

TEST REPORT

Report Number: 3123616MPK-001 Project Number: 3123616 May 31, 2007

Testing performed on the
Triple Trunking Hand Held Scanner
Model Number: 0609
FCC ID: ADV0609
to

FCC Part 15, Subpart B

Class: B

for GRE America

A2LA Certificate Number: 1755-01

Test Performed by:
Intertek
1365 Adams Court
Menlo Park, CA 94025

Test Authorized by:
GRE America
425 Harbor Blvd. Suit B
Belmont, CA 94002

Prepared by:	0-1-5	Date:	May 31, 2007
	(Kishove		
	Krishna K Vemuri		
Reviewed by:		Date:	May 31, 2007
	oll & X		
	Ollie Moyrong		

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to copy or distribute this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program. This report must not be used to claim product endorsement by A2LA, NIST nor any other agency of the U.S. Government.

VERIFICATION OF COMPLIANCE Report No. 3123616MPK-001

Verification is hereby issued to the named APPLICANT and is VALID ONLY for the equipment identified hereon for use under the rules and regulations listed below.

Triple Trunking Hand Held Scanner

Equipment Under Test:

Trade Name:	GRECOM
Model No.:	0609
Serial No.	000011
Applicant:	GRE America
Contact:	Mr. Teru Takahashi
Address:	425 Harbor Blvd. Suite B
11441 055.	Belmont, CA 94002
Country	USA
m	650 501 1400
Tel. number:	650-591-1400
Fax number:	650-591-2001
Applicable Regulation:	FCC Part 15, Subpart B
Equipment Class:	Class B
zquipment class.	2.000 2
Date of Test:	May 29 and 30, 2007
We attest to the accuracy of this report:	
anshove.	oll & X
Krishna K Vemuri	Ollie Moyrong
Test Engineer	EMC Department Manager
6	

TABLE OF CONTENTS

1.0	Gene	eral Description	4
	1.1	Product Description	
	1.2	Related Submittal(s) Grants	4
	1.3	Test Methodology	
	1.4	Test Facility	
	1.5	Summary of Test Results	
2.0	Syste	em Test Configuration	6
	2.1	Justification	6
	2.2	EUT Exercising Software	6
	2.3	Mode of Operation	6
	2.4	Support Equipment List and Description	7
	2.5	Equipment Setup Block Diagram	7
	2.6	Equipment Modification	8
3.0	Emis	ssion Test Results	9
	3.1	Field Strength Calculation	10
	3.2	Radiated Emission Data	11
	3.3	AC Line Conducted Emission Data	
	3.4	Antenna Conducted Emission Data	15
4.0	List	of Test Equipment	19
Appe	endix A	A – EUT Specification	20
Appe	endix B	B – Local Oscillator Frequency calculation	21
Арре	endix C	C – Antenna Drawing	22

1.0 General Description

1.1 Product Description

The Equipment under Test (EUT) is 1,000 Channel Triple Trunking Hand Held Scanning Receiver, model 0609.

Please refer to the attached specifications sheets in Appendix A for more details.

A pre-production version of the sample was received on May 28, 2007 in good condition. As declared by the Applicant, it is identical to production units.

1.2 Related Submittal(s) Grants

This is a single application for certification of a scanning receiver.

1.3 Test Methodology

Both conducted (if applicable) and radiated emission measurements were performed according to the procedures in ANSI C63.4 (2003). All radiated measurements were performed in a semi-anechoic chamber. Radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the "Data Section" of this Application.

1.4 Test Facility

The test site and conducted measurement facility used to collect the radiated data is Site 1, a 10 meter semi-anechoic chamber. This test facility and site measurement data have been fully placed on file with the FCC and A2LA accredited.

1.5 Summary of Test Results

Model: 0609 FCC ID: ADV0609

TEST	REFERENCE	RESULTS
Radiated Emission	15.109	Complies
AC Line Conducted Emission	15.107	Complies
Antenna Conducted Emission	15.111	Complies
FCC Part 15.121 Requirement	15.121	Complies *

^{*} Refer to file: ADV0609 REPORT FOR FCC RULE PART 15.121

2.0 System Test Configuration

2.1 Justification

The tests were performed according to the test procedure as outlined in CFR47 Part 15.31 and in ANSI C63.4.

For emission testing, the equipment under test (EUT) was configured for testing in a typical fashion (as a customer would normally use it). During testing, all cables were manipulated to produce worst-case emissions.

For the measurements, the EUT is placed on top of a non-conductive table. If the EUT attaches to peripherals, they are connected and operational (as typical as possible).

For radiated emission measurements, the signal is maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters. Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance. All readings are extrapolated back to the equivalent three-meter reading using inverse scaling with distance if measured at a closer distance.

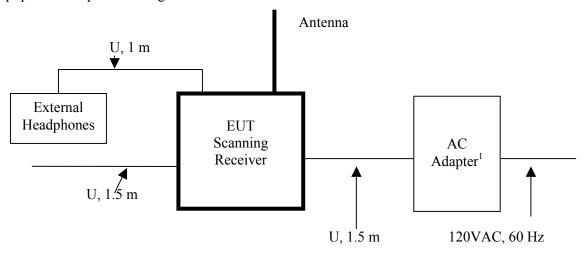
2.2 EUT Exercising Software

The unit was setup to receive continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing.

2.3 Mode of Operation

The EUT was tested in two modes:

Test Mode 1: The EUT was set to constantly receive at the low, middle and high channels of each band.


Test Mode 2: The EUT was set to constantly scan a particular band.

2.4 Support Equipment List and Description

Item #	Description	Model No.	Serial No.
1	External headphones	DS	Not Labeled

2.5 Equipment Setup Block Diagram

¹ AC adapter: Gemini, Universal AC Adapter, Model: AS499

U: Unshielded m: meter

2.6 Equipment Modification

Any modifications installed previous to testing by GRE will be incorporated in each production model sold/leased in the United States.

Intertek Testing Services installed no modifications.

3.0 Emission Test Results

AC line conducted emission measurements were performed from 0.15 MHz to 30 MHz. Analyzer resolution is 10 kHz or greater.

Radiated emission measurements and antenna conducted emission measurements were performed from 30 MHz to 8000 MHz. Analyzer resolution is 100 kHz or greater for frequencies from 30 MHz to 1000 MHz, 1 MHz - for frequencies above 1000 MHz.

Preliminary tests were performed to determine the worst-case emission with the EUT tuned to the low, middle and high channels of each band. From these preliminary measurements the EUT was tuned to the frequency with the highest emission and the final scan was performed using the automated test software.

The same procedure was used to determine the worst-case emission level with the EUT setup in scanning mode for each band.

The final recorded data reflects the worst-case result

A sample calculation and data tables of the emissions are included.

All measurements were performed with peak detection unless otherwise specified.

3.1 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

```
FS = RA + AF + CF - AG + DF
```

Where $FS = Field Strength in dB(\mu V/m)$

RA = Receiver Amplitude (including preamplifier) in $dB(\mu V)$

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB(1/m)

AG = Amplifier Gain in dB

DF = Distance Factor in dB

Assume a receiver reading of 52.0 dB(μ V) is obtained. The antennas factor of 7.4 dB(1/m) and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving field strength of 32 dB(μ V/m). This value in dB(μ V/m) was converted to its corresponding level in μ V/m.

 $RA = 52.0 dB(\mu V)$

AF = 7.4 dB(1/m)

CF = 1.6 dB

AG = 29.0 dB

DF = 0 dB

 $FS = 52 + 7.4 + 1.6 - 29.0 + 0 = 32 dB(\mu V/m)$

Level in $\mu V/m = Common Antilogarithm [(32 dB<math>\mu V/m)/20] = 39.8 \mu V/m$

3.2 Radiated Emission Data

Tested By:	Krishna K Vemuri
Test Date:	May 29, 2007

Temperature	(°C)	20 °C
Relative Humidity	(%)	50%

The results on the following page(s) were obtained when the device was tested in the condition described in Section 2.

Results: Complies by 14.3 dB at 1300 MHz

3.2 Test Data (Continued)

Model: 0609

Test Mode: Receiving Test distance: 3 m

FCC Part 15.109 Class B Radiated Emissions Data

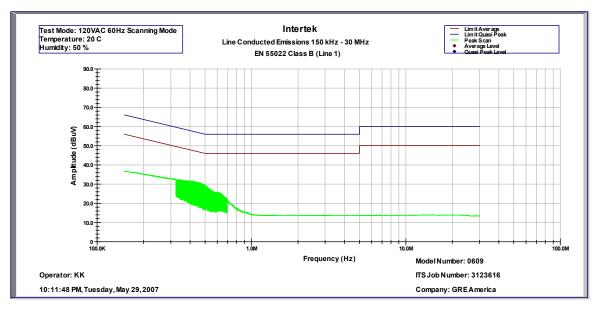
		1001	art 13.107 Cr	uss B Ittiuitt	ca Emission	15 2 tttt			
Tuned	L.O.	Antenna	Corrected	Limit	Margin	SA	Amp	Cable	Ant
Frequency	Frequency	Polarization	Reading	at 3 m		Reading	Gain	Loss	
MHz	MHz	H/V	dB(uV/m)	dB(uV/m)	dB	dBuV	dB	dB	dB/m
25	405.8	Н	22.5	46.0	-23.5	37.4	36.2	5.9	15.4
39	419.8	Н	21.9	46.0	-24.1	36.1	36.2	6.0	16.0
54	434.8	Н	18.5	46.0	-27.5	33.1	36.2	6.0	15.6
108	488.8	Н	23.2	46.0	-22.8	36.5	36.3	6.3	16.7
122.49166	503.29166	Н	24.5	46.0	-21.5	37.5	36.4	6.3	17.0
136.99166	517.79166	Н	26.0	46.0	-20.0	39	36.4	6.3	17.1
137	517.8	Н	26.4	46.0	-19.6	39.4	36.4	6.3	17.1
155.505	536.305	Н	25.4	46.0	-20.6	37.7	36.4	6.5	17.6
174	554.8	Н	27.1	46.0	-18.9	38.7	36.5	6.5	18.4
216.0025	596.8025	Н	21.8	46.0	-24.2	34	36.5	6.7	17.7
257.975	638.775	Н	26.1	46.0	-19.9	36.2	36.5	6.8	19.5
299.975	680.775	Н	24.6	46.0	-21.4	34.5	36.4	7.2	19.4
300	680.8	Н	24.5	46.0	-21.5	34.3	36.4	7.2	19.4
406	786.8	Н	25.3	46.0	-20.7	33.8	35.7	7.4	19.8
512	892.8	Н	30.8	46.0	-15.2	36.5	34.7	7.7	21.3
764	383.2	Н	20.2	46.0	-25.8	35.1	36.1	5.8	15.5
862	481.2	Н	21.7	46.0	-24.3	34.7	36.3	6.2	17.1
960	579.2	Н	30.0	46.0	-16.0	41.5	36.5	6.6	18.4
1240	859.2	Н	28.6	46.0	-17.4	35.1	35.0	7.7	20.9
1270	889.2	Н	29.0	46.0	-17.0	34.8	34.7	7.7	21.2
1300	919.2	Н	31.7	46.0	-14.3	36.4	34.5	7.8	22.0

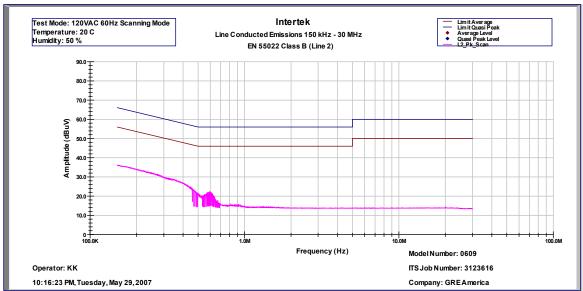
Notes:

- 1. Negative signs (-) in the Margin column signify levels below the limit.
- 2. All readings below 1 GHz are quasi-peak, above 1 GHz average.
- 3. All other readings not reported are at least 20 dB below the limit.
- 4. For L.O. frequency calculation, see Appendix B
- 5. The EUT was tested in two modes. The worst-case data is reported.

3.3 AC Line Conducted Emission Data

Tested By:	Krishna K Vemuri
Test Date:	May 29, 2007

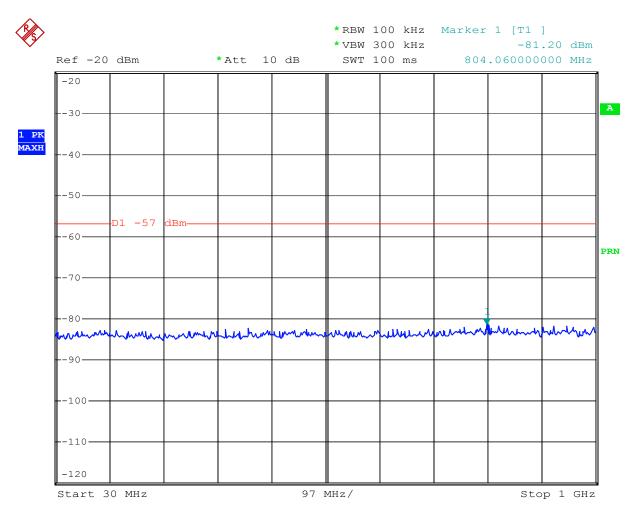

Temperature	(°C)	20 °C
Relative Humidity	(%)	50%


The results on the following page(s) were obtained when the device was tested in the condition described in Section 2.

Results: Complies by more than 17.9 dB at 360.4 kHz

3.3 Test Data (Continued)

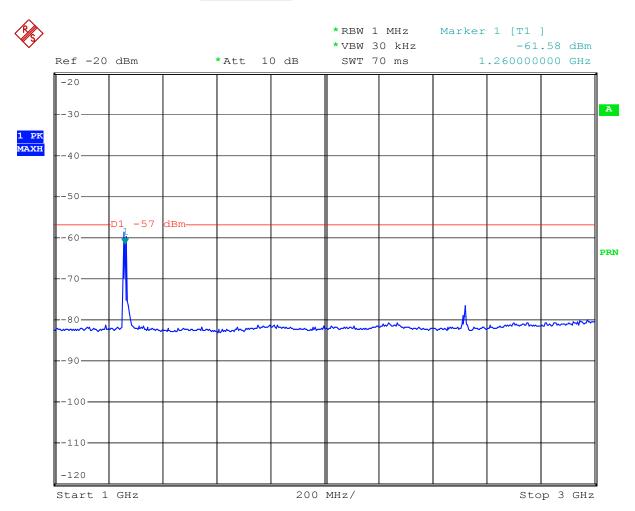
3.4 Antenna Conducted Emission Data


Tested By:	Krishna K Vemuri
Test Date:	May 30, 2007

Temperature	(°C)	20 °C
Relative Humidity	(%)	50%

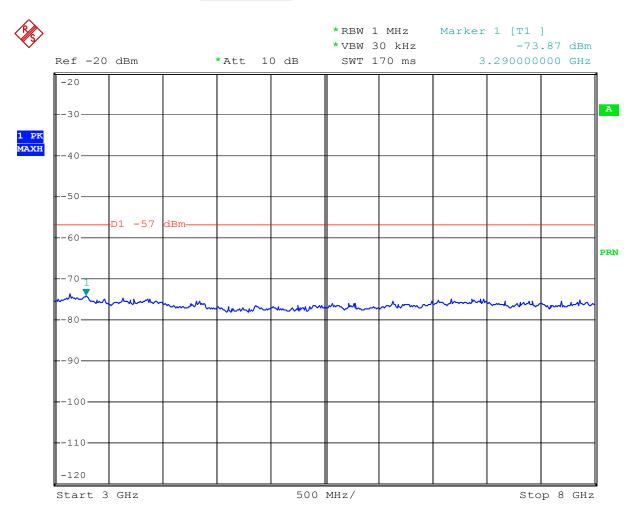
The results on the following page(s) were obtained when the device was tested in the condition described in Section 2.

Results:	Complies by 4.58 dB at 1.26 GHz
Results:	Complies by 4.58 dB at 1.26 GHz



Comment: Scanning Mode

Date: 30.MAY.2007 18:06:11



Comment: Scanning Mode

Date: 30.MAY.2007 18:03:22

Comment: Scanning Mode

Date: 30.MAY.2007 18:04:43

4.0 List of Test Equipment

Measurement equipment used for emission compliance testing utilized the equipment on the following list.

Equipment	Manufacturer	Model/Type	Serial #	Cal Int	Cal Due
Spectrum Analyzer	Rhode-Schwarz	FSP-40	100030	12	9/12/07
RF Filter Section	Hewlett Packard	85460A	3448A00267	12	9/11/07
EMI Receiver	Hewlett Packard	8546A	3710A00373	12	9/11/07
BI-Log Antenna	ARA Inc.	LPB-2513/A	1154	12	8/29/07
LISN	FCC	FCC-LISN-50-	2012	12	7/19/07
		50-M-H			
Pre-Amplifier	Compower	CPPA-102	01256	12	2/27/08

Appendix A – EUT Specification

Phone: +813-5439-3611

Fax: +813-5439-3644

SHIBA NO.3 AMEREX BLDG. No. 12-17 MITA 3-CHOME, MINATO-KU TOKYO 108-0073, JAPAN

> MAY. 15 2007 Reference No. F07002

SPECIFICATIONS

SUBJECT: 1000 CHANNEL FREQUENCY MEMORIES WITH 1500 ID MEMORIES TRUNKING

SYSTEM, VHF/UHF PROGRAMMABLE WITH SPECTRUM SWEEPER AND SKYWARN

AM/FM SCANNING RECEIVER 0609 (CPU Flash version)

GENERAL

Programmable channel

1000 channels (100 channels x 10 banks)

1500 ID memories (30 location x 5 sub-banks x 10 banks)

7 service search 1 Limit search bank 1 Priority channel 7 WX frequencies

WX alert and SAME receiving with 10 FIPS (Federal information

Processing Standard) area code memories

155 preprogrammed frequencies

1.2 Receiving mode AM, FM, FM-MOT (Motorola), LTR (EF Johnson),

EDACS wide(GE/Ericsson/MA-COM), CTCSS and DCS

1.3 Receiving system Triple conversion PLL super heterodyne

1st IF 380.8 MHz: The 1st Local OSC frequency for VHF

and UHF Low/T band employs upper

side of receiving frequency range.

: The 1st Local OSC frequency for UHF High band employs lower side of

receiving frequency range

2nd IF 21.4 MHz: The 2nd Local OSC frequency employs

lower side of 1st IF

- Continued -

PRODUCT DEVELOPMENT & MANUFACTURING

3rd IF 455 kHz : The 3rd Local OSC frequency employs

lower side of 2nd IF.

1.4 Frequency range : VHF Low

25.00000 - 54.00000 MHz

VHF Aircraft

108.00000 - 136.99166 MHz

VHF High

137.00000 - 174.00000 MHz

216.00250 - 299.97500 MHz

UHF Low/T

300.00000 - 512.00000 MHz

UHF High

764.00000 - 960.00000 MHz

1240 .00000 - 1300.0000 MHz

1.4.1 Pre-Programmed band search: Marine

СВ

FRS/GRMS/MURS

Public safety

Aircraft

Amateur (Ham)

Railroad

WX frequencies

162.400, 162.425, 162.450, 162.475, 162.500, 162.525,

162.550 MHz

1.6 Scanning rate 60 channels/sec.

1.7 Search rate 78 steps/sec.

1.8 Display : LED back-light LCD with 16 characters X 4 lines with icons

1.9 Zeromatic Activates during search mode

1.10 Audio output

250 mWatts

1.11 Signal Stalker band

Public safety band

All frequencies range divided to 10 groups

Group 0 (25 - 54 MHz)

Group 1 (108 – 136.99166 MHz)

Group 2 (137 – 174 MHz)

Group 3 (216.0025 – 299.9750 MHz)

Group 4 (300 – 405.9875 MHz)

Group 5 (406 - 470 MHz)

Group 6 (470.0125 – 512 MHz)

Group 7 (764 – 805.996875 MHz)

Group 8 (806 – 868.9875 MHz)

Group 9 (894 – 960, 1240 – 1300 MHz)

1.12 Speaker : Built-in 36 mm 8 Ohms dynamic speaker

1.13 Operating voltage : DC 6 Volts "AA" cell x 4 pcs.

1.14 Ext. power and charge voltage: DC 9 Volts (regulated)

1.15 Dimension : Approx. 65 (W) x 42 (D) x 145 (H) mm

1.16 Weight : Approx. 240 g without antenna and batteries

1.17 Accessory : Rubber antenna, Owner's manual, Normal Batt. holder,

Re-charge Batt, holder and Belt clip

1.18 Memory backup : No battery back-up required, EEPROM used

2. ELECTRICAL

Standard Test Condition

(1) Power source voltage : 6 Volts DC (Battery)

(2) Antenna impedance : 50 Ohms

(3) Test temperature : 25 degrees C

(6) Reference FM deviation : 3.0 kHz (7) Reference AM modulation : 60%

(8) Reference audio output : 75 mWatts

(9) Audio output load : 8 Ohm resistive load

2.1 Frequency range : <u>Freq.</u> <u>Step Mode (Default)</u>

			
25.0000 – 26.9600 MHz	10 kHz	AM	
26.9650 - 27.4050 MHz	10 kHz	AM	
27.4100 – 29.5050 MHz	5 kHz	AM	
29.5100 – 29.7000 MHz	5 kHz	FM	
29.7100 - 49.8300 MHz	10 kHz	FM	
49.8350 - 54.0000 MHz	5 kHz	FM	
108.000 - 136.9916 MHz	8.33 kHz	AM	
137.000 - 137.995 MHz	5 kHz	FM	
138.000 – 143.9875 MHz	12.5 kHz	FM	
144.000 – 147.9950 MHz	5 kHz	FM	
148.000 – 150.7875 MHz	12.5 kHz	FM	
150.800 – 150.8450 MHz	5 kHz	FM	
150.8525 – 154.4975 MHz	7.5 kHz	FM	
154.5150 – 154.6400 MHz	5 kHz	FM	
154.6500 – 156.2550 MHz	7.5 kHz	FM	
156.2750 – 157.4500 MHz	25 kHz	FM	

157.4700 – 161.5725 MHz	7.5 kHz	FΜ
161.6000 – 161.9750 MHz	5 kHz	FM
162.0000 – 174.0000 MHz	12.5 kHz	FM
216.0025 – 219.9975 MHz	5 kHz	FM
220.0000 – 224.9950 MHz	5 kHz	FM
225.0000 – 379.9750 MHz	25 kHz	AM
380.0000 – 419.987500 MHz	12.5 kHz	FM
420.0000 – 450.000000 MHz	5 kHz	FM
450.00625 – 469.99375 MHz	6.25 kHz	FΜ
470.00000 - 512.00000 MHz	12.5 kHz	FM
764.00000 - 766.996875 MHz	3.125 kHz	FΜ
773.00000 - 775.996875 MHz	3.125 kHz	FM
794.00000 – 796.996875 MHz	3.125 kHz	FM
803.00000 - 805.996875 MHz	3.125 kHz	FM
806.00000 - 823.987500 MHz	12.5 kHz	FM
849.00000 - 868.987500 MHz	12.5 kHz	FM
894.00000 – 901.987500 MHz	12.5 kHz	FM
902.00000 – 928.000000 MHz	5 kHz	FM
928.00125 - 939.987500 MHz	12.5 kHz	FM
940.00000 - 960.000000 MHz	6.25 kHz	FM
1240.0000 - 1300.00000 MHz	6.25 kHz	FM

Except cellular band: 824 – 848.9875 MHz and 869 – 893.9875 MHz

			No	minal	Limit
2.2	Sensitivity	: VHF Low		0.3 μV	1 μV
	FM: $(S+N)/N = 20 dB$	VHF Aircraft		0.3 μV	1 μ V
	Dev.: 3 kHz at 1 kHz	VHF High	137 -174 MHz	0.5 μV	2 μ V
		216.0	025 – 224.975 MHz	0.5 μV	2 μ V
		-	225 – 299.975 MHz	0.5 μV	2 μ V
		UHF Low/T	300 - 405.975 MHz	0 .8 μV	$3\mu V$
			406 - 512 MHz	0.5 μV	2 μV
		UHF High	764 - 960 MHz	0 .7 μ V	3 μV
			1240 - 1300 MHz	0.7 μ V	4 μV
	AM: (S+N)/N = 20 dB	: VHF Low		1 μ V	3 μV
	Mod.: 60% at 1 kHz	VHF Aircraft	•	1 μV	$3 \mu V$
		VHF High	137 -174 MHz	1.5 μV	5 μ V
		216.0	0025 – 299.975 MHz	1. 5 μV	5 μ V
			225 – 299.975 MHz	2 μV	6 μ V
		UHF Low/T	300 - 405.975 MHz	3 μV	10 μ V
			406 - 512 MHz	2 μV	6 μ V
		UHF High	764 – 960 MHz	2 μV	6 μ V
			1240 – 1300 MHz	3 μV	12 μV

		Nomi	nal Limit	
2.3	Signal stalker sensitivity : 450 MHz	-60 c	dBm –50 dBm	
2.4	Data decode sensitivity ED : ED (GE/E 4 kHz Dev. at 450, 860 MHz	ricsson/MA-COM) 1 μV	4 μV	
	MO (Voice channel) : MO (Moto 350 Hz Dev. at 174, 450, 860 MHz	rola) 0.5 µ	ıV 2 μV	
	MO (Control channel) : MO (Moto 4 kHz Dev. at 174, 450, 860 MHz	rola) 0.8 µ	ıV 4 μV	
	LTR : LTR (EF 3 800 Hz Dev. at 450, 860 MHz	ohnson) 0.5 μ	ιV 3 μV	
	WX Alert 1050 Hz tone : 3 kHz Dev. at 162.4 MHz	0.3 ր	ιV 1 μV	
	WX Digital Weather Alert : 4 kHz Dev. at 162.4 MHz	0.5 ր	uV 2 μV	
2.5	CTCSS decode sensitivity : 350 Hz Dev. at 450, 860 MHz	0.5	uV 3 μV	
2.6	DCS decode sensitivity : 350 Hz Dev. at 450, 860 MHz	0.5 բ	ıV 3 μV	
2.7	WX alert tone decode range : 4 kHz Dev. 2 μV at 162.400 MHz	1050) ±25 Hz ±40 Hz	
2.8	WX alert tone checking time : 4 kHz Dev. 2 μV at 162.400 MHz	2.8 s	sec. 2 – 5 sec.	

Note: When receiving WX alert in priority operation, the priority sampling time up to 2 sec. is added to this depending on Alert tone transmission timing.

2.9 WX alert sound level at 1 ft.	:	70 dBSPL	60 dBSPL
2.10 Image ratio 1 st IF image	: VHF Low at 41 MHz	50 dB	40 dB
	VHF Aircraft at 124 MHz	50 dB	40 dB
	VHF High at 154.1 MHz	50 dB	40 dB
	UHF Low/T at 310 MHz	40 dB	25 dB
	at 450 MHz	50 dB	40 dB
	UHF High at 860 MHz	80 dB	60 dB
	1270 MHz	55 dB	40 dB
2 nd IF image	: VHF High at 154.1 MHz	50 dB	40 dB

			Nominal	Limit
2.11	Attenuator :	VHF Low at 41 MHz VHF Aircraft at 124 MHz VHF High at 154.1 MHz UHF Low/T at 450 MHz UHF High at 860 MHz at 1270 MHz	20 dB 20 dB 20 dB 18 dB 15 dB 13 dB	17 – 24 dB 17 – 24 dB 17 – 24 dB 10 – 20 dB 8 – 20 dB 8 – 18 dB
2.12	Squelch sensitivity (Band cente	r)		
	Threshold :	AM/FM	0.5 μV	2 μ V
	Tight: (S+N)/N	AM FM	20 dB 25 dB	10 dB 15 dB
2.13	Selectivity			
	AM 25 – 27.995 MHz :	-6 dB	±5 kHz	±7 kHz
		–50 dB	±6 kHz	±10 kHz
	Other frequency :	−6 dB	±10 kHz	±14 kHz
		-50 dB	±18 kHz	±25 kHz
2.14	Spurious rejection : (Except Primary image)	VHF High at 154.1 MHz	40 dB	30 dB
2.15	IF rejection ratio :	380.8 MHz at 154.1 MHz	60 dB	40 dB
		21.4 MHz at 154.1 MHz	100 dB	80 dB
		Fr 225 – 300 MHz	30 dB	not specified
		300 – 405.975 MHz	10 dB	not specified
2.16	Acceptable radio frequency : displacement at EIA RS-204D		±6 kHz	±3 kHz
2.17	Signal meter indicating	Full Level (∎∎∎∎∎) at 154.1 MHz	-96 dBm	-94dBm98dBm
2.18	Signal to noise ratio :	VHF Low	40 dB	30 dB
	AM/FM	VHF Aircraft	40 dB	30 dB
	RF: 100 μV	VHF High 138 -174 MHz	40 dB	30 dB
	Dev.: 3 kHz at 1 kHz	216.0025 – 299.975 MHz	40 dB	30 dB
	Mod. 60% at 1 kHz	UHF Low/T 300 - 512 MHz	35 dB	25 dB
		UHF High 764 – 960 MHz	35 dB	25 dB
		1240 – 1300 MHz	35 dB	25 dB
2.19	Residual noise :		1 mV	3 mV
	Vol. min. and Squelched			

			Nominal	Limit
2.20	Scanning rate without trunking:	138 – 147.9 MHz (in 100 kHz: Intervals)	60 ch/sec. 3	3 – 66 ch/sec.
2.21	Search rate :	at 162.25 – 167.25 MHz	'8 steps/sec. 60 -	95 steps/sec.
2.22	Signal Stalker Time : One active signal the Other no signal	Public safety band All band	1.1 sec. 4.8 sec.	1.35 sec. 6.38 sec.
2.23	Scan and Search delay time :		2 sec.	1 – 3 sec.
2.24	Audio output (T.H.D. 10 %) : 8 Ohms R Load, 1 kHz	RF input: 100 μV at 154.1 MHz		
	o omnore zoda, r kriz		170 mWatts	140 mWatts
2.25	T.H.D. at 50 mWatt :	RF input: 100 μV at 154.1 MHz	1 %	5 %
2.26	Audio max. power : 8 Ohm internal speaker 32 Ohm at headphone mono/s	•	250 mWatts 13/8 mWatts	200 mWatts 25 mWatts
2.27	Audio frequency response at : -6 dB	RF input: 100 μV at 154.1 MHz	300 Hz 2.0 kHz	200 – 400 Hz 1.5 – 3.0 kHz
2.28	Intermediate frequency :	1 st 380.8 MHz 2 nd 21.4 MHz 3 rd 455 kHz		
2.29	Current drain at 9 Volts : 8 Ohm internal speaker at 154.1 MHz	Vol. Max. Squelch	180 mA 90 mA	220 mA 110 mA
2.30	Charging current Ni-MH Battery 1) AC adapter charging : current	(1600 mA/h)	150 mA	100 – 200 mA
	Note: This specification is ob without the scanner on	tained INPUT: AC 120 V OUTPU after ten hours.	T: DC 9V 300mA	OUTPUT
	DC adapter (regulated) : charging current (at 9 V)	150 mA	130 – 170 mA

APR. 25 2007 REF. NO. 07002

GENERAL RESEARCH OF ELECTRONICS, INC.

Nominal Limit 2.31 Battery life at continuous operation Alkaline Battery 22 Hours Not specified Ni-MH Battery (1600 mA/h) Not specified 18 Hours Note: Test condition EIAJ CP-2905 (1-4-4.1) 2.32 Birdies and step frequency : Under discussion when search 2.33 Filter Saw filter for 380.8 MHz, Monolithic crystal filter for 21.4 MHz and ceramic filter for 455 kHz 2.34 Antenna impedance 50 Ohms 2.35 Temperature range Test to specification between: +18°C - +35°C Operate (Need not meet spec.): -10°C - +60°C 2.36 Low BATT indicator 4.0 V 3.8 - 4.3 V3. OPERATING CONTROLS AND CONNECTIONS Volume control with power switch 3.1 3.2 Squelch control Keyboard (30 keys): FUNCtion, PGM, WX/Skywarn, TRUNK, MANUAL, PRI, TUNE, TEXT, ATT, 3.3 PAUSE, MODE, ▲, ▼, KEY LOCK/LIghT, SCAN, SEARCH, L/OUT, ENTER, CL, 1, ABC/2, DEF/3, GHI/4, JKL/5, MNO/6, PQRS/7, TUV/8, WXYZ/9, 0, • and DELAY 3.4 LCD display: 16 characters x 4 lines and 8 icons Frequency, Mode, ch, Bank, etc. F, T, G, A, S , ▲ , ▼ , ■ ■ ■ icons 3.5 BNC type antenna connector 3.6 Earphone jack (D = 3.5 mm stereo) 3.7 External power jack and charge jack 3.8 PC Interface use GRE USB cable(No. 30-3290) 3.9 Clone jack (D = 3.5 mm stereo) 3.10 Battery compartment

4. FEATURES

- 4.1 10 bank and 1000 channel memories for trunking bank and channel combined with conventional mode memory
- 4.2 Multi trunking of Motorola (type I, II and hybrid analog system), EDACS wide and LTR
- 4.3 CTCSS and DCS Sub-audible encoded squelch mode
- 4.4 Scan both trunking channels and conventional channels at same time
- 4.5 1500 ID memories in 10 ID banks, 5 sub-ID memories in each bank and each sub-ID memory has 30 ID locations.
- 4.6 Alphanumeric data entry
- 4.7 Clone the memory to other unit
- 4.8 Spectrum sweeper function (Total 200 lock out frequencies in spectrum sweeper, All Band 150, Public safety Band 50)
- 4.9 Pre-programmed Marine, CB, FRS/GRMS/MURS, Public safety, Aircraft, Amateur(Ham), Railroad, and Weather frequencies
- 4.10 WX alert and SAME receiving with 10 FIPS (Federal Information Processing Standard) area code memories
- 4.11 Skywarn function
- 4.12 Attenuator control (Normal attenuator and Global attenuator)
- 4.13 Built-in power save circuit
- 4.14 Frequency tune mode (Frequency ▲ or ▼)
- 4.15 "Zeromatic" tuning system
- 4.16 Change the direction at the searching by ▲ (up) or ▼ (down)
- 4.17 60 channels/sec. scanning rate and 75 steps/sec. searching rate
- 4.18 2 second scan and search delay
- 4.19 Manual selection for channel
- 4.20 Scan mode [Cleared channels (000.000 freq.) are not scan.]

APR. 25 2007 REF. NO. 07002

GENERAL RESEARCH OF ELECTRONICS, INC.

- 4.21 Deleting a frequency from a channel
- 4.22 1 limit search bank
- 4.23 Key lock for safety
- 4.24 Key tone and alert tone
- 4.25 16 characters x 4 lines dot matrix and 8 icons LCD (Indicate channel numbers, Frequency, ID number and the data on the LCD)
- 4.26 Backlight LCD and key pads
- 4.27 Low battery indicator by LCD
- 4.28 Crystal filter for 2nd IF and Ceramic filter for 3rd IF section
- 4.29 Belt clip and two battery holder attached
- 4.30 50 lock out frequencies per search bank, Public safety, Aircraft, Ham, Railroad ,Limit search (Totaling 250 frequencies)
- 4.31 Frequency lock-out review and Channel lock-out review
- 4.32 155 preprogrammed frequencies

GENERAL RESEARCH OF ELECTRONICS, INC.

Appendix B – Local Oscillator Frequency calculation

FCC ID: ADV0609

1 LOCAL OSC FREQUENCY CALCULATION

-1 MODEL NO. PRO-527 formula for 1st, 2nd and 3rd Local oscillation frequencies are as follow:

			a for 1st, 2nd and 3rd Local oscillation 1st LOCAL	2nd LOCAL	
RECEIVING		RECEIVING FREQ. FR (MHz)	PLL 1 /VCO 1 or VCO 2	PLL 2 /VCO 3	3rd LOCAL
BAND	STEP	FR (MH2)	(MHz)	(MHz)	X' TAL
(FR STEP)	(kHz)	050000 074050			(MHz)
VHF Low	10	25.0000 ~ 27.4050	A = (FR + 380.800) / 0.075	2nd Local = 1st IF - 21.4	20.9450
*	5	27.4100 ~ 29.7000	= A.xxx (Cut away decimal)		
	10	29.7100 ~ 49.8300	1st Local = A x 0.075		
	5	49.8350 ~ 54.0000	1st IF = 1st Local - FR		00.0450
VHF High	8.33	108.0000 ~ 136.99166		2nd Local = 1st IF - 21.4	20.9450
	5	137.0000 ~ 137.9950			
	12.5	138.0000 ~ 143.9875	ED DENOTEO E D ' I		
	5	144.0000 ~ 147.9950	FR DENOTES Frequency Received.		
	12.5	148.0000 ~ 150.7875			
	5	150.8000 ~ 150.8450			
	7.5	150.8525 ~ 154.4975			
	5	154.5150 ~ 154.6400			
	7.5	154.6500 ~ 156.2550			
	25	156.2750 ~ 157.4500			
	7.5	157.4700 ~ 161.5725			,
	5	161.6000 ~ 161.9750			
	12.5	162.0000 ~ 174.0000			
	5	216.0025 ~ 224.9950			20.0450
UHF Low	25	225.0000 ~ 316.4750	A (FD : 000 T00) (0.075	2nd Local = 1st IF - 21.4	20.9450
		316.5000 ~ 316.7750	A = (FR + 380.700) / 0.075	-	
	"	316.8000 ~ 337.8750	A = (FR + 380.800) / 0.075	•	
	"	337.9000 ~ 338.0750	A = (FR + 380.700) / 0.075	-	
		338.1000 ~ 339.2750	A = (FR + 380.800) / 0.075		
		339.3000 ~ 359.4750	A = (FR + 380.700) / 0.075		
	10.5	359.5000 ~ 379.9750	A = (FR + 380.800) / 0.075		
	12.5	380.0000 ~ 380.7125	// / / / / / / / / / / / / / / / / / /	_	
	"	380.7250 ~ 380.8000	A = (FR + 380.700) / 0.075		
	"	380.8125 ~ 400.0000	A = (FR + 380.800) / 0.075	-	
	"	400.0125 ~ 405.9750	A = (FR + 380.700) / 0.075		
	"	405.9875 ~ 419.9875	A = (FR + 380.800) / 0.075		1
	5	420.0000 ~ 450.0000			•
	6.25	450.00625 ~ 469.99375			
1015181	12.5	470.0000 ~ 512.0000	// /FD 200 000) / 0 075	0.11 1-1.15 014	00.0450
UHF High	3.125	764.0000 ~ 766.996875	A = (FR - 380.800) / 0.075	2nd Local = 1st IF - 21.4	20.9450
	"	773.0000 ~ 775.996875	= A.xxx (Cut away decimal)		
	- //	794.0000 ~ 796.996875	1st Local = A x 0.075		
	//	803.0000 ~ 805.996875	1st IF = FR - 1st Local		-
	12.5	806.0000 ~ 823.9875			
		849.0000 ~ 868.9875			
	"	894.0000 ~ 901.9875			
	5	902.0000 ~ 927.9950			
	12.5	928.0000 ~ 939.9875			
	6.25	940.0000 ~ 960.0000			
	"	1240.0000 ~ 1300.0000		<u> </u>	

-2 IF FREQUENCY

1st IF : $380.6500 \sim 380.86875$ Hz

2nd IF: 21.4000MHz 3rd IF: 455kHZ

-3 Example

RECEIVING	FREQ.	RECEIVING FREQ.	1st LOCAL	2nd LOCAL	3rd LOCAL
BAND	STEP	FR (MHz)	PLL 1 /VCO 1 or VCO 2	PLL 2 /VCO 3	X' TAL
(FR STEP)	(kHz)		(MHz)	(MHz)	(MHz)
VHF Low	5.0	25.0000	A: 5410.666 = (25.0000 + 380.800) / 0.075	359.350 = 380.750 - 21.4	20.9450
			= 5410.666 (Cut away decimal)		
			1st Local : 405.750 =5410 x 0.075		"
:			1st IF : 380.750 = 405.750 - 25.0000		
		40.0000	5610.666 = (40.0000 + 380.800) / 0.075	359.350 = 380.750 - 21.4	20.9450
			= 5610.666 (Cut away decimal)		
			420.750 =5610 x 0.075		
			380.750 = 420.750 - 40.0000		
		54.0000	5797.333 = (54.0000 + 380.800) / 0.075	359.375 = 380.775 - 21.4	20.9450
			= 5797.333 (Cut away decimal)		
			434.775 =5797 x 0.075		
			380.775 = 434.775 - 54.0000		
VHF High	8.33	108.0000	6517.333 = (108.0000 + 380.800) / 0.075	359.375 = 380.775 - 21.4	20.9450
			= 6517.333 (Cut away decimal)		
			488.775 =6517 × 0.075		
			380.775 = 488.775 - 108.0000		
	6.25	154.5275	7137.7 = (154.5275 + 380.800) / 0.075	359.350 = 380.7475 - 21.3975	20.9425
			= 7137.7 (Cut away decimal)		
			535.275 =7137 x 0.075		
			380.7475 = 535.275 - 154.5275		
	12.5	174.0000	7397.333 = (174.0000 + 380.800) / 0.075	359.375 = 380.775 - 21.4	20.9450
			= 7397.333 (Cut away decimal)		
			554.775 = 7397 x 0.075		
			380.775 = 554.775 - 174.0000		
	5.0	216.0025	7957.366 = (216.0025 + 380.800) / 0.075	359.370 = 380.7725 - 21.4025	20.9475
			= 7957.366 (Cut away decimal)		
		•	596.775 = 7957 × 0.075		
			380.7725 = 596.775 - 216.0025		
	5.0	225.0000	8077.333 = (225.0000 + 380.800) / 0.075	359.375 = 380.775 - 21.4	20.9450
			= 8077.333 (Cut away decimal)		
		,	605.775 =8077 × 0.075	,	
			380.775 = 605.775 - 225.0000		

RECEIVING	FREQ.	RECEIVING FREQ.	1st LOCAL	2nd LOCAL	3rd LOCAL
BAND	STEP	FR (MHz)	PLL 1 /VCO 1 or VCO 2	PLL 2 /VCO 3	X' TAL
(FR STEP)	(kHz)		(MHz)	(MHz)	(MHz)
UHF Low	25.0	310.0000	9210.666 = (310.0000 + 380.800) / 0.075	359.350 = 380.750 - 21.4	20.9450
	*		= 9210.666 (Cut away decimal)	•	
			690.750 =9210 x 0.075		
			380.750 = 690.750 - 310.0000		
	6.25	406.0000	10490.666 = (406.0000 + 380.800) / 0.075	359.350 = 380.750 - 21.4	20.9450
			= 10490.666 (Cut away decimal)		
			786.750 =10490 × 0.075		
	l		380.750 = 786.750 - 406.0000		
		446.0000	11024.000 = (446.0000 + 380.800) / 0.075	359.400 = 380.800 - 21.4	20.9450
			= 11024.000 (Cut away decimal)		
			826.800 =11024 × 0.075		
			380.800 = 826.800 - 446.0000		
		512.0000	11904.000 = (512.0000 + 380.800) / 0.075	359.400 = 380.800 - 21.4	20.9450
			= 11904.000 (Cut away decimal)		
			892.800 =11904 x 0.075		
			380.800 = 892.800 - 512.0000		
UHF High	3.125	764.0000	5109.333 = (764.0000 - 380.800) / 0.075	359.425 = 380.825 - 21.4	20.9450
			= 5109.333 (Cut away decimal)		
			383.175 =5109 x 0.075		
			380.825 = 764.000 - 383.175		
	6.25	806.0000	5669.333 = (806.0000 - 380.800) / 0.075	359.425 = 380.825 - 21.4	20.9450
			= 5669.333 (Cut away decimal)		
			425.175 =5669 x 0.075		
			380.825 = 806.000 - 425.175		
		860.0000	6389.333 = (860.0000 - 380.800) / 0.075	359.425 = 380.825 - 21.4	20.9450
			= 6389.333 (Cut away decimal)		
			479.175 =6389 × 0.075		
			380.825 = 860.000 - 479.175		
		960.0000	7722.666 = (960.0000 - 380.800) / 0.075	359.450 = 380.850 - 21.4	20.9450
			= 7722.666 (Cut away decimal)		
			579.150 =7722 × 0.075		
			380.850 = 806.000 - 579.150		
		12400.0000	11456.000 = (1240.0000 - 380.800) / 0.075	359.400 = 380.800 - 21.4	20.9450
			= 11456.000 (Cut away decimal)		
			859.200 =11456 × 0.075		
			380.800 = 1240.000 - 859.200		
		1300.0000	12256.000 = (1300.0000 - 380.800) / 0.075	359.400 = 380.800 - 21.4	20.9450
		•	= 12256.000 (Cut away decimal)		
			919.200 =12256 × 0.075		
			380.800 = 1300.000 - 919.200		

Appendix C – Antenna Drawing

Specification No.	
SA0500145(1)	

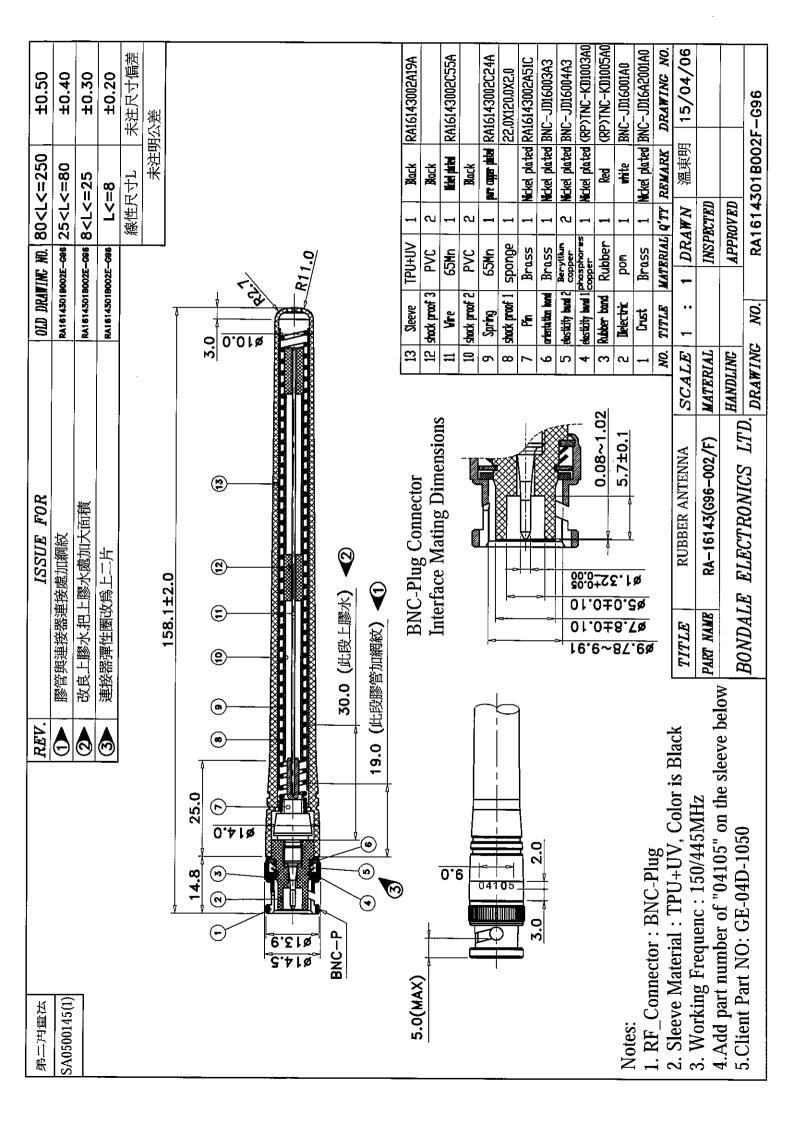
SPECIFICATION OF ANTENNA

Customer Name	:	GRE (HONG KONG) LTD.
Product Name	:	Rubber Antenna
Model No.	:	RA-16143(G96-002/F)
CustomerModel No	:	
Customer Part NO	:	GE-04D-1050
Issued Date	:	2006/4/13

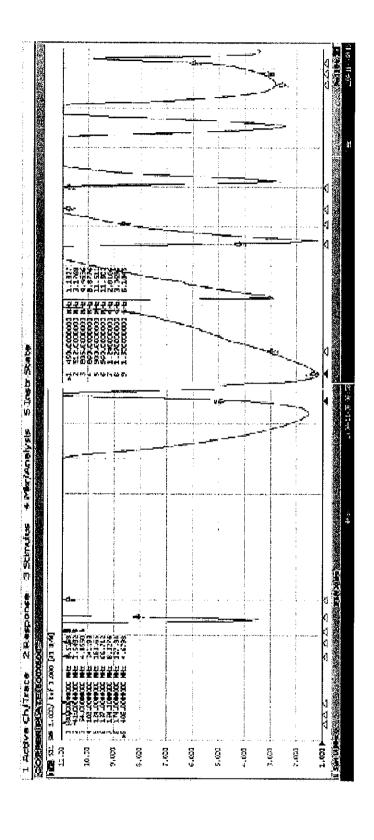
Please fax this front page with authorized signature and company chop as customer's approval on samples.

BONDALE IND.LTD.

Bondale Industries Ltd.


Flat E-2, 10/F, Hoi Bun Industrial Building, 6 Wing Yip Street, Kwun Tong, Kowloon, Hong Kong Tel: (852)2345 0215 Fax: (852)2797 8191 Email: bondale@netvigator.com

博錐質業有限公司


RUBBER ANTENNA SPECIFICATION

Specification no: SA0500145(1)

CU	STOMER: G	RE (HONG K	ONG) LTD.	MODEL: RA-16143(G96-002/F)					
1	Application								
	transceiver.								
2	Dimensions		•						
	As per Drawing	No. RA161430	01B002F-G96 atta	ached.					
3									
	As specified in	drawing No. RA	A1614301B002F-	G96					
As specified in drawing No. RA1614301B002F-G96 4 Electrical Characteristics									
		Frequency:	150/455 MH						
	•	:		inal(Depend on available ground plane)					
			Omni Directiona						
	iv) Polarization								
	•		V.R) : 4.5 or les	ee e					
	· ·	•	500 M ohm at D						
5	Mechanical cha		300 W OIIII at D	O 300 V					
0			oon cloove and c	tud shall withstand the following stresses					
		ection: 10.0	kgs	idd shall withstand the following stresses					
		rection: 2.0	kgs						
	_		ector shall withsta	and: 30 kgs					
6	General Charact		COLOT STIAIT WILLIST	and: 3.0 kgs.					
•			: -30°C to 80°C						
	•	•	: -30°C to 60°C						
	, .	est		no defeate in announce and be					
	•			no defects in appearance or the					
	mechanical and electrical functions after the antenna being tested by a regular mounting device under the following conditions:								
		_		and position					
	a) Displace		5°of the axis origin	•					
	b) Duration		000 cycles/minute	S					
		: 5 :istansa : S:		d and on the site of					
	iv) Shock Res		•	al and mechanical					
		Cn	iaracteristics after	drop down with 100g upon rubber block					
7	Others : Any n	modification of t	this specification l	has to be agreed by us.					
Pre	oared By:	(hecked By:	Approval:					
<u>- 1</u>	-			тррготии					

SA0500145(1) RA-16143(G96-002/F)

