# FCC and ISED Test Report

Sensium Healthcare Ltd. Base station, Model: Vitals Base Station US

# In accordance with FCC 47 CFR Part 15C, ISED RSS-210 and ISED RSS-GEN (Short Range Device)

Prepared for: Sensium Healthcare Ltd. 115 Olympic Avenue Building 3, Milton Park Abingdon, Oxfordshire OX14 4SA United Kingdom



Add value. Inspire trust.

FCC ID: AEJSH202075 IC: 27456-SH202075

# COMMERCIAL-IN-CONFIDENCE

Document 75953351-02 Issue 01

| SIGNATURE      |                 |                      |                  |
|----------------|-----------------|----------------------|------------------|
| 5 MM           |                 |                      |                  |
| NAME           | JOB TITLE       | RESPONSIBLE FOR      | ISSUE DATE       |
| Steve Marshall | Senior Engineer | Authorised Signatory | 21 December 2021 |

Signatures in this approval box have checked this document in line with the requirements of TÜV SÜD document control rules.

## **ENGINEERING STATEMENT**

The measurements shown in this report were made in accordance with the procedures described on test pages. All reported testing was carried out on a sample equipment to demonstrate limited compliance with FCC 47 CFR Part 15C and ISED RSS-210 and ISED RSS-GEN. The sample tested was found to comply with the requirements defined in the applied rules.

| RESPONSIBLE FOR                                                                                                           | NAME                              | DATE                     | SIGNATURE  |  |
|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------|------------|--|
| Testing                                                                                                                   | Graeme Lawler                     | 21 December 2021         | GNardw-    |  |
| Testing                                                                                                                   | Paul Dickson                      | 21 December 2021         | Blub       |  |
| FCC Accreditation ISED Accreditation                                                                                      |                                   |                          |            |  |
| 90987 Octagon House, Fa                                                                                                   | reham Test Laboratory 12669A Octa | agon House, Fareham Test | Laboratory |  |
| EXECUTIVE SUMMARY                                                                                                         |                                   |                          |            |  |
| A sample of this product was tested and found to be compliant with FCC 47 CFR Part 15C: 2020, ISED RSS-210: Issue 10 (12- |                                   |                          |            |  |
| 2019) + A1 (2020-04) and ISED RSS-GEN: Issue 05 (2018-04) + A2 (2021-02) for the tests detailed in section 1.3.           |                                   |                          |            |  |



#### DISCLAIMER AND COPYRIGHT

This non-binding report has been prepared by TÜV SÜD with all reasonable skill and care. The document is confidential to the potential Client and TÜV SÜD. No part of this document may be reproduced without the prior written approval of TÜV SÜD. © 2021 TÜV SÜD. This report relates only to the actual item/items tested.

ACCREDITATION

Our UKAS Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our UKAS Accreditation. Results of tests not covered by our UKAS Accreditation Schedule are marked NUA (Not UKAS Accredited).



# Contents

| 1   | Report Summary                           | 2  |
|-----|------------------------------------------|----|
| 1.1 | Report Modification Record               | 2  |
| 1.2 | Introduction                             | 2  |
| 1.3 | Brief Summary of Results                 | 3  |
| 1.4 | Application Form                         | 4  |
| 1.5 | Product Information                      | 7  |
| 1.6 | Deviations from the Standard             | 7  |
| 1.7 | EUT Modification Record                  | 7  |
| 1.8 | Test Location                            | 7  |
| 2   | Test Details                             | 8  |
| 2.1 | 20 dB Bandwidth & 99% Occupied Bandwidth | 8  |
| 2.2 | Field Strength of Fundamental            |    |
| 2.3 | Field Strength of Emissions              |    |
| 2.4 | Authorised Band Edge                     | 37 |
| 3   | Photographs                              | 42 |
| 3.1 | Test Setup Photographs                   | 42 |
| 4   | Measurement Uncertainty                  | 44 |



# 1 Report Summary

# 1.1 Report Modification Record

Alterations and additions to this report will be issued to the holders of each copy in the form of a complete document.

| Issue | Description of Change | Date of Issue    |
|-------|-----------------------|------------------|
| 1     | First Issue           | 21-December-2021 |

# Table 1

#### 1.2 Introduction

| Applicant                     | Sensium Healthcare Ltd.                                                                                                         |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Manufacturer                  | Sensium Healthcare Ltd.                                                                                                         |
| Model Number(s)               | Vitals Base Station US                                                                                                          |
| Serial Number(s)              | Not Serialised (FAR-0604952-002)                                                                                                |
| Hardware Version(s)           | SH202075 v1.5                                                                                                                   |
| Software Version(s)           | PAT_US_915MHz_64K_P_CUS1_FW1-0-6                                                                                                |
| Number of Samples Tested      | 1                                                                                                                               |
| Test Specification/Issue/Date | FCC 47 CFR Part 15C: 2020<br>ISED RSS-210: Issue 10 (12-2019) + A1 (2020-04)<br>ISED RSS-GEN: Issue 05 (2018-04) + A2 (2021-02) |
| Order Number<br>Date          | 000005831<br>14-September-2021                                                                                                  |
| Date of Receipt of EUT        | 28-September-2021 and 17-December-2021                                                                                          |
| Start of Test                 | 20-October-2021                                                                                                                 |
| Finish of Test                | 19-December-2021                                                                                                                |
| Name of Engineer(s)           | Graeme Lawler and Paul Dickson                                                                                                  |
| Related Document(s)           | ANSI C63.10 (2013)                                                                                                              |



# 1.3 Brief Summary of Results

A brief summary of the tests carried out in accordance with FCC 47 CFR Part 15C, ISED RSS-210 and ISED RSS-GEN is shown below.

| Section                                        | S                | pecification Clau | se      | Test Description                         | Booult Commonte/Booo Standard |                        |
|------------------------------------------------|------------------|-------------------|---------|------------------------------------------|-------------------------------|------------------------|
| Section                                        | Part 15C         | RSS-210           | RSS-GEN |                                          |                               | Comments/Base Standard |
| Configuration and Mode: DC Powered - Operating |                  |                   | erating |                                          |                               |                        |
| 2.1                                            | 15.215 (c)       | -                 | 6.7     | 20 dB Bandwidth & 99% Occupied Bandwidth | Pass                          |                        |
| 2.2                                            | 15.249 (a).      | B.10 (a)          | -       | Field Strength of Fundamental            | Pass                          |                        |
| 2.3                                            | 15.249<br>(a)(d) | B.10 (a)          | -       | Field Strength of Emissions              | Pass                          |                        |
| 2.4                                            | 15.249 (d)       | B.10 (b)          | -       | Authorised Band Edge                     | Pass                          |                        |

Table 2



# 1.4 Application Form

# **Equipment Description**

| Technical Description:<br>(Please provide a brief description of the<br>intended use of the equipment including<br>the technologies the product supports) | The SH202075 SensiumVitals Base Station is a radio module that communicates with the Sensium Vitals Patch. It collects data from the patches over ISM band link and passes that data to the Sensium Vitals Bridge, into which it is integrated.<br>The Bridge takes the data and forwards it to the Sensium Servers for processing. |                        |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--|
| Manufacturer:                                                                                                                                             | Sensium                                                                                                                                                                                                                                                                                                                             |                        |  |
| Model:                                                                                                                                                    | Vitals Base Sta                                                                                                                                                                                                                                                                                                                     | ation US               |  |
| Part Number:                                                                                                                                              | SH202075                                                                                                                                                                                                                                                                                                                            | ;<br>;                 |  |
| Hardware Version:                                                                                                                                         | SH202075 v1.5                                                                                                                                                                                                                                                                                                                       | 5                      |  |
| Software Version:                                                                                                                                         | PAT_US_915N                                                                                                                                                                                                                                                                                                                         | /Hz_64K_P_CUS1_FW1-0-6 |  |
| FCC ID of the product under test – see guidance here                                                                                                      |                                                                                                                                                                                                                                                                                                                                     | AEJSH202075            |  |
| IC ID of the product under test – see guidance here                                                                                                       |                                                                                                                                                                                                                                                                                                                                     | 27456-SH202075         |  |

# Table 3

# Intentional Radiators

| Technology                                                                               | Proprietary                      |  |  |  |
|------------------------------------------------------------------------------------------|----------------------------------|--|--|--|
| Frequency Range<br>(MHz to MHz)                                                          | 902-928<br>MHz                   |  |  |  |
| Conducted Declared Output<br>Power (dBm)                                                 | -4 dBm                           |  |  |  |
| Antenna Gain (dBi)                                                                       | -3 (internal<br>chip<br>antenna) |  |  |  |
| Supported Bandwidth(s) (MHz)<br>(e.g. 1 MHz, 20 MHz, 40 MHz)                             | 120 kHz                          |  |  |  |
| Modulation Scheme(s)<br>(e.g. GFSK, QPSK etc)                                            | FSK                              |  |  |  |
| ITU Emission Designator<br>(see guidance here)<br>(not mandatory for Part 15<br>devices) | 120KFD                           |  |  |  |
| Bottom Frequency (MHz)                                                                   | 902.6                            |  |  |  |
| Middle Frequency (MHz)                                                                   | 915.0                            |  |  |  |
| Top Frequency (MHz)                                                                      | 927.4                            |  |  |  |



# Un-intentional Radiators

| Highest frequency generated or used in the device or on which the device operates or tunes |  |
|--------------------------------------------------------------------------------------------|--|
| Lowest frequency generated or used in the device or on which the device operates or tunes  |  |
| Class A Digital Device (Use in commercial, industrial or business environment) $\Box$      |  |
| Class B Digital Device (Use in residential environment only) $oxtimes$                     |  |

# Table 5

# AC Power Source

| AC supply frequency:      | Hz |
|---------------------------|----|
| Voltage                   | V  |
| Max current:              | А  |
| Single Phase  Three Phase |    |

# Table 6

# DC Power Source

| Nominal voltage:       | 3.3 | V |
|------------------------|-----|---|
| Extreme upper voltage: | 3.6 | V |
| Extreme lower voltage: | 3.2 | V |
| Max current:           |     | А |

# Table 7

# Battery Power Source

| Voltage:                               |                     |                            | V                                             |
|----------------------------------------|---------------------|----------------------------|-----------------------------------------------|
| End-point voltage:                     |                     |                            | V (Point at which the battery will terminate) |
| Alkaline 🗆 Leclanche 🗆 Lithium 🗆 Nicke | el Cadmium 🗆 Lead A | Acid* $\Box$ *(Vehicle reg | gulated)                                      |
| Other                                  | Please detail:      |                            |                                               |

#### Table 8

## Charging

| Can the EUT transmit whilst being charged | Yes 🗆 No 🖂 |
|-------------------------------------------|------------|
|-------------------------------------------|------------|

## Table 9

# **Temperature**

| Minimum temperature: | °C |
|----------------------|----|
| Maximum temperature: | °C |

Table 10



## Cable Loss

| Adapter Cable Loss<br>(Conducted sample) | dB |
|------------------------------------------|----|
| (                                        |    |

# Table 11

## Antenna Characteristics

| Antenna connector                                                                                                      |                            | State impedance    |      | Ohm        |     |
|------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------|------|------------|-----|
| Temporary antenna connector                                                                                            |                            | State impedance    |      | Ohm        |     |
| Integral antenna 🖂                                                                                                     | Type:                      | Monopole chip ant. | Gain | -3         | dBi |
| External antenna 🗆                                                                                                     | Type:                      |                    | Gain |            | dBi |
| For external antenna only                                                                                              | For external antenna only: |                    |      |            |     |
| Standard Antenna Jack 🗆 If yes, describe how user is prohibited from changing antenna (if not professional installed): |                            |                    |      | istalled): |     |
| Equipment is only ever professionally installed $\Box$                                                                 |                            |                    |      |            |     |
| Non-standard Antenna Jack 🗆                                                                                            |                            |                    |      |            |     |

# Table 12

# Ancillaries (if applicable)

| Manufacturer: | Part Number:       |  |
|---------------|--------------------|--|
| Model:        | Country of Origin: |  |

## Table 13

I hereby declare that the information supplied is correct and complete.

Name: Position held: Date: Paul Dodds RF Compliance Engineer 23<sup>rd</sup> September 2021



#### 1.5 Product Information

#### 1.5.1 Technical Description

The SH202075 SensiumVitals Base Station is a radio module that communicates with the Sensium Vitals Patch. It collects data from the patches over ISM band link and passes that data to the Sensium Vitals Bridge, into which it is integrated.

The Bridge takes the data and forwards it to the Sensium Servers for processing.

#### **1.6** Deviations from the Standard

No deviations from the applicable test standard were made during testing.

#### 1.7 EUT Modification Record

The table below details modifications made to the EUT during the test programme.

The modifications incorporated during each test are recorded on the appropriate test pages.

| Modification State | Description of Modification still fitted to EUT                                                            | Modification Fitted By | Date Modification<br>Fitted |  |  |
|--------------------|------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------|--|--|
| Model: Vitals Base | Model: Vitals Base Station US, Serial Number: Not serialised (FAR-0604952-002)                             |                        |                             |  |  |
| 0                  | As supplied by the customer                                                                                | Not Applicable         | Not Applicable              |  |  |
| 1                  | Software setting re-configured to select 902.6 MHz as the bottom channel and 927.4 MHz as the top channel. | Graeme Lawler          | 19-Dec-2021                 |  |  |

## Table 14

## 1.8 Test Location

TÜV SÜD conducted the following tests at our Fareham Test Laboratory.

| Test Name                                      | Name of Engineer(s)            | Accreditation |  |
|------------------------------------------------|--------------------------------|---------------|--|
| Configuration and Mode: DC Powered - Operating |                                |               |  |
| 20 dB Bandwidth & 99% Occupied Bandwidth       | Graeme Lawler                  | UKAS          |  |
| Field Strength of Fundamental                  | Graeme Lawler                  | UKAS          |  |
| Field Strength of Emissions                    | Paul Dickson and Graeme Lawler | UKAS          |  |
| Authorised Band Edge                           | Graeme Lawler                  | UKAS          |  |

Table 15

Office Address:

TÜV SÜD Octagon House Concorde Way Fareham Hampshire PO15 5RL United Kingdom



# 2 Test Details

2.1 20 dB Bandwidth & 99% Occupied Bandwidth

#### 2.1.1 Specification Reference

FCC 47 CFR Part 15C, Clause 15.215 (c) ISED RSS-GEN, Clause 6.7

## 2.1.2 Equipment Under Test and Modification State

Vitals Base Station US, S/N: Not serialised (FAR-0604952-002) - Modification State 1

## 2.1.3 Date of Test

19-December-2021

#### 2.1.4 Test Method

The test was performed in accordance with ANSI C63.10, clause 6.9.1.

# 2.1.5 Environmental Conditions

Ambient Temperature24.2 °CRelative Humidity29.4 %



# 2.1.6 Test Results

# DC Powered - Operating

| Frequency (MHz) | 20 dB Bandwidth<br>(Hz) | 99% Occupied<br>Bandwidth (Hz) | F <sub>LOWER</sub> (MHz) | F <sub>UPPER</sub> (MHz) |
|-----------------|-------------------------|--------------------------------|--------------------------|--------------------------|
| 902.6           | 172275                  | 180500.000                     | 902.518500000            | 902.699000000            |
| 915.0           | 174679                  | 209134.615                     | 914.919871795            | 915.094551000            |
| 927.4           | 173878                  | 180000.000                     | 927.321141026            | 927.495019000            |



## Table 16

## Figure 1 – 902.6 MHz, 99% Occupied Bandwidth









Figure 3 – 915.0 MHz 99%Occupied Bandwidth









Figure 5 – 927.4 MHz, 99% Occupied Bandwidth





Figure 6 – 927.4 MHz, 20 dB Bandwidth



# FCC 47 CFR Part 15C, Limit Clause 15.215 (c)

The 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.

ISED RSS 210 and ISED RSS GEN, Limit Clause

None specified.

# 2.1.7 Test Location and Test Equipment Used

This test was carried out in EMC Chamber 12.

| Instrument                                          | Manufacturer    | Туре No               | TE No | Calibration<br>Period<br>(months) | Calibration<br>Expires |
|-----------------------------------------------------|-----------------|-----------------------|-------|-----------------------------------|------------------------|
| Power Supply Unit                                   | Hewlett Packard | 6269B                 | 113   | -                                 | O/P Mon                |
| Antenna with attenuator<br>(Bilog, 30 MHz to 3 GHz) | Schaffner       | CBL6143               | 287   | 24                                | 14-Oct-2022            |
| Comb Generator                                      | Schaffner       | RSG1000               | 3034  | -                                 | TU                     |
| Test Receiver                                       | Rohde & Schwarz | ESU40                 | 3506  | 12                                | 18-Mar-2022            |
| Multimeter                                          | Fluke           | 177                   | 3832  | 12                                | 08-Jul-2022            |
| Cable (K-Type to K-Type, 2 m)                       | Scott Cables    | KPS-1501-2000-<br>KPS | 4526  | 6                                 | 06-Mar-2022            |
| Emissions Software                                  | TUV SUD         | EmX V2.1.11           | 5125  | -                                 | Software               |
| Cable (N-Type to N-Type, 8 m)                       | Teledyne        | PR90-088-8MTR         | 5450  | 6                                 | 08-Mar-2022            |
| Thermo-Hygro-Barometer                              | PCE Instruments | PCE-THB-40            | 5481  | 12                                | 31-Mar-2022            |
| Turntable & Mast<br>Controller                      | Maturo Gmbh     | NCD/498/2799.01       | 5612  | -                                 | ти                     |
| Tilt Antenna Mast                                   | Maturo Gmbh     | TAM 4.0-P             | 5613  | -                                 | ти                     |
| Turntable                                           | Maturo Gmbh     | Turntable 1.5 SI-2t   | 5614  | -                                 | TU                     |
| Screened Room (12)                                  | MVG             | EMC-3                 | 5621  | 36                                | 11-Aug-2023            |

## Table 17

TU - Traceability Unscheduled

O/P Mon – Output Monitored using calibrated equipment



## 2.2 Field Strength of Fundamental

#### 2.2.1 Specification Reference

FCC 47 CFR Part 15C, Clause 15.249 (a) ISED RSS-210, Clause B.10 (a)

# 2.2.2 Equipment Under Test and Modification State

Vitals Base Station US, S/N: Not serialised (FAR-0604952-002) - Modification State 1

#### 2.2.3 Date of Test

19-December-2021

# 2.2.4 Test Method

The test was performed in accordance with ANSI C63.10, clause 6.3 and 6.5

Note: Final measurements recorded in the table below were taken using a Quasi-Peak detector.

# 2.2.5 Environmental Conditions

Ambient Temperature24.2 °CRelative Humidity29.4 %



# 2.2.6 Test Results

# DC Powered - Operating

| Frequency MHz | Field Strength (dBµv/m) |     |  |  |
|---------------|-------------------------|-----|--|--|
|               | Quasi-Peak Average      |     |  |  |
| 902.6         | 92.50                   | N/A |  |  |
| 915.0         | 92.58                   | N/A |  |  |
| 927.4         | 92.00                   | N/A |  |  |



# Table 18 - Fundamental Field Strength Results

Figure 7 - 902.6 MHz, Peak









Figure 9 - 927.4 MHz, Peak



# FCC 47 CFR Part 15C, Limit Clause 15.249 (a)

| Fundamental Frequency (MHz) | Field Strength of<br>Fundamental (mV/m) | Field Strength of<br>Fundamental (dBµV/m at<br>3m) |
|-----------------------------|-----------------------------------------|----------------------------------------------------|
| 902 to 928                  | 50                                      | 93.98                                              |
| 2400 to 2483.5              | 50                                      | 93.98                                              |
| 5725 to 5875                | 50                                      | 93.98                                              |
| 24000 to 24250              | 250                                     | 107.96                                             |

# Table 19

## ISED RSS-210, Limit Clause B.10 (a)

The field strength of fundamental and harmonic emissions, measured at 3 m, shall not exceed 50 mV/m and 0.5 mV/m respectively.

# 2.2.7 Test Location and Test Equipment Used

This test was carried out in EMC Chamber 12.

| Instrument                                          | Manufacturer    | Туре No               | TE No | Calibration<br>Period<br>(months) | Calibration<br>Expires |
|-----------------------------------------------------|-----------------|-----------------------|-------|-----------------------------------|------------------------|
| Power Supply Unit                                   | Hewlett Packard | 6269B                 | 113   | -                                 | O/P Mon                |
| Antenna with attenuator<br>(Bilog, 30 MHz to 3 GHz) | Schaffner       | CBL6143               | 287   | 24                                | 14-Oct-2022            |
| Comb Generator                                      | Schaffner       | RSG1000               | 3034  | -                                 | TU                     |
| Test Receiver                                       | Rohde & Schwarz | ESU40                 | 3506  | 12                                | 18-Mar-2022            |
| Multimeter                                          | Fluke           | 177                   | 3832  | 12                                | 08-Jul-2022            |
| Cable (K-Type to K-Type, 2 m)                       | Scott Cables    | KPS-1501-2000-<br>KPS | 4526  | 6                                 | 06-Mar-2022            |
| Emissions Software                                  | TUV SUD         | EmX V2.1.11           | 5125  | -                                 | Software               |
| Cable (N-Type to N-Type, 8 m)                       | Teledyne        | PR90-088-8MTR         | 5450  | 6                                 | 08-Mar-2022            |
| Thermo-Hygro-Barometer                              | PCE Instruments | PCE-THB-40            | 5481  | 12                                | 31-Mar-2022            |
| Turntable & Mast<br>Controller                      | Maturo Gmbh     | NCD/498/2799.01       | 5612  | -                                 | ΤU                     |
| Tilt Antenna Mast                                   | Maturo Gmbh     | TAM 4.0-P             | 5613  | -                                 | TU                     |
| Turntable                                           | Maturo Gmbh     | Turntable 1.5 SI-2t   | 5614  | -                                 | TU                     |
| Screened Room (12)                                  | MVG             | EMC-3                 | 5621  | 36                                | 11-Aug-2023            |

# Table 20

TU - Traceability Unscheduled

O/P Mon – Output Monitored using calibrated equipment



## 2.3 Field Strength of Emissions

#### 2.3.1 Specification Reference

FCC 47 CFR Part 15C, Clause 15.249 (a)(d) ISED RSS-210, Clause B.10 (a)

#### 2.3.2 Equipment Under Test and Modification State

Vitals Base Station US, S/N: Not serialised (FAR-0604952-002) - Modification State 0

#### 2.3.3 Date of Test

20-October-2021 to 21-October-2021

#### 2.3.4 Test Method

The test was performed in accordance with ANSI C63.10, clause 6.3, 6.4 and 6.5.

The EUT was placed on the non-conducting platform in a manner typical of a normal installation.

The plots show the characterization of the EUT. The limits shown have been used as a threshold to determine where further measurements are necessary. Where results are within 10 dB of the limits shown on the plots, further investigation was carried out and reported in results tables.

For frequencies greater than 1 GHz, plots for average measurements were taken with an RMS detector and a max hold trace to characterize the EUT. Where emissions were detected, final average measurements were taken in accordance with ANSI C63.10 clause 4.1.4.2.2.

The following conversion can be applied to convert from  $dB\mu V/m$  to  $\mu V/m$ : 10<sup>(Field Strength in dB $\mu V/m/20$ ).</sup>



# 2.3.5 Example Test Setup Diagram



Figure 10

# 2.3.6 Environmental Conditions

| Ambient Temperature | 19.3 - 26.9 °C |
|---------------------|----------------|
| Relative Humidity   | 39.9 - 61.2 %  |



# 2.3.7 Test Results

# DC Powered - Operating

| Frequency<br>(MHz) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin (dB) | Detector | Angle (°) | Height (cm) | Polarisation |
|--------------------|-------------------|-------------------|-------------|----------|-----------|-------------|--------------|
| *                  |                   |                   |             |          |           |             |              |

# Table 21 - 902.2 MHz - 30 MHz to 1 GHz, Vertical



Figure 11 - 902.2 MHz - 30 MHz to 1 GHz, Vertical



| Frequency<br>(MHz) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin (dB) | Detector | Angle (°) | Height (cm) | Polarisation |
|--------------------|-------------------|-------------------|-------------|----------|-----------|-------------|--------------|
| *                  |                   |                   |             |          |           |             |              |

# Table 22 - 902.2 MHz - 30 MHz to 1 GHz, Horizontal



Figure 12 - 902.2 MHz - 30 MHz to 1 GHz, Horizontal



| Frequency<br>(MHz) | Final Peak<br>(dBµV/m) | Final<br>Average<br>(dBµV/m) | Final Peak<br>(µV/m) | Final<br>Average<br>(µV/m) | Angle (°) | Height (m) | Polarisation |
|--------------------|------------------------|------------------------------|----------------------|----------------------------|-----------|------------|--------------|
| *                  |                        |                              |                      |                            |           |            |              |

# Table 23 - 902.2 MHz - 1 GHz to 10 GHz



Figure 13 - 902.2 MHz - 1 GHz to 10 GHz - Vertical Peak





Figure 14 - 902.2 MHz - 1 GHz to 10 GHz - Vertical Average



Figure 15 - 902.2 MHz - 1 GHz to 10 GHz - Horizontal Peak









| Frequency<br>(MHz) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin (dB) | Detector | Angle (°) | Height (cm) | Polarisation |
|--------------------|-------------------|-------------------|-------------|----------|-----------|-------------|--------------|
| 928.015            | 36.6              | 46.0              | -9.4        | Q-Peak   | 123       | 108         | Vertical     |

# Table 24 - 915 MHz - 30 MHz to 1 GHz, Vertical



Figure 17 - 915 MHz - 30 MHz to 1 GHz, Vertical



| Frequency<br>(MHz) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin (dB) | Detector | Angle (°) | Height (cm) | Polarisation |
|--------------------|-------------------|-------------------|-------------|----------|-----------|-------------|--------------|
| *                  |                   |                   |             |          |           |             |              |

## Table 25 - 915 MHz - 30 MHz to 1 GHz, Horizontal



Figure 18 - 915 MHz - 30 MHz to 1 GHz, Horizontal



| Frequency<br>(MHz) | Final Peak<br>(dBµV/m) | Final<br>Average<br>(dBµV/m) | Final Peak<br>(µV/m) | Final<br>Average<br>(µV/m) | Angle (°) | Height (m) | Polarisation |
|--------------------|------------------------|------------------------------|----------------------|----------------------------|-----------|------------|--------------|
| *                  |                        |                              |                      |                            |           |            |              |

# Table 26 - 915 MHz - 1 GHz to 10 GHz



Figure 19 - 915 MHz - 1 GHz to 10 GHz - Vertical Peak





Figure 20 - 915 MHz - 1 GHz to 10 GHz - Vertical Average



Figure 21 - 915 MHz - 1 GHz to 10 GHz - Horizontal Peak





Figure 22 - 915 MHz - 1 GHz to 10 GHz - Horizontal Average



| Frequency<br>(MHz) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin (dB) | Detector | Angle (°) | Height (cm) | Polarisation |
|--------------------|-------------------|-------------------|-------------|----------|-----------|-------------|--------------|
| *                  |                   |                   |             |          |           |             |              |

# Table 27 - 927.8 MHz - 30 MHz to 1 GHz, Vertical



Figure 23 - 927.8 MHz - 30 MHz to 1 GHz, Vertical



| Frequency<br>(MHz) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin (dB) | Detector | Angle (°) | Height (cm) | Polarisation |
|--------------------|-------------------|-------------------|-------------|----------|-----------|-------------|--------------|
| *                  |                   |                   |             |          |           |             |              |

# Table 28 - 927.8 MHz - 30 MHz to 1 GHz, Horizontal



Figure 24 - 927.8 MHz - 30 MHz to 1 GHz, Horizontal



| Frequency<br>(MHz) | Final Peak<br>(dBµV/m) | Final<br>Average<br>(dBµV/m) | Final Peak<br>(µV/m) | Final<br>Average<br>(µV/m) | Angle (°) | Height (m) | Polarisation |
|--------------------|------------------------|------------------------------|----------------------|----------------------------|-----------|------------|--------------|
| *                  |                        |                              |                      |                            |           |            |              |

# Table 29 - 927.8 MHz - 1 GHz to 10 GHz



Figure 25 - 927.8 MHz - 1 GHz to 10 GHz - Vertical Peak





Figure 26 - 927.8 MHz - 1 GHz to 10 GHz - Vertical Average



Figure 27 - 927.8 MHz - 1 GHz to 10 GHz - Horizontal Peak









# FCC 47 CFR Part 15C, Limit Clause 15.249 (d)

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in § 15.209, whichever is the lesser attenuation.

## FCC 47 CFR Part 15C, Limit Clause 15.209

| Frequency (MHz) | Field Strength (μV/m at 3<br>m) | Field Strength (dBµV/m at 3 m) |  |
|-----------------|---------------------------------|--------------------------------|--|
| 30 to 88        | 100                             | 40.00                          |  |
| 88 to 216       | 150                             | 43.52                          |  |
| 216 to 960      | 200                             | 46.02                          |  |
| Above 960       | 500                             | 53.98                          |  |

## Table 30

#### ISED RSS-210, Limit Clause B.10

The field strength of fundamental and harmonic emissions, measured at 3 m, shall not exceed 50 mV/m and 0.5 mV/m respectively.

The field strength limits shall be measured using an average detector, except for the fundamental emission in the frequency band 902-928 MHz, which is based on measurements using an International Special Committee on Radio Interference (CISPR) quasi-peak detector.

Emissions radiated outside of the specified frequency bands, except for harmonic emissions, shall be attenuated by at least 50 dB below the level of the fundamental emissions or to the general field strength limits listed in RSS-Gen, whichever is less stringent.

#### ISED RSS-GEN, Limit Clause 8.9

| Frequency (MHz) | Field Strength (µV/m at 3<br>m) | Field Strength (dBµV/m at 3 m) |
|-----------------|---------------------------------|--------------------------------|
| 30 to 88        | 100                             | 40.00                          |
| 88 to 216       | 150                             | 43.52                          |
| 216 to 960      | 200                             | 46.02                          |
| Above 960       | 500                             | 53.98                          |

Table 31



# 2.3.8 Test Location and Test Equipment Used

This test was carried out in EMC Chamber 12.

| Instrument                                          | Manufacturer    | Type No                         | TE No | Calibration<br>Period<br>(months) | Calibration<br>Expires |
|-----------------------------------------------------|-----------------|---------------------------------|-------|-----------------------------------|------------------------|
| Power Supply Unit                                   | Hewlett Packard | 6269B                           | 113   | -                                 | O/P Mon                |
| Antenna with attenuator<br>(Bilog, 30 MHz to 3 GHz) | Schaffner       | CBL6143                         | 287   | 24                                | 14-Oct-2022            |
| Comb Generator                                      | Schaffner       | RSG1000                         | 3034  |                                   | TU                     |
| Multimeter                                          | Fluke           | 79 Series II                    | 3057  | 12                                | 23-Aug-2022            |
| Test Receiver                                       | Rohde & Schwarz | ESU40                           | 3506  | 12                                | 18-Mar-2022            |
| Multimeter                                          | Fluke           | 177                             | 3832  | 12                                | 08-Jul-2022            |
| Cable (K-Type to K-Type, 2 m)                       | Scott Cables    | KPS-1501-2000-<br>KPS           | 4526  | 6                                 | 06-Mar-2022            |
| High Pass filter                                    | Wainwright      | WHKX12-1290-<br>1500-18000-80SS | 4961  | 12                                | 25-Mar-2022            |
| Cable (N-Type to N-Type, 1 m)                       | Rosenberger     | LU7-036-1000                    | 5031  | 12                                | 23-Jul-2022            |
| Emissions Software                                  | TUV SUD         | EmX V2.1.11                     | 5125  |                                   | Software               |
| Pre-Amplifier (1 GHz to 18 GHz)                     | Schwarzbeck     | BBV 9718 C                      | 5350  | 12                                | 22-Sep-2022            |
| Cable (N-Type to N-Type, 8 m)                       | Teledyne        | PR90-088-8MTR                   | 5450  | 6                                 | 08-Mar-2022            |
| Thermo-Hygro-Barometer                              | PCE Instruments | PCE-THB-40                      | 5481  | 12                                | 31-Mar-2022            |
| Antenna (DRG, 1 GHz to 10 GHz)                      | Schwarzbeck     | BBHA 9120 B                     | 5611  | 12                                | 15-Oct-2022            |
| Turntable & Mast<br>Controller                      | Maturo Gmbh     | NCD/498/2799.01                 | 5612  | -                                 | ти                     |
| Tilt Antenna Mast                                   | Maturo Gmbh     | TAM 4.0-P                       | 5613  |                                   | TU                     |
| Turntable                                           | Maturo Gmbh     | Turntable 1.5 SI-2t             | 5614  | -                                 | TU                     |
| Screened Room (12)                                  | MVG             | EMC-3                           | 5621  | 36                                | 11-Aug-2023            |

# Table 32

TU - Traceability Unscheduled

O/P Mon - Output Monitored using calibrated equipment



# 2.4 Authorised Band Edge

#### 2.4.1 Specification Reference

FCC 47 CFR Part 15C, Clause 15.249 (b) ISED RSS-210, Clause B.10 (a)

# 2.4.2 Equipment Under Test and Modification State

Vitals Base Station US, S/N: Not serialised (FAR-0604952-002) - Modification State 1

#### 2.4.3 Date of Test

19-December-2021

# 2.4.4 Test Method

The test was performed in accordance with ANSI C63.10, clause 11.11.3.

The following conversion can be applied to convert from  $dB\mu V/m$  to  $\mu V/m$ : 10<sup>(</sup>Field Strength in  $dB\mu V/m/20$ )

Note: Final measurements recorded in the table below were taken using a Quasi-Peak detector.

#### 2.4.5 Environmental Conditions

Ambient Temperature24.2 °CRelative Humidity29.4 %



# 2.4.6 Test Results

# DC Powered - Operating

| Frequency (MHz) | Measured Frequency (MHz) | Quasi-Peak Level (dBµV/m) | Average Level (dBµV/m) |
|-----------------|--------------------------|---------------------------|------------------------|
| 902.6           | 902.0                    | 40.30                     | N/A                    |
| 927.4           | 928.0                    | 42.71                     | N/A                    |

## Table 33 – Authorised Band Edge Results



# Figure 29 – Authorised Band Edge, 902.6 MHz, Band Edge Frequency: 902.0 MHz





Figure 30 – Authorised Band Edge, 927.4 MHz, Band Edge Frequency: 928.0 MHz



# FCC 47 CFR Part 15C, Limit Clause 15.249 (d)

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in § 15.209, whichever is the lesser attenuation.

## FCC 47 CFR Part 15C, Limit Clause 15.209

| Frequency (MHz) | Field Strength (μV/m at 3<br>m) | Field Strength (dBµV/m at 3 m) |
|-----------------|---------------------------------|--------------------------------|
| 30 to 88        | 100                             | 40.00                          |
| 88 to 216       | 150                             | 43.52                          |
| 216 to 960      | 200                             | 46.02                          |
| Above 960       | 500                             | 53.98                          |

## Table 34

## ISED RSS-210, Limit Clause B.10 (b)

Emissions radiated outside of the specified frequency bands, except for harmonic emissions, shall be attenuated by at least 50 dB below the level of the fundamental emissions or to the general field strength limits listed in RSS-Gen, whichever is less stringent.

#### ISED RSS-GEN, Limit Clause 8.9

| Frequency (MHz) | Field Strength (µV/m at 3<br>m) | Field Strength (dBµV/m at 3 m) |
|-----------------|---------------------------------|--------------------------------|
| 30 to 88        | 100                             | 40.00                          |
| 88 to 216       | 150                             | 43.52                          |
| 216 to 960      | 200                             | 46.02                          |
| Above 960       | 500                             | 53.98                          |

Table 35



# 2.4.7 Test Location and Test Equipment Used

This test was carried out in EMC Chamber 12.

| Instrument                                          | Manufacturer    | Type No               | TE No | Calibration<br>Period<br>(months) | Calibration<br>Expires |
|-----------------------------------------------------|-----------------|-----------------------|-------|-----------------------------------|------------------------|
| Power Supply Unit                                   | Hewlett Packard | 6269B                 | 113   | -                                 | O/P Mon                |
| Antenna with attenuator<br>(Bilog, 30 MHz to 3 GHz) | Schaffner       | CBL6143               | 287   | 24                                | 14-Oct-2022            |
| Comb Generator                                      | Schaffner       | RSG1000               | 3034  | -                                 | TU                     |
| Test Receiver                                       | Rohde & Schwarz | ESU40                 | 3506  | 12                                | 18-Mar-2022            |
| Multimeter                                          | Fluke           | 177                   | 3832  | 12                                | 08-Jul-2022            |
| Cable (K-Type to K-Type, 2 m)                       | Scott Cables    | KPS-1501-2000-<br>KPS | 4526  | 6                                 | 06-Mar-2022            |
| Emissions Software                                  | TUV SUD         | EmX V2.1.11           | 5125  | -                                 | Software               |
| Cable (N-Type to N-Type, 8 m)                       | Teledyne        | PR90-088-8MTR         | 5450  | 6                                 | 08-Mar-2022            |
| Thermo-Hygro-Barometer                              | PCE Instruments | PCE-THB-40            | 5481  | 12                                | 31-Mar-2022            |
| Turntable & Mast<br>Controller                      | Maturo Gmbh     | NCD/498/2799.01       | 5612  | -                                 | TU                     |
| Tilt Antenna Mast                                   | Maturo Gmbh     | TAM 4.0-P             | 5613  | -                                 | TU                     |
| Turntable                                           | Maturo Gmbh     | Turntable 1.5 SI-2t   | 5614  | -                                 | TU                     |
| Screened Room (12)                                  | MVG             | EMC-3                 | 5621  | 36                                | 11-Aug-2023            |

# Table 36

TU - Traceability Unscheduled

O/P Mon - Output Monitored using calibrated equipment



# 3 Photographs

# 3.1 Test Setup Photographs



Figure 31 - 30 MHz to 1 GHz





Figure 32-1 GHz to 10 GHz



# 4 Measurement Uncertainty

For a 95% confidence level, the measurement uncertainties for defined systems are:

| Test Name                                | Measurement Uncertainty                                |
|------------------------------------------|--------------------------------------------------------|
| 20 dB Bandwidth & 99% Occupied Bandwidth | ± 5.07 kHz                                             |
| Field Strength of Fundamental            | 30 MHz to 1 GHz: ± 5.2 dB<br>1 GHz to 40 GHz: ± 6.3 dB |
| Field Strength of Emissions              | 30 MHz to 1 GHz: ± 5.2 dB<br>1 GHz to 40 GHz: ± 6.3 dB |

# Table 37

Measurement Uncertainty Decision Rule - Accuracy Method

Determination of conformity with the specification limits is based on the decision rule according to IEC Guide 115:2007, Clause 4.4.3 and 4.5.1. (Procedure 2). The measurement results are directly compared with the test limit to determine conformance with the requirements of the standard. Risk:

The uncertainty of measurement about the measured result is negligible with regard to the final pass/fail decision. The measurement result can be directly compared with the test limit to determine conformance with the requirement (compare IEC Guide 115). The level of risk to falsely accept and falsely reject items is further described in ILAC-G8.