Issue Date : October 6, 2003
Page 1 of 50

EMC ${ }_{\text {emission }}$ TEST REPORT

JQA APPLICATION No.	$: \underline{\text { KL80030382S }}$
Name of Product	$: \underline{\text { PHS Cell Station }}$
Model/Type No.	$: \underline{\text { PBS-CS37 }}$
FCC ID	$: \underline{\text { SAEZPBS-CS37 }}$
Applicant	$: \underline{1-1, \text { Sanyo-cho, Daito City, Osaka 574-8534, Japan }}$
Address	$: \underline{\text { SANYO Electric Co., Ltd. }}$
Manufacturer Co., Ltd.	
Address	$: \underline{1-1, \text { Sanyo-cho, Daito City, Osaka 574-8534, Japan }}$
Receive date of EUT	$:$ August 10, 2003
Final Judgement	$:$ passed

TEST RESULTS IN THIS REPORT are obtained in use of equipment that is traceable to National Institute of Advanced Industrial Science and Technology(AIST) under METI Japan and Communications Research Lab.(CRL) under MPHPT Japan.

THE TEST RESULTS only responds to the test sample. This test report shall not be reproduced except in full.

Authorized by:

[^0]
DIRECTORY

Page

A) Documentation

Directory	$\left.\begin{array}{c}2 \\ \text { Test Regulation / General Information } \\ \text { Test Conditions } \\ \text { Configuration of EUT / Operation mode of the EUT } \\ \text { EUT Modification / Responsible Party / Deviation from Standard } \\ \text { Test results / Measurement Uncertainty } \\ \text { Summary } \\ \text { Test System-Arrangement (Drawings) } \\ \text { Test-setup (Photographs) at worst case }\end{array}\right] \underline{21-23}$

B) Test data

Transmitter Power(TP) $\quad 33-34$
Antenna Conducted Spurious Emission 35-39
Maximum Transmitter Power(EIRP) $\quad 40$
Unwanted Radiation $\quad \underline{41-43}$
Occupied Bandwidth $\quad 44$
Band-Edge Emission $\quad 45$
Frequency Stability $\quad 46-47$
Maximum Permissible Exposure(MPE) $\quad 48$
Digital Device Class B, Part15

Conducted Emission	$150 \mathrm{kHz}-30 \mathrm{MHz}$	49			
Electromagnetic Field Radiated Emission	$30 \mathrm{MHz}-1000 \mathrm{MHz}$	50			

TEST REGULATION

FCC Rules and Regulations Part 24 (October 1, 2002)
1900 MHz systems
O - Narrowband PCS

- - Broadband PCS

Test procedure:

The tests were performed according to FCC Rules and Regulations Part 2 (October 1, 2002), and ANSI C63.4 (2001).

GENERAL INFORMATION

Test facility:

1) Test Facility located at Kita-Kansai

Test Facility located at Kameoka : 1st Open Site (3, 10 and 30 m , on common plane)
: 2nd Open Site (3 and 10 m , on common plane)
FCC filing No. : 31040/SIT 1300F2
2) KITA-KANSAI TESTING CENTER is recognized under the National Voluntary Laboratory Accreditation Program for satisfactory compliance established in Title 15, Part 285
Code of Federal Regulations.
NVLAP Lab Code: 200191-0

Definitions for symbols used in this test report:

- - Black box indicates that the listed condition, standard or equipment is applicable for this Report.
O-Blank box indicates that the listed condition, standard or equipment is not applicable for this Report.

Description of the Equipment Under Test (EUT):

1) Name : PHS Cell Station
2) Model/Type No. : PBS-CS37
3) Product Type : Mass-Production(Serial No.: UTNO0001)
4) Category
5) EUT Authorization : ○-Verification - Certification \bigcirc - D.o.C.
6) Transmitting Frequency $\quad: 1880.15 \mathrm{MHz}$ (206 ch) - $1909.55 \mathrm{MHz}(49 \mathrm{ch})$
7) Receiving Frequency : $1880.15 \mathrm{MHz}(206 \mathrm{ch})-1909.55 \mathrm{MHz}(49 \mathrm{ch})$
8) Emission Designations
9) Maximum RF Output Power : 166.34W(EIRP)
10) Power Rating : AC120V $60 \mathrm{~Hz} 1 \phi-3$ pin plug
11) Channel Numbers and Frequencies for PCS 1900 MHz

The carrier spacing is 300 kHz .
The carrier frequency is designated by the absolute frequency channel number(ARFCN).
The carrier frequency is expessed in the equation shown as follows:
TX frequency (in MHz$)=1880.15+0.3 *(\mathrm{n}-206)$ where $\mathrm{n}:$ Channel Number $(206 \leq \mathrm{n} \leq 255)$
TX frequency $($ in MHz$)=1895.15+0.3 *(\mathrm{n}-1)$ where $\mathrm{n}:$ Channel Number $(1 \leq \mathrm{n} \leq 49)$
RX frequency (in $M H z)=1880.15+0.3 *(n-206) \quad$ where $n:$ Channel Number $(206 \leq n \leq 255)$
RX frequency(in $M H z)=1895.15+0.3 *(n-1)$ where $n:$ Channel Number $(1 \leq n \leq 49)$
13) Modulation Type $: \pi / 4$ shift QPSK
14) Type of Communication System : TDMA-TDD

TEST CONDITIONS

Transmitter Power(TP) Measurement (§2.1046(a))

Test Procedure :

The Transmitter Power was measured with a power meter, one 30 dB attenuator and a short, low loss cable.

Fig. 1 Trasmitter Powe Measurement

Test location :

KITA-KANSAI Testing Center
7-7, Ishimaru, 1-Chome, Mino-Shi, Osaka, 562-0027, Japan

- Shielded room

KAMEOKA EMC Branch
9-1, Ozaki, Inukanno, Nishibetsuin-Cho, Kameoka-Shi, Kyoto, 621-0126, Japan
○ - Shielded room

Used test instruments and sites :

Model No.	Device ID	Last Cal. Date	Cal. Interval
O-432B/8478B	B $-24 / \mathrm{B}-43$		1 Year
- E4417A	B -51	August, 2003	1 Year
- E9321A	B -52	May, 2003	1 Year
- E9300B accessory	B -32	June, 2003	
O-6-20	D -27		
O- 4T-10	D -73		
O-4T-10	D -73		
O-2-10	D-10	D -79	
O-54-10	D -80		
O-54-10	D -83		
O-8566B	D -84		
O-8593A	A -13		
- - Cable	A -15		

Environmental conditions :

$$
\text { Temperature: } _23{ }^{\circ} \mathrm{C} \text { Humidity: } \quad 60 \quad \%
$$

JQA Application No.: KL80030382S
Model No.
: PBS-CS37
FCC ID
: AEZPBS-CS37

Regulation : CFR 47 FCC Rules Part 24
Issue Date : October 6, 2003

Page 6 of 50

Antenna Conducted Spurious Emission Measurement (§2.1051,§24.238))

Test Procedure :

The Antenna Conducted Emission was measured with a spectrum analyzer. The test system is shown as follows:

1) Frequency Range : $2.2 \mathrm{GHz}-5.8 \mathrm{GHz}$

2) Frequency Range : $5.8 \mathrm{GHz}-20 \mathrm{GHz}$

Fig. 2 Antenna Conducted Spurious Emission Measurement

Test location :

KITA-KANSAI Testing Center
7-7, Ishimaru, 1-Chome, Mino-Shi, Osaka, 562-0027, Japan

- - Shielded room

KAMEOKA EMC Branch
9-1, Ozaki, Inukanno, Nishibetsuin-Cho, Kameoka-Shi, Kyoto, 621-0126, Japan
O-Shielded room

Used test instruments:

Model No.	Device ID	Last Cal. Date	Cal. Interval
O-MP721C	D - 66		
- - 4T-10	D - 73	May, 2003	1 Year
- - 4T-10	D - 74	May, 2003	1 Year
--2-10	D - 40	July, 2003	1 Year
O-2-10	D - 79		
O-2-10	D - 80		
- - UHP-127	D-42	May, 2003	1 Year
O- UHP-128	D-43		
- -8566B	A-13	February, 2003	1 Year
O-8593A	A-15		
- - DBL-0618N515	A-33	May, 2003	1 Year
- - MZ5010C	D-81	November, 2002	1 Year
- - 8673D	B-2	April, 2003	1 Year
- - Cable	C-40-9	June, 2003	1 Year
- - Cable	C-40-11	May, 2003	1 Year
- - Cable	C-40-12	May, 2003	1 Year

Environmental conditions:

Temperature: $\quad 23{ }^{\circ} \mathrm{C}$ Humidity: _ $60 \quad \%$

Transmitter Power(EIRP) Measurement (§24.232)

The measurement were performed shown as follows.
Step 1) The test was set-up shown as Fig.3(a). In order to obtain the maximum emission, the EUT is placed at the height 1.0 m on the non-conducted support and the center of the Adaptive Array Antenna is set to 2.3 m at the distance 3 m from the receiving antenna(Horn Antenna) and rotated around 360 degrees. The receiving antenna height was varied from 1 m to 4 m . Then the meter reading of the spectrum analyzer at the maximum emission was $\mathrm{AdB}(\mu \mathrm{V})$.
The Details of Test-Arrangement on Radiated emission test (Drawings) is shown in page 31.
Step 2) The test was set-up shown as Fig.3(b). the center of the Adaptive Array Antenna was replaced to Horn antenna at the same polarized under the same condition as step 1. The RF power was fed to the transmitting Antenna(horn Antenna) through the RF amplifier from the signal generator. In order to obtain the maximum emission level, the height of the receiving antenna is varied from 1 m to 4 m . The level of the signal generator was adjusted so that the meter reading of the spectrum analyzer at the maximum emission was $\mathrm{AdB}(\mu \mathrm{V})$, same as the recorded level in Step1. Then the RF power into the substitution horn antenna was $\mathrm{P}(\mathrm{dBm})$.
The EIRP is calculated in the following equation.

$$
\operatorname{EIRP}(\mathrm{dBm})=\mathrm{P}(\mathrm{dBm})+\mathrm{Gh}(\mathrm{dBi})
$$

Where, $\mathrm{Gh}(\mathrm{dBi})$: Gain of the substitution horn antenna

JQA Application No.: KL80030382S
Regulation : CFR 47 FCC Rules Part 24
Model No
: PBS-CS37
FCC ID : AEZPBS-CS37

Test location:

KITA-KANSAI Testing Center
7-7, Ishimaru, 1-Chome, Mino-Shi, Osaka, 562-0027, Japan
O-1st open test site (3 meters)
KAMEOKA EMC Branch
9-1, Ozaki, Inukanno, Nishibetsuin-Cho, Kameoka-Shi, Kyoto, 621-0126, Japan

- - 1st open test site
O-2nd open test site
- $-3 \mathrm{~m} \quad \bigcirc-10 \mathrm{~m} \quad \bigcirc-30 \mathrm{~m}$
- -3 m
- -10 m

Used test instruments:

Model No.	Device ID	Last Cal. Date	Cal. Interval
O-ESCS 30	A - 1		
O-ESCS 30	A - 9		
- - 8566B	A-13	February, 2003	1 Year
- - 8593A	A-15		
O-ESV	A-6		
- - 4T-10	D-73	May, 2003	1 Year
O-4T-10	D-74		
O-2-10	D-79		
O-2-10	D-80		
- WJ-6611-513	A-23		
- WJ-6882-824	A-21		
- DBL-0618N515	A-33		
- -91888-2	C-40-1	May, 2003	1 Year
- -91888-2	C-41-1	May, 2003	1 Year
--91889-2	C-41-2		
--94613-1	C-41-3		
- - 91891-2	C-41-4		
- - 94614-1	C-41-5		
- - 3160-09	C-48		
- - 355C	D-22		
O-355D	D-23		
- MZ5010C	D-81		
- - Cable	C-40-11	May, 2003	1 Year
- - Cable	C-40-12	May, 2003	1 Year
O-432B/8478B	B - 24/B-43		
- - E4417A	B-51	August, 2003	1 Year
- - E9321A	B-52	May, 2003	1 Year
○ - ML2437A/ML2444A	B - 10/B-11		
○-8673D	B-2		
- MG3681A	B - 3		
- - 6062A	B-44	May, 2003	1 Year

Temperature: $\quad 25^{\circ} \mathrm{C}$
Humidity: $\quad 58$ \%

JQA Application No.: KL80030382S
Model No.
: PBS-CS37
FCC ID : AEZPBS-CS37

Regulation Issue Date
: CFR 47 FCC Rules Part 24
: October 6, 2003

Page 9 of 50

(b) Substitution Horn Antenna

Fig. 3 Maximum Transmitter Power (EIRP) Measurement

Unwanted Radiation Measurement (§2.1053,§24.238)
 - EIRP method -

Step 1) The spurious radiation for transmitter were measured at the distance 3 m away from the EUT which was placed on a non-conducted support 1.0 m in height and the center of the Adaptive Array Antenna was set to 2.3 m . The receiving antenna was oriented for vertical polarization and varied from 1 m to 4 m until the maximum emission level was detected on the measuring instrument. The EUT was rotated 360 degrees until the maximum emission was received. The measurement was also repeated with the receiving antenna in the horizontal polarization.
The Details of Test-Arrangement on Radiated emission test (Drawings) is shown in page 31.
This test was carried out using the loop antenna for up to 30 MHz , using the half-wave dipole antenna for up to 1 GHz and using the horn antenna for above 1 GHz .

Step 2) The EIRP measurement was carried out with according to Step 2 in page 7 . Then the RF power in the substitution antenna half-wave dipole antenna for $u p$ to 1 GHz and the substitution horn antenna for above 1 GHz .

The EIRP is calculated in the following equation.
A) Up to 1 GHz
$\operatorname{EIRP}(\mathrm{dBm})=\mathrm{P}(\mathrm{dBm})+\mathrm{Gd}(\mathrm{dBi})-$ (Balun Loss of the half-wave dipole Ant. (dB)) + Cable Loss(dB) Where, $\operatorname{Gd}(\mathrm{dBi}):$ Gain of the substitution half-dipole antenna
B) Above 1 GHz
$\operatorname{EIRP}(\mathrm{dBm})=\mathrm{P}(\mathrm{dBm})+\mathrm{Gh}(\mathrm{dBi})$ Where, $\mathrm{Gh}(\mathrm{dBi})$: Gain of the substitution horn antenna

The ERP is calculated in the following equation.
$\operatorname{ERP}[\mathrm{dBm}]=\operatorname{EIRP}(\mathrm{dBm})-\mathrm{Gd}(\mathrm{dBi})$

The respective calculated EIRP of the spurious and harmonics were compared with the EIRP and ERP of fundamental frequency by specified attenuation limits, $43+10 \log _{10}$ (TP in watt)[dB]. Where, TP = Transmitter power at the ANT OUT under test configuration as the handsfree unit used.

The tests were carried out under one test configuration as the handsfree unit used.

Test location:

KITA-KANSAI Testing Center
7-7, Ishimaru, 1-Chome, Mino-Shi, Osaka, 562-0027, Japan
O-1st open test site (3 meters)
KAMEOKA EMC Branch
9-1, Ozaki, Inukanno, Nishibetsuin-Cho, Kameoka-Shi, Kyoto, 621-0126, Japan

- 1st open test site - - \quad m $\quad \bigcirc-10 \mathrm{~m} \quad \bigcirc-30 \mathrm{~m}$

O-2nd open test site
O-3m O-10m

Validation of Site Attenuation:

1) Last Confirmed Date : November 5, 2002
2) Interval : 1 Year

Used test instruments :

Model No.	Device ID	Last Cal. Date	Cal. Interval
O- ESCS 30	A - 1		
O- ESCS 30	A - 9		
O- ESH 2	A - 2		
O-ESH 2	A - 3		
- HFH2-Z2	C-2		
- HFH2-Z2	C-3	July, 2003	1 Year
O-ESV/ESV-Z3	A-7/ A-17		
O-ESV/ESV-Z3	A-6/A-18		
O-ESV/ESV-Z3	A-4/A-20		
- - ESV/ESV-Z3	A-8/A-19	November, 2003	1 Year
O- ESVS 10	A - 5		
O-VHA9103/BBA9106	C-43		
O - UHALP9107	C-42		
- VHA9103/FBAB9177	C-25	August, 2003	1 Year
- UHALP9108-A1	C-28	August, 2003	1 Year
- - Cable	H-1	August, 2003	1 Year
		inue -	

JQA Application No.: KL80030382S
Model No. : PBS-CS37
FCC ID : AEZPBS-CS37

Regulation : CFR 47 FCC Rules Part 24
Issue Date : October 6, 2003

Used test instruments :

Model No.
- - 8566B
- - 8593A
- $-4 \mathrm{~T}-10$
- $4 \mathrm{~T}-10$
- WJ-6611-513
- WJ-6882-824
- DBL-0618N515
- -91888-2
- 91889-2
- -94613-1
- -91891-2
- -94614-1
- - 3160-04
--3160-05
--3160-06
--3160-07
--3160-08
- -3160-09
- - 355C
- - 355D
- MZ5010C
- - 8673D
- - Cable
- - Cable
- - UHP-127
- - UHP-128

Device ID

A-13
A-15
D-73
D-74
A-23
A-21
A-33
C-41-1
C-41-2
C-41-3
C-41-4
C-41-5
C-55
C-56
C-57
C-58
C-59
C-48
D-22
D - 23
D-81
B-2
C-40-11
C-40-12
D - 42
D-43

Last Cal. Date

February, 2003
May, 2003

November, 2002

November, 2002
April, 2003
May, 2003
May, 2003
May, 2003

Cal. Interval

1 Year

1 Year
1 Year
1 Year
1 Year
1 Year
1 Year
1 Year
1 Year
1 Year
1 Year

1 Year

1 Year
1 Year
1 Year
1 Year
1 Year

Environmental conditions :

Temperature: $21^{\circ} \mathrm{C}$ Humidity: $73 \quad \%$

JQA Application No.: KL80030382S
Model No. FCC ID : PBS-CS37 : AEZPBS-CS37

Regulation
Issue Date
: CFR 47 FCC Rules Part 24
: October 6, 2003

Page 13 of 50

(a) Measurement set up for up to 30 MHz

(b) Measurement set up for up to 1 GHz

Fig. 4 Unwanted Radiation Measurement

JQA Application No.: KL80030382S
Model No.
: PBS-CS37
FCC ID : AEZPBS-CS37

Regulation
Issue Date
: CFR 47 FCC Rules Part 24
: October 6, 2003

Page 14 of 50

(c) Measurement set up for above 1 GHz

Fig. 4 Unwanted Radiation Measurement

Occupied Bandwidth Measurement (§2.1049, §24.238)

Test Procedure :

The measurement test-setup is shown in Fig.5.
The setting of the spectrum analyzer are shown as follows :
Res. Bandwidth : 10 kHz
Video Bandwidth : 30 kHz
Span : 1 MHz
Sweep Time : AUTO
Trace : Maxhold

Test location :

KITA-KANSAI Testing Center
7-7, Ishimaru, 1-Chome, Mino-Shi, Osaka, 562-0027, Japan

- - Shielded room

KAMEOKA EMC Branch
9-1, Ozaki, Inukanno, Nishibetsuin-Cho, Kameoka-Shi, Kyoto, 621-0126, Japan
O-Shielded room
Used test instruments:
Model No.
Device ID
Last Cal. Date
Cal. Interval
O-4T-10
D - 73
O-4T-10
D - 74

- - 2-10

D - 40
June, 2003
1 Year
O-2-10
D - 79
O-2-10
D - 80

- - 8566B

A-13
February, 2003
1 Year
O-8593A
A-15

Fig. 5 Occupied Bandwidth Measurement

Environmental conditions:

Temperature: $\underline{23{ }^{\circ} \mathrm{C}}$ Humidity: $\underline{60 \quad \%}$

Band-Edge Emission Measurement(§22.917,§24.238)

Test Procedure :

The measurement test-setup is shown in Fig.6.
The setting of the spectrum analyzer are shown as follows :
TX Frequency : $1880.15 \mathrm{MHz} / 1909.55 \mathrm{MHz}$
Band-edge Frequency : $1870.0 \mathrm{MHz} / 1910.0 \mathrm{MHz}$
Res. Bandwidth : 3 kHz
Video Bandwidth : 10 kHz
Span : $30 \mathrm{MHz} / 2 \mathrm{MHz}$
Sweep Time : AUTO
Trace : Maxhold

Test location :

KITA-KANSAI Testing Center
7-7, Ishimaru, 1-Chome, Mino-Shi, Osaka, 562-0027, Japan

- - Shielded room

KAMEOKA EMC Branch
9-1, Ozaki, Inukanno, Nishibetsuin-Cho, Kameoka-Shi, Kyoto, 621-0126, Japan
O-Shielded room

Used test instruments:

$O-4 T-10$	$D-73$
$O-4 T-10$	$D-74$
$O-2-10$	$D-40$
$O-2-10$	$D-79$
$O-2-10$	$D-80$
$O-8566 B$	$A-13$
$O-8593 A$	$A-15$

June, 2003
1 Year

- $-2-10$

D-79
D-80
A-13
February, 2003
1 Year

Fig. 6 Band-Edge Emission Measurement

Environmental conditions:

Temperature: $\quad 23{ }^{\circ} \mathrm{C}$ Humidity: $\quad 60 \%$

Frequency Stability Measurement(§2.1055, §24.235)

a) Frequency Stability Measurement versus Temperature

The EUT was placed in an environmental chamber and was tested in the range from -30 to +50 degrees Celsius. The EUT was stabilized at each temperature. The power $(120 \mathrm{VAC})$ supplied was applied to the transmitter and allowed to stabilize for 10 minutes. The transmitting frequency was measured at startup and 2 minutes, 5 minutes and 10 minutes after startup. This procedure was repeated from - 30 to +50 degrees Celsius at the interval of 10 degrees.
b) Frequency Stability Measurement versus Power Supply Voltage

The EUT was placed in an environmental chamber and was tested at the temperature of +20 degrees Celsius. The EUT was stabilized at the temperature. The power(120VAC), the power(102VAC, 85%) and the power ($138 \mathrm{VAC}, 115 \%$) was applied to the EUT allowed to stabilize for 10 minutes. The transmitting frequency was measured at startup and 2 minutes, 5 minutes and 10 minutes after startup.

Fig. 7 Frequency Stability Measurement

Test location:

KITA-KANSAI Testing Center
7-7, Ishimaru, 1-Chome, Mino-Shi, Osaka, 562-0027, Japan
O-Shielded room

- Environment Testing Room

KAMEOKA EMC Branch
9-1, Ozaki, Inukanno, Nishibetsuin-Cho, Kameoka-Shi, Kyoto, 621-0126, Japan
○-Shielded room

Used test instruments and sites :

Model No.	Device ID	Last Cal. Date	Cal. Interval
- - PL-3G	02304009	July, 2003	1 Year
- EL100-06T4	14201089	July, 2003	1 Year
O-2011-39	B -33		
- 2013-18	B -34	April, 2003	1 Year
O - TO32A	F -5		
- TR5212	B -30	March, 2003	1 Year
- CMU200	- MG3681A	B -3	April, 2003

AC Powerline Conducted Emission Measurement

was performed in the following test site.

Test location:

KITA-KANSAI Testing Center
7-7, Ishimaru, 1-Chome, Mino-Shi, Osaka, 562-0027, Japan
O - Shielded room
KAMEOKA EMC Branch
9-1, Ozaki, Inukanno, Nishibetsuin-Cho, Kameoka-Shi, Kyoto, 621-0126, Japan

- - Shielded room

O - On metal plane of open site

Used test instruments and sites:

Model No.	Device ID	Last Cal. Date	Cal. Interval
O- ESCS 30	A-1		
O- ESH 2	A - 2		
- - ESH 2	A-3	November, 2002	1 Year
O-KNW-407	D-6		
O-KNW-408	D - 11		
O-KNW-242	D-7		
O- ESH3-Z5	D - 12		
- - KNW-341C	D - 13	October, 2002	1 Year
O-KNW-408	D - 14		
O - KNW-244C	D - 77		
O-KNW-408	D - 78		
O- ESH2-Z5	D - 10		
O- ESH2-Z3	D-17		
O-65 BNC-50-0-1	H-26		
O-65 BNC-50-0-1	H-27		
- - Cable	H-7	October, 2002	1 Year
O-Cable	H-8		

Environmental conditions:

Temperature: $\underline{25}^{\circ} \mathrm{C}$
Humidity: 60 \%

AC Powerline Conducted Emission $150 \mathrm{kHz}-30 \mathrm{MHz}$:
The preliminary test was performed according to the description of ANSI C63.4-2001 Sec.7.2.3 (Exploratory AC Powerline Conducted Emission Measurements) and Sec.6.2.1 (Tabletop Equipment Tests).
The preliminary test was carried out to investigate the frequency of the emission that has the highest amplitude relative to the limits within normal operating modes, cable positions, and a typical system configuration. In order to find out to the maximum emission, the preliminary test and a final test were performed in accordance with the following steps.
Step 1: One operation mode of the test system was setting.
Step 2: Using both of a spectrum analyzer and a test receiver, the emission's circumstance from the system was monitored in one of ten divided frequency bands of the specified frequency range (150 $\mathrm{kHz}-30 \mathrm{MHz}$). The maximum emission in the band was found by changing the typical cable positions or cable manipulation under a typical system configuration and by selecting of current-carrying conductor. The level and the frequency at the one point which are regarded as relative high emission in the band was measured and recorded. This step was repeated until the ending frequency band.
Step 3: Return to step 1, if the other operation mode was possible to be setting.
Step 4: Based on the collected results, the operation mode produced the maximum emission was selected. The final test on the selected operation mode was performed. But if it was difficult to select the operation mode, the final tests on all operation modes were performed.
Step 5: Based on the same data, as result if the final measurement, at the worst point that has the highest amplitude relative to the limit the repeatability of the worst was reconfirmed.
The photographs of the test system setup on the worst point were taken and recorded.

Fig. 8 AC Powerline Conducted Emission Measurement

JQA Application No.: KL80030382S
Model No.
: PBS-CS37

Regulation Issue Date
: CFR 47 FCC Rules Part 24
: October 6, 2003

CONFIGURATION OF EUT

The Equipment Under Test (EUT) consists of :

Description	Applicant (Manufacturer)	Model No. (Serial No.)	FCC ID
PHS Cell Station	SANYO Electric Co., Ltd. (SANYO Electric Co., Ltd.)	PBS-CS37 (UTNO0001)	AEZPBS-CS37

The measurement was carried out with the following equipment connected :

Description	Grantee/Distributor	Model No. (Serial No.)	FCC ID
Antenna 1	MASPRO DENKOH CORPORATION	AMSP0011 (1027990)	N/A
Antenna 2	MASPRO DENKOH CORPORATION	AMSP0011 (1027992)	N/A
Antenna 3	MASPRO DENKOH CORPORATION	AMSP0011 (1027989)	N/A
Antenna 4	MASPRO DENKOH CORPORATION	AMSP0011 (1027991)	N/A
GPS Antenna	Trimble Navigation Limited	Acutime2000 (12253054)	N/A(DoC)

JQA Application No.: KL80030382S
Model No. : PBS-CS37 FCC ID : AEZPBS-CS37

Regulation Issue Date
: CFR 47 FCC Rules Part 24
: October 6, 2003

Page 22 of 50

Type of Interface Cable(s) and the AC Power Cord used with the EUT :

	Description	Port	Shielded Cable	Shell Material	Ferrite Core	Cable Length
1	EUT Antenna	ANT 1	YES	Metal Metal	NO	1.2 m
2	EUT Antenna	ANT 2	YES	Metal Metal	NO	1.2 m
3	EUT Antenna	ANT 3	YES	Metal Metal	NO	1.2 m
4	EUT Antenna	ANT 4	YES	Metal Metal	NO	1.2 m
5	EUT GPS Antenna	GPS	YES	Metal Metal	NO	15.0 m
6	EUT No termination	NT1 ----	YES	Metal Metal	NO	20.0 m
7	EUT No termination	COMM	YES	Metal Metal	NO	12.0 m
8	AC Power Cord (EUT) 1中 3-pin plug	--	YES	--	NO	1.4 m

Test Configuration:

Operation - mode of the EUT:

The tests were carried out under one modulation type shown as follows :
Modulation type : $\pi / 4$ shift QPSK

Test system:

The EUT is 1900 MHz PHS Cell Station.
The adaptive array antenna technology is apllied to the PHS system, in order to effective use of available frequency, improves capacity of subscribers, and improves the transmission quality of the system.
The EUT has 7 ports shown as follows :

1) 4 ANT Set ports : Each of them is connected to the Antenna.
2) GPS port : is connected to the GPS Antenna.
3) NT1 port : is connected to No terminated cable.
4) COMM port : is connected to No terminated cable.

The specification of the antenna is shown as follows:

1) Type : Co-Linear antnna(Omni-direction)
2) Gain : 10 dBi
3) Impedance : 50Ω
4) VSWR : Less than 1.5
5) Cable: Length 1.2 m , Attenuation $0.5 \mathrm{~dB} / \mathrm{m}$

The specification of the adaptive array antenna systems is shown as follows:

1) Number of elements: 4
2) Array Gain : 6dB

The adaptive array antenna controls antenna pattern for desired user, by controlling the phase and amplitude of signals.
Maximizing signal from desire user : beam steerimg
Suppressing signals from undesired users : null steering

Special accessories:

None

Detailed Transmitter portion:

Transmitting frequency : $1880.15 \mathrm{MHz}(206 \mathrm{ch})-1909.55 \mathrm{MHz}(49 \mathrm{ch})$
Local frequency : $1636.20 \mathrm{MHz}(206 \mathrm{ch})-1665.60 \mathrm{MHz}(49 \mathrm{ch}), 9.6 \mathrm{MHz}, 233.15 \mathrm{MHz}$

Detailed Receiver portion:

Receiving frequency : $1880.15 \mathrm{MHz}(206 \mathrm{ch})-1909.55 \mathrm{MHz}(49 \mathrm{ch})$
Local frequency : $1636.20 \mathrm{MHz}(206 \mathrm{ch})-1665.60 \mathrm{MHz}(49 \mathrm{ch}), 9.6 \mathrm{MHz}, 233.15 \mathrm{MHz}$

Other Clock Frequency:

TCXO : 19.2 MHz

JQA Application No.: KL80030382S

Regulation Issue Date
: CFR 47 FCC Rules Part 24
: October 6, 2003

EUT Modification

- No modifications were conducted by JQA to achieve compliance to applied levels.

O - To achieve compliance to applied levels, the following change(s) were made by JQA during the compliance test.

The modification(s) will be implemented in all production models of this equipment.

| Applicant | $: N / A$ | Date $:$ | N/A |
| :--- | :--- | :--- | :--- | :--- |
| Typed Name $: ~ N / A$ | | Position : | N/A |

Responsible Party

Responsible Party of Test Item(Product)	
Responsible party	$:$
Contact Person	$:$

Deviation from Standard

- No deviations from the standard described in page 3 .
- The following deviations were employed from the standard described in page 3.

JQA Application No.: KL80030382S
Model No.
: PBS-CS37 FCC ID : AEZPBS-CS37

Regulation : CFR 47 FCC Rules Part 24 Issue Date : October 6, 2003

TEST RESULTS

Transmitter Power(TP)

The requirements are
The transmitter power is
Min. limit margin
Max. limit exceeding
Uncertainty of measurement results

- - Passed

O - Not Passed

1.29	W	at $\underline{1894.850}$	MHz
18.9	dB	at $\underline{1894.850}$	MHz
	dB	at \quad	MHz

Remarks:

\qquad

Antenna Conducted Spurious Emission

The requirements are

More than	- - Passed		O-Not Passed	
	20.6	dB at	$\underline{18801.500}$	MHz
		dB at		MHz
	+2.4	$\mathrm{dB}(2 \sigma)$	-2.4 d	$\mathrm{dB}(2 \sigma)$

Remarks:

Transmitter Power(EIRP)

The requirements are
The Maximum EIRP is
Min. limit margin
Max. limit exceeding
Uncertainty of measurement results

Remarks:

- - Passed
$\underline{166.34} \mathrm{~W}$ at $\underline{1894.85} \mathrm{MHz}$

9.9	dB	at 1894.85
	MHz	
dB	at $\quad \mathrm{MHz}$	

$$
+1.3 \mathrm{~dB}(2 \sigma) \quad-1.3 \mathrm{~dB}(2 \sigma)
$$

Unwanted Radiation ($9 \mathrm{kHz}-20 \mathrm{GHz}$)

The requirements are
Min. limit margin
Max. limit exceeding
Uncertainty of measurement results

9 kHz	-30 MHz	+2.5	$\mathrm{~dB}(2 \sigma)$	-2.5
$\mathrm{dB}(2 \sigma)$ 30 MHz -1 GHz +3.6 $\mathrm{~dB}(2 \sigma)$ -3.7 $\mathrm{~dB}(2 \sigma)$ 1 GHz -20 GHz +3.1 $\mathrm{~dB}(2 \sigma)$ -3.2 $\mathrm{~dB}(2 \sigma)$				

Remarks:

\qquad

Occupied Bandwidth

The requirements are
The 26dB Bandwdth is
The results(Occupied Bandwidth)
Uncertainty of measurement results at Frequency
Uncertainty of measurement results at Amplitude

- - Passed
- Not Passed
$\underline{286} \mathrm{kHz}$ at $\underline{1894.85} \mathrm{MHz}$
Refer to pages* 2-13

$\frac{ \pm 0.05}{ \pm 0.6}$

Remarks: *: The Page is one in the Attachment A.

Band-Edge Emission

The requirements are
The Band-Edge level is
The results(Band-edge Emission)
Uncertainty of measurement results at Frequency
Uncertainty of measurement results at Amplitude

- - Passed

O - Not Passed

Refer to pages* 15-22

± 0.05
$\underset{\sim}{ \pm 0.6}$

Remarks: *: The Page is one in the Attachment A.

JQA Application No.: KL80030382S
Regulation : CFR 47 FCC Rules Part 24
Model No. : PBS-CS37 FCC ID : AEZPBS-CS37

Issue Date : October 6, 2003

Page 27 of 50

Minimum Save-distance

Minimum Save-distance : $\quad 1.15 \mathrm{~m}$

Remarks:

Frequency Stability

Max. Frequency Deviation: $\quad+\underline{+1950.7} \mathrm{~Hz}$ at $\underline{1880.150} \mathrm{MHz}$
Uncertainty of measurement results
$\pm 0.05 \mathrm{ppm}$

Remarks:

JQA Application No.: KL80030382S

Regulation
Issue Date
: CFR 47 FCC Rules Part 24
: October 6, 2003

TEST RESULTS

Digital Device Class B, Part15

AC Powerline Conducted Emission $150 \mathbf{k H z}-30 \mathrm{MHz}$

The requirements are

- - Passed
23.7 dB at 0.25 MHz
\qquad dB at \qquad MHz

Uncertainty of measurement results
\qquad

Electromagnetic Field Radiated Emission $30 \mathrm{MHz}-1000 \mathrm{MHz}$

The requirements are
Min. limit margin
Max. limit exceeding
Uncertainty of measurement results

- - Passed
\qquad dB
\qquad dB at \qquad MHz $+3.6 \mathrm{~dB}(2 \sigma) \quad-3.7 \mathrm{~dB}(2 \sigma)$
\qquad

Remarks: \qquad
\qquad

SUMMARY

GENERAL REMARKS :

The EUT was tested according to the requirements of FCC Rules and Regulations Part 24 (October $1,2002)$ under the test configuration, as shown in page 30.

The conclusion for the test items of which are required by the applied regulation is indicated under the final judgement.

FINAL JUDGEMENT :

The "as received" sample;

- - fulfill the test requirements of the regulation mentioned on page 3 .

O - fulfill the test requirements of the regulation mentioned on page 3, but with certain qualifications.
O - doesn't fulfill the test regulation mentioned on page 3.

Begin of testing : August 25, 2003

End of testing \qquad

- JAPAN QUALITY ASSURANCE ORGANIZATION -

Approved by :

[^1]Issued by :
S.tins

Shigeru Kinoshita
Deputy Manager
EMC Div.
JQA KITA-KANSAI Testing Center

Test System-Arrangement (Drawings)

Note:

* : No temination
(1): ANT1/ANT2/ANT3/ANT4
(2) : GPS
(3) : NT1
(4) : COMM

Details of Test-Arrangement on Radiated emission test (Drawings)

JQA Application No.: KL80030382S
Model No.
: PBS-CS37
: AEZPBS-CS37

Regulation
Issue Date
: CFR 47 FCC Rules Part 24
: October 6, 2003

Page 32 of 50
Test-Setup (Photographs) at worst case

Conducted Emission 150 kHz - 30MHz:

Front View

Side View

Radiated Emission 9 kHz - 20 GHz :

Front View

Rear View

JQA Application No.: KL80030382S
Model No.
: PBS-CS37
FCC ID
: AEZPBS-CS37

Regulation : CFR 47 FCC Rules Part 24
Issue Date : October 6, 2003

Page 33 of 50

Transmitter Power(TP) Measurement
Test Date: September 16, 2003
Temp.: $23^{\circ} \mathrm{C}$; Humi.: 60%

1)Antenna Terminal :		ANT1		Results		Limits	Margin
CH	Frequency	Correction Factor	Meter Reading Peak				
	[MHz]	[dB]	[dBm]	[dBm]	[W]	[W]	[dB]
206	1880.150	30.12	0.80	30.92	1.24	100.0	+19.1
255	1894.850	30.14	0.86	31.00	1.26	100.0	+19.0
49	1909.550	30.16	0.66	30.82	1.21	100.0	+19.2
2)Antenna Terminal :		ANT2Correction		Results			
CH	Frequency		Meter Reading Peak			Limits	Margin
	[MHz]	[dB]	[dBm]	[dBm]	[W]	[W]	[dB]
206	1880.150	30.12	0.72	30.84	1.21	100.0	+19.2
255	1894.850	30.14	0.89	31.03	1.27	100.0	+19.0
49	1909.550	30.16	0.66	30.82	1.21	100.0	+19.2
3)Antenna Terminal :		ANT3		Results			
CH	Frequency	Correction Factor	Meter Reading Peak			Limits	Margin
	[MHz]	[dB]	[dBm]	[dBm]	[W]	[W]	[dB]
206	1880.150	30.12	0.87	30.99	1.26	100.0	+19.0
255	1894.850	30.14	0.95	31.09	1.29	100.0	+18.9
49	1909.550	30.16	0.66	30.82	1.21	100.0	+19.2
4)Antenna Terminal :		ANT4		Results			
CH	Frequency	Correction	Meter Reading			Limits	Margin
		Factor	Pea	Peak			
	[MHz]	[dB]	[dBm]	[dBm]	[W]	[W]	[dB]
206	1880.150	30.12	0.88	31.00	1.26	100.0	+19.0
255	1894.850	30.14	0.82	30.96	1.25	100.0	+19.0
49	1909.550	30.16	0.66	30.82	1.21	100.0	+19.2

Sample of calculated result at 1894.850 MHz , as he Maximum Level Point:
Correction Factor $=30.14 \mathrm{~dB}$

+ Meter Reading $=0.95 \mathrm{dBm}$
Result $\quad=31.09 \mathrm{dBm}: 10^{(31.09 / 10)}=1290(\mathrm{~mW})=1.29(\mathrm{~W})$
Minimum Margin : $10 \log (100 / 1.29)=+18.9(\mathrm{~dB})$
The point shown on "___ " is the Minimum Margin Point.
Note : 1. The correction factor includes the attenuator loss and the cable loss.

JQA Application No.: KL80030382S
Model No.
: PBS-CS37
FCC ID
: AEZPBS-CS37

Regulation Issue Date : October 6, 2003

Antenna Conducted Spurious Emission Measurement

Test Date: September 16, 2003
Temp.: $23^{\circ} \mathrm{C}$; Humi.: 60%

Measurement Results:

1) Antenna Terminal : ANT1

Transmitting Frequency :1880.150 MHz (206ch)

Frequency	Correction Factor [dB]	Meter Readings $(\mathbf{d B m})$	Limits	Results $(\mathbf{d B m})$	Margin $[\mathbf{d B}]$	Remarks $($ Note 2$)$
$[\mathbf{M H z]}$		$\mathbf{(d B m)}$				
3760.300	11.7	-53.4	-13.0	-41.7	+28.7	A
5640.450	11.7	-62.3	-13.0	-50.6	+37.6	A
7520.600	-16.8	-49.4	-13.0	-66.2	+53.2	B
9400.750	-16.7	-47.2	-13.0	-63.9	+50.9	B
11280.900	-14.7	<-50.0	-13.0	$<-64.7>+51.7$	B	
13161.050	-15.6	<-50.0	-13.0	$<-65.6>+52.6$	B	
15041.200	-16.1	<-50.0	-13.0	$<-66.1>+53.1$	B	
16921.350	-15.7	<-50.0	-13.0	$<-65.7>+52.7$	B	
18801.500	16.4	<-50.0	-13.0	$<-33.6>+20.6$	C	

Transmitting Frequency :1894.850 MHz

Frequency	Correction Factor	Meter Readings $(\mathbf{d B m})$	Limits	Results $(\mathbf{d B m})$	Margin [dB]	Remarks $($ Note 2)
$[\mathbf{M H z}]$	[dB]		$(\mathbf{d B m})$			
3789.700	11.8	-52.2	-13.0	-40.4	+27.4	A
5684.550	11.6	-60.7	-13.0	-49.1	+36.1	A
7579.400	-16.8	-48.9	-13.0	-65.7	+52.7	B
9474.250	-16.7	-47.9	-13.0	-64.6	+51.6	B
11369.100	-15.4	<-50.0	-13.0	$<-65.4>+52.4$	B	
13263.950	-15.7	<-50.0	-13.0	$<-65.7>+52.7$	B	
15158.800	-16.1	<-50.0	-13.0	$<-66.1>+53.1$	B	
17053.650	-14.2	<-50.0	-13.0	$<-64.2>+51.2$	B	
18948.500	16.3	<-50.0	-13.0	$<-33.7>+20.7$	C	

Transmitting Frequency : 1909.550 MHz

Frequency	Correction Factor	Meter Readings $\mathbf{(d B m})$	Limits	Results $\mathbf{(d B m})$	Margin [dB]	Remarks (Note 2)
$[\mathbf{M H z]}$	[dB]		$\mathbf{(d B m)}$			
3819.100	11.8	-55.1	-13.0	-43.3	+30.3	A
5728.650	11.9	-60.1	-13.0	-48.2	+35.2	A
7638.200	-16.8	-50.3	-13.0	-67.1	+54.1	B
9547.750	-16.4	-51.3	-13.0	-67.7	+54.7	B
11457.300	-15.7	<-50.0	-13.0	$<-65.7>+52.7$	B	
13366.850	-15.4	<-50.0	-13.0	$<-65.4>+52.4$	B	
15276.400	-15.8	<-50.0	-13.0	$<-65.8>+52.8$	B	
17185.950	-14.7	<-50.0	-13.0	$<-64.7>+51.7$	B	
19095.500	15.9	<-50.0	-13.0	$<-34.1>+21.1$	C	

JQA Application No.: KL80030382S
Model No.
: PBS-CS37
FCC ID

CFR 47 FCC Rules Part 24
: October 6, 2003

2) Antenna Terminal : ANT2

Transmitting Frequency :1880.150 MHz (206ch)

Frequency	Correction Factor	Meter Readings $(\mathbf{d B m})$	Limits	Results $\mathbf{(d B m})$	Margin $[\mathbf{d B}]$	Remarks $($ Note 2)
$[\mathbf{M H z]}$	[dB]		$(\mathbf{d B m})$			
3760.300	11.7	-57.8	-13.0	-46.1	+33.1	A
5640.450	11.7	-61.9	-13.0	-50.2	+37.2	A
7520.600	-16.8	-46.4	-13.0	-63.2	+50.2	B
9400.750	-16.7	-47.6	-13.0	-64.3	+51.3	B
11280.900	-14.7	<-50.0	-13.0	$<-64.7>+51.7$	B	
13161.050	-15.6	<-50.0	-13.0	$<-65.6>+52.6$	B	
15041.200	-16.1	<-50.0	-13.0	$<-66.1>+53.1$	B	
16921.350	-15.7	<-50.0	-13.0	<-65.7	$>+52.7$	B
18801.500	16.4	<-50.0	-13.0	$<-33.6>+20.6$	C	

Transmitting Frequency : 1894.850 MHz (255ch)

Frequency	Correction Factor	Meter Readings $\mathbf{(d B m})$	Limits	Results $\mathbf{(d B m})$	Margin $[\mathbf{d B}]$	Remarks $($ Note 2$)$
$[\mathbf{M H z]}$	[dB]		$(\mathbf{d B m})$			
3789.700	11.8	-58.2	-13.0	-46.4	+33.4	A
5684.550	11.6	-60.2	-13.0	-48.6	+35.6	A
7579.400	-16.8	-46.2	-13.0	-63.0	+50.0	B
9474.250	-16.7	-48.1	-13.0	-64.8	+51.8	B
11369.100	-15.4	<-50.0	-13.0	$<-65.4>+52.4$	B	
13263.950	-15.7	<-50.0	-13.0	<-65.7	$>+52.7$	B
15158.800	-16.1	<-50.0	-13.0	$<-66.1>+53.1$	B	
17053.650	-14.2	<-50.0	-13.0	<-64.2	$>+51.2$	B
18948.500	16.3	<-50.0	-13.0	<-33.7	$>+20.7$	C

Transmitting Frequency : $1909.550 \mathrm{MHz} \quad$ (49ch)

Frequency	Correction Factor	Meter Readings $\mathbf{(d B m})$	Limits	Results $(\mathbf{d B m})$	Margin [dB]	Remarks (Note 2)
$[\mathbf{M H z]}$	[dB]		$(\mathbf{d B m})$			
3819.100	11.8	-63.2	-13.0	-51.4	+38.4	A
5728.650	11.9	-60.0	-13.0	-48.1	+35.1	A
7638.200	-16.8	-48.9	-13.0	-65.7	+52.7	B
9547.750	-16.4	-49.0	-13.0	-65.4	+52.4	B
11457.300	-15.7	<-50.0	-13.0	$<-65.7>+52.7$	B	
13366.850	-15.4	<-50.0	-13.0	$<-65.4>+52.4$	B	
15276.400	-15.8	<-50.0	-13.0	$<-65.8>+52.8$	B	
17185.950	-14.7	<-50.0	-13.0	$<-64.7>+51.7$	B	
19095.500	15.9	<-50.0	-13.0	$<-34.1>+21.1$	C	

JQA Application No.: KL80030382S
Model No.
: PBS-CS37
FCC ID

CFR 47 FCC Rules Part 24
: October 6, 2003

3) Antenna Terminal : ANT3

Transmitting Frequency : $\mathbf{1 8 8 0 . 1 5 0 ~ M H z ~ (2 0 6 c h) ~}$

Frequency	Correction Factor	Meter Readings $(\mathbf{d B m})$	Limits	Results $\mathbf{(d B m})$	Margin $[\mathbf{d B}]$	Remarks $($ Note 2$)$
$[\mathbf{M H z}]$	[dB] $]$	-52.6	-13.0	-40.9	+27.9	A
3760.300	11.7	-60.9	-13.0	-49.2	+36.2	A
5640.450	11.7	-60.9	-13.0	-65.8	+52.8	B
7520.600	-16.8	-49.0	-48.3	-13.0	-65.0	+52.0
9400.750	-16.7	-13.0	$<-64.7>+51.7$	B		
11280.900	-14.7	<-50.0	-13.0			
13161.050	-15.6	<-50.0	-13.0	$<-65.6>+52.6$	B	
15041.200	-16.1	<-50.0	-13.0	$<-66.1>+53.1$	B	
16921.350	-15.7	<-50.0	-13.0	<-65.7	$>+52.7$	B
18801.500	16.4	<-50.0	-13.0	$<-33.6>+20.6$	C	

Transmitting Frequency : $\mathbf{1 8 9 4 . 8 5 0} \mathbf{~ M H z}$
(255ch)

Frequency	Correction Factor	Meter Readings $(\mathbf{d B m})$
$[\mathbf{M H z}]$	[dB]	
3789.700	11.8	-52.3
5684.550	11.6	-59.5
7579.400	-16.8	-48.1
9474.250	-16.7	-50.1
11369.100	-15.4	<-50.0
13263.950	-15.7	<-50.0
15158.800	-16.1	<-50.0
17053.650	-14.2	<-50.0
18948.500	16.3	<-50.0

Transmitting Frequency : $\mathbf{1 9 0 9 . 5 5 0} \mathbf{~ M H z}$
(49ch)

Frequency	Correction Factor	Meter Readings $(\mathbf{d B m})$	Limits	Results $\mathbf{(d B m})$	Margin $[\mathbf{d B}]$	Remarks (Note 2)
$[\mathbf{M H z}]$	[dB]		$(\mathbf{d B m})$			
3819.100	11.8	-57.8	-13.0	-46.0	+33.0	A
5728.650	11.9	-59.8	-13.0	-47.9	+34.9	A
7638.200	-16.8	-49.3	-13.0	-66.1	+53.1	B
9547.750	-16.4	-54.3	-13.0	-70.7	+57.7	B
11457.300	-15.7	<-50.0	-13.0	$<-65.7>+52.7$	B	
13366.850	-15.4	<-50.0	-13.0	$<-65.4>+52.4$	B	
15276.400	-15.8	<-50.0	-13.0	$<-65.8>+52.8$	B	
17185.950	-14.7	<-50.0	-13.0	<-64.7	$>+51.7$	B
19095.500	15.9	<-50.0	-13.0	$<-34.1>+21.1$	C	

JQA Application No.: KL80030382S
Model No.
: PBS-CS37
FCC ID
: CFR 47 FCC Rules Part 24
: October 6, 2003

4) Antenna Terminal : ANT4

Transmitting Frequency :1880.150 MHz (206ch)

Frequency	Correction Factor	Meter Readings $(\mathbf{d B m})$	Limits	Results $\mathbf{(d B m})$	Margin $[\mathbf{d B}]$	Remarks $($ Note 2$)$
$[\mathbf{M H z}]$	[dB] $]$		$\mathbf{(d B m)}$			
3760.300	11.7	-55.2	-13.0	-43.5	+30.5	A
5640.450	11.7	-60.1	-13.0	-48.4	+35.4	A
7520.600	-16.8	-46.7	-13.0	-63.5	+50.5	B
9400.750	-16.7	-47.3	-13.0	-64.0	+51.0	B
11280.900	-14.7	<-50.0	-13.0	$<-64.7>+51.7$	B	
13161.050	-15.6	<-50.0	-13.0	$<-65.6>+52.6$	B	
15041.200	-16.1	<-50.0	-13.0	$<-66.1>+53.1$	B	
16921.350	-15.7	<-50.0	-13.0	<-65.7	$>+52.7$	B
18801.500	16.4	<-50.0	-13.0	$<-33.6>+20.6$	C	

Transmitting Frequency : $\mathbf{1 8 9 4 . 8 5 0} \mathbf{~ M H z}$
(255ch)

Frequency	Correction Factor	Meter Readings $(\mathbf{d B m})$
$[\mathbf{M H z}]$	[dB]	
3789.700	11.8	-56.7
5684.550	11.6	-58.8
7579.400	-16.8	-47.6
9474.250	-16.7	-47.5
11369.100	-15.4	<-50.0
13263.950	-15.7	<-50.0
15158.800	-16.1	<-50.0
17053.650	-14.2	<-50.0
18948.500	16.3	<-50.0

Transmitting Frequency : $\mathbf{1 9 0 9 . 5 5 0} \mathbf{~ M H z}$
(49ch)

Frequency	Correction Factor	Meter Readings $(\mathbf{d B m})$	Limits	Results $(\mathbf{d B m})$	Margin $[\mathbf{d B}]$	Remarks (Note 2)
$[\mathbf{M H z}]$	[dB]		$(\mathbf{d B m})$			
3819.100	11.8	-59.2	-13.0	-47.4	+34.4	A
5728.650	11.9	-59.8	-13.0	-47.9	+34.9	A
7638.200	-16.8	-48.9	-13.0	-65.7	+52.7	B
9547.750	-16.4	-51.0	-13.0	-67.4	+54.4	B
11457.300	-15.7	<-50.0	-13.0	$<-65.7>+52.7$	B	
13366.850	-15.4	<-50.0	-13.0	$<-65.4>+52.4$	B	
15276.400	-15.8	<-50.0	-13.0	$<-65.8>+52.8$	B	
17185.950	-14.7	<-50.0	-13.0	<-64.7	$>+51.7$	B
19095.500	15.9	<-50.0	-13.0	$<-34.1>+21.1$	C	

Sample of calculated result at 18801.500 MHz , as the Minimum Margin point:
Correction Factor $=16.4 \mathrm{~dB}$

+) Meter Reading $\quad=<-50.0 \mathrm{dBm}$

$$
\text { Result } \quad=<-33.6 \mathrm{dBm}
$$

Minimum Margin :-13.0-(<-33.6) $=>20.6(\mathrm{~dB})$
The point shown on "___ " is the Minimum Margin Point.

```
Applied limits :
    Applied limits \(=10 \log [\mathrm{TP}(\mathrm{mW})]-[43+10 \log [\operatorname{tp}(\mathrm{~W})]]=10 \log [\mathrm{TP}(\mathrm{mW})]-[43+(10 \log [\mathrm{TP}(\mathrm{mW})]-30)]\)
        \(=-13[\mathrm{dBm}]\)
    Where \(\operatorname{tp}(\mathrm{W})=\mathrm{TP}(\mathrm{mW}) / 1000\) : Transmitter Power at antenna terminal
        \(10 \log [\operatorname{tp}(\mathrm{~W})]=10 \log [\mathrm{TP}(\mathrm{mW})]-30\)
```

 Note : 1. The spectrum was checked from 9 kHz up to 20 GHz .
 2. All emissions not listed were found to be more than 20dB below the limit.
 Remarks:
 | Note 3 | Detector Function | RES. B.W | V.B.W | Sweep T | Span | Corr. Factor * |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | Peak (SP) | 1 MHz | 3 MHz | 20 msec | 0 Hz | CL+P10(D-40)
 + HPF(D-42) |
| B | Peak (SP) | 1 MHz | 3 MHz | 20 msec | 0 Hz | CL+P10(D-73)-Amp.(A-3
 $3)+\mathrm{P} 10(\mathrm{D}-74)$
 $+\mathrm{HPF}(\mathrm{D}-42)$ |
| C | Peak (SP) | 1 MHz | 3 MHz | 20 msec | 0 Hz | CL+P10(D-73)-Amp.(A-3
 $3)+M i x . ~$ |

*)CL: Cable Loss / P10: 10dB Att. / HPF: High Pass Filter Loss/ Amp.: Amplifier Gain/ Mix.: Mixer Conversion Loss

Tester : Shigeru Kinoshita

JQA Application No.: KL80030382S
Model No.
: PBS-CS37
FCC ID
: AEZPBS-CS37

Regulation : CFR 47 FCC Rules Part 24
Issue Date : October 6, 2003

Page 40 of 50

Transmitter Power(EIRP) Measurement

Test Date: September 6, 2003 Temp.: $25^{\circ} \mathrm{C}$; Humi.: 58%

Measurement Results:

1)Emission Measurement in Fig.3(a)			
CH	Frequency	Meter Reading [dBuV]	
	[MHz]	Horizontal	Vertical
		Mh	Mv
206	1880.150	98.68	124.70
255	1894.850	99.30	125.40
49	1909.550	95.42	124.60

2)Substitution Measurement in Fig.3(b)	
CH	Frequency
	Meter Reading [dBuV]

[MHz] Horizontal Vertical
Msh Msv
85.45
Supplied Power to
Substitution Antenna
[dBm]
$\mathbf{P s}$
-2.08
-2.02
-1.95
Gain of
Substitution Antenna
[dBi]
Gs
14.22
14.28
14.36

Maximum Peak EIRP [W]	Limits	Margin
137.72	[W]	[dB]
166.34	1640.0	+10.8
127.64	1640.0	+9.9
	1640.0	+11.1

Sample of calculated result at 1894.850 MHz , as the Minimum Margin point:

Meter Reading Mh in Fig.3(a)	$=125.40 \mathrm{~dB}(\mu \mathrm{~V})$
Meter Reading -Msh in Fig.3(b)	$=-85.45 \mathrm{~dB}(\mu \mathrm{~V})$
Supplied Power to Sub. Ant.	$=-2.02 \mathrm{~dB}$
+ Gain of Sub. Ant.	$=14.28 \mathrm{~dB}$
Result	$=52.21 \mathrm{dBm}$
Peak EIRP $=52.21 \mathrm{dBm}$	$: 10^{(52.21300 / 100)}=166.34(\mathrm{~W})$

EIRPh $=$ Mh - Msh + Ps + Gs
$\mathrm{EIRPv}=\mathrm{Mv}-\mathrm{Msv}+\mathrm{Ps}+\mathrm{Gs}$
Minimum Margin : $10 \log (1640 / 166.34)=9.9(\mathrm{~dB})$
The point shown on "__ " is the Minimum Margin Point.

Remarks:

Remarks:

Note 3	Detector Function	RES. B.W	V.B.W	Sweep T	Span
A	Peak (SP)	1 MHz	3 MHz	20 msec	0 Hz

Tester : Akio Hosoda

JQA Application No.: KL80030382S
Model No.
: PBS-CS37
FCC ID : AEZPBS-CS37

Regulation Issue Date
: CFR 47 FCC Rules Part 24
: October 6, 2003

Unwanted Radiation Measurement

Test Date: September 6, 2003
Temp.: $25^{\circ} \mathrm{C}$; Humi.: 58%

Transmitting Frequency : $\mathbf{1 8 8 0 . 1 5 0 ~ M H z ~ (2 0 6 c h) ~}$

Frequency	EIRP [dBm]		Limits	Margin [dB]	Remarks (Note 3)
[MHz]	Hori.	Vert.	[dBm]		
3760.300	-33.6	-27.6	-13.0	+14.6	E
5640.450	-38.6	-38.6	-13.0	+25.6	B
7520.600	-37.3	-37.3	-13.0	+24.3	B
9400.750	<-52.6	<-52.6	-13.0	$>+39.6$	C
11280.900	<-52.1	<-52.1	-13.0	$>+39.1$	C
13161.050	<-46.2	<-46.2	-13.0	$>+33.2$	C
15041.200	<-46.2	<-46.2	-13.0	$>+33.2$	C
16921.350	<-48.2	<-48.2	-13.0	$>+35.2$	C
18801.500	<-43.6	<-43.6	-13.0	$>+30.6$	D

Transmitting Frequency: 1894.850 MHz (255ch)

Frequency	EIRP [dBm]		Limits	Margin [dB]	Remarks (Note 3)
[MHz]	Hori.	Vert.	[dBm]		
3789.700	-35.7	-27.7	-13.0	+14.7	E
5684.550	-38.6	-38.6	-13.0	+25.6	B
7579.400	-37.8	-37.8	-13.0	+24.8	B
9474.250	<-52.5	<-52.5	-13.0	$>+39.5$	C
11369.100	<-52.1	<-52.1	-13.0	$>+39.1$	C
13263.950	<-46.0	<-46.0	-13.0	$>+33.0$	C
15158.800	<-46.7	<-46.7	-13.0	$>+33.7$	C
17053.650	<-47.9	<-47.9	-13.0	$>+34.9$	C
18948.500	<-43.6	<-43.6	-13.0	$>+30.6$	D

JQA Application No.: KL80030382S
Model No.
: PBS-CS37
: AEZPBS-CS37

Regulation
Issue Date
: CFR 47 FCC Rules Part 24
: October 6, 2003

Transmitting Frequency : 1909.55 MHz

Frequency	EIRP [dBm]		Limits	Margin [dB]	Remarks (Note 3)
[MHz]	Hori.	Vert.	[dBm]		
3819.100	-35.7	-30.7	-13.0	+17.7	E
5728.650	-38.7	-38.7	-13.0	+25.7	B
7638.200	-42.6	-42.6	-13.0	+29.6	B
9547.750	<-52.5	<-52.5	-13.0	$>+39.5$	C
11457.300	<-52.0	<-52.0	-13.0	$>+39.0$	C
13366.850	<-45.8	<-45.8	-13.0	$>+32.8$	C
15276.400	<-47.1	<-47.1	-13.0	$>+34.1$	C
17185.950	<-48.0	<-48.0	-13.0	$>+35.0$	C
19095.500	<-43.4	<-43.4	-13.0	$>+30.4$	D

Sample of calculated result at 3760.300 MHz , as the Minimum Margin point:
Minimum Margin : -13.0-(-27.6) $=14.6(\mathrm{~dB})$
The point shown on "___ " is the Minimum Margin Point.

```
Applied limits :
    Applied limits = 10log[TP(mW)]-[43 + 10log[tp(W)]]= 10log[TP(mW)]-[43 + (10log[TP(mW)]-30)]
        = -13[dBm]
    Where tp(W) = TP(mW) / 1000:Transmitter Power at antenna terminal
        10log[tp(W)] = 10log[TP(mW)]-30
```

 Note : 1. The spectrum was checked from 9 kHz up to 20 GHz .
 2. All emissions not listed were found to be more than 20 dB below the limit.

Remarks:

Note 3	Detector Function	RES. B.W	V.B.W	Sweep T	Span	Corr. Factor*
A	Peak (SP)	1 MHz	3 MHz	20 msec	0 Hz	CL+P10
B	Peak (SP)	1 MHz	3 MHz	20 msec	0 Hz	CL+P20-Amp.
C	Peak (SP)	1 MHz	3 MHz	20 msec	0 Hz	CL+P10-Amp.
D	Peak (SP)	1 MHz	3 MHz	20 msec	0 Hz	P10-Amp.+Mix.
E	Peak (SP)	1 MHz	3 MHz	20 msec	0 Hz	CL+HPF+P20-Amp.
F	Peak (ESV)	120 kHz	--	--	--	CL

*)CL: Cable Loss/ P20: 20dB Att. / P10: 10dB Att. / Amp.: Amplifier Gain/ Mix.: Mixer Conversion Loss/ HPF : High Pass Filter loss

Tester : Akio Hosoda

Occupied Bandwidth Measurement

Test Date: September 14, 2003
Temp.: $23^{\circ} \mathrm{C}$; Humi.: 60%
1)Ant teminal : ANT1

CH	Transmitting	26dB	Data
No.	Frequency(MHz)	Bandwidth	Page*
206	1880.150	283 kHz	Page 2
255	1894.850	282 kHz	Page 3
49	1909.550	283 kHz	Page 4
2)Ant teminal : ANT2			
CH	Transmitting	26dB	Data
No.	Frequency(MHz)	Bandwidth	Page*
206	1880.150	283 kHz	Page 5
255	1894.850	284 kHz	Page 6
49	1909.550	283 kHz	Page 7
3)Ant teminal : ANT3			
CH	Transmitting	26dB	Data
No.	Frequency(MHz)	Bandwidth	Page*
206	1880.150	283 kHz	Page 8
255	1894.850	284 kHz	Page 9
49	1909.550	282 kHz	Page 10
4)Ant teminal : ANT4			
CH	Transmitting	26dB	Data
No.	Frequency(MHz)	Bandwidth	Page*
206	1880.150	285 kHz	Page 11
255	1894.850	286 kHz	Page 12
49	1909.550	284 kHz	Page 13

Note) 1. *: The Data Page is one in Attachment A.
2. The point shown on " \qquad " is the Maximum Margin Point.

Tester : Shigeru Kinoshita

JQA Application No.: KL80030382S
Model No. : PBS-CS37 FCC ID : AEZPBS-CS37

Regulation : CFR 47 FCC Rules Part 24
Issue Date : October 6, 2003

Page 45 of 50

Band-Edge Emission Measurement

Test Date: September 14, 2003
Temp.: $23^{\circ} \mathrm{C}$; Humi.: 60%

1) Low Band-Edge Measurement

Ant terinal	Transmitting Frequency(MHz)	Band-Edge Frequency(MHz)	Band-Edge Level[dBc]	Data Page*
ANT 1	1880.150	1870.000	-84.7	Page 15
ANT 2	1880.150	1870.000	-80.4	Page 16
ANT 3	1880.150	1870.000	-82.7	Page 17
ANT 4	1880.150	1870.000	-82.5	Page 18

2) High Band-Edge Measurement

Ant terinal	Transmitting Frequency(MHz)	Band-Edge Frequency(MHz)	Band-Edge Level[dBc]	Data Page*
ANT 1	1909.550	1910.000	-70.5	Page 19
ANT 2	1909.550	1910.000	-67.5	Page 20
ANT 3	1909.550	1910.000	-67.5	Page 21
ANT 4	1909.550	1910.000	-71.0	Page 22

Note) 1. *: The Data Page is one in Attachment A.
2. The point shown on " \qquad " is the Maximum Margin Point.

Tester : Shigeru Kinoshita

JQA Application No.: KL80030382S
Model No.
: PBS-CS37
FCC ID : AEZPBS-CS37

Regulation Issue Date
: CFR 47 FCC Rules Part 24
: October 6, 2003

Frequency Stability Measurement

Measurement Results:
Test Date: September 25-28, 2003

Frequency Stability Measurement versus Temperature				
Reference Frequency: AC Supply Voltage : 120VAC		1880.150 MHz		(206ch)
Ambient		Deviation(Hz)		
Temperature	Startup	2 minutes	5 minutites	10 minutites
$\left({ }^{\circ} \mathrm{C}\right)$				
-30	-759.4	-1366.1	-1017.6	-649.5
-20	-71.0	-706.4	-436.5	-430.5
-10	+306.6	-172.3	+23.8	+82.3
0	+241.6	-380.1	-387.4	-56.8
10	+368.0	+480.6	+939.0	+816.4
20	+726.4	+783. 6	+866.3	+1317.7
30	+523.3	+609.0	+464.1	+1160.5
40	+871.6	+552.7	+1102.3	+421. 0
50	+659.4	+502.3	+946.1	+1639.0

Frequency Stability Measurement versus Temperature

Reference Frequency:
Ambient Temperature :
AC Supply
Voltage (VAC)
$102+498.7+1331.8+1326.2+1233.0$
$120+726.4+783.6+866.3 \quad+1317.7$
$138+361.4+1950.7 \quad+592.5 \quad+1129.1$

Note : The measurement were made after all of components of the oscillator sufficiently stabilized at each temperature.
\square
Sample Caluculation at $1880.150 \mathrm{MHz},+20^{\circ} \mathrm{C} 2$ minutes 138 VAC$)$:
$\left((1880.1519507-1880.1500000) \times 10^{6}=+1950.7(\mathrm{~Hz})\right.$
The point shown on "___ " is the Maximum Frequency Deviation.

Tester : Akio Hosoda

Maximum Permissible Exposure(MPE) :

The limit for Maximum Permissible Exposure(MPE) at frequency of 1894.85 MHz is $1.00 \mathrm{~mW} / \mathrm{cm}^{2} .(1.00$ $\mathrm{mW} / \mathrm{cm}^{2}$ for General Population/Uncotrolled enviroment in §1.1310.)

The conversion from power to power density uses the following equation :

$$
\begin{aligned}
\mathrm{PD} & =(\mathrm{TPG}) / 4 \pi \mathrm{r}^{2}=\mathrm{EIRP} / 4 \pi \mathrm{r}^{2} \\
\mathrm{r} & =\mathrm{SQRT}(\mathrm{EIRP} / 4 \pi \mathrm{PD})
\end{aligned}
$$

Where : PD : Power Density at the Minimum Save-distance (W/m²)
TP : Transmitte Power (W)
G : Numeric gain of the antenna
EIRP: Equivalent Isotropically Radiated Power
$\mathrm{r} \quad$: Minimum Save-distance(in m)
The conversion from $\mathrm{mW} / \mathrm{cm}^{2}$ to $\mathrm{W} / \mathrm{m}^{2}$ is: $1 \mathrm{~mW} / \mathrm{cm}^{2}=10 \mathrm{~W} / \mathrm{m}^{2}$ Maximum EIRP* ${ }^{*}$: 166.34 W

Note) ${ }^{* 1}$: Meaured Value
Minimum Save-distance for MPE calculation

Items	Value
EIRP (W)	166.34
PD $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	1.00
$\mathrm{PD}\left(\mathrm{W} / \mathrm{m}^{2}\right)$	10.00
$\mathrm{r}(\mathrm{m})$	1.15

MPE evaluation :
Minimum Save-distance : 1.15m

Page 49 of 50

AC Powerline Conducted Emission Measurement
 Class B Digital Device

Test Date: September 10, 2003
Temp.: $25^{\circ} \mathrm{C}$; Humi.: 60%

Frequency [MHz]	Correction Factor [dB]	$\begin{gathered} \text { Meter Readings }[\mathrm{dB}(\mu \mathrm{~V})] \\ \text { VA } \end{gathered}$				Limits$[\mathrm{dB}(\mu \mathrm{~V})]$		Results$[\mathrm{dB}(\mu \mathrm{~V})]$		Margin [dB]	Remarks (Note 2)
		QP	AV	QP	AV	QP	AV	QP	AV		
0.15	0.2	14.0	-	15.0	-	66.0	56.0	15.2	-	+50.8	A
0.20	0.2	38.0	-	38.0	-	63.6	53.6	38.2	-	+25.4	A
0.25	0.1	38.0	-	38.0	-	61.8	51.8	38.1	-	+23.7	A
0.30	0.1	13.0	-	10.0	-	60.2	50.2	13.1	-	+47.1	A
0.50	0.1	<10.0	-	<10.0	-	56.0	46.0	<10.1	-	>+45.9	A
1.00	0.1	<10.0	-	<10.0	-	56.0	46.0	<10.1	-	>+45.9	A
3.00	0.3	<10.0	-	<10.0	-	56.0	46.0	<10.3	-	>+45.7	A
5.00	0.4	<10.0	-	<10.0	-	56.0	46.0	<10.4	-	>+45.6	A
10.00	0.5	<10.0	-	< 10.0	-	60.0	50.0	<10.5	-	>+49.5	A
30.00	0.9	<10.0	-	<10.0	-	60.0	50.0	<10.9	-	>+49.1	A

Sample of calculated result at 0.25 MHz , as the Minimum Margin point:

Correction Factor	$=0.1 \mathrm{~dB}$
$+)$ Meter Reading	$=38.0 \mathrm{~dB}(\mu \mathrm{~V})$
Result	$=38.1 \mathrm{~dB}(\mu \mathrm{~V})$

Minimum Margin : 61.8-38.1 = 23.7(dB)
The point shown on "___ is the Minimum Margin Point.

Note 1:
1)The correction factor includes the LISN insertion loss and the cable loss.

Remarks:

Note 2	Detector Function	IF Bandwidth
A	CISPR QP	9 kHz
B	Average	10 kHz

Tester : \quad Akio Hosoda

JQA Application No.: KL80030382S
Model No.
: PBS-CS37
FCC ID
: AEZPBS-CS37

Regulation
: CFR 47 FCC Rules Part 24
Issue Date : October 6, 2003

Page 50 of 50

Electromagnetic Field Radiated Emission Measurement Class B Digital Device

Test Date: September 10, 2003
Temp.: $21^{\circ} \mathrm{C}$; Humi.: 73%

Frequency [MHz]	Antenna Factor $[\mathrm{dB}(1 / \mathrm{m})]$	Cable Loss [dB]	Meter Readings [dB($\mu \mathrm{V})$]		$\begin{gathered} \text { Limits } \\ {[\mathrm{dB}(\mu \mathrm{~V} / \mathrm{m})]} \end{gathered}$	$\begin{gathered} \text { Results } \\ {[\mathrm{dB}(\mu \mathrm{~V} / \mathrm{m})]} \end{gathered}$		Margin [dB]	Remarks (Note 1)
			Hori.	Vert.		Hori.	Vert.		
125.0	13.2	2.1	0.0	1.0	43.5	15.3	16.3	+27.2	A
192.0	16.5	2.6	< 0.0	< 0.0	43.5	<19.1	<19.1	>+24.4	A
250.0	17.4	3.0	< 0.0	< 0.0	46.0	<20.4	<20.4	>+25.6	A
268.9	17.7	3.1	0.0	< 0.0	46.0	20.8	<20.8	+25.2	A
383.9	16.0	3.8	< 0.0	2.0	46.0	<19.8	21.8	+24.2	A
500.0	17.8	4.5	<-4.0	<-4.0	46.0	<18.3	<18.3	>+27.7	A
607.2	19.3	5.0	4.0	1.0	46.0	28.3	25.3	+17.7	A
625.0	19.6	5.1	<-4.0	<-4.0	46.0	<20.7	<20.7	>+25.3	A
672.0	20.4	5.3	-2.0	-2.0	46.0	23.7	23.7	+22.3	A
750.0	21.0	5.7	<-4.0	<-4.0	46.0	<22.7	<22.7	>+23.3	A

Sample of calculated result at 607.2 MHz , as the Minimum Margin point:

$$
\begin{array}{rlr}
\text { Antenna Factor } & = & 19.3 \mathrm{~dB}(1 / \mathrm{m}) \\
\text { Cable Loss } & =5.0 \mathrm{~dB} \\
+ \text { 俍 } & \text { Meter Reading } & =4.0 \mathrm{~dB}(\mu \mathrm{~V}) \\
\hline & \text { Result } & =28.3 \mathrm{~dB}(\mu \mathrm{~V} / \mathrm{m})
\end{array}
$$

Minimum Margin : 46.0-28.3 = 17.7 (dB)
The point shown on "___ is the Minimum Margin Point.

Remarks:

Note 1	Detector Function	IF Bandwidth
A	CISPR QP	120 kHz
B	Average	120 kHz
C	Average	12 kHz
D	Average	7.5 kHz

Tester : Akio Hosoda

[^0]: Takashi Yamanaka, Director JQA KITA-KANSAI Testing Center

[^1]: Akio Hosoda
 Manager
 EMC Div.
 JQA KITA-KANSAI Testing Center

