

Test Report

(FCC Rules 47 CFR, 2.1046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055, and 80.209, 80.211, 80.213, 80.215)

For

Trade name: Furuno

Model: Transceiver for Marine Radar

Type: RTR-114

Report no.: LIC 12-16-096

Date of issue: 31 August 2016

Labotech International Co., Ltd.

1-16, Fukazu-cho, Nishinomiya-shi, Hyogo, 663-8203 Japan Tel: +81-798-63-1094 Fax: +81-798-63-1098

URL: http://www.labotech-intl.co.jp/

Report Summary

LIC project number:	LIC 04-16-0334					
Test report number of	LIC 12-16-096	Date of initial issue	31 August 2016			
initial issue:						
Test report number of		Date of revised/replaced				
revised/replaced issue:		issue				
Test report revision/		10000				
replacement history:						
Test standard(s)/ Test	FCC Rules 47 CFR, Sections					
specifications:	2.1046 - RF Power Output					
opcomodione.	2.1047 - Modulation Characteristics,					
	2.1049 - Occupied Bandwidth	·				
	2.1051 - Spurious Emissions					
	2.1053 - Field Strength of Spi					
	2.1055 - Frequency Stability,	anous readiation,				
	(Date of issue: 9 November 2	015)				
	(Date of 133de. 5 November 2	010)				
	80.209 - Transmitter frequence	cy tolerances				
	80.211 - Emission limitations.					
	80.213 - Modulation requirem					
	80.215 - Transmitter power	ionio.				
	(Date of issue: 5 November 2	015)				
Customer:	Furuno Electric Co., Ltd.	010)				
Odstorner.	9-52 Ashihara-Cho, Nishinom	niva-City 662-8580 Japan				
Manufacturer:	Furuno Electric Co., Ltd.	mya-Oity, 002-0300 3apan				
Manufacturer.	9-52 Ashihara-Cho, Nishinom	niva-City 662-8580 Japan				
Trade name:	FURUNO	ilya-City, 002-0300 Japan				
Model:	Transceiver for Marine Radar					
	RTR-114					
Type: Product function and	For marine safety navigation					
intended use:	For marine safety navigation					
Number of samples	One					
tested:	Offe					
Serial number:	1000 7000 0010					
	1000-7000-0010 24 VDC					
Power rating:						
Product status:	Pre-production model					
Modifications made to	None.					
samples during testing:	24 luna 2045					
Date of receipt of samples:	24 June 2015	. 204.0				
Test period:	From 27 June 2016 to 28 July					
Place of test:	Labotech International Co., Ltd.					
	- Nishinomiya-Hama Lab.	ahiranahira ahi Ukuana 000 00	0.4			
	2-20, Nishinomiya-Hama, Nishinomiya-shi, Hyogo, 662-0934 Japan					
	Anechoic Chamber used for the test has been registered by FCC.					
	(File number: 90607)	ID0007				
	Test firm Designation Numb					
T . 1: / 2 .::	Test firm Registration #: 838	3049				
Test results/ Compliance:	Passed.					
		t relate only to the samples tes	sted.			
Tested by:	Akira Inoue, Atsushi Takagi, I	Koji Kawai				
Written by:	Akiko Inoue					
Verified by:	Yasuharu Nakamura					

Approved by:	Date: 31 August 2016
	Name: Yasuharu Nakamura
	Title: Manager, Technical Department,
	Labotech International Co., Ltd.
	Signature:
	Jasiepa

Testing Laboratory Status

Labotech International Co., Ltd. (hereafter called "LIC") has been holding the following status after having been assessed according to the provisions of ISO/IEC 17025 and/or the relevant rules:

(1) JAB Accredited Testing Laboratory:

- accredited by Japan Accreditation Board (JAB),
- Laboratory accreditation number: RTL03220
- Date of initial accreditation: 14 January 2011 (*
- Scope of accreditation: Electrical testing EMC, Climatic, and Vibration tests

(2) Telefication Listed Testing Laboratory:

- listed by Telefication B. V., (The Netherlands)
- Laboratory assignment number: L116
- Date of initial listing: 26 July 1999 (*)
- for testing the following product categories/ test standards: EN 60945, IEC 61162-1/-2, IEC/EN 61162-450 and IEC 62288

(3) TÜV Appointed EMC Test Laboratory:

- appointed by TÜV Rheinland Japan Ltd.,
- Laboratory assignment number: UA 50046428
- Date of initial appointment: 21 December 1998 (*)
- for carrying out the tests of:
 - EN 55011, CISPR 11, EN 55022, CISPR 22, EN 55024, CISPR 24, EN 55025, CISPR 25, EN/IEC 61000-3-2/-3, EN/IEC 61000-4-2/-3/-4/-5/-6/-8/-11, EN/IEC 61000-6-1/-2/-3/-4, EN/IEC 60945, EN/IEC 61326-1, EN/IEC 61326-2-6, EN/IEC 60601-1-2, JIS T 0601-1-2, JIS C 1806-1, ISO 11452-1/-2/-4.

(4) RMRS Recognized Testing Laboratory:

- recognized by Russian Maritime Register of Shipping (RMRS), (Russia)
- Laboratory recognition number: 11.02594.011
- Date of initial recognition: 27 January 2009 (*)
- for carrying out testing in the field of:

Electrical measurements and tests, EMC tests, Mechanical measurements and tests, Equipment protection degree tests, and Climatic tests for Ship's radio and navigational equipment and IEC 60945: 2002

(5) RRR Recognized Test Laboratory:

- recognized by Russian River Register (RRR), (Russia)
- Recognition certificate number: 154262 (*)
- Date of initial recognition: 31 May 2013
- for carrying out of tests of ships radio and navigation equipment

(6) DNV Recognized Environmental Test Laboratory:

- recognized by Det Norske Veritas AS (DNV), (Norway)
- Recognition certificate number: 262.1-015854-J-12
- Date of initial recognition: 12 July 2013 (*
- Scope of recognition: Testing according to the standards IEC 60945, IEC 61162-1/-2/-450, IEC 62288, IEC 62388 and IEC 62252 Annex E
- Application: Provisions of Environmental, interface and safety testing.

(7) CCS Recognized Test Agency:

- recognized by China Classification Society
- Recognition certificate number : DB13A00001
- Date of initial recognition : 29 January 2014 (*
- Scope of recognition: Performance/Environmental/EMC/Special purpose/Safety precautions tests for Electrical & Electronic Product including Maritime Navigation and Radio-communication Equipment & Systems

Note: (*) - The current certificates may be found in the LIC web site (http://www.labotech-intl.co.jp/).

Form: FQ053/06 - Page 4 of 24 -

TABLE OF CONTENTS

Testi	ng Laboratory Status	4
1 Pri	ncipal Information	6
1.1 E	quipment under test (EUT)	6
1.2 C	bservation and comments	8
2 Tes	st Results Summary	9
3 Tes	st Results	10
3.1	RF Power Output (FCC Rule 47 CFR, 2.1046 (a), 80.215)	10
3.2	Modulation Characteristics (FCC Rule 47 CFR, 2.1047)	10
3.3	Frequency Stability –temperature & voltage (FCC Rule 47 CFR, 2.1055(a)(2)/(d)(1)/(d)(3), 80.209(b))	
3.4	Occupied Bandwidth (FCC Rule 47 CFR, 2.1049(c)(1), 80.209(b), 80.211(f))	12
3.5	Spurious Emissions at Antenna Port (FCC Rule 47 CFR, 2.1051, 80.211(f))	13
3.6	Field Strength of Spurious Radiation (FCC Rule 47 CFR, 2.1053, 80.211(f))	14
4 Tes	st Setup for Measurements	15
5 Me	asuring Equipment List:	16
6 Pho	otograph of Test Setup/Arrangement	18
7 RF	Envelope and Spectrum of the output pulse	19
8 Spi	urious Emission Plots measured at Antenna Terminal	22

1 Principal Information

1.1 Equipment under test (EUT)

1.1.1 General

(a) Trade name: Furuno

(b) Manufacturer: Furuno Electric Co., Ltd.

9-52 Ashihara-Cho, Nishinomiya-City, 662-8580 Japan

(c) Model: Radar Sensor DRS25A X-Class

	Туре	Serial Number	Note
Radar Sensor	DRS25A X-Class	1000-7000-0010	
Scanner module	RSB-134		Antenna rotation rate:
			24/36/48 rpm
Transceiver module	RTR-114		Contained in the Antenna
			Unit
Antenna radiator	XN12A/XN13A		One (1) selectable.

(d) Certification number: FCC ID: ADB9ZWRTR114

(e) Primary Function: Search, Navigation and Anti-collision

(f) Frequency Range: Fixed frequency, X-band (9410 MHz)

Type of Emission: P0N (Emission designator)

(g) Occupied bandwidth:

Pulse type	S1	S2	M1	M2	МЗ	L
Occupied bandwidth (MHz)	61.4	50.4	34.8	22.0	12.8	8.3

Note: representative measured data.

(h) Size and mass: Antenna Unit: 1252 mm x 445 mm (H), 21 kg (*1)

Antenna Unit: 1791 mm x 445 mm (H), 23 kg (*2)

(*1): with Antenna XN12A installed. (*2): with Antenna XN13A installed.

(i) Power Supply: 24 VDC, 135 W

1.1.2 Transceiver

Type: RTR-114 (Contained in the Antenna Unit)

1.1.2.1 Transmitter

(a) Assignable Frequency for Shipborne Radar:

Between 9300 and 9500 MHz (FCC Rule, 80.375 (d)-(1))

(b) Type of RF Generator:

Magnetron Type: MG5436
Peak Output Power: 25 kW nominal

(c) Magnetron Ratings:

Center frequency of Magnetron: 9410 MHz nominal

Tolerances:

Manufacturing: $\pm 30 \text{ MHz}$ Pulling: 23 MHz

Tolerance for 20°C temperature variation: -5 MHz

(d) Pulse Characteristics:

Pulse type	S1	S2	M1	M2	МЗ	L
Pulselength (μs)	0.08	0.15	0.3	0.5	0.8	1.2
PRR(Hz)	3000	3000	1500	1000	600	600

1.1.2.2 Modulator

(a) FET Type: FGN40N120WD

Trigger Voltage: Approx. +5 VDC positive

1.1.2.3 Receiver

(a) Passband

RF Stage: 60 MHz

IF Stage:

Pulse type	S1	S2	M1	M2	М3	L
Passband (MHz)	18	8	8	1.7	1.7	1.7

(b) Intermediate Frequency: 60 MHz

(c) Gain (overall): approximately 100 dB

(d) Overall Noise Figure: 4.5 dB (typical)
 (e) Video Output Voltage: ±1 V differential

(f) Features Provided: Sensitivity Time Controls (Anti-clutter Sea),

Fast Time Constant (Anti-clutter Rain)

(g) If receiver is tunable, describe method for adjusting frequency:

by adjustment of tuning voltage of receiver local oscillator (Automatic and

manual)

(h) Frequency adjustable range: 9410 MHz (center) ± 30 MHz

1.1.3 Antenna and Scanner

(a) Antenna Rotation ON-OFF Switch: Not Provided.

(b) Construction: Slotted array antenna

(c) Length:

Antenna type	XN12A	XN13A
Length (cm)	125.2	179.1

(d) Type of Beam: Vertical fan

(e) Beam Width (3 dB):

Antenna type	XN12A	XN13A
Horizontal (°)	1.9	1.4
Vertical (°)	22	22

Form: FQ053/06 - Page 7 of 24 -

(f) Polarization: Horizontal

(g) Antenna Gain:

Antenna type	XN12A	XN13A
Gain (dBi)	28.5	30.0

(h) Attenuation of Major Side and Back Lobes with respect to main beam:

Antenna type	XN12A	XN13A
Within ±10° (dB)	27	29
Outside ±10° (dB)	34	37

(i) Scanning (rotating or oscillating): Rotating over 360° continuously clockwise

(j) Antenna Rotation Rate: 24/36/48 rpm(k) Sector Scan: Not provided.

(I) Rated Loss of Transmission line per hundred feet:

Negligible. (Transmission path is only in the antenna unit.)

1.1.4 Operational Features

(a) Is positive means provided to indicate whether or not the overall operation of the equipment is such that it may be relied upon to provide effective operation in accordance with its primary function:

Yes (Receiver tuning indicator)

- (b) Is the equipment for continuous operation: Yes
- (c) Is provision made for operation with shore based radar beacons (RACONS):

Yes (RACONS)

1.1.5 Construction Features

- (a) Does equipment embody replacement units with chassis type assembly: Yes
- (b) Are fuse alarms provided: No
- (c) State units that are weatherproof: Antenna Unit(IEC 60529 IP56)
- (d) If all units are not housed in a single container, indicate number and give description of individual units:

 See Clause 1.1.1 (c) of this report.
- (e) Approximate space required for installation excluding antenna unit: Not applicable.

1.2 Observation and comments

None.

2 Test Results Summary

Clause no. of this report	47 CFR Section	Item	Result	Test Engineer
3.1	2.1046 (a), 80.215	RF Power Output	Passed.	A. Inoue and A. Takagi
3.2	2.1047	Modulation Characteristics	Passed.	A. Inoue and A. Takagi
3.3	2.1055 (a)(2),(d)(1),(d)(3) 80.209 (b)	Frequency Stability	Passed.	K. Kawai
3.4	2.1049 (c)(1), 80.209 (b), 80.211 (f)	Occupied Bandwidth	Passed.	A. Inoue and A. Takagi
3.5	2.1051, 80.211 (f)	- Spurious Emissions at Antenna Terminals	Passed.	K. Kawai
3.6	2.1053, 80.211 (f)	 Field Strength of Spurious Radiation 	Passed.	K. Kawai

3 Test Results

3.1 RF Power Output (FCC Rule 47 CFR, 2.1046 (a), 80.215)

(1) Test conditions:

For all TX (S1/S2/M1/M2/M3/L) Pulses, the transmitter output power was measured at the antenna port with Antenna replaced with the Non-reflective load.

(2) Test setup:

See Clause 4.

(3) Test Results:

Pulse type	S1	S2	M1	M2	М3	L
Magnetron Output,	4.2	7.4	7.5	8.8	8.8	15.5
mean Pm (W)						
Magnetron Output,	16.1	15.4	16.2	17.7	18.4	20.7
peak Pp (kW) (*1)						
Pulse length T (µs)	0.088	0.160	0.310	0.497	0.800	1.252
(-3 dB points)						
PRF (Hz)	3000	3000	1500	1000	600	600
(±4) D (1)4() (D ()	A() / (T /)	DDE (II)	4000			

^(*1) P_p (kW) = (P_m (W) / (T (μ s) × PRF (Hz))) × 1000

Environmental conditions observed: On 27 June 2016, 25°C to 25°C, 68%RH to 68%RH.

Power supply voltage measured: 24.0 VDC to 24.0 VDC.

3.2 Modulation Characteristics (FCC Rule 47 CFR, 2.1047)

(1) Test Conditions:

The RF envelope of the magnetron output pulse was measured using an envelope detector and an oscilloscope. Each pulse spectrum was measured using a spectrum analyzer.

(2) Test setup:

See Clause 4.

(3) Test Results:

Pulse type	S1	S2	M1	M2	M3	L
Pulselength T (μs)	0.088	0.160	0.310	0.497	0.800	1.252
(-3 dB points)						
Rise time t_r (μ s)	0.011	0.013	0.013	0.015	0.017	0.018
(10 - 90 % amplitude)						
Decay time t_f (µs)	0.062	0.068	0.066	0.064	0.072	0.076
(90 - 10 % amplitude)						
PRR (Hz)	3000	3000	1500	1000	600	600

Measured Plots: See Clause 7.

Environmental conditions observed: On 27 June 2016, 25°C to 25°C, 68% to 68%RH.

3.3 Frequency Stability –temperature & voltage (FCC Rule 47 CFR, 2.1055(a)(2)/(d)(1)/(d)(3), 80.209(b))

(1) Test Conditions:

(1) Radar Transmitter settings: All TX (S1/S2/M1/M2/M3/L) Pulses

(2) Ambient Temperature settings: - 20°C to + 50°C (10°C interval)

(3) Power Supply Voltage settings: 85 /100/115 % of nominal voltage DC Processor unit (24 VDC): (20.4/24.0/27.6 VDC)

(2) Test setup:

See Clause 4.

(3) Frequency Tolerance Limits (FCC Rule 47 CFR, 80.209(b)):

Pulse type	S1	S2	M1	M2	М3	L
Guard Band f(1.5/T) (MHz)	17.0	9.4	4.8	3.0	1.9	1.2
(*1)						
f(U) (MHz) (*2)	9483.0	9490.6	9495.2	9497.0	9498.1	9498.8
f(L) (MHz) (*2)	9317.0	9309.4	9304.8	9303.0	9301.9	9301.2

^{(*1):} Guard Band is specified to be equal to 1.5/T MHz, where "T" is the pulselength in microseconds. (FCC Rule 47 CFR, 80.209(b))

(4) Test Results:

Complied.

(4.1) At the rated supply voltage of 24.0 VDC:

Pulse type		S1	S2	M1	M2	МЗ	L	Result
Frequency at	-20°C	9418.3	9416.7	9418.3	9416.7	9416.7	9416.0	Complied
maximum	-10°C	9416.3	9416.3	9416.0	9416.0	9416.0	9415.0	Complied
emission	0°C	9414.0	9415.0	9415.0	9414.7	9414.3	9413.0	Complied
(MHz)	+10°C	9412.3	9413.0	9413.0	9412.7	9412.0	9411.0	Complied
	+20°C	9411.3	9411.3	9411.3	9411.3	9410.7	9409.3	Complied
	+30°C	9409.0	9408.3	9408.7	9408.3	9407.7	9406.7	Complied
	+40°C	9406.0	9406.7	9407.3	9406.7	9406.7	9405.3	Complied
	+50°C	9403.3	9404.0	9404.0	9404.0	9404.0	9402.7	Complied

(4.2) At the temperature of +20°C:

Pulse type		S1	S2	M1	M2	М3	L	Result
24 VDC	20.4 VDC	9410.0	9410.0	9410.0	9410.7	9410.0	9409.3	Complied
	24.0 VDC	9411.3	9411.3	9411.3	9411.3	9410.7	9409.3	Complied
	27.6 VDC	9410.7	9410.0	9410.7	9410.0	9410.0	9409.3	Complied

Environmental conditions observed: On 14 July 2016, 23°C to 23°C, 67%RH to 67%RH. On 15 July 2016, 24°C to 23°C, 68%RH to 67%RH.

^{(*2):} Upper limit frequency, f(U) = 9500 - 1.5/TLower limit frequency, f(L) = 9300 + 1.5/T

3.4 Occupied Bandwidth (FCC Rule 47 CFR, 2.1049(c)(1), 80.209(b), 80.211(f))

(1) Test conditions:

For all TX (S1/S2/M1/M2/M3/L) Pulses, the transmitter occupied bandwidth was measured at the antenna port with Antenna replaced with the Non-reflective load.

(2) Test setup:

See Clause 4.

(3) Emission Limits (FCC Rule 47 CFR, 80.211 (f)):

Frequency removed from the assigned frequency (*1)	Emission attenuation
	(mean power, dB)
50 - 100 %	At least 25
(of the authorized bandwidth) (*2)	
100 - 250 %	At least 35
(of the authorized bandwidth) (*2)	
more than 250 %	At least 43 + 10 log ₁₀ (mean power in watts)
(of the authorized bandwidth) (*2)	= -13 dBm

^{(*1):} Assigned frequency (center frequency) = 9410 MHz (for X-band radars)

(4) Test Results:

Complied.

Spectrum plots: See Clause 8.

Environmental conditions observed: On 27 June 2016, 25°C to 25°C, 68%RH to 68%RH.

^{(*2):} Authorized bandwidth = 110 MHz (for X-band radars)

3.5 Spurious Emissions at Antenna Port (FCC Rule 47 CFR, 2.1051, 80.211(f))

(1) Test Conditions:

For S1 Pulses, the transmitter output power was measured at the antenna port with Antenna replaced with the Non-reflective load. (*1)

(*1): Tested only with S1 pulse that is the widest in B₋₄₀ calculation. The requirement is as follows. Emission measurements only need to be carried out for the pulse length setting producing the widest calculated B₋₄₀ bandwidth. (IEC 62388 Ed.2/ Annex B.4.2 part)

(2) Test setup:

See Clause 4.

(3) Emission Limits (FCC Rule 47 CFR, 80.211 (f)):

Frequency removed from the assigned frequency (*1)		Emission attenuation		
		(mean power, dB)		
	more than 250 % (*3)	At least 43 + 10 log ₁₀ (mean power in watts)		
	(of the authorized bandwidth) (*2)	= -13 dBm		

- (*1): Assigned frequency (center frequency) = 9410 MHz (for X-band radars)
- (*2): Authorized bandwidth = 110 MHz (for X-band radars)
- (*3): The measurement range for X-Band RADAR: from 4.59 GHz to 40 GHz

(4) Spurious Frequencies:

	f ₀ (GHz)	1/2f ₀	2f ₀	3f ₀	4f ₀	ĺ
ſ	9.410	4.705	18.820	28.23	37.64	ĺ

(5) Test Results:

Complied.

Spurious emission levels measured were found to be attenuated more than 20 dB below the limits.

Environmental conditions observed: On 25 July 2016, 23°C to 23°C, 57%RH to 59%RH.

On 26 July 2016, 23°C to 23°C, 67%RH to 63%RH.

3.6 Field Strength of Spurious Radiation (FCC Rule 47 CFR, 2.1053, 80.211(f))

(1) Test Conditions:

For S1 Pulses, the transmitter output power was measured at the antenna port with Antenna replaced with the Non-reflective load. (*1)

- (*1): Tested only with S1 pulse that is the widest in B₋₄₀ calculation. The requirement is as follows: Emission measurements only need to be carried out for the pulse length setting producing the widest calculated B₋₄₀ bandwidth. (IEC 62388 Ed.2/ Annex B.4.2 part)
- (a): The measurement range for X-Band RADAR: from 4.59 GHz to 40 GHz
- (b): The antenna port was terminated with dummy load.
- (2) Test Site: LIC Nishinomiya-Hama Laboratory, Semi-Anechoic Chamber (FCC file number: 90607)
- (3) Distance between the radar set and measuring antenna: 3 m

(4) Test setup:

See Clause 4.

The GRP (Ground reference plane, metal floor) between the EUT and the measuring (receiving) antenna was lined with the Radio Absorbers (2.4 m \times 3.6 m \times 0.3 m) to reduce the influences of the reflections of the RF waves from the floor.

Measuring (Receiving) Antenna height and polarization:

- (a) Antenna height: EUT center (1.85 m)
- (b) Antenna polarization: vertical and horizontal.

EUT height: 1.5 m

(6) Field Strength Limits (FCC Rule 47 CFR, 80.211 (f)):

Frequency removed from the assigned frequency (*1)	Emission attenuation
requericy removed from the assigned frequency (1)	Litilosion attenuation
	(mean power, dB)
more than 250 %	At least 43 + 10 log ₁₀ (mean power in watts)
(of the authorized bandwidth) (*2)	= -13 dBm

^{(*1):} Assigned frequency (center frequency) = 9410 MHz (for X-band radars)

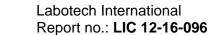
(5) Spurious Frequencies:

f ₀ (GHz)	1/2f ₀	2f ₀	3f ₀	4f ₀
9.410	4.705	18.820	28.23	37.64

(6) Test Results:

Complied.

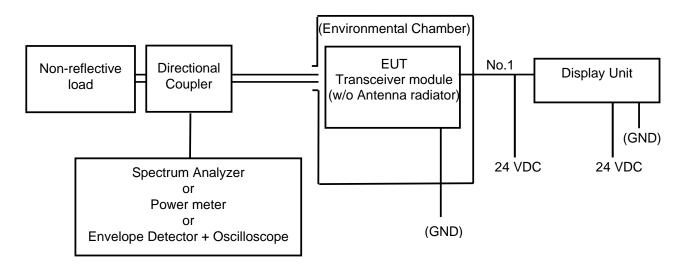
Spurious emission levels measured were found to be attenuated more than 20 dB below the limits.

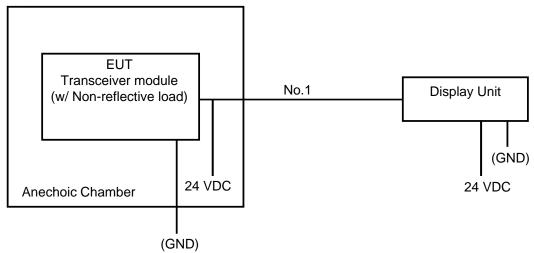

Environmental conditions observed: On 27 July 2016, 22°C to 22°C, 66%RH to 66%RH.

On 28 July 2016, 21°C to 23°C, 69%RH to 63%RH.

Power supply voltage measured: 24.0 VDC to 24.0 VDC

Form: FQ053/06 - Page 14 of 24 -


^{(*2):} Authorized bandwidth = 110 MHz (for X-band radars)



4 Test Setup for Measurements

(1) Test Setup for Clauses 3.1, 3.2, 3.3, 3.4, and 3.5.

(2) Test Setup for Clause 3.6.

Cable designations:

No.	Туре	Length (m)
1	FRU-2P5S-FF-15M	15

5 Measuring Equipment List:

(1) For 3.1 RF Power Output:

C/N	Instrument	Туре	S/N	Manufacturer	Date of last	Calibration
					calibration	interval
RT198	Directional Coupler (X-band)	5D364S	R05762	Shimada	25 February 2016	1 year
	Dummy Load (X-band)	4D376	R4535004	Shimada	25 February 2016	1 year
0505026	Power meter	E4418B	GB43317662	Agilent	13 June 2016	1 year
120110402	Power Sensor	N8481A	MY48100658	Agilent	13 June 2016	1 year
HT156	DC Power Supply	GP035-30	1014396080	Takasago		

(2) For 3.2 Modulation Characteristics:

C/N	Instrument	Type	S/N	Manufacturer	Date of last	Calibration
					calibration	interval
RT198	Directional Coupler (X-band)	5D364S	R05762	Shimada	25 February 2016	1 year
	Dummy Load (X-band)	4D376	R4535004	Shimada	25 February 2016	1 year
8305070	Step Attenuator	8494B	US00430229	Agilent	13 June 2016	1 year
8305070	Step Attenuator	8495B	3308A22026	Agilent	13 June 2016	1 year
740040701	Crystal Detector	423B	MY42241658	Agilent	8 October 2015	1 year
HT676	Spectrum Analyzer	8564EC	4103A00440	Agilent	4 April 2016	1 year
8408087	Frequency Counter	TR5824A	41940036	ADVANTEST	23 May 2016	1 year
HT594	Oscilloscope	DSO6102A	MY44001501	Agilent	23 October 2015	1 year
HT156	DC Power Supply	GP035-30	1014396080	Takasago		

(3) For 3.3 Frequency Stability –temperature & voltage:

C/N	Instrument	Type	S/N	Manufacturer	Date of last calibration	Calibration
						interval
HT510	Climatic chamber (Hama-L)	TBE-3HW4PE2F	3013002540	Tabai Espec	1 September 2015	1 year
HT725	Paperless recorder/Dual	FX106-4-1	S5JA01447	Yokogawa	1 September 2015	1 year
	communication logger					
	DAQSTATION FX100					
RT198	Directional Coupler (X-band)	5D364S	R05762	Shimada	25 February 2016	1 year
	Dummy Load (X-band)	4D376	R4535004	Shimada	25 February 2016	1 year
	Waveguide (for X-band)	WRJ-10		Furuno		
		(I = 60 cm)				
HT654	Step Attenuator	8494B	MY42148134	Agilent	19 February 2016	1 year
HT655	Step Attenuator	8495B	MY42144403	Agilent	22 February 2016	1 year
HT676	Spectrum Analyzer	8564EC	4103A00440	Agilent	4 April 2016	1 year
HT430	DC Power Supply	PAD55-20L	10091786	KIKUSUI		

(4) For 3.4 Occupied Bandwidth and for 3.5 Spurious Emissions at Antenna Port:

C/N	Instrument	Type	S/N	Manufacturer	Date of last	Calibration
					calibration	interval
RT198	Directional Coupler (X-band)	5D364S	R05762	Shimada	25 February 2016	1 year
	Dummy Load (X-band)	4D376	R4535004	Shimada	25 February 2016	1 year
	Waveguide (for X-band)	WRJ-10		Furuno		
		(I = 60 cm)				
8305070	Step Attenuator	8494B	US00430229	Agilent	13 June 2016	1 year
8305070	Step Attenuator	8495B	3308A22026	Agilent	13 June 2016	1 year
HT676	Spectrum Analyzer	8564EC	4103A00440	Agilent	4 April 2016	1 year
HT430	DC Power Supply	PAD55-20L	10091786	KIKUSUI		
KB179	Coaxial Cable for Radiated	SUCOFLEX 104A	48932/4A	HUBER+	8 August 2015	1 year
	Emission Measurement			SUHNER		
KB180	Coaxial Cable for Radiated	SUCOFLEX 104A	48933/4A	HUBER+	8 August 2015	1 year
	Emission Measurement			SUHNER		
KB181	Coaxial Cable for Radiated	SUCOFLEX 102A	1261/2A	HUBER+	8 August 2015	1 year
	Emission Measurement			SUHNER		
KB192	Coaxial Cable for Radiated	SUCOFLEX 104A	500066/4A	HUBER+	1 June 2016	1 year
	Emission Measurement			SUHNER		

(5) For 3.6 Field Strength of Spurious Radiation:

	3.6 Field Strength of Spurious F		0/N	NA	D-4414	0-1:1
C/N	Instrument	Type	S/N	Manufacturer	Date of last	Calibration
					calibration	interval
HT676	Spectrum Analyzer	8564EC	4103A00440	Agilent	4 April 2016	1 year
HT467	Double-ridged waveguide horn antenna (1 GHz to 18 GHz)	3115	6520	EMCO	13 August 2015	1 year
HT759	Double rigged horn antenna & amp.	HAP06-18W	00000065	TOYO	30 April 2016	1 year
HT761	Double rigged horn antenna & amp.	HAP18-26N	00000017	TOYO	30 December 2015	1 year
HT762	Double rigged horn antenna & amp.	HAP26-40N	0000010	TOYO	30 December 2015	1 year
NK012	Pre-amplifier	8449B	3008A01286	Agilent	18 February 2016	1 year
HT365	Semi-anechoic Chamber	3mSAC	D-002	Riken		
HT156	DC power supply	GP035-30	1014396080	Takasago		
	Dummy Load (X-band)	4D376		SPC		
				ELECTRONICS		
KB179	Coaxial Cable for Radiated Emission	SUCOFLEX	48932/4A	HUBER+	8 August 2015	1 year
	Measurement	104A		SUHNER		
KB180	Coaxial Cable for Radiated Emission	SUCOFLEX	48933/4A	HUBER+	8 August 2015	1 year
	Measurement	104A		SUHNER		
KB181	Coaxial Cable for Radiated Emission	SUCOFLEX	1261/2A	HUBER+	8 August 2015	1 year
	Measurement	102A		SUHNER		
KB192	Coaxial Cable for Radiated Emission	SUCOFLEX	500066/4A	HUBER+	1 June 2016	1 year
	Measurement	104A		SUHNER		

6 Photograph of Test Setup/Arrangement

(1) For RF Power Output, Modulation Characteristics, Occupied Bandwidth, Frequency Stability –temperature & voltage, Spurious Emissions at Antenna Terminal

Note: Test was performed with DRS12A X-Class (No.1) at the customer's request.

(2) For Field Strength of Spurious Radiation

7 RF Envelope and Spectrum of the output pulse

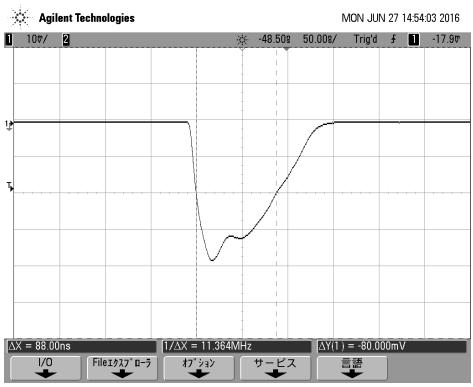


Fig. 7.1 S1 Pulse Envelope

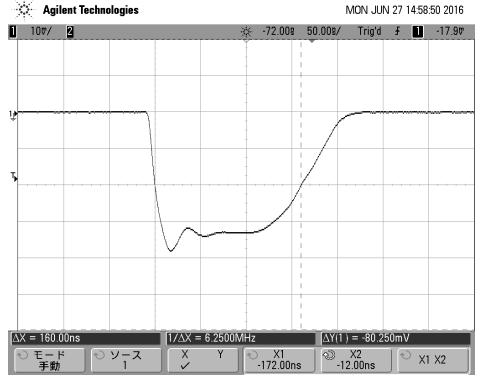


Fig. 7.2 S2 Pulse Envelope

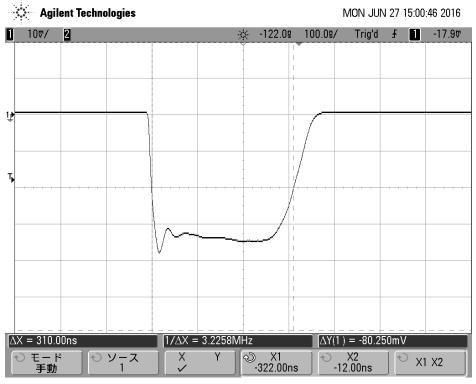


Fig. 7.3 M1 Pulse Envelope

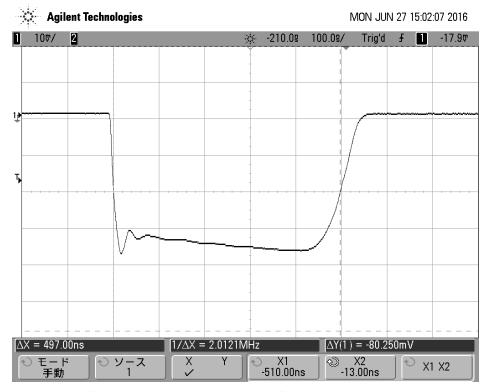


Fig. 7.4 M2 Pulse Envelope

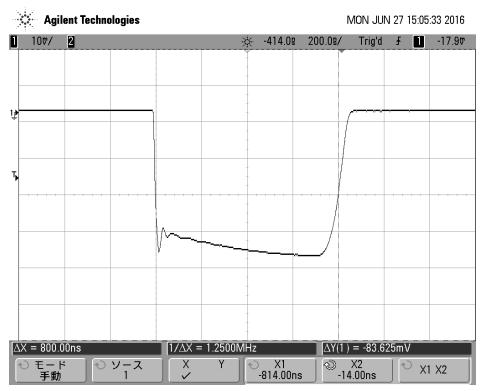


Fig. 7.5 M3 Pulse Envelope

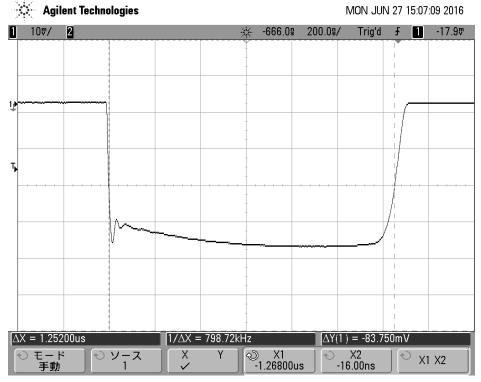


Fig. 7.6 L Pulse Envelope

8 Spurious Emission Plots measured at Antenna Terminal

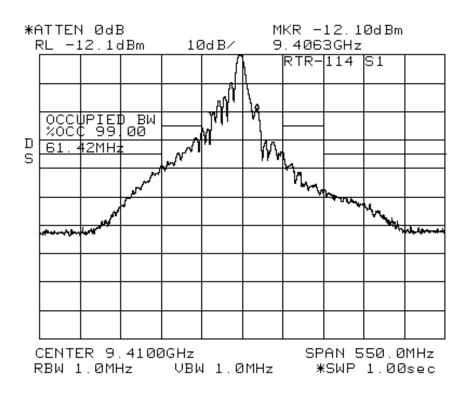


Fig. 8.1 for S1 Pulse

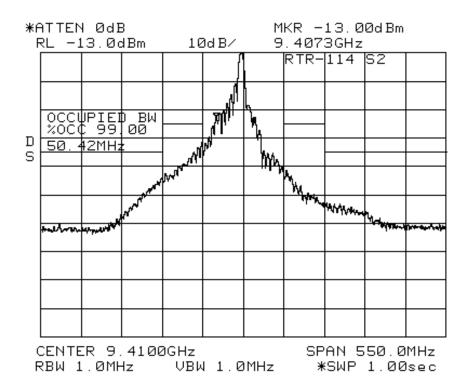


Fig. 8.2 for S2 Pulse

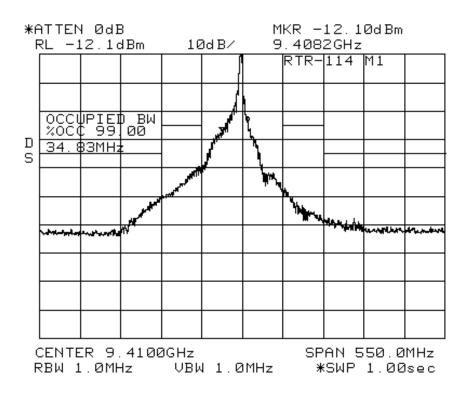


Fig. 8.3 for M1 Pulse

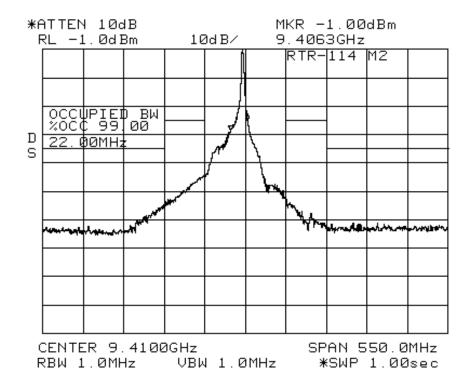


Fig. 8.4 for M2 Pulse

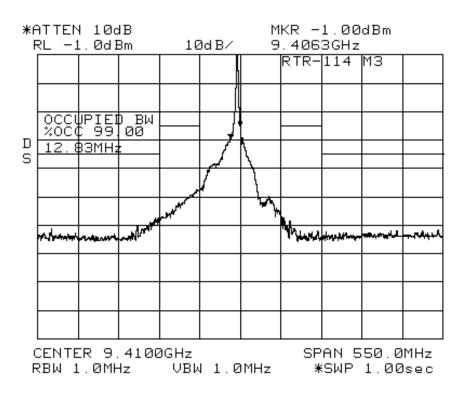


Fig. 8.5 for M3 Pulse

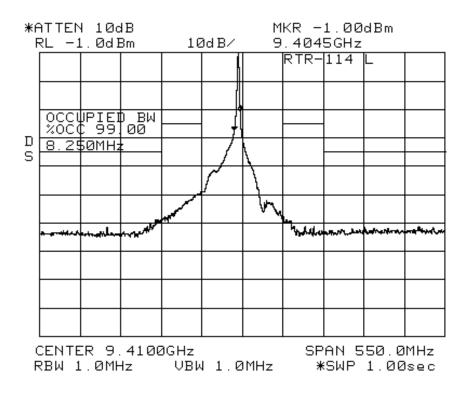


Fig. 8.6 for L Pulse