

GENERAL RESEARCH OF ELECTRONICS, INC.

Phone: +813-5439-3611

Fax: +813-5439-3644

SHIBA NO.3 AMEREX BLDG. 12-17 MITA 3-CHOME, MINATO-KU TOKYO 108-0073, JAPAN

March 9, 2005

Federal Communications Commission Authorization and Evaluation Division Laboratory Division 7435 Oakland Mills Road Colombia, MD 21046

Ref.: Model PRO-2055, FCC ID: ADV2000428

This is to clarify that the above equipment is incapable of operating (tuning) or readily being altered by the user to operate, within the frequency bands to the Cellular Radiotelephone Service.

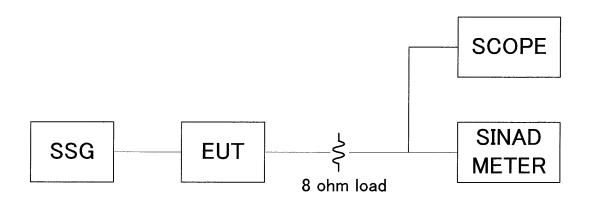
The frequencies in question are deleted from the ROM during manufacture, and cannot be restored through any readily available process or component such as: installation of cuts, jumper wires, resistors, diodes, or plug-in IC's; deletion of such items; or reprogramming via access codes or external devices such as a personal computer.

The receiver is incapable of converting digital cellular transmissions to analog voice audio.

Assessing the vulnerability of the receiver to possible modification

The receive has the possibility of reducing the threshold value to discern transmissions from the Cellular Radiotelephone Service by making modification such as adding jumper wire to the RF band pass filters.

Design features that prevent modification of the receiver to receive Cellular Service


The scanning receiver is designed to prevent any attempt for the user to modify the receiver to receive transmissions from the Cellular Radiotelephone Service by using epoxy to cover the required parts of the RF circuitry including control circuits and band pass filters.

Testing method used to determine compliance with the 38 dB rejection ratio

Testing method

The 12 dB SINAD measurement method in the Cellular Radiotelephone Service used for frequencies that the receiver tunes and the signal rejection ratio gained by the measurement.

Equipment Setup Block Diagram

Measurement method

Tune the receiver to the received frequency and outputs the receiving frequency from SG to obtain its 12 dB SINAD. Then output the interference frequency to obtain its 12 dB SINAD. The signal rejection ratio is the ratio between these two SSG output levels.

The scanning receiver prevents transmissions more than 38 dB from the Cellular Radiotelephone Service from being received for the following reasons:

1. The image frequencies in the frequency range from 25 MHz to 512 MHz are shown as follows:

FR = 25 to 54 MHz, 108 to 174 MHz, 216.0025 to 225 MHz, 225.025 to 405.975 MHz, 406 to 512 MHz

Refer to the attached table; LOCAL OSC FREQUENCY CALCULATION

$$(25 \text{ to } 54) + (1^{\text{st}} \text{ IF } \times 2) = 786.5 \text{ to } 815.55 \text{ MHz}$$
 IMAGE FREQ.
 $(132.5000 \text{ to } 174) + (1^{\text{st}} \text{ IF } \times 2) = 894.100 \text{ to } 935.55 \text{ MHz}$ IMAGE FREQ.
 $(216.0025 \text{ to } 225) + (1^{\text{st}} \text{ IF } \times 2) = 977.5475 \text{ to } 986.55 \text{ MHz}$ IMAGE FREQ.

Band except as follows.

 $(108 \text{ to } 132.49166) + (1^{st} \text{ IF x 2}) = 869.550 \text{ to } 893.95834 \text{ MHz}$ IMAGE FREQ.

Test Results 108 to 132.49166 MHz

Frequency	Cellular	Received	Interference	Signal	Equation for interference
range	frequency range	frequency	frequency	rejection	frequency reception
(MHz)	included (MHz)	(MHz)	(MHz)	ratio (MHz)	(MHz)
108.000	869.550	108.000	869.550	67	FR + (IF x 2) = 869.550
to	to	124.000	885.500	68	FR + (IF x 2) = 885.500
132.49166	893.95834	132.4875	893.95834	68	FR + (IF x 2) = 893.95834

The above test results indicate that all the signal rejection ratios for the Cellular Radiotelephone Frequency Service Band are higher than 38 dB.

2. The image frequencies in the frequency range from 806 to 1300 MHz are shown as follows:

FR = 806 to 823.9875 MHz, 849 to 868.9875 MHz, 894 to 960 MHz, 1240 to 1300 MHz

$$1^{st}$$
 Local = A x 0.075

$$A = (FR - 380.8)/0.075$$

= A.xxx (Cut away decimal)

$$(806 \text{ to } 823.9875) - (1^{\text{st}} \text{ IF } x 2) = 44.35 \text{ to } 62.3625 \text{ MHz}$$
 IMAGE FREQ.

$$(849 \text{ to } 868.9875) - (1^{st} \text{ IF x 2}) = 87.3 \text{ to } 107.3625 \text{ MHz}$$
 IMAGE FREQ.

$$(894 \text{ to } 960) - (1^{st} \text{ IF } \times 2) = 132.3 \text{ to } 198.3 \text{ MHz}$$
 IMAGE FREQ.

$$(1240 \text{ to } 1300) - (1^{st} \text{ IF } x 2) = 478.4 \text{ to } 538.4 \text{ MHz}$$
 IMAGE FREQ.

These image frequencies are not included within the Cellular Radiotelephone Service Frequency Band.

Other rejection results

Test Results (1)

Frequency range (MHz)	Cellular frequency range included (MHz)	Received frequency (MHz)	Interference frequency (MHz)	Signal rejection ratio (dB)	Equation for interference frequency reception (MHz)
25.000 to	836.500 to	25.000 to	836.500 to	77	1 st Lo x 3 – 1 st IF = 836.500
29.145	848.895	29.145	848.895	78	1 st Lo x 3 – 1 st IF = 848.895
35.825	869.075	35.825	869.075	81	1 st Lo x 3 – 1 st IF = 869.075
to	to	40.000	881.500	83	1^{st} Lo x 3 – 1^{st} IF = 881.500
44.145	893.895	44.145	893.895	83	1 st Lo x 3 – 1 st IF = 893.895
221.6025 to	824.0025 to	221.6025 to	824.0025 to	81	1 st Lo x 2 – 1 st IF = 824.0025
225.000	830.775	225.000	830.775	80	1^{st} Lo x 2 – 1^{st} IF = 830.775

Test Results (2)

Frequency range (MHz)	Cellular frequency range included (MHz)	Received frequency (MHz)	Interference frequency (MHz)	Signal rejection ratio (dB)	Equation for interference frequency reception (MHz)
849.000 to 859.6875	838.300 to 848.9875	849.000 to 859.6875	838.300 to 848.9875	74 75	$\{(FR \times 2) - 2^{nd} \mid F\}/2 = 838.300$ to $\{(FR \times 2) - 2^{nd} \mid F\}/2 = 848.9875$
866.800 to 868.9875	824.000 to 826.1875	866.800 to 868.9875	824.000 to 826.1875	43 44	FR - $(2^{nd} \text{ IF } x 2) = 824.000$ to FR - $(2^{nd} \text{ IF } x 2) = 826.1875$
894.000 to 904.6875	883.300 to 893.9875	894.000 to 904.6875	883.300 to 893.9875	75 76	$\{(FR \times 2) - 2^{nd} \mid F\}/2 = 883.300$ to $\{(FR \times 2) - 2^{nd} \mid F\}/2 = 893.9875$
911.800 to 936.7875	869.000 to 893.9875	911.800 920.000 936.7875	869.000 877.200 893.9875	43 43 42	FR - $(2^{nd} \text{ IF } \times 2) = 869.000$ FR - $(2^{nd} \text{ IF } \times 2) = 877.200$ FR - $(2^{nd} \text{ IF } \times 2) = 893.9875$

The above test results indicate that all the signal rejection ratios for the Cellular Radiotelephone Service Frequency Band are higher than 38 dB.

Receiving band	Freq. step	Receiving freq. FR	1 st Local PLL 1/ VCO 1 or VCO 2	2 nd Local PLL 2/VCO 3	3 rd Local X'tal
(FR step)	(kHz)	(MHz)	(MHz)	(MHz)	(MHz)
VHF Low	5.0	25.0000 – 54.0000	A = (FR + 380.800)/0.075	2 nd Local = 1 st IF – 21.4	20.9450
VHF High	8.33	108.0000 – 136.99166	= A.xxx (Cut away decimal)	2 nd Local = 1 st IF – 21.4	20.9450
	5.0	137.0000 – 137.9950	1 st Local = A x 0.075	2 nd Local = 1 st IF – 21.4	20.9450
	12.5	138.0000 – 143.9875	1 st IF = 1 st Local – FR	2 nd Local = 1 st IF – 21.4	20.9450
	5.0	144.0000 – 148.0000		2 nd Local = 1 st IF – 21.4	20.9450
	12.5	148.0125 – 150.7750		2 nd Local = 1 st IF – 21.4	20.9450
	7.5	150.7825 – 150.8125		2 nd Local = 1 st IF – 21.4025	20.9475
	7.5	150.8150 – 154.4525		2 nd Local = 1 st IF – 21.4	20.9450
	7.5	154.45625 – 154.47875		2 nd Local = 1 st IF – 21.4	20.9450
	7.5	154.4825 - 154.5050		2 nd Local = 1 st IF - 21.4	20.9450
	5.0	154.5100 – 154.5250		2 nd Local = 1 st IF – 21.4	20.9450
	6.25	154.52750 - 154.54625		2 nd Local = 1 st IF – 21.3975	20.9425
	7.5	154.5475 – 154.6075		2 nd Local = 1 st IF – 21.4025	20.9475
	5.0	154.6100 – 154.6550		2 nd Local = 1 st IF – 21.4	20.9450
	7.5	154.6575 – 156.2475		2 nd Local = 1 st IF – 21.3975	20.9425
	5.0	156.2500 – 157.4750		2 nd Local = 1 st IF – 21.4	20.9450
	7.5	157.4775 – 161.5650		2 nd Local = 1 st IF – 21.3975	20.9425
	5.0	161.5700 – 162.0200		2 nd Local = 1 st IF _ 21.4	20.9450
	12.5	162.0250 – 173.2000		2 nd Local = 1 st IF - 21.4	20.9450
	6.25	173.20375 – 173.22250]	2 nd Local = 1 st IF - 21.4025	20.9475
	6.25	173.22500 – 173.38750		2 nd Local = 1 st IF – 21.4	20.9450
	6.25	173.39000 – 173.40875		2 nd Local = 1 st IF – 21.3975	20.9425
	12.5	173.4125 – 174.0000		2 nd Local = 1 st IF – 21.4	20.9450
	5.0	216.0025 – 221.9975		2 nd Local = 1 st IF _ 21.4025	20.9475
	5.0	222.0000 – 225.0000		2 nd Local = 1 st IF – 21.4	20.9450
UHF Low	25.0	225.0250 - 316.5250		2 nd Local = 1 st IF – 21.4	20.9450
	25.0	316.5500 - 316.6500	A = (FR + 380.700)/0.075	2 nd Local = 1 st IF – 21.4	20.9450
	25.0	316.6750 - 337.9475	A = (FR + 380.800)/0.075	2 nd Local = 1 st IF - 21.4	20.9450
	25.0	337.9500 – 338.0000	A = (FR + 380.700)/0.075	2 nd Local = 1 st IF - 21.4	20.9450
	25.0	338.0250 - 359.3250	A = (FR + 380.800)/0.075	2 nd Local = 1 st IF – 21.4	20.9450
	25.0	359.3500 - 359.4000	A = (FR + 380.700)/0.075	2 nd Local = 1 st IF – 21.4	20.9450
	25.0	359.4250 - 380.7000	A = (FR + 380.800)/0.075	2 nd Local = 1 st IF – 21.4	20.9450
	25.0	380.7250 - 380.8000	A = (FR + 380.700)/0.075	2 nd Local = 1 st IF – 21.4	20.9450
	25.0	380.8250 - 400.0000	A = (FR + 380.800)/0.075	2 nd Local = 1 st IF - 21.4	20.9450
	25.0	400.0250 – 405.9750	A = (FR + 380.700)/0.075	2 nd Local = 1 st IF – 21.4	20.9450
	6.25	406.0000 – 512.0000	A = (FR + 380.800)/0.075	2 nd Local = 1 st IF - 21.4	20.9450
UHF High	6.25	806.0000 – 823.9875	A = (FR – 380.800)/0.075	2 nd Local = 1 st IF – 21.4	20.9450
	6.25	849.0000 – 868.9875	= A.xxx (Cut away decimal)	2 nd Local = 1 st IF – 21.4	20.9450
	6.25	894.0000 – 960.0000	1 st Local = A x 0.075	2 nd Local = 1 st IF – 21.4	20.9450
	6.25	1240.0000 – 1300.0000	1 st IF = FR – 1 st Local	2 nd Local = 1 st IF – 21.4	20.9450
		<u> </u>			

IF FREQUENCY

1st IF: 380.6500 – 380.86875 MHz

2nd IF: 21.3975 MHz/21.4000 MHz/21.4025 MHz

3rd IF: 455 kHz

Label Requirement

The scanning receiver has a label affixed to the product shown on the attached drawing of the model label, which reads as follows:

WARNING: MODIFICATION OF THIS DEVICE TO RECEIVE CELLULAR RADIOTELEPHONE SERVICE SIGNALS IS PROHIBITED UNDER FCC RULES AND FEDERAL LAW.

Based on the above, we hereby attest that the equipment in question compiles fully with the provisions of §15.121 of FCC Rules.

M. Ishizuka, Assistant Manager

Engineering & Development Division