TECHNICAL INFORMATION # TEST REPORT ON THE PERFORMANCE OF MARINE RADAR **Trade Mark: FURUNO** **Transceiver Type: RTR-058** Report no.: FLI 12-00-028 Date of issue: December 25, 2000 Furuno Labotech International Co., Ltd. 9-52 Ashihara-cho, Nishinomiya City, Hyogo 662-8580, Japan Tel: +81-798-63-1094 Fax: +81-798-63-1098 Furuno Labotech International Report no.: FLI 12-00-028 All tests were performed in Furuno Labotech International Co., Ltd. All data herein contained is true and correct to our best knowledge. All tests were performed by: Name : Katsumi Imamura Function : Test Engineer Signature : K. Imermura Review and report by: Name : Toshiro Segawa Function : Manager, QA Signature : The Man This report has been verified and approved by: Date : December 25, 2000 Name : Mitsuyoshi Komori Function : Manager, Technical Section Signature : M. Komerti Furuno Labotech International Report no.: FLI 12-00-028 ## * * * * * * CONTENTS * * * * * | 1 | General Information | 3 | |------------------|---|-----------------------------| | 2 | Identification of Equipment (FCC Rule §2.925) | 10 | | 3 | Test data | 11 | | 3.1 | RF Power Output (FCC Rule §2.1046) | 11 | | 3.2 | Modulation Characteristics (FCC Rule §2.1047) | 14 | | 3.3 | Occupied Bandwidth (FCC Rule §2.1049) | 19 | | 3.4 | Spurious Emissions at Antenna Terminal (FCC Rule §2.1051) | 21 | | 3.5 | Field Strength of Spurious Radiation (FCC Rule §2.1053) | 23 | | 3.6 | Frequency Stability (FCC Rule §2.1055) | 25 | | 3.7 | Suppression of Interference Aboard Ships (FCC Rule § 80.217) | 28 | | 4 | Photographs to Reveal Equipment Construction and Layout (FCC | Rule §2.1033) 32 | | 5 | Description of Circuitry and Devices (FCC Rules §2.1033) | 33 | | 5.1 | Function of Each Semiconductor or Active Device | 33 | | 5.2 | Description of the circuits employed for suppression of spurious radiation, | for limiting or shaping the | | | control pulse, and for limiting or controlling power | 35 | | 6 O _I | perator's Manual Incl. Circuit Diagrams (FCC Rule §2.1033) | 38 | | Attach | ment A [Test data for 3.4 Spurious Emissions at Antenna Terminal] | A.1 - A.6 | | Attach | ment B [Test data for 3.5 Field Strength of Spurious Radiation] | B.1 - B.3 | | Attach | ment C [Test data for 3.7 Suppression of Interference Aboard Ships] | C.1 - C.21 | | | | | | Attacr | ment D [List of Test/ Measuring Equipment] | D.1 - D.3 | Furuno Labotech International Report no.: FLI 12-00-028 #### 1 General Information 1.1 General (a) Manufacturer: Furuno Electric Co., Ltd. 9-52 Ashihara-cho, Nishinomiya-city 662-8580, Japan (b) Model: MODEL 1732 | Display unit | RDP-130 (S/N: 4305-0020) | |---------------|-------------------------------------| | Antenna unit: | RSB-0071 (S/N: R076-0005) | | Transceiver | RTR-058 (contained in Antenna unit) | (c) Primary Function: Search, Navigation and anticollison (d) Discrimination Range Discrimination: 25 meters on a range scale of 1.5 nm Bearing Discrimination:4.0° on a range scale of 1.5 nm (e) Minimum Range:37 meters on a range scale of 0.25 nm (f) Frequency Range: Fixed frequency, X-band Type of Emission: P0N (g) Power Supply: 12 - 24 VDC #### 1.2 Antenna Unit #### 1.2.1 Transceiver Type: RTR-058 (1) Transmitter (a) Assignable Frequency for Shipborne Radar: Between 9300 and 9500 MHz (FCC Rule § 80.375 (d)-(1)) (b) Type of RF Generator Magnetron Type: MG5248 E3571 MAF1421B Peak Output Power: 4 kW nominal (c) Magnetron Ratings Center frequency of Magnetron: 9410 MHz Tolerances MG5248 E3571 MAF1421B Manufacturing: $\pm 30 \text{ MHz}$ $\pm 30 \text{ MHz}$ $\pm 30 \text{ MHz}$ Pulling: 23 MHz 18 MHz 23 MHz Tolerance for 20 °C temperature variation: -5 MHz (d) Guard Band: Guard Band is specified to be equal to 1.5/T MHz, where "T" is the pulselength in microseconds. See para (e). (FCC Rule § 80.209(b)) #### (e) Pulse Characteristics: | Range Scale (nm) | (Short) | (Middle) | (Long) | |------------------|-----------------------|-----------------------|-----------------------| | | 0.125 | | | | | <u>0.25</u> | | | | | 0.5 | | | | | 0.75 | | | | | 1 | | | | | 1.5 | 1.5 | | | | | 2 | | | | | 3 | 3 | | | | | 4 | | | | | 6 | | | | | 8 | | | | | 12 | | | | | 16 | | | | | 24 | | | | | <u>36</u> | | | | | | | Pulselength (μs) | 0.08 | 0.30 | 0.80 | | P.R.R.(Hz) | 2100 | 1200 | 600 | | Duty cycle | 1.68X10 ⁻⁴ | 3.60X10 ⁻⁴ | 4.80X10 ⁻⁴ | | Guard Band (MHz) | 18.75 | 5.00 | 1.88 | Note 1: Tests were carried out for the underlined Range Scales. Furuno Labotech International Report no.: FLI 12-00-028 (2) Modulator (a) FET Type: 2SK1449 Trigger Voltage: Approx. +10 VDC positive (3) Receiver (a) Passband (MHz) RF Stage: 100 MHz IF Stage: | Pulselength | Short | Middle | Long | |-------------|-------|--------|------| | (MHz) | 7 | 7 | 7 | Video Amp.: | Pulselength | Short | Middle | Long | |-------------|-------|--------|------| | (MHz) | 14 | 14 | 3 | (b) Gain (overall) (dB): Sufficient to cause limiting, approximately 130 (c) Overall Noise Figure (dB): 9 (typical) (d) Video Output Voltage (V): 3.8 V positive across 400 ohms (e) Features Provided: Sensitivity Time Controls (Anti-clutter Sea), Fast Time Constant (Anti-clutter Rain) (f) If receiver is tunable, describe method of adjusting frequency: Adjustment of tuning voltage of receiver local oscillator (Automatic and manual) #### 1.2.2 Antenna (a) Antenna Rotation ON-OFF Switch: Not provided. (b) Reflector: Printed array, 55 cm long (c) Type of Beam: Vertical fan (d) Beam Width (between half-Radiator power points) | Horizontal | 4 ° | |------------|------------| | Vertical | 20 ° | Furuno Labotech International Report no.: FLI 12-00-028 (e) Polarization: Horizontal(f) Antenna Gain: 24.7 dB (g) Attenuation of Major Side Lobes with respect to main beam: | Within $\pm 20\degree$ | +18 dB or less | |------------------------|----------------| | Outside ±20 ° | +23 dB or less | (h) Scanning (rotating or oscillating): Rotating over 360° continuously clockwise (i) Antenna Rotation Rate: 24 rpm(j) Number of Degrees Scanned: 360° (k) Sector Scan: Not provided. (I) Type of Transmission System: Contained in scanner unit (m) Rated Loss of Transmission System per hundred feet: None. Transmission path is only in the antenna scanner unit. 1.3 Display Unit (a) Type: 6.5 (in.) monochrome LCD for Model 1732 240 X 320 pixels (b) Size of Indicator: 6.5 in. diagonal effective dia. 96 mm (c) Sweep Linearity: 2 % on all ranges Furuno Labotech International Report no.: FLI 12-00-028 #### (d) Range Scales: | Range (nm) | Number of Range
Rings | Range Ring Interval (nm) | |------------|--------------------------|--------------------------| | 0.125 | 2 | 0.0625 | | 0.25 | 2 | 0.125 | | 0.5 | 4 | 0.125 | | 0.75 | 3 | 0.25 | | 1 | 4 | 0.25 | | 1.5 | 3 | 0.5 | | 2 | 4 | 0.5 | | 3 | 3 | 1 | | 4 | 4 | 1 | | 6 | 3 | 2 | | 8 | 4 | 2 | | 12 | 4 | 3 | | 16 | 4 | 4 | | 24 | 4 | 6 | | 36 | 3 | 12 | (e) Range Ring Accuracy: Better than 0.9 % of maximum scale in use or 8 m, whichever is the greater (f) Overall Bearing Accuracy from Scanner to Display: Better than 1° (g) Target Plot Facility: Simulated afterglow in low shade(h) Heading Indicator: Provided, automatic alignment. Heading Line and Heading Marker (i) True Bearing Indicator: Not provided Furuno Labotech International Report no.: FLI 12-00-028 #### 1.4 Functional Controls Range selector Power Switch FTC switch 2) A/C Rain control 2) STC control 2) Gain control 2) Panel dimmer 2) Heading line off Echo stretch 2) MENU Guard zone 2) Range ring on/off 2) Interference rejector ²⁾ ST-BY/TX ²⁾ Arrow keys (VRM/EBL/GUARD) VRM on/off²⁾ SHIFT Range set ²⁾ Zoom ²⁾ EBL on/off²⁾ Echo Trail ²⁾ Contrast 2) PLOT brilliance 2) Navigation on/off 1),2) Anchor watch 2) Display brilliance 2) TRU/REL 2) 3) Mode 2) 3) TLL 2) 3) Offcenter 2) Chart display 2) Waypoint 2) Date box 1) 2) Note: 1) Valid when interfaced with navaid #### 1.5 Operational Features (a) Is positive means provided to indicate whether or not the overall operation of the equipment is such that it may be relied upon to provide effective operation in accordance with its primary function: Yes (Magnetron/Xtal checker) - (b) Is the equipment for continuous operation: Yes - (c) Is provision made for operation with shore based radar beacons (RACONS): Yes (RACONS and SART) #### 1.6 Line Power Supply Requirements (a) Input Voltage: 12 - 24 VDC (b) Power Drain: 46 W (for Model 1732) #### 1.7 Construction Features - (a) Does equipment embody replacement units with chassis type assembly: Yes - (b) Are fuse alarms provided: Fuses are provided. - (c) State units that are weatherproof: Antenna Unit (IEC 60529 IPX6) ²⁾ Selected on menu ³⁾ Valid when interfaced with gyrocompass Furuno Labotech International Report no.: FLI 12-00-028 (d) If all units are not housed in a single container, indicate number and give description of individual units: $1 \times \text{Display Unit}$ Type: RDP-130 $1 \times \text{Antenna Unit}$ Type: RSB-0071 Transceiver Type: RTR-058 (contained in the Antenna unit) (e) Approximate Weight of Complete Installation: Display Unit: 3.5 kg Antenna Unit: 8 kg (f) Approximate space required for installation excluding scanner Display Unit: RDP-130 416 mm (W) X 253 mm (H) X 306 mm (D) #### 2 Identification of Equipment (FCC Rule § 2.925) The following nameplates are permanently fixed on the corresponding equipment units. FCC ID: ADB9ZWRTR058 Material of nameplate: Polyester film, 0.1 mm thick Fig. 2.1 Nameplate for Antenna Unit Fig. 2.2 Nameplate for Display Unit RDP-130 Report no.: FLI 12-00-028 #### 3 Test data #### 3.1 RF Power Output (FCC Rule § 2.1046) #### 3.1.1 Microwave characteristics The peak voltage was determined using the divider having a ratio of 1000 to 1 and the oscilloscope. Current pulse was viewed across the wideband current transformer with output voltage per ampere 1.00. #### (1) Nominal values | Pulselength | Short | Middle | Long | |------------------|-------------------------|-------------------------|-------------------------| | Range scale (nm) | 0.25 | 2 | 36 | | Pulselength (µs) | 0.08 | 0.30 | 0.80 | | PRR (Hz) | 2100 | 1200 | 600 | | Duty cycle | 1.68 X 10 ⁻⁴ | 3.60 X 10 ⁻⁴ | 4.80 X 10 ⁻⁴ | | Guard band (MHz) | 18.75 | 5.00 | 1.88 | #### (2) Measured values #### Magnetron input pulse voltage Magnetron input pulse voltage was measured at its cathode using the oscilloscope and divider with ratio 1000 to 1. | Pulselength | Short | Middle | Long | |---------------------|-------|--------|-------| | Directional coupler | 40.44 | 40.44 | 40.44 | | attenuation (dB) | | | | | Magnetron input | 3.9 | 4.0 | 4.0 | | voltage (kV) | | | | | Pulselength (µs) | 0.282 | 0.490 | 0.920 | | (50 % amplitude) | | | | | Rise time (µs) | 0.082 | 0.090 | 0.076 | | (10-90 % amplitude) | | | | | Decay time (µs) | 0.370 | 0.387 | 0.136 | | (90-10 % amplitude) | | | | Report no.: FLI 12-00-028 #### Magnetron input pulse current Magnetron input pulse current was observed across the wideband current transformer with output voltage per ampere 1.00. | Pulselength | Short | Middle | Long | |---------------------|-------|--------|-------| | Magnetron input | 2.5 | 2.9 | 3.0 | | current (A) | | | | | Pulselength (µs) | 0.115 | 0.310 | 0.790 | | (50 % amplitude) | | | | | Rise time (µs) | 0.122 | 0.160 | 0.160 | | (10-90 % amplitude) | | | | | Decay time (µs) | 0.050 | 0.056 | 0.054 | | (90-10 % amplitude) | | | | #### RF envelope of the magnetron output pulse The RF envelope of the magnetron output pulse was measured using a diode and the oscilloscope with the following results: | Pulselength | Short | Middle | Long | |--|-------|--------|-------| | Pulselength (µs)
(-3 dB points) | 0.117 | 0.310 | 0.786 | | Rise time (µs)
(10-90 % amplitude) | 0.062 | 0.100 | 0.102 | | Decay time (µs)
(90-10 % amplitude) | 0.056 | 0.062 | 0.056 | #### **Estimated efficiency** The estimated efficiency of the RF generator (magnetron) was determined by the following measurements and calculation. Power output from magnetron was measured using the directional coupler, power meter and the oscilloscope. | Pulselength | Short | Middle | Long | |-------------------------------|-------------------------|-------------------------|-------------------------| | Range scale (nm) | 0.25 | 2 | 36 | | P.R.R (Hz) | 2092.3 | 1236.4 | 604.4 | | Duty cycle | 2.44 X 10 ⁻⁴ | 3.83 X 10 ⁻⁴ | 4.75 X 10 ⁻⁴ | | Magnetron input, av. (W) | 2.39 | 4.45 | 5.70 | | Magnetron input,
peak (kW) | 9.75 | 11.60 | 12.00 | Furuno Labotech International Report no.: FLI 12-00-028 | Pulselength | Short | Middle | Long | |----------------------------------|--------|--------|--------| | Power meter reading (mW) | 0.0687 | 0.1440 | 0.1820 | | Magnetron output, av. (W) | 0.760 | 1.594 | 2.014 | | Spurious response
limits (dB) | 41.81 | 45.02 | 46.04 | | Magnetron Output, peak (kW): | 3.11 | 4.16 | 4.24 | | Magnetron efficiency (%): | 31.9 | 35.8 | 35.3 | Peak Power Input to RF Generator : 11.1 kW Estimated Efficiency of RF Generator : 34.3 % #### 3.2 Modulation Characteristics (FCC Rule § 2.1047) #### 3.2.1 FET Trigger Pulse Fig. 3.2.1.1 Typical waveform of Trigger Pulse Scale: 5 V/div., 200 ns/div. Fig. 3.2.1.2 Test Point for Trigger Pulse (in MD board (03P9208) of Radar Antenna Unit) Scale: 1 kV/div. 200 ns/div. #### 3.2.2 Trigger Pulse at Magnetron Cathode Fig. 3.2.2.1 Short Pulse (0.25 nm Range) Fig. 3.2.2.2 Fig. 3.2.2.3 Long Pulse (36 nm Range) Scale: 1 kV/div. 500 ns/div. #### 3.2.3 Magnetron Output (detected): #### 3.2.3.1 Setup for Measurement: Fig. 3.2.3.1 #### 3.2.3.2 Measuring Equipment List: See Attachment D [List of Test/Measuring Equipment]. #### 3.2.3.3 Measured Data: Fig. 3.2.3.2 Short Pulse (0.25 nm Range) Scale: 50 Scale: 50 mV/div. 50 ns/div. Fig. 3.2.3.3 Middle Pulse (2 nm Range) Scale: 50 mV/div. 100 ns/div. Fig. 3.2.3.4 Long Pulse (36 nm Range) Scale: 50 mV/div. 200 ns/div. #### 3.2.4 Radar Pulse Spectrum: Measured by the spectrum analyzer. (Test Equipment Setup and Measuring Equipment List are same as Clause 3.4.1 and 3.4.2.) Fig. 3.2.4.1 For Short Pulse (0.25 nm Range) Fig. 3.2.4.2 For Middle Pulse (2 nm Range) Fig. 3.2.4.3 For Long Pulse (36 nm Range) #### 3.3 Occupied Bandwidth (FCC Rule § 2.1049) #### 3.3.1 Measuring Method FCC rule 47 CFR 2.1049 requires measurements of the occupied bandwidth which is defined in the same section as "the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission." To obtain the occupied bandwidth of the radar transmitter, a special program (program list shown below) was loaded to the Hewlett-Packard spectrum analyzer and run by entering the HP-provided POWER BANDWIDTH calculation command [PWRBW]. The result was automatically displayed on the screen on the spectrum analyzer as: #### POWER BW=---- MHz ``` 10 ! HP_71000 DOWNLOAD PROGRAM ASSIGN @Sa TO 718 440 SUB Limit_line(@Sa) 30 CLEAR @Sa 450 Limit_line: ! 40 CALL M_ain(@Sa) 460 OUTPUT @Sa;"CLRDSP;"; 50 LOCAL @Sa 470 OUTPUT@Sa;"FUNCDEF LIMIT_LINE,^"; OUTPUT @Sa;"PU;PA 0,654;"; OUTPUT @Sa;"LINET 1;"; 70 490 80 SUB M_ain(@Sa) 500 OUTPUT @Sa;"PD;PA 100,654;"; OUTPUT @Sa;"PU;PA 201,654;"; OUTPUT @Sa;"PD;PA 300,654;"; 90 510 M_ain: 100 CALL Pwr_bw(@Sa) 520 OUTPUT @Sa;"PU;PA 105,630;"; CALL Limit_line(@Sa) 120 540 OUTPUT @Sa;"TEXT @-35dB@;"; 130 OUTPUT @Sa;"VARDEF K_ey,0;"; 550 OUTPUT @Sa;"PU;PA 205,720;"; 560 OUTPUT @Sa;"TEXT @-25dB@;"; 150 OUTPUT @Sa;"FUNCDEF D_LP,^"; 570 OUTPUT @Sa;"PU;PA 301,743;"; OUTPUT @Sa;"MOV K_ey,0;"; 580 OUTPUT @Sa;"LINET 1;"; 160 OUTPUT @Sa;"PD;PA 400,743;"; 170 ! 590 180 Main_menu: ! 600 OUTPUT @Sa;"PU;PA 601,743;"; OUTPUT @Sa;"LINET I;"; OUTPUT @Sa;"PD;PA 700,743;"; 190 OUTPUT @Sa;"REPEAT;"; 610 200 OUTPUT @Sa;"READMENU K_ey,"; 620 210 ! location: %Top----Bottom-% OUTPUT @Sa;"PU;PA 701,654;"; 220 OUTPUT @Sa;" I,%Limit line %,"; 640 OUTPUT @Sa;"LINET I;" 230 OUTPUT @Sa;" 2,%Power bw %,"; 650 OUTPUT@Sa;"PD;PA 1000,654;HD;"; 240 OUTPUT @Sa;"14,% Exit%;"; OUTPUT @Sa;"^" 660 250 ! 670 SUBEND 260 OUTPUT @Sa;"IF K_ey,EQ,1;THEN;LIMIT_LINE;"; 680 SUB Pwr_bw(@Sa) 270 OUTPUT @Sa;"ELSIF K_ey,EQ,2;THEN;PWR_BW;"; 690 Pwr_bw: 280 OUTPUT @Sa;"ELSIF K_ey,EQ,I4;THEN;ABORT;"; 700 ! Calculating Power band width OUTPUT @Sa; "VARDEF P_bw,0;" 290 OUTPUT @Sa;"ENDIF;" 710 OUTPUT @Sa;"FUNCDEF PWR_BW,^"; 300 OUTPUT @Sa;"UNTIL K_ey,EQ,14;"; 720 310 OUTPUT @Sa;"IP;TS;"; 730 OUTPUT @Sa;"CLRW TRA;"; OUTPUT @Sa;"CLRDSP;"; 320 OUTPUT @Sa;"ADORT;"; 740 330 OUTPUT @Sa;"^" 750 OUTPUT @Sa;"SNGLS;" OUTPUT @Sa;"MXMH TRA;TS;TS;TS;"; 350 Define_keydef: ! 770 OUTPUT @Sa;"MOV P_bw,PWRBW TRA,99.0;"; 360 OUTPUT @Sa; "KEYDEF 7,D_LP, %DLP TEST%;"; 780 OUTPUT@Sa;"DIV P__bw,P_bw,1000000;"; 370 790 OUTPUT @Sa;"PU;PA 10,800;HD;"; OUTPUT @Sa;"TEXT @POWER_BW = @;"; 380 OUTPUT @Sa;"FUNCDEF D,^"; 800 OUTPUT @Sa;"KEYPST;"; OUTPUT @Sa;"DSPLY P_bw,8,3;"; 810 OUTPUT @Sa;"TEXT @ MHz @;"; 400 OUTPUT @Sa;"^" 820 410 830 OUTPUT @Sa;"^" 420 SUBEND 840 SUBEND ``` Fig. 3.3.1 Program for Calculation of Occupied Bandwidth #### 3.3.2 Test Equipment Setup: Same as Clause 3.4.1. #### 3.3.3 Measuring Equipment List: Same as Clause 3.4.2. #### 3.3.4 Test Result: The test result is shown below. Fig. 3.3.2 Measurement of Occupied Bandwidth Occupied bandwidth = 67.500 MHz Report no.: FLI 12-00-028 #### 3.4 Spurious Emissions at Antenna Terminal (FCC Rule § 2.1051) #### 3.4.1 Test Equipment Setup: Fig. 3.4.1 #### 3.4.2 Measuring Equipment List: See Attachment D [List of Test/Measuring Equipment]. Report no.: FLI 12-00-028 #### 3.4.3 Test Conditions: Radar Range Settings: 0.25 nm (Short)/2 nm (Middle)/ 36 nm (Long) #### 3.4.4 Emission Limits: (a) Frequency Range (FCC Rule § 2.1057(1)) : 10 kHz - 40 GHz (b) Emission Limits (FCC Rule § 80.211) : | Frequency removed from | Frequency | Emission attenuation | |------------------------|----------------|---| | the assigned frequency | (Hz) | (mean power ,dB) | | 50 - 100 % | 9310 - 9360 M | | | (of the authorized | | At least 25 | | bandwidth) | 9460 - 9510 M | | | 100 - 250 % | 9160 - 9310 M | | | | | At least 35 | | | 9510 - 9660M | | | more than 250 % | 10 k - 9160M | At least 43 + 10 log ₁₀ (mean power in | | | | watts) | | | 9660- 40,000 M | | Note: - (1) Assigned frequency (center frequency) = 9410 MHz - (2) Authorized bandwidth = 100 MHz #### 3.4.5 Test Results: As shown in Attachment A, the spurious emissions at antenna terminal of EUT are found lower than the specified limits. (Note: Spurious emissions for 10 kHz to 5 GHz are not found due to the antenna terminal structure. (Waveguide tube)). Report no.: FLI 12-00-028 #### 3.5 Field Strength of Spurious Radiation (FCC Rule § 2.1053) **3.5.1 Test Site:** Rooftop of 6-story building, FURUNO ELECTRIC CO., LTD. Ashihara-cho 9-52, Nishinomiya-city, 662-8580 Japan 3.5.2 Distance between the radar set and measuring antenna: 10 m **3.5.3** Radar Range settings: 0.25 nm (Short)/ 2 nm (Middle)/ 36 nm (Long) #### 3.5.4 Measuring Equipment List: **EUT** See Attachment D [List of Test/Measuring Equipment]. #### 3.5.5 Test settings: Y (Measuring Antenna) #### 3.5.6 Field Strength Limits: (a) Frequency Range (FCC Rule § 2.1057(1)) : 10 kHz - 4 GHz (b) Emission Limits (FCC Rule § 80.211) : | Frequency removed from | Frequency | Emission attenuation | | |------------------------|---------------|----------------------|--| | the assigned frequency | (MHz) | (mean power, dB) | | | 50 - 100 % | 9,310 – 9,360 | | | | (of the authorized | | At least 25 | | | bandwidth) | 9,460 – 9,510 | | | | 100 - 250 % | 9,160 – 9,310 | | | | | | At least 35 | | | | 9,510 – 9,660 | | | Furuno Labotech International Report no.: FLI 12-00-028 | Frequency removed from | Frequency | Emission attenuation | |------------------------|----------------|---| | the assigned frequency | (MHz) | (mean power, dB) | | more than 250 % | 0.01 – 9,160 | | | | | At least 43 + 10 log ₁₀ (mean power in | | | 9,660 - 40,000 | watts) | Note: (1) Assigned frequency (center frequency) = 9410 MHz (2) Authorized bandwidth = 100 MHz #### 3.5.7 Test Results: As shown in Attachment B, the field strengths of spurious radiation generated by EUT are found lower than the specified limits. #### 3.6 Frequency Stability (FCC Rule § 2.1055) #### 3.6.1 Setup for Measurement Fig. 3.6.1 #### 3.6.2 Test Conditions: - 1) Radar Range settings: 0.25 nm (Short)/ 2 nm (Middle)/ 36 nm (Long) - 2) Ambient Temperature settings: 20 to + 50 °C (10 °C step) - 3) Power Supply Voltage settings: 85 /115 % of nominal voltage (20.4 to 27.6 VDC) #### 3.6.3 Measuring Equipment List: See Attachment D [List of Test/Measuring Equipment]. Report no.: FLI 12-00-028 #### 3.6.4 Frequency Tolerance Limits: "The frequency at which maximum emission occurs must be within the authorized bandwidth and must not be closer than 1.5/T MHz to the upper and lower limits of the authorized band width, where "T" is the pulse duration in microseconds. " (FCC Rule § 80.209 (b)) - 1) Center frequency (f₀): 9410 MHz - 2) Authorized bandwidth (f(AUBW)): 100 MHz "Upper limit frequency of the authorized band", $f(UAUBW) = f_0 + f(AUBW)/2 = 9460 \text{ MHz}$ "Lower limit frequency of the authorized band", f(LAUBW) = f₀ - f(AUBW)/2 = 9360 MHz 3) Assignable frequency bandwidth: 200 MHz (between 9300 MHz and 9500 MHz) (FCC Rule § 80.375 (d)-(1)) "Upper limit frequency of the assignable band", f(UASB) = 9500 MHz"Lower limit frequency of the assignable band", f(LASB) = 9300 MHz 4) Guard Band (f(1.5/T)): | Pulselength | Short | Middle | Long | |-----------------------|-------|--------|------| | Range Scale | 0.25 | 2 | 36 | | (nm) | | | | | Pulselength | 0.08 | 0.30 | 0.80 | | $(\mu \mathrm{sec})$ | | | | | Guard Band | 18.75 | 5.00 | 1.88 | | f(1.5/T) (MHz) | | | | #### 3.6.5 Test Results: Shown on Fig. 3.6.2. - (1) "Upper Tolerance Frequency measured (at 20 °C)", f(U) = 9419.0 MHz - (2) "Lower Tolerance Frequency measured (at +50 °C)", f(L) = 9409.4 MHz (3)-(a) - $f(U) + max. f(1.5/T) = 9437.8 \text{ MHz} < f(UAUBW) = 9460 \text{ MHz} \le f(UASB) = 9500 \text{ MHz}$ (3) - (b) - f(L) max. f(1.5/T) = 9390.7 MHz > f(LAUBW) = 9360 MHz $\geq f(LASB)$ = 9300 MHz So, both are found within the specified limits. ## FREQUENCY STABILITY WITH VARIATION OF PRIMARY SUPPLY VOLTAGE: The built-in voltage regulator allows no frequency variation against variations of \pm 15 % of nominal power supply voltage (20.4 to 27.6 VDC for nominal 24 VDC). Report no.: FLI 12-00-028 #### 3.7 Suppression of Interference Aboard Ships (FCC Rule § 80.217) #### 3.7.1 Measuring Antenna Characteristics at Representative Frequencies: Whip antennas are used to determine the level of interference caused by the radar to shipboard receivers. These antennas have the following characteristics (refer to impedance charts attached): | Length | Test Frequency | Impedance (Ω) | θ | R (Ω) | C or L | |--------|----------------|---------------|-------|-------|---------| | | (Hz) | | | | | | 6 m | 500.5 k | 1 k | -90 ° | 0 | 80 pF | | 6 m | 1.992 M | 1.25 k | -86 ° | 87.2 | 64 pF | | 6 m | 10.00204 M | 158 | | 109 | 140 pF | | 4 m | 27.5 M | 95 | | 83.5 | 128 pF | | 5/8 _ | 150 M | 116.5 | | 105.5 | 52.5 nH | | 1/4 | 450 M | 70.5 | | 34.5 | 5.68 pF | **3.7.2 Test Site:** Rooftop of 6-story building, Furuno Electric Company, Ltd. Ashihara-cho 9-52, Nishinomiya-city, 662-8580 JAPAN #### 3.7.3 Measuring Instrument List: See Attachment D [List of Test/Measuring Equipment]. (Instruments for measuring antenna characteristics are listed below.) - (1) Network Analyzer, HP 8753C - (2) Spectrum Analyzer, ADVANTEST TR4172 - (3) Spectrum Analyzer, HP 8566B - (4) Antennas, for 14 k - 10 MHz, 6 m whip for 10 - 30 MHz, 4 m whip for 30 - 300 MHz, VHF whip for 300 - 1000 MHz, UHF whip Furuno Labotech International Report no.: FLI 12-00-028 #### 3.7.4 Test Results: Interference levels to the respective antenna were measured at 2 m from the radar which was put in OFF and TRANSMIT conditions, and found within the specified limits. #### 3.7.4.1 Harmful Interference to Receiver (FCC Rule § 80.217 (a)) Limits: for 14 - 490 kHz, 5 μ V/m for 490 kHz - 1 GHz, 1 μV/m Results: There is no spurious component which is deemed harmful interference. (Test data are shown in Attachment C.) #### 3.7.4.2 Electromagnetic Field (FCC Rule § 80.217 (b) - 1) Limits: for below 30 MHz, $0.1 \mu V/m$ at 1 nm (-20 dB $\mu V/m$) for 30 to 100 MHz, 0.3 μ V/m at 1 nm (-10.5 dB μ V/m) for 100 to 300 MHz, 1.0 μ V/m at 1 nm (0 dB μ V/m) for over 300 MHz, 3.0 μ V/m at 1 nm (9.5 dB μ V/m) Results: Interference was measured with the antenna located 2 m from the radar and converted to levels at 1 nm. There is no spurious component exceeding the limits. (Test data are shown in Attachment C.) #### 3.7.4.3 Power Input to an Artificial Antenna (FCC Rule § 80.217 (b) - 2) Limits: for below 30 MHz, 400 μ W for 30 to 100 MHz, 4,000 μ W for 100 to 300 MHz, 40,000 μ W for over 300 MHz, 400,000 μ W Results: There is no spurious component exceeding the limits. (Test data are shown in Attachment C.) #### MEASUREMENT OF IMPEDANCE OF TEST ANTENNAS #### MEASUREMENT OF IMPEDANCE OF TEST ANTENNAS Furuno Labotech International Report no.: FLI 12-00-028 4 Photographs to Reveal Equipment Construction and Layout (FCC Rule § 2.1033) (See Attachment E Photos of the Equipment Under Test (EUT)) Furuno Labotech International Report no.: FLI 12-00-028 #### 5 Description of Circuitry and Devices (FCC Rules § 2.1033) #### 5.1 Function of Each Semiconductor or Active Device #### **ANTENNA UNIT** TRANSCEIVER MODULE (RTR-058) #### Modulator/ Motor Driver PCB MD9208 CR806 - CR810: Transient suppression CR811: Pulse width Select CR812: Reverse Voltage Protection CR813: Detector (Magnetron Current) L801 - L803: Noise Reject Q801 - Q802: Pulse Amplifier Q803: IF Bandwidth Select Q804 - Q811: Current Buffer Q812: Pulse width Select Q813 - Q816: Pulse Amplifier T801: Pulse Transformer U802: PLL Oscillator U803: Clock Generator U804 - U805: Counter U806: Data Latch U807: DC Regulator U808: Pulse Forming Network #### **Chassis Mounted Parts** HY801: 3 Ports Circulator U801: MIC Frequency Converter with Limiter V801: Magnetron #### IF Amplifier PCB 03P9215 CR1 - CR5: Band Width Switching CR6: Voltage Slicer (Overvoltage Protector) CR7: Voltage Slicer CR11: DC Restoring Furuno Labotech International Report no.: FLI 12-00-028 CR12: Voltage Slicer (Overvoltage Protector) CR13: DC Restoring CR18: DC Restoring (A/C SEA) CR19: DC Restoring (GAIN) CR20: Thermal Compensator CR21: DC Restoring (A/C RAIN) CR22: Voltage Slicer (Overvoltage Protector) Q1 - Q3: Video Amplifier Q5: IF Amplifier Q6: DC Bias Q7 - Q8: Video Amplifier Q10 - Q12: Voltage Buffer Q14: Transistor Switch (Tuning Amplifier Gate) U1: IF Amplifier U2: IF Amplifier/ Video Amplifier U3: OP Amplifier (Band Width Switching) U4: Inverter U5 - U7: Voltage Regulator Furuno Labotech International Report no.: FLI 12-00-028 5.2 Description of the circuits employed for suppression of spurious radiation, for limiting or shaping the control pulse, and for limiting or controlling power #### **ANTENNA UNIT** TRANSCEIVER MODULE (RTR-058) Modulator PCB MD9208 (in Radome) The primary function of the modulator is to produce narrow high tension pulses to drive the magnetron. To produce such pulses, the modulator board incorporates a modulator trigger circuit, a modulating pulse generator and a booster pulse transformer. The modulator trigger circuit is composed of U808 and associated components. It generates pulses that fire modulator FET Q815, Q816. Normally, the circuit is stable with U808 off. The pulse to fire the modulator FET is produced when U808 turns on upon receiving the TX trigger pulse from the display unit. When U808 turns on at the positive-going edge of the TX trigger pulse, it produces a narrow pulse. This narrow pulse is boosted by pulse transformer T801 by the ratio of 1:16. The resultant pulse, its level being 3.5 kV, is provided to oscillate the magnetron. C829 decouples the pulse energy that is liable to occur across the magnetron heater when T801's secondary windings are unbalanced or the load is asymmetric. Power Supply Board PTU-9335 (in Radome) The power supply board incorporates the TX HV circuit and magnetron heater power supply circuit. The TX HV circuit provides a high tension of about 300 V to the pulse forming network. A DC voltage of 7.5 V is supplied to the magnetron heater. #### **Duplexer and Frequency Converter in Radome** The microwave energy produced by the magnetron enters the circulator from port 2. It is fed to port 3 with a negligible loss of energy; port 1 at this time is isolated. In the same manner, the received signal entering into port 3 is transferred to port 1, isolating port 2. This operation of the circulator protects the receiver during transmission and minimizes the loss of the received signal. Thus, the circulator allows a single antenna radiator to be used for transmission and reception of radar signals. Furuno Labotech International Report no.: FLI 12-00-028 A diode limiter, made up of a pair of PIN diodes, is incorporated in the first stage of the MIC (microwave IC, U801). It is a passive switching device which allows the low-level RF signal to pass through and prohibits relatively strong microwave energy, such as the leak from the magnetron. It also protects the sensitive amplifier from pulses received directly from other radars operating in the proximity. When a low-level signal is received, the PIN diodes remain in the cutoff state, and the limiter's input impedance matches the characteristic impedance of the receiver allowing the signal to be delivered to the frequency converter of U801. When strong microwave energy is received, the PIN diodes are put in the conductive state (or short-circuited) causing the input energy to be attenuated. The strong input is further reduced to about 150 mW by the PIN diode. The MIC converts 9 GHz RF signal into an intermediate frequency of 60 MHz. It is achieved by mixing the received signal with the local oscillator signal in the frequency converter of the MIC. The built-in local oscillator oscillates at a frequency 60 MHz higher than the magnetron frequency of 9410 MHz. #### IF Amplifier PCB 03P9215 The received 60 MHz IF signal is amplified by the IF amplifier, the output of which is delivered to the display unit Digital Signal Processor. The 60MHz IF signal from the MIC is fed to the IF Amplifier U1. The output of U1 is conductively coupled to the second-stage IF amplifier U2. GAIN/STC signals are applied respectively to U1 pin 5 and pin U2 pin 14 via the STC circuit. The output of U2 is then coupled to video amplifier Q4. The video signal is taken from the emitter of Q2/Q3 through C25, and sent to the display via the video cable. The IF amplifier PCB also incorporates an STC circuit. The STC circuit made up of Q10, Q11 changes the gain of the IF amplifier in the function of time so that the gain is minimum at the time of transmission and increases gradually to maximum gain with time (range). The amount of current flowing into Q11 is determined by the time constant of the parallel-series capacitor/resistor network consisting of C50 - C52, R67 - R69. It gradually decreases as the capacitors are discharged. The rate of discharge is inversely proportional to "t", the elapsed time after transmission. The current flowing into Q111 is also controlled by the base potential in addition to the time constant of the capacitor/ resistor network. Furuno Labotech International Report no.: FLI 12-00-028 The time-varying waveform produced at capacitor/ resistor network is restored via CR18 by the STC control potentiometer (located in the display) and applied to U1 pin 5 and U2 pin14. Furuno Labotech International Report no.: FLI 12-00-028 6 Operator's Manual Incl. Circuit Diagrams (FCC Rule § 2.1033) (See separate covers)