RF Exposure Evaluation Report

1. Product Information

Manufacturer	Furuno Electric Co., Ltd. $9-52$ Ashihara-cho, Nishinomiya city, Hyogo, 662-8580 Japan
Trade name	Furuno
Type	RTR-128
Model	Transceiver for RADAR SENSOR DRS4D X-Class
Product Description	Ship radar station operating in the band 9300-9500 MHz
FCC ID	ADB9ZWRTR128
IC ID	$1281 \mathrm{~B}-\mathrm{RTR128}$
Frequency Range	$9380 \mathrm{MHz} \sim 9440 \mathrm{MHz}$
Peak Envelope Power (PEP)	4 kW
Antenna Gain (Gp)	23.0 dBi
Beam Width (θ)	4.0°
Maximum Pulse Width (T)	$1.0 \mu \mathrm{~s}$
Pulse Repetition Frequency (PRF)	600 Hz
Minimum separation distance	1.7 m

2. Evaluation method and Limit

FCC requirements
According to FCC CFR 47 part1 1.1307 (b)(3)(i)(C): The criteria listed in the following table shall be used to determine the exemption of further evaluation.

RF Source frequency (MHz)	Threshold ERP (watts)
$0.3-1.34$	$1,920 \mathrm{R}^{2}$.
$1.34-30$	$3,450 \mathrm{R}^{2} / \mathrm{f}^{2}$.
$30-300$	$3.83 \mathrm{R}^{2}$.
$300-1,500$	$0.0128 \mathrm{R}^{2} \mathrm{f}$.
$1,500-100,000$	$19.2 \mathrm{R}^{2}$.

R is the separation distance and is 0.7 m instructed in the installation manual.
Threshold ERP* is
$\mathrm{ERP}_{\mathrm{TH}}=19.2 \times 1.7^{2}=55.488$ [W]

* ERP: refer to FCC CFR 47 part1 1.1307 (b)(2)

ISED requirements

According to RSS-102 Issue 5 2.5.2: Exemption Limits for Routine Evaluation is defined as follows "device operates ~ at or above 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 5 W (adjusted for tune-up tolerance)."
3. Evaluation Results

Calculated ERP
$\mathrm{ERP}=\mathrm{PEP} \times 10^{\wedge}\left(\frac{\mathrm{G}_{\mathrm{p}}-2.15}{10}\right) \times(\tau \times \mathrm{PRF}) \times \frac{\theta}{360}$
$E R P=4000 \times 10^{\wedge}\left(\frac{23.0-2.15}{10}\right) \times\left(1.0 \times 10^{-6} \times 600\right) \times \frac{4.0}{360}=2.703[\mathrm{~W}] \leq 55.488 \quad[\mathrm{~W}]$
where:
PEP is converted to the mean power using the pulse width and the pulse repetition frequency.
G_{p} is converted to a gain relative to a dipole.
The antenna rotates continuously over 360 degrees in the horizontal plane and illuminates the subjects only by its main lobe. Therefore, time-averaged power is derated by the beamwidth and the angle of rotation..

Calculated e.i.r.p.

e.i.r.p. $=\operatorname{PEP} \times 10^{\wedge}\left(\frac{\mathrm{G}_{\mathrm{p}}}{10}\right) \times(\tau \times \mathrm{PRF}) \times \frac{\theta}{360}$
e.i.r.p. $=4000 \times 10^{\left(\frac{23.0}{10}\right)} \times\left(1.0 \times 10^{-6} \times 600\right) \times \frac{4.0}{360}=5.32[\mathrm{~W}] \geqq 5[\mathrm{~W}]$
where:
PEP is converted to the mean power using the pulse width and the pulse rSepetition frequency.
The antenna rotates continuously over 360 degrees in the horizontal plane and illuminates the subjects only by its main lobe. Therefore, time-averaged power is derated by the beamwidth and the angle of rotation..

