)1850~1910MHz 50dB min.
Absolute value		(-30~+85°C)1850~1910MHz 48dB min

2. Mechanical (Figure, Circuit, Port)

The ANT, TX and RX pad size may be changed without notice.

Dealiminant Socification	Written by	T.Yamamoto
Preliminary Specification	Checked by	Y Ohtani
Preliminary SPEC NO.	Date	8/Feb /2000
Part Number	Dale	

3. Recommended Land Pattern

Note : Impedance of signal lines should be 50 ohms including land pattern. The standard condition is applying the glass epoxy board (t = 1.0 mm, dielectric constant = 4.8, copper plating on both surfaces) and the land patterns are connected to 50 ohms micro-strip lines on back side surface through the via hole.

The Electrode and solder resist pattern may be changed without notice.

Preliminary Specification or	GIGAFIL [®]	Written by	T.Yamamoto
Preliminary SPEC_No.	: NBF61-P4250	Checked by	Y.Ohtani
Part Number	: DFYK1R88C1R96HHJB	Date	8/Teb./2000

1. Electrical

	TX→ANT	ANT-→RX
Center Frequency	FT: 1880.0 MHz	FR : 1960.0 MHz
Poles	BPF3+BEF1	BPF5
Band Width (BW)	FT ± 30.0 MHz	FR ± 30.0 MHz
IL at BW		
0~+35°C	3.0 dB max.	4.0 dB max
-30~+85°C	3.4 dB max.	4.1 dB max.
Ripple at BW	2.6 dB max.	3.0 dB max.
VSWR at BW	1.8 max.	2.0 max.
Group Delay at BW	nsec max.	nsec max.
Input Power	1.0 W max.	1.0 W max.
Attenuation	1930~1990MHz 40 dB min.	(0~+35°C)1850~1910MHz 50dB min.
Absolute value		(-30~+85°C)1850~1910MHz 48dB min

2. Mechanical (Figure, Circuit, Port)

The ANT, TX and RX pad size may be changed without notice.

A>:

Preliminary Specification	of GIGAFIL [®]	Written by	T.Yamamoto
Preliminary SPEC No.	: NBF61-P4250	Checked by	Y.Ohtani
Part Number	DFYK1R88C1R96HHJB	Date	8/Feb./2000

3. Recommended Land Pattern

Note : Impedance of signal lines should be 50 ohms including land pattern. The standard condition is applying the glass epoxy board (t = 1.0 mm, dielectric constant = 4.8, copper plating on both surfaces) and the land patterns are connected to 50 ohms micro-strip lines on back side surface through the via hole.

The Electrode and solder resist pattern may be changed without notice.

TOSHIBA

HN7G03FU

TOSHIBA MULTI CHIP DISCRET DEVICE

HN7G03FU

POWER MANAGEMENT SWITCH APPLICATION DRIVER CIRCUIT APPLICATION INTERFACE CIRCUIT APPLICATION

	Q1(transistor)	:2SA1955 Equivalent
--	----------------	---------------------

Q2(S-MOS) :SSM3K04FS Equivalent

Q1 (Transistor) MAXIMUM RATINGS (Ta=25°C)

CHARACTERISTIC	SYMBOL	RATING	UNIT
Collector-Base Voltage	V _{CBO}	-15	V
Collector-Emitter Voltage	V _{CEO}	-12	V
Emitter-Base Voltage	V _{EBO}	-5	V
Collector Current	lc	-400	mA
Base Current	IВ	-50	mA

Q2 (S-MOS) MAXIMUM RATINGS (Ta=25°C)

CHARACTERISTIC	SYMBOL	RATING	UNIT
Drain-Aource Voltage	V _{DS}	20	V
Gate-Source Voltage	V _{GSS}	10	V
Drain Current	۱ _D	100	mA

Q1,Q2 COMMON RATINGS (Ta=25°C)

CHARACTERISTIC	SYMBOL	RATING	UNIT
Power Dissipation	Pc ^(%)	200	mW
Junction Temperture	Tj	125	°C
Storage Temperature Range	T _{stg}	-55~125	°C

(※)Total Rating

US6 EIAJ

TOSHIBA

Equivarent Circuit(TOP VIEW)

TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to serve standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most revent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.
 The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or

otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

The information contained herein is subject to change without notice.

Unite in mm

Q1 (Transistor) ELECTRICAL CHARACTERISTICS

CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Collector Cut-off Current	I _{CBO}	V _{CB} =-15V, I _E =0	_	-	-0.1	μA
Emitter Cut-off Current	I _{EBO}	V _{EB} =-5V, I _C =0	_		-0.1	μA
DC Current Gain	h _{FE} *	V _{CE} =-2V, I _C =-10mA	300		1000	
Collector-Emitter	$V_{CE(sat)(1)}$	I _C =-10mA, I _B =-0.5mA	_	-15	-30	
Saturation Voltage	V _{CE(sat) (2)}	I _C =-200mA, I _B =-10mA	-	-110	-250	mv
Base-Emitter Saturation Voltage	V _{BE(sat)}	I _C =-200mA, I _B =-10mA	_	-0.87	-1.2	V

※ : hFE Classification A: 300~600, B: 500~1000

Q1 (S-MOS) ELECTRICAL CHARACTERISTICS

CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Gate Leakage Curreent	I _{GSS}	V _{GS} =10V, V _{DS} =0	_	-	15	μA
Drain-Source Breakdown Voltage	V _{(BR)DSS}	I _D =100 µ A, V _{GS} =0	20	—	-	V
Drain Current	IDSS	V _{DS} =20V, V _{GS} =0	-	_	1	μA
Gate Threshold Voltage	V _{th}	V _{DS} =3V, I _D =0.1mA	0.7	—	1.3	V
Forward Transfer Admittance	Y _{fs}	V _{DS} =3V, I _D =10mA	25	50	_	mS
Drain-Souce ON Resistance	R _{DS(ON)}	I _D =10mA, V _{GS} =2.5V	-	4	12	Ω

HSC88

Silicon Schottky Barrier Diode for Various Detector, Mixer

HITACHI

ADE-208-826 (Z) Rev 0 Nov. 1999

Features

- Low capacitance. (C = 0.8 pF max)
- Low forward voltage.
- <u>Ultra small Flat Package (UFP) is suitable for high density surface mounting and high speed assembly.</u>

Ordering Information

Type No.	Laser Mark	Package Code
HSC88	S3	UFP

Outline

HSC88

Absolute Maximum Ratings (Ta = 25° C)

Item	Symbol	Value	Unit
Reverse voltage	V _R	10	V
Average rectified current	Ι _ο	15	mA
Junction temperature	Tj	125	°C
Storage temperature	Tstg	-55 to +125	٥C

Electrical Characteristics (Ta = 25° C)

Item	Symbol	Min	Тур	Мах	Unit	Test Condition
Forward voltage	$V_{\rm F1}$	350	_	420	mV	I _F = 1 mA
	V_{F2}	500	—	580		I _F = 10 mA
Reverse current	I _{R1}	—	—	0.2	μΑ	$V_R = 2V$
	I _{R2}	_	—	10		V _R = 10V
Capacitance	С	—	—	0.8	pF	$V_{R} = 0V, f = 1 MHz$
ESD-Capability ^{*1}		30	_	_	V	C = 200pF , Both forward and reverse direction 1 pulse.

Notes 1. Failure criterion ; $I_{R} \ge 400$ nA at V_{R} =2 V

Main Characteristic

HSC88

Package Dimensions

Cautions

- 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
- 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
- 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
- 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
- 5. This product is not designed to be radiation resistant.

Fax: <44> (1628) 778322

- 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
- 7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.

Semiconductor & Integrated Circuits. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109 URL NorthAmerica http:semiconductor.hitachi.com/ http://www.hitachi-eu.com/hel/ecg Europe http://www.has.hitachi.com.sg/grp3/sicd/index.htm http://www.hitachi.com.tw/E/Product/SICD_Frame.htm Asia (Singapore) Asia (Taiwan) Asia (HongKong) http://www.hitachi.com.hk/eng/bo/grp3/index.htm http://www.hitachi.co.jp/Sicd/indx.htm Japan For further information write to: Hitachi Semiconductor Hitachi Europe GmbH Hitachi Asia Pte. Ltd. (America) Inc. Electronic components Group 16 Collyer Quay #20-00 179 East Tasman Drive, Dornacher Stra§e 3 Hitachi Tower San Jose,CA 95134 D-85622 Feldkirchen, Munich Singapore 049318 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223 Germany Tel: 535-2100 Tel: <49> (89) 9 9180-0 Fax: 535-1533 Fax: <49> (89) 9 29 30 00 Hitachi Asia Ltd. Hitachi Europe Ltd. Taipei Branch Office Electronic Components Group. Whitebrook Park 3F, Hung Kuo Building. No.167, Tun-Hwa North Road, Taipei (105) Lower Cookham Road Tel: <886> (2) 2718-3666 Maidenhead Fax: <886> (2) 2718-8180 Berkshire SL6 8YA, United Kingdom Tel: <44> (1628) 585000

Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Tsim Sha Tsui, Kowloon, Hong Kong Tel: <852> (2) 735 9218 Fax: <852> (2) 730 0281 Telex: 40815 HITEC HX

Copyright ' Hitachi, Ltd., 1999. All rights reserved. Printed in Japan.

DIRECTIONAL COUPLER (Preliminary)

1. Characteristics (at -40 to +85°C)

Part Number	LDC10B150J0836
Frequency Range (BW)	836.50 ± 12.50 MHz
Coupling	15.90 ± 1.00 dB
	(Termination : 50 Ω)
Insertion Loss in BW	0.30 dB max. at 25 °C
	0.33 dB max. at -40 to +85 °C
Isolation	24.0 dB min.
V.S.W.R. in BW	1.40 max.
Characteristics Impedance	50 Ω (Nominal)
Power Capacity	3.0 W max. (50 Ω Load)

2. Construction, Dimensions & Marking

	(in mm)
Mark	Meaning
Α	Directional Input Mark

Mark	Dimension	Mark	Dimension
L	1.6±0.1	b	0.20+0.10/-0.15
W	0.8±0.1	C	0.15±0.1
Т	0.6±0.1	е	0.3±0.1
а	0.2±0.1	р	0.50±0.05

TERMINAL CONFIGURATION

Terminal No.	Terminal Name	Terminal No.	Terminal Name
(1)	IN	(4)	Terminate
(2)	GND	(5)	GND
(3)	Coupled OUT	(6)	Main OUT

3. Land Pattern

* Line width to be designed to match 50Ω characteristic impedance, depending on PCB material and thickness.

July 2000

National Semiconductor

LM20 2.4V, 10µA, SC70, micro SMD Temperature Sensor

General Description

The LM20 is a precision analog output CMOS integrated-circuit temperature sensor that operates over a -55°C to +130°C temperature range. The power supply operating range is +2.4 V to +5.5 V. The transfer function of LM20 is predominately linear, yet has a slight predictable parabolic curvature. The accuracy of the LM20 when specified to a parabolic transfer function is ±1.5°C at an ambient temperature of +30°C. The temperature error increases linearly and reaches a maximum of ±2.5°C at the temperature range extremes. The temperature range is affected by the power supply voltage. At a power supply voltage of 2.7 V to 5.5 V the temperature range extremes are +130°C and -55°C. Decreasing the power supply voltage to 2.4 V changes the negative extreme to -30°C, while the positive remains at +130°C.

The LM20's guiescent current is less than 10 µA. Therefore, self-heating is less than 0.02°C in still air. Shutdown capability for the LM20 is intrinsic because its inherent low power consumption allows it to be powered directly from the output of many logic gates or does not necessitate shutdown at all.

Applications

- Cellular Phones
- Computers
- Power Supply Modules
- Battery Management

Typical Application

- Printers HVAC
- Disk Drives
- Appliances

Features

- Rated for full –55°C to +130°C range
- Available in an SC70 and a micro SMD package
- Predictable curvature error
- Suitable for remote applications

Key Specifications

Accuracy at +30°C	±1.5 to ±4 °C (max)
□ Accuracy at +130°C & -55°C	±2.5 to ±5 °C (max)
Power Supply Voltage	
Range	+2.4V to +5.5V
Current Drain	10 µA (max)
Nonlinearity	±0.4 % (typ)
Output Impedance	160 Ω (max)
 □ Load Regulation 0 µA < I_L< +16 µA 	-2.5 mV (max)

LM20 2.4V, 10µA, SC70, micro SMD Temperature Sensor

Typical Application (Continued)

Temperature (T)	Typical V _o
+130°C	+303 mV
+100°C	+675 mV
+80°C	+919 mV
+30°C	+1515 mV

Connection Diagrams

Note:

GND (pin 2) may be grounded or left floating. For optimum thermal conductivity to the pc board ground plane pin 2 should be grounded.
 NC (pin 1) should be left floating or grounded. Other signal traces should not be connected to this pin.

Top View See NS Package Number MAA05A

Temperature (T)	Typical V _o
+25°C	+1574 mV
0°C	+1863.9 mV
-30°C	+2205 mV
-40°C	+2318 mV
–55°C	+2485 mV

Note:

- Pin numbers are referenced to the package marking text orientation.
- Reference JEDEC Registration MO-211, variation BA

 The actual physical placement of package marking will vary slightly from part to part. The package marking will designate the date code and will vary considerably. Package marking does not correlate to device type in any way.

Top View See NS Package Number BPA04DDC

Ordering Information

Order	Temperature	Temperature	NS Package	Device	
Number	Accuracy	Range	Number	Marking	Transport Media
LM20BIM7	±2.5°C	–55°C to +130°C	MAA05A	T2B	1000 Units on Tape and Reel
LM20BIM7X	±2.5°C	–55°C to +130°C	MAA05A	T2B	3000 Units on Tape and Reel
LM20CIM7	±5°C	–55°C to +130°C	MAA05A	T2C	1000 Units on Tape and Reel
LM20CIM7X	±5°C	–55°C to +130°C	MAA05A	T2C	3000 Units on Tape and Reel
LM20SIBP	±3.5°C	–40°C to +125°C	BPA04DDC	Date	250 Units on Tape and Reel
				Code	
LM20SIBPX	±3.5°C	–40°C to +125°C	BPA04DDC	Date	3000 Units on Tape and Reel
				Code	

Absolute Maximum Ratings (Note 1)

Supply Voltage	+6.5V to -0.2V
Output Voltage	$(V^+ + 0.6 V)$ to
	-0.6 V
Output Current	10 mA
Input Current at any pin (Note 2)	5 mA
Storage Temperature	–65°C to +150°C
Maximum Junction Temperature (T _{JMAX})	+150°C
ESD Susceptibility (Note 3) :	
Human Body Model	2500 V
Machine Model	250 V

+215°C
+220°C

Operating Ratings(Note 1)

Specified Temperature Range:	$\mathbf{T}_{\mathbf{MIN}} \leq \mathbf{T}_{\mathbf{A}} \leq \mathbf{T}_{\mathbf{MAX}}$
$2.4 \text{ V} \le \text{V}^+ \le 2.7 \text{ V}$	$-30^{\circ}C \le T_A \le +130^{\circ}C$
LM20B, LM20C with 2.7 V \leq V ⁺ \leq 5.5 V	$-55^{\circ}C \le T_A \le +130^{\circ}C$
LM20S with 2.4 V \leq V ⁺ \leq 5.5 V	$-30^{\circ}C \le T_A \le +125^{\circ}C$
LM20S with 2.7 V \leq V ⁺ \leq 5.5 V	$-40^{\circ}C \le T_A \le +125^{\circ}C$
Supply Voltage Range (V ⁺)	+2.4 V to +5.5 V
Thermal Resistance, θ _{JA} (Note 5) SC-70 micro SMD	415°C/W 340°C/W

Electrical Characteristics

Unless otherwise noted, these specifications apply for $V^+ = +2.7 V_{DC}$. Boldface limits apply for $T_A = T_J = T_{MIN}$ to T_{MAX} ; all other limits $T_A = T_J = 25^{\circ}C$; Unless otherwise noted.

Parameter	Conditions	Typical	LM20B	LM20C	LM20S	Units
		(Note 6)	Limits	Limits	Limits	(Limit)
			(Note 7)	(Note 7)	(Note 7)	
Temperature to Voltage Error	$T_{A} = +25^{\circ}C \text{ to } +30^{\circ}C$		±1.5	±4.0	±2.5	°C (max)
$V_{O} = (-3.88 \times 10^{-6} \times T^{2})$	T _A = +130°C		±2.5	±5.0		°C (max)
+ $(-1.15 \times 10^{-2} \times T)$ + 1.8639V	T _A = +125°C		±2.5	±5.0	±3.5	°C (max)
(Note 8)	T _A = +100°C		±2.2	±4.7	±3.2	°C (max)
	T _A = +85°C		±2.1	±4.6	±3.1	°C (max)
	$T_A = +80^{\circ}C$		±2.0	±4.5	±3.0	°C (max)
	$T_A = 0^{\circ}C$		±1.9	±4.4	±2.9	°C (max)
	$T_A = -30^{\circ}C$		±2.2	±4.7	±3.3	°C (min)
	$T_A = -40^{\circ}C$		±2.3	±4.8	±3.5	°C (max)
	T _A = −55°C		±2.5	±5.0		°C (max)
Output Voltage at 0°C		+1.8639				V
Variance from Curve		±1.0				°C
Non-Linearity (Note 9)	$-20^{\circ}C \le T_A \le +80^{\circ}C$	±0.4				%
Sensor Gain (Temperature Sensitivity or Average Slope) to equation: V_O =-11.77 mV/°CxT+1.860V	$-30^{\circ}C \le T_A \le +100^{\circ}C$	-11.77	-11.4 -12.2	-11.0 -12.6	-11.0 -12.6	mV/°C (min) mV/°C (max)
Output Impedance	0 μA ≤ I _L ≤ +16 μA(Notes 11, 12)		160	160	160	Ω (max)
Load Regulation(Note 10)	$0 \ \mu A \le I_{L} \le +16 \ \mu A$ (Notes 11, 12)		-2.5	-2.5	-2.5	mV (max)
Line Regulation	+2. 4 V ≤ V ⁺ ≤ +5.0V		+3.3	+3.7	+3.7	mV/V (max)
	+5.0 V ≤ V ⁺ ≤ +5.5 V		+8.8	+8.9	+8.9	mV (max)
Quiescent Current	+2. 4 V ≤ V ⁺ ≤ +5.5V	4.5	7	7	7	μA (max)
	+2. 4 V ≤ V ⁺ ≤ +5.0V	4.5	10	10	10	μA (max)
Change of Quiescent Current	+2. 4 V ≤ V ⁺ ≤ +5.5V	+0.7				μA
Temperature Coefficient of		-11				nA/°C
Quiescent Current						
Shutdown Current	V ⁺ ≤ +0.8 V	0.02				μA

LM20

Electrical Characteristics (Continued)

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

Note 2: When the input voltage (V₁) at any pin exceeds power supplies (V₁ < GND or V₁ > V⁺), the current at that pin should be limited to 5 mA.

Note 3: The human body model is a 100 pF capacitor discharged through a 1.5 k Ω resistor into each pin. The machine model is a 200 pF capacitor discharged directly into each pin.

Note 4: See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" or the section titled "Surface Mount" found in any post 1986 National Semiconductor Linear Data Book for other methods of soldering surface mount devices.

Note 5: The junction to ambient thermal resistance (θ_{JA}) is specified without a heat sink in still air using the printed circuit board layout shown in *Figure *NO TARGET FOR fig NS1382**.

Note 6: Typicals are at T_J = T_A = 25 $^\circ C$ and represent most likely parametric norm.

Note 7: Limits are guaranteed to National's AOQL (Average Outgoing Quality Level).

Note 8: Accuracy is defined as the error between the measured and calculated output voltage at the specified conditions of voltage, current, and temperature (expressed in*C).

Note 9: Non-Linearity is defined as the deviation of the calculated output-voltage-versus-temperature curve from the best-fit straight line, over the temperature range specified.

Note 10: Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output due to heating effects can be computed by multiplying the internal dissipation by the thermal resistance.

Note 11: Negative currents are flowing into the LM20. Positive currents are flowing out of the LM20. Using this convention the LM20 can at most sink -1 μ A and source +16 μ A.

Note 12: Load regulation or output impedance specifications apply over the supply voltage range of +2.4V to +5.5V.

Note 13: Line regulation is calculated by subtracting the output voltage at the highest supply input voltage from the output voltage at the lowest supply input voltage.

Typical Performance Characteristics

Temperature Error vs Temperature

PCB Layouts Used for Thermal Measurements

a) Layout used for no heat sink measurements. b) La

b) Layout used for measurements with small heat hink.

FIGURE 1. PCB Lyouts used for thermal measurements.

1.0 LM20 Transfer Function

The LM20's transfer function can be described in different ways with varying levels of precision. A simple linear transfer function, with good accuracy near 25° C, is

Over the full operating temperature range of -55° C to +130°C, best accuracy can be obtained by using the parabolic transfer function

 $V_{O} = (-3.88 \times 10^{-6} \times T^{2}) + (-1.15 \times 10^{-2} \times T) + 1.8639$ solving for T:

T = -1481.96 +
$$\sqrt{2.1962 \times 10^6 + \frac{(1.8639 - V_0)}{3.88 \times 10^{-6}}}$$

A linear transfer function can be used over a limited temperature range by calculating a slope and offset that give best results over that range. A linear transfer function can be calculated from the parabolic transfer function of the LM20. The slope of the linear transfer function can be calculated using the following equation:

$$m = -7.76 \times 10^{-6} \times T - 0.0115$$

where T is the middle of the temperature range of interest and m is in V/°C. For example for the temperature range of T_{min} =-30 to T_{max} =+100°C:

T=35°C

The offset of the linear transfer function can be calculated using the following equation:

$$b = (V_{OP}(T_{max}) + V_{OP}(T) + m x (T_{max}+T))/2,$$

where:

and

- V_{OP}(T_{max}) is the calculated output voltage at T_{max} using the parabolic transfer function for V_O
- V_{OP}(T) is the calculated output voltage at T using the parabolic transfer function for V_O.

Using this procedure the best fit linear transfer function for many popular temperature ranges was calculated in *Figure 2*. As shown in *Figure 2* the error that is introduced by the linear transfer function increases with wider temperature ranges.

Temperature Range		Linear Equation	Maximum Deviation of Linear		
T _{min} (°C)	T _{max} (°C)	V _O =	Equation from Parabolic Equation (°C)		
-55	+130	–11.79 mV/°C x T + 1.8528 V	±1.41		
-40	+110	–11.77 mV/°C x T + 1.8577 V	±0.93		
-30	+100	–11.77 mV/°C x T + 1.8605 V	±0.70		
-40	+85	–11.67 mV/°C x T + 1.8583 V	±0.65		
-10	+65	–11.71 mV/°C x T + 1.8641 V	±0.23		
+35	+45	–11.81 mV/°C x T + 1.8701 V	±0.004		
+20	+30	–11.69 mV/°C x T + 1.8663 V	±0.004		

FIGURE 2. First order equations optimized for different temperature ranges.

2.0 Mounting

The LM20 can be applied easily in the same way as other integrated-circuit temperature sensors. It can be glued or cemented to a surface. The temperature that the LM20 is sensing will be within about $+0.02^{\circ}$ C of the surface temperature to which the LM20's leads are attached to.

This presumes that the ambient air temperature is almost the same as the surface temperature; if the air temperature were much higher or lower than the surface temperature, the actual temperature measured would be at an intermediate temperature between the surface temperature and the air temperature.

To ensure good thermal conductivity the backside of the LM20 die is directly attached to the pin 2 GND pin. The tempertures of the lands and traces to the other leads of the LM20 will also affect the temperature that is being sensed.

Alternatively, the LM20 can be mounted inside a sealed-end metal tube, and can then be dipped into a bath or screwed into a threaded hole in a tank. As with any IC, the LM20 and accompanying wiring and circuits must be kept insulated and dry, to avoid leakage and corrosion. This is especially true if the circuit may operate at cold temperatures where condensation can occur. Printed-circuit coatings and varnishes such as Humiseal and epoxy paints or dips are often used to ensure that moisture cannot corrode the LM20 or its connections.

The thermal resistance junction to ambient (θ_{JA}) is the parameter used to calculate the rise of a device junction temperature due to its power dissipation. For the LM20 the equation used to calculate the rise in the die temperature is as follows:

$$T_{J} = T_{A} + \theta_{JA} \left[(V^{+} I_{Q}) + (V^{+} - V_{O}) I_{L} \right]$$

where I_Q is the quiescent current and I_L is the load current on the output. Since the LM20's junction temperature is the actual temperature being measured care should be taken to minimize the load current that the LM20 is required to drive. The tables shown in *Figure 3* summarize the rise in die temperature of the LM20 without any loading, and the thermal resistance for different conditions. LM20

2.0 Mounting (Continued)

	SC	70-5	SC70-5		
	no he	at sink	small h	eat sink	
	θ _{JA}	θ_{JA} $T_J - T_A$		$T_J - T_A$	
	(°C/W)	(°C)	(°C/W)	(°C)	
Still air	412	0.2	350	0.19	
Moving	312	0.17	266	0.15	

See Figure 1 for PCB layout samples.

	micro	o SMD	micro SMD		
	no he	at sink	small heat fin		
	θ _{JA}	T _J – T _A	θ _{JA}	T _J – T _A	
	(°C/W)	(°C)	(°C/W)	(°C)	
Still air	340	0.18	TBD	TBD	
Moving air	TBD	TBD	TBD	TBD	

FIGURE 3. Temperature Rise of LM20 Due to Self-Heating and Thermal Resistance (θ_{JA})

3.0 Capacitive Loads

The LM20 handles capacitive loading well. Without any precautions, the LM20 can drive any capacitive load less than 300 pF as shown in *Figure 4*. Over the specified temperature range the LM20 has a maximum output impedance of 160 Ω . In an extremely noisy environment it may be necessary to add some filtering to minimize noise pickup. It is recommended that 0.1 µF be added from V⁺ to GND to bypass the power supply voltage, as shown in *Figure 5*. In a noisy environment it may even be necessary to add a capacitor from the output to ground with a series resistor as shown in *Figure 5*. A 1 µF output capacitor with the 160 Ω maximum output impedance and a 200 Ω series resistor will form a 442 Hz lowpass filter. Since the thermal time constant of the LM20 is much slower, the overall response time of the LM20 will not be significantly affected.

FIGURE 4. LM20 No Decoupling Required for Capacitive Loads Less than 300 pF.

FIGURE 5. LM20 with Filter for Noisy Environment and Capacitive Loading greater than 300 pF. Either placement of resistor as shown above is just as effective.

4.0 LM20 micro SMD Light Sensitivity

Exposing the LM20 micro SMD package to bright sunlight may cause the output reading of the LM20 to drop by 1.5V. In a normal office environment of fluorescent lighting the output voltage is minimally affected (less than a millivolt drop). In either case it is recommended that the LM20 micro SMD be

placed inside an enclosure of some type that minimizes its light exposure. Most chassis provide more than ample protection. The LM20 does not sustain permanent damage from light exposure. Removing the light source will cause LM20's output voltage to recover to the proper value.

Most CMOS ADCs found in ASICs have a sampled data comparator input structure that is notorious for causing grief to analog output devices such as the LM20 and many op amps. The cause of this grief is the requirement of instantaneous charge of the input sampling capacitor in the ADC. This requirement is easily accommodated by the addition of a capacitor. Since not all ADCs have identical input stages, the charge requirements will vary necessitating a different value of compensating capacitor. This ADC is shown as an example only. If a digital output temperature is required please refer to devices such as the LM74.

FIGURE 8. Suggested Connection to a Sampling Analog to Digital Converter Input Stage

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

CDMA/TDMA/PACS 1900MHZ 3V POWER AMPLIFIER

RF2153

Typical Applications

- PACS Handsets and Base Stations
- 3V 1850-1910MHz CDMA PCS Handsets
- 3V 1750-1780MHz CDMA PCS Handsets
- 3V TDMA PCS Handsets
- Spread Spectrum Systems
- Commercial and Consumer Systems

Product Description

The RF2153 is a high-power, high-efficiency linear amplifier IC targeting 3V handheld systems. The device is manufactured on an advanced Gallium Arsenide Heterojunction Bipolar Transistor (HBT) process, and has been designed for use as the final RF amplifier in 3V CDMA and TDMA hand-held digital equipment, spread spectrum systems, and other applications in the 1750MHz to 1910 MHz band. The device is packaged in a compact 4mmx4mm (LCC). The device's frequency response can be optimized for linear performance in the 1750MHz to 1910 MHz band.

Optimum Technology Matching® Applied

🔲 Si BJT	🗹 GaAs	нвт [] GaAs ME	SFET
🗌 Si Bi-CMOS	🗌 SiGe	нвт [Si CMOS	5
	VCC2 VCC2		2F0	
		15 14	13	
GND2	2	•	12 RF OUT	T
VCC1	3-+1H		11 RF OUT	r
RFIN			10 RF 001	r
	5 6	7 8	9	
	GND1 VPD1	V MODE VPD2	BIAS GND	

Functional Block Diagram

Package Style: MP16K01A

Features

- Single 3V Supply
- 29dBm Linear Output Power
- 30dB Linear Gain
- 33% Linear Efficiency CDMA
- 40% Linear Efficiency TDMA
- On-board Power Down Mode

2

Rev A12 991202

RF2153

Absolute Maximum Ratings

Parameter	Rating	Unit
Supply Voltage (RF off)	+8.0	V _{DC}
Supply Voltage (P _{OUT} ≤31 dBm)	+4.5	V _{DC}
Mode Voltage (V _{MODE})	+3.5	V _{DC}
Control Voltage (VPD)	+3.5	V _{DC}
Input RF Power	+10	dBm
Operating Case Temperature	-30 to +85	°C
Storage Temperature	-30 to +150	℃

RF Micro Devices believes the furnished information is correct and accurate at the time of this printing. However, RF Micro Devices reserves the right to make changes to its products without notice. RF Micro Devices does not assume responsibility for the use of the described product(s).

Deventer	Specification			Unit	Condition	
Parameter	Min.	Тур.	Max.	0111		
Overali - CDMA					$T=25^{\circ}C$, $V_{CC}=3.4V$ unless otherwise specified	
Usable Frequency Range	1750		1910	MHz		
Typical Frequency Range		1750-1780 1850-1910		MHz MHz	Output Matching Network Tune Output Matching Network Tune	
Small Signal Gain	30	32	34	dB	V _{MODE} =Low 0 V to 0.5 V	
Linear Gain	28	30		dB	V _{MODE} =High 2.5V to 3V P _{OUT} =29dBm, V _{CC} =3.4V, V _{REG} =2.8V	
Second Harmonic (including second harmonic trap)		-35		dBc		
Third Harmonic		-40		dBc		
Fourth Harmonic		-45		dBc		
Minimum Linear Output Power (CDMA or TDMA Modulation)	29			dBm		
Idle Current		100		mA	V _{MODE} =>2.5V	
CDMA Linear Efficiency	30	33			$P_{OUT}=29$ dBm, $V_{CC}=3.4$ V, $V_{REG}=2.8$ V	
CDMA Adjacent Channel Power Rejection @ 1.25MHz		-46	-44	dBc	P _{OUT} =29dBm, V _{CC} =3.4V, V _{REG} =2.8V	
Minimum Linear Output Power (CDMA Modulation)	28	+29		dBm	V _{CC} =3.0V, V _{REG} =2.8V	
Input VSWR		< 2:1				
Output Load VSWR	5:1					
Overall - TDMA					fied	
Idle Current		250	500	mA	V _{MODE} =0V to 0.5V	
TDMA Linear Efficiency	30	40		%	P _{OUT} =30dBm, V _{CC} =3.4V, V _{REG} =2.8V	
TDMA ACP @ 30kHz		-29	-28	dBc	P _{OUT} =30dBm	
TDMA ALT @ 60kHz		-49	-48	dBc	P _{OUT} =30dBm	
Power Supply						
Power Supply Voltage	3.0	3.4	4.5	l v		
VPD Current		10	15	mA	Total pins 7 and 8	
Turn On/Off time	1	1	100	ns		
Total Current (Power down)			10	μΑ	$V_{PD} = low$	
V _{PD} "Low" Voltage		0	0.2	V V		
V _{PD} "High" Voltage	2.7	2.8	2.9	V		
MODE "High" Voltage	2.5	2.8		V		
MODE "Low" Voltage		0	0.5	V		
Stability		3:1			Inband	
		20:1	1		Outband	
Spurious		<-60		dBc	0.001411#4	
Noise Power	1	-136	<u> </u>	dB/Hz		

POWER AMPLIFIERS

Rev A12 991202

1.SCOPE

This Product specification is applied to SAFC1867.5T1897.5ML1D0T-TC00, the 1800MHz range SAW Filter used for communication equipment.

Please contact us when using this product for any other applications than described in the above.

2. CUSTOMER NUMBER

Customor's Part No	Customer's Drawing No.
Customer STart No.	

3. MURATA PART NUMBER

SAFC1867.5T1897.5ML1D0T	:	BULK PACKING
SAFC1867.5T1897.5ML1D0T-TC00	:	TAPING PACKING (10000pcs)

4. DIMENSIONS

Murata Manufacturing Co., Ltd.

5. № 5.1	IAXIMUM RATINGS Withstanding Voltage for short Term between each Terminal	Maximum Rating 10V (Insulation Resistance 10MΩ min., 25±2°C)
5.2	D. C. Voltage between each Terminal	Maximum Rating $3V (25\pm2^{\circ}C)$
5.3	Input Signal Level	10mW (+10dBm), 8000 hours
5.4	Operating Temperature Range	-40°C + 85°C
5.5	Storage Temperature Range	

6. ELECTRICAL CHARACTERISTICS

< Input(8), Output(2),	Ground(others):	Measurement	Circuit ((a-1) >	•
------------------------	---------	----------	-------------	-----------	---------	---

	Item	Specifications	Typical (Reference value at 25±2°C)
6-1	Nominal Center Frequency (fc)	1867.5 MHz	-
6-2	Insertion Loss 1) within 1850 1885 MHz (Pass Bandwidth) 2) within 1589 1625 MHz 3) within 1719 1755 MHz 4) within 1020 1965 MHz	3.2 dB max. 25 dB min. 30 dB min. 32 dB min.	2.0 dB 28 dB 37 dB 37 dB
	4) within 1930 1905 MHz 5) within 2020 2095 MHz 6) within 2190 2305 MHz 7) within 3700 3770 MHz	25 dB min. 28 dB min. 20 dB min.	30 dB 32 dB 27 dB
6-3	Ripple Deviation (within 1850 1885 MHz)	2.0 dB max.	0.7 dB
6-4	VSWR (within 1850 1885 MHz)	2.0 max.	1.5
6-5	Input / Output Impedance (nominal)	50Ω	

< Input(6), Output(4), Ground(others): Measurement Circuit (a-2) >

	Item	Specifications	Typical (Reference value at 25±2°C)
6-1	Nominal Center Frequency (fc)	1897.5 MHz	-
6-2	Insertion Loss 1) within 1885 1910 MHz	3.2 dB max.	2.0 dB
	(Pass Bandwidth) 2) within 1624 1650 MHz 3) within 1754 1780 MHz 4) within 1965 1990 MHz 5) within 2055 2120 MHz 6) within 2225 2330 MHz 7) within 3770 3820 MHz	25 dB min. 28 dB min. 32 dB min. 25 dB min. 30 dB min. 18 dB min.	30 dB 32 dB 40 dB 32 dB 35 dB 22 dB
6-3	Ripple Deviation (within 1885 1910 MHz)	2.0 dB max.	0.7 dB
6-4	V.S.W.R. (within 1885 1910 MHz)	2.0 max.	0.7
6-5	Input / Output Impedance (nominal)	50Ω	

TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

TC7SU04F, TC7SU04FU

INVERTER

The TC7SU04 is a high speed C²MOS INVERTER fabricated with silicon gate C²MOS technology. It achieves high speed operation similar to equivalent LSTTL while maintaining the C²MOS low power

dissipation.

The internal circuit is composed of single stages inverter, it can be applied for crystal oscillation.

The input is equipped with protection circuits against static discharge or transient excess voltage.

Output currents are 1/2 compared to TC74HC series models.

FEATURES

- t_{pd} = 7ns (Typ.) at High Speed $V_{CC} = 5V$
- Low Power Dissipation $I_{CC} = 1\mu A$ (Max.) at Ta = 25°C
 - High Noise Immunity V_{NIH} = V_{NIL}
 - = 28% V_{CC} (Min.)
 - Output Drive Capability 5 LSTTL Loads
 - Symmetrical Output Impedance ... $|I_{OH}| = I_{OL}$ = 2mA (Min.)
 - Balanced Propagation Delays $t_{pLH} \Rightarrow t_{pHL}$
 - Wide Operating Voltage Range ... $V_{CC(opr)} = 2 \sim 6V$

MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage Range	Vcc	-0.5~7	V
DC Input Voltage	VIN	-0.5~V _{CC} +0.5	V
DC Output Voltage	Vout	-0.5~V _{CC} +0.5	V
Input Diode Current	lік	± 20	mA
Output Diode Current	Іок	± 20	mA
DC Output Current	Ιουτ	± 12.5	mA
DC V _{CC} /Ground Current	lcc	± 25	mA
Power Dissipation	PD	200	mW
Storage Temperature	T _{stg}	- 65~150	°C
Lead Temperature (10s)	Т	260	°C

Weight SSOP5-P-0.95 : 0.016g (Typ.) SSOP5-P-0.65A : 0.006g (Typ.)

MARKING

PIN ASSIGNMENT (TOP VIEW)

961001EBA2

TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

LOGIC DIAGRAM

IN A (2) 1 (4) OUT Y

RECOMMENDED OPERATING CONDITIONS

CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage	Vcc	2~6	V
Input Voltage	VIN	0~V _{CC}	V
Output Voltage	Vout	0~V _{CC}	V
Operating Temperature	T _{opr}	- 40~85	°C

DC ELECTRICAL CHARACTERISTICS

		тест			Т	a = 25°	C	Ta = −40~85°C		
CHARACTERISTIC	STIVIDUL	1531	CONDITION	Vcc	MIN.	TYP.	MAX.	MIN.	MAX.	
High Lavel				2.0	1.7	—	—	1.7	—	
High-Level	VIH		—	4.5	3.6			3.6	—	V
input voltage				6.0	4.8		—	4.8	—	
				2.0	_	_	0.3	—	0.3	
	VIL		—	4.5	_		0.9	—	0.9	V
input voltage				6.0	—	—	1.2	_	1.2	
				2.0	1.8	2.0	—	1.8	—	
	VOH	I VIN = VIL	I _{OH} = -20μA	4.5	4.0	4.5		4.0	—	
High-Level				6.0	5.5	5.9	—	5.5	—	v
Output Voltage			$I_{OH} = -2mA$	4.5	4.18	4.31	—	4.13	—	
			$I_{OH} = -2.6 mA$	6.0	5.68	5.80	_	5.63	—	
				2.0	_	0.0	0.2	_	0.2	
			I _{OL} = 20μΑ	4.5	_	0.0	0.2	_	0.5	
Low-Level	Voi	VIN = VIH		6.0		0.0	0.5	—	0.5	v
Output Voltage			I _{OL} = 2mA	4.5	_	0.17	0.26	_	0.33	
			I _{OL} = 2.6mA	6.0		0.18	0.26	_	0.33	
Input Leakage				6.0			+ 0 1		+10	
Current	Nוי	$ _{\text{NIN}} = \text{ACC}$	or GND	0.0	-		± 0.1	_	± 1.0	•
Quiescent				6.0			1.0		10.0	μ A
Supply Current	ן יככ	VIN = VCC (0.0	_	—	1.0	_	10.0	

Output currents are 1/2 compared to TC74HC series models.

961001EBA2'

The products described in this document are subject to foreign exchange and foreign trade control laws.
 The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
 The information contained herein is subject to change without notice.

				Ta = 25°C			
CHARACTERISTIC	STIVIDUL		MIN.	TYP.	MAX.		
Output Transition	ttlh			5	10	ns	
Time	tthl			, J		113	
Propagation Delay	t _{pLH}			7	15	20	
Time	t _{pHL}	_		'	15	115	

AC ELECTRICAL CHARACTERISTICS ($C_L = 15pF$, Input $t_r = t_f = 6ns$, $V_{CC} = 5V$)

AC ELECTRICAL CHARACTERISTICS ($C_L = 50pF$, Input $t_r = t_f = 6ns$)

	SYMBOL			Т	Ta = 25°C		Ta = −40~85°C		
CHARACTERISTIC	STIVIDOL		Vcc	MIN.	TYP.	MAX.	MIN.	MAX.	UNIT
Output Transition	t		2.0	—	50	125	—	155	
	'ILH	—	4.5		14	25	_	31	ns
Time	'IHL		6.0	_	12	21	—	26	
Propagation Dolay	4		2.0	_	48	100	_	125	
	L Lbr		4.5		12	20		25	ns
nme	Γ ^τ ρΗL		6.0	_	9	17	_	21	
Input Capacitance	CIN	_		—	5	10	_	10	
Power Dissipation Capacitance	C _{PD}	(Note 1)			10				pF

Note 1 : C_{PD} defined as the value of internal equivalent capacitance of IC which is calculated from the operating current consumption without load (refer to Test Circuit).

Average operating current can be obtained by the equation here under. $I_{CC}(opr) = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}$

SWITCHING CHARACTERISTICS TEST CIRCUIT

ICC (opr) TEST CIRCUIT

Input waveform is the same as that in case of switching characteristics test. OUTLINE DRAWING SSOP5-P-0.95

Unit : mm

Weight : 0.016g (Typ.)

OUTLINE DRAWING SSOP5-P-0.65A

Unit : mm

Weight : 0.006g (Typ.)

DATA SHEET

NEC

GaAs INTEGRATED CIRCUIT $\mu PG158TB$

L, S- BAND SPDT SWITCH

DESCRIPTION

The μ PG158TB is a L-band SPDT (Single Pole Double Throw) GaAs FET switch which was developed for digital cellular, cordless telephone and other L, S-band wireless application. The device can operate from 500 MHz to 2.5 GHz, having the low insertion loss. It housed in an original 6-pin super minimold package that is smaller than usual 6-pin minimold easy to install and contributes to miniaturizing the system.

FEATURES

Low Insertion Loss: Lins = 0.3 dB TYP. @Vcont = +3.0 V/0 V, f = 1 GHz

LINS = 0.4 dB TYP. @Vcont = +3.0 V/0 V, f = 2 GHz

LINS = 0.5 dB TYP. @Vcont = +3.0 V/0 V, f = 2.5 GHz

High isolation: ISL = 27 dB TYP. @Vcont = +3.0 V/0 V, f = 0.5 to 2 GHz

Small 6-pin super minimold package (Size: 2.0 × 1.25 × 0.9 mm)

APPLICATIONS

- L, S-band digital cellular or cordless telephone
- · PCS, WLAN, WLL and Bluetooth applications

ORDERING INFORMATION

Part Number	Marking	Package	Supplying Form
μPG158TB-E3	G1M	6-pin super minimold	Embossed tape 8 mm wide. Pin 1, 2, 3 face to tape perforation side. Qty 3 kp/reel.

Remark To order evaluation samples, please contact your local NEC sales office. (Part number for sample order: μPG158TB)

Caution The IC must be handled with care to prevent static discharge because its circuit is composed of GaAs MES FET.

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

Document No. P14267EJ2V0DS00 (2nd edition) Date Published November 1999 N CP(K) Printed in Japan

The mark \bigstar shows major revised points.

© NEC Corporation 1999

)

ABSOLUTE MAXIMUM RATINGS (TA = +25 °C)

Parameter	Symbol	Ratings	Unit
Control Voltage 1, 2	VCONT1,2	6.0 to +6.0 "***	v
Input Power	Pin	+28	dBm
Total Power Dissipation	Ptot	0.15	w
Operating Temperature	Та	-45 to +85	٦°
Storage Temperature	Tsig	45 to +150	°C

Note Condition $2.5 \le |V_{CONT1} - V_{CONT2}| \le 6.0 V$

- **Remarks 1.** Mounted on a $50 \times 50 \times 1.6$ mm double copper clad epoxy glass PWB, T_A = +85 °C
 - 2. Operation in excess of any one of these parameters may result in permanent damage.

PIN CONNECTIONS

Pin No.	No. Connection Pin No.		Connection
1	OUT1	4	VCONT2
2	GND	5	IN
3	OUT2	6	VCONTI

RECOMMENDED OPERATING CONDITIONS ($T_A = +25 \text{ °C}$)

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Control Voltage (High)	VCONT	+2.5	+3.0	+5.3	v
Control Voltage (Low)	VCONT	-0.2	0	+0.2	v

ELECTRICAL CHARACTERISTICS

(Unless otherwise specified, $T_A = +25$ °C, $V_{CONT1} = 3$ V, $V_{CONT2} = 0$ V or $V_{CONT1} = 0$ V, $V_{CONT2} = 3$ V, Off chip DC blocking capacitors value; 51 pF)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Insertion Loss	Lins	f = 0.5 to 1.0 GHz	-	0.3	0.55	dB
		f = 2.0 GHz	-	0.4	0.65	
		f = 2.5 GHz	-	0.5 ^{Note1}	-	
Isolation	ISL	f = 0.5 to 2.0 GHz	22	27	_	dB
		f = 2.5 GHz	-	23 ^{**ota1}	-	
Input Return Loss	RLin	f = 0.5 to 2.0 GHz	13	19	-	dB
Output Return Loss	RLout	f = 0.5 to 2.0 GHz	13	19	-	dB
Input Power at 0.1 dB Compression Point ^{Num2}	Pin(0.1 aB)	f = 1.0 GHz, Vcont = 3 V/0 V	-	23.0	-	dBm
Input Power at 1 dB Compression Point ^{New2}	Pin(1 dB)	f = 1.0 GHz, Vcont = 3 V/0 V	22.0	26.5	-	dBm
Switching Speed	tsw		-	50	200	ns
Control Current	ICONT	VCONT = 3 V/0 V	-	0.5	10	μA

Notes 1. Characteristic for reference at 2.0 to 2.5 GHz

- Pin(0.1 dB) or Pin(1 dB) is measured the input power level when the insertion loss increases more 0.1 dB or 1 dB than that of linear range. All other characteristics are measured in linear range.
- Cautions 1. When the μ PG158TB is used it is necessary to use DC blocking capacitors for No. 1 (OUT1), No.3 (OUT2) and No.5 (IN). The value of DC blocking capacitors should be chosen to accommodate the frequency of operation, band width, switching speed and the condition with actual board of your system.

The range of recommended DC blocking capacitor value is less than 100 pF.

2. The distance between IC's GND pin and ground pattern of substrate should be as shorter as possible to avoid parasitic parameters.

Data Sheet P14267EJ2V0DS00

NEC

TRUTH TABLE OF SWITCHING BY CONDITION OF CONTROL VOLTAGE

PACKAGE DIMENSIONS

⁶ PIN SUPER MINIMOLD (UNIT: mm)

Data Sheet P14267EJ2V0DS00

SCP-5000/H_US Adjustment Description for Mass Production

Model Code NO.	1-163-269-00	1-163-269-01
Model NO.	SCP-5000S/H_US	SCP-5000S/H_US_MJ

Eng.Section	Personal Telecommunication Division Technical Engineering Department RF Section
NAME	A.Shimahara

No.	Contents
1	Set-Up for Tune-Up and Adjustment of Transmitter
2	Alignment Procedure
3	Adjustment Value

Minor Change Version

NO.	

1.Set-Up for Tune-Up and Adjustment of Transmitter

2 Alignment Procedure

3.Adjustment Value

ITEM	Sub-ITEM	Handset Setup(Internal Setup)	HP8924 Setup	Adj. Value	Accuracy of NV-Value
x-Power Adjustment	PL=0,1,2	<u>Normal Test Mode</u>	AMPS Mode	+24.5dBm	
	PL=3	Tx AGC SET : 3-2-3-2	Txpower :dBm Mode	+23.0dBm	
	PL=4			+19.0dBm	
	PL=5			+15.0dBm	
	PL=6			+11.0dBm	
	PL=7			+ 7.0dBm	
x-Power Frequency	Bk 0=1017ch	FCC Test Mode	Set "PL=0"	+24.2dBm	
Adjustment	Bk 1=46ch			+24.5dBm	
	Bk 2=98ch			+24.5dBm	
	Bk 3=150ch			+24.5dBm	
	Bk 4=202ch			+24.5dBm	
	Bk 5=254ch			+24.5dBm	
	Bk 6=306ch			+24.5dBm	
	Bk 7=358ch			+24.5dBm	
	Bk 8=410ch			+24.5dBm	
	Bk 9=462ch			+24.5dBm	
	Bk10=514ch			+24.5dBm	
	Bk11=566ch			+24.5dBm	
	Bk12=618ch			+24.8dBm	
	Bk13=670ch			+24.8dBm	
	Bk14=722ch			+24.8dBm	
	Bk15=774ch			+24.8dBm	
requency Sensibility		FCC Test Mode : AMPS	AF ANL Mode	8KHz dev.	dev. 8Khz±0.1Khz
Adjustment		Tx : ST,CH : 358	Detector : Pk±Max		*
			DE-EMPH:750us		NV_FM_FREQ_SENSE_GAIN_I
			Fil1:>20hz,Fil2:<99khz pass		
SSI Adjustment	-85dBm In	FCC TEST Mode	-85dBm RFINPUT;-113dBm RFINPUT	-85dBm :	NV_FM_RSSI I
J	-113dBm In	RSSI=Filter*100+AgcRSSI*47	,	BAR4	
				BAR1	

ITEM	Sub-ITEM	Handset Setup(Internal Setup)	HP8924 Setup	Adj. Value	Accuracy of NV-Value
Rx-RASRAM	Table 1	<u>Normal Mode</u>	CDMA Ch=563 :SG LV=-106.0dBm	-106.0dBm	
Adjustment	Table 2	OFF Line Mode	SG LV=-100.6dBm	-100.6dBm	
	Table 3		SG LV=-95.3dBm	-95.3dBm	
	Table 4		SG LV=-90.0dBm	-90.0dBm	
	Table 5		SG LV=-84.7dBm	-84.7dBm	
	Table 6		SG LV=-79.4dBm	-79.4dBm	
	Table 7		SG LV=-74.1dBm	-74.1dBm	
	Table 8		SG LV=-68.8dBm	-68.8dBm	
	Table 9		SG LV=-63.5dBm	-63.5dBm	
	Table 10		SG LV=-58.1dBm	-58.1dBm	
	Table 11		SG LV=-52.8dBm	-52.8dBm	
	Table 12		SG LV=-47.5dBm	-47.5dBm	
	Table 13		SG LV=-42.2dBm	-42.2dBm	
	Table 14		SG LV=-36.9dBm	-36.9dBm	
	Table 15		SG LV=-31.6dBm	-31.6dBm	
	Table 16		SG LV=-26.3dBm	-26.3dBm	
	Table 17		SG LV=-21.0dBm	-21.0dBm	
RX AGC Frequency	Bk 0=1017ch	<u>Normal Mode</u>	RF INPUT(SG) LV=-63.5dBm	AGC DIFF.	
Adjustment	Bk 1=46ch	Reference ch :563ch	Change to Channel 16 Time.	AGC DIFF.	
	Bk 2=98ch	Deference of Center ch AGCsym.		AGC DIFF.	
	Bk 3=150ch	Change to Channel 16 Time.		AGC DIFF.	
	Bk 4=202ch	OFF Line Mode		AGC DIFF.	
	Bk 5=254ch			AGC DIFF.	
	Bk 6=306ch			AGC DIFF.	
	Bk 7=358ch			Center CH	
	Bk 8=410ch			AGC DIFF.	
	Bk 9=462ch			AGC DIFF.	
	Bk10=514ch			AGC DIFF.	
	Bk11=566ch			AGC DIFF.	
	Bk12=618ch			AGC DIFF.	
	Bk13=670ch			AGC DIFF.	
	Bk14=722ch			AGC DIFF.	
	Bk15=774ch			AGC DIFF.	

3.	3.PCS TX & TX-LIMIT Adjustment								
	ITEM	Sub-ITEM	Handset Setup(Internal Setup)	HP8924 Setup	Adj. Value	Accuracy of NV-Value			
	Tx-RASRAM ->		<u>Nomal Test Mode</u>	PCS Ch=1163ch	+24.6dBm				
	Adjustment			SG level is ccording to the transmission	-50.0dBm				

PAGE 7

			power level of MS	
0.		TOTAL 26Denometer		
œ				
		Symbol		
		-50.0dBm +24.6dBm		
Tx-Limit 🔶	Table 1		PCS Ch=1163ch	+8.75dBm
Adjustment	Table 2			+10.1dBm
	Table 3			+11.4dBm
	Table 4			+12.7dBm
	Table 5			+14.1dBm
	Table 6			+15.4dBm
	Table 7			+16.7dBm
	Table 8			+18.10BM
	Table 3			+13.40Dm
	Table 10			+22.1dBm
	Table 12			+23.4dBm
	Table 13			+24.7dBm
	Table 14			+26.0dBm
	Table 15			+27.4dBm
	Table 16			+28.7dBm
	OFFSET	Offset : 16.7dB(Table 7)		+16.7dBm
	SPN	Spn : 26.0dBm(Table 14)		+26.0dBm

4	.Tx AGC Frequency Adjustment and Tx Limit Frequency Adjustment.									
	TX AGC Frequency	Bk 0=38ch	Nomal Test Mode	<u>RF INPUT(SG) LV=-92.0dBm</u>	Tx-Pow diff.					
	Adjustment	Bk 1=113ch	Reference ch :1163ch	Change to Channel 16 Time.	Tx-Pow diff.					
		Bk 2=188ch	Difference of Center ch AGCsym.		Tx-Pow diff.					
		Bk 3=263ch	Change to Channel 16 Time.		Tx-Pow diff.					
		Bk 4=338ch			Tx-Pow diff.					

PAGE 8

	Bk 5=413ch			Tx-Pow diff.	
	Bk 6=488ch			Tx-Pow diff.	
	Bk 7=563ch			Tx-Pow diff.	
&	Bk 8=638ch			Tx-Pow diff.	
	Bk 9=713ch			Tx-Pow diff.	
	Bk10=788ch			Tx-Pow diff.	
	Bk11=863ch			Tx-Pow diff.	
	Bk12=938ch			Tx-Pow diff.	
	Bk13=1013ch			Tx-Pow diff.	
	Bk14=1088ch			Tx-Pow diff.	
	Bk15=1163ch			REF. CH	
TX Limit Frequency	Bk 0=38ch	Nomal Test Mode	<u>RF INPUT(SG) LV=-92.0dBm</u>	*	
Adjustment	Bk 1=113ch	Reference ch :1163ch	Change to Channel 16 Time.	*	
_	Bk 2=188ch	Difference of Center ch AGCsym.		*	
	Bk 3=263ch	Change to Channel 16 Time.		*	
	Bk 4=338ch			*	
	Bk 5=413ch			*	
	Bk 6=488ch			*	
	Bk 7=563ch	12Symb=1.0dB		*	
	Bk 8=638ch			*	
	Bk 9=713ch			*	
	Bk10=788ch			*	
	Bk11=863ch			*	
	Bk12=938ch			*	
	Bk13=1013ch			*	
	Bk14=1088ch			*	
	Bk15=1163ch			REF. CH	

*TX-Power Diffrencial + ADC Diffrencial×Limit Table Value

4.Measurement Specification of Adjustment

1.AMPS Mesurement Specification

Measurement Item	Standard Item	IS98A Standard Spec	Measurement Spec	Measurement Condition	Measurement Channel	Others
Tx-Frequency Err	TIA/EIA-98-B:3.1.2	< ±2.5ppm	< ±2.0ppm	Measurement Equipment	383(M)	
				Accuray < 0.1ppm		
Tx-Power Level(0,1,2)	TIA/EIA-98-B:3.2.1	24dBm to 30dBm	23.4dBm to 25.0dBm	Measurement Equipment	991(L)	
			23.7dBm to 25.3dBm		383(M)	
			24.0dBm to 25.6dBm		799(H)	
Tx-Power Level(3)	TIA/EIA-98-B:3.2.1	20dBm to 26dBm	20.5dBm to 25.0dBm	Accuray < 0.2dB	383(M)	
Tx-Power Level(4)	TIA/EIA-98-B:3.2.1	16dBm to 22dBm	16.5dBm to 21.5dBm		383(M)	
Tx-Power Level(5)	TIA/EIA-98-B:3.2.1	12dBm to 18dBm	12.5dBm to 17.5dBm		383(M)	
Tx-Power Level(6)	TIA/EIA-98-B:3.2.1	8dBm to 14dBm	8.5dBm to 13.5dBm		383(M)	
Tx-Power Level(7)	TIA/EIA-98-B:3.2.1	4dBm to 10dBm	4.5dBm to 9.5dBm		383(M)	
Deviation Limitting	TIA/EIA-98-B:3.3.2.3	< ±12Khz dev.	< ±12Khz dev.	Comp=ON,SAT=OFF HF Mode,Mic=6.3V IN	383(M)	
Wideband Data	TIA/EIA-98-B:3.3.3	±8Khz dev. ±10%	±8Khz dev. ± 10%	Wideband Mode	383(M)	
SAT Level	TIA/EIA-98-B:3.3.4	±2Khz±0.2Khz dev.	±2Khz±0.2Khz dev.	SAT Mode	383(M)	
ST Level	TIA/EIA-98-B:3.3.5	±8Khz dev. ±10%	±8Khz dev. ± 10%	ST Mode	383(M)	
Audio Distortion	TIA/EIA-98-B:2.2.2.5	< 5%	<5%	Voice Mode	383(M)	
				8KHZdev -50dBm		
Audio Level			47.0mV ± 3dB	2.9KdeV	383(M)	
SINAD	TIA/EIA-98-B:2.3.1	> 12dB	> 12dB	RF IN = -116.5dBm	991(L),799(H)	

Measurement Item	Standard Item	IS98C Standard Spec	Measurement Spec	Measurement Condition	Measurement Channel	Others
RTC Demod. of FW.ch	TIA/EIA-98-C			Rateset2 SVC opt9		
	3.3.3			-		
AWGN Test10(Eb/Nt=4.1)		1%(0.010)	1%(0.010)	7200(TEST10)	25ch	
Waveform Quality	TIA/EIA-98-C			Rateset2 SVC opt9		
RHO	4.3.2	>0.944	>0.944	14400bps	25ch	
Frequency Err Rate	4.1.1	±150Hz	±150Hz	_	25ch	
Time Offset	4.3.1	±1uS	±1uS		25ch	
TTC Range of Openloop	TIA/EIA-98-C	dBm	dBm	Rateset2 SVC opt9		
Openloop Power Test1	4.4.1	-51±9.5(CLASS II)	-51±9.5(CLASS II)	14400bps	25ch	
Openloop Power Test2		-11±9.5(CLASS II)	-11±9.5(CLASS II)	_	25ch	
Openloop Power Test3		20±9.5(CLASS II)	20±9.5(CLASS II)		25ch	
TTC Range of Closedloop	TIA/EIA-98-C			Rateset2 SVC opt9		
Closedloop Full Power	4.4.4	RF Output = -13dBm	-14±3dBm	14400bps	25ch	
Closedloop Max Power		>+24dB	>+24dB			
Closedloop Min Power		<-24dB	<-24dB			
TTC Min.Controlled Pow	TIA/EIA-98-C			Rateset2 SVC opt9		
Minimum Controlled Pow	4.4.6	-50dBm/1.23MHz	-50dBm/1.23MHz	14400bps	25ch	
RTC Receiver Sensitivity	TIA/EIA-98-C	0.5%(Confidence95%)	1.0%(Confidence95%)	Rate2 Full -106.8dBm	600ch, 1175ch	
Receiver Sensitivity FER	3.4.1	0.5%(Confidence95%)	0.5%(Confidence95%)	Rate2 Full -105.7dBm	25ch	
TTC Max RF Output Pow	TIA/EIA-98-C		21.8dBm~23.1dBm		25ch, 600ch	
Max Power Output	4.4.5	> 0.2W	21.8dBm~23.4dBm		1175ch	
TTC Conducted Spurious	TIA/EIA-98-C			SCV Opt9(14400)		
>1.25MHz	3.5.1	< -42dBc	< -42dBc	Max Power Output	1175ch	
>1.98MHz		< -50dBc	< -50dBc	Max Power Output	1175ch	
>2.25MHz		< -13dBm	< -13dBm	Max Power Output	1175ch	