FURUNO

OPERATOR'S MANUAL

UAIS TRANSPONDER

MODEL FA-100

© FURUNO ELECTRIC CO., LTD.

9-52 Ashihara-cho, Nishinomiya, Japan

Telephone: 0798-65-2111 Telefax: 0798-65-4200

All rights reserved. Printed in Japan

PUB.No. OME-44170

(DAMI) FA-100

Your Local Agent/Dealer

FIRST EDITION: SEP. 2002

B : SEP. 25,2002

00080932300

OME44170B00

SAFETY INSTRUCTIONS

MARNING

ELECTRICAL SHOCK HAZARD Do not open the equipment.

Only qualified personnel should work inside the equipment.

Immediately turn off the power at the switchboard if water leaks into the equipment or something is dropped in the equipment.

Continued use of the equipment can cause fire or electrical shock. Contact a FURUNO agent for service.

Do not disassemble or modify the equipment.

Fire, electrical shock or serious injury can result.

Do not place liquid-filled containers on the top of the equipment.

Fire or electrical shock can result if a liquid spills into the equipment.

Immediately turn off the power at the switchboard if the equipment is emitting smoke or fire.

Continued use of the equipment can cause fire or electrical shock. Contact a FURUNO agent for service.

Make sure no rain or water splash leaks into the equipment.

Fire or electrical shock can result if water leaks in the equipment.

Do not operate the equipment with wet hands.

Electrical shock can result.

WARNING LABEL

A warning label is attached to the AC-DC power supply. Do not remove the label. If the label is missing or damaged, contact a FURUNO agent or dealer about replacement.

Name: Warning Label (1) Type: 86-003-1011-1 Code No.: 100-236-231

TABLE OF CONTENTS

FOREWORDiii						
_	SYSTEM CONFIGURATIONv					
P	ROC	έΚΑΜ	NUMBERvi			
S	SYSTEM OVERVIEWvii					
1	ОР	ERAT	ON1			
	1.1	Descr	iption of Controls1			
	1.2	Turnir	ng On and Off2			
	1.3	Adjust	ing Display Brilliance and			
		Contra	st3			
	1.4	Menu	Overview4			
		1.4.1	Menu operating procedure4			
		1.4.2	Remarks on menu operation5			
	1.5	Settin	g Up for a Voyage7			
	1.6	Setting	CPA/TCPA10			
	1.7	Plotte	r Display11			
	1.8	Targe	Data Display12			
		1.8.1	Normal target data12			
		1.8.2	Finding dangerous ship's data14			
	1.9	Own S	Ship's Information15			
		1.9.1	Own static data15			
		1.9.2	Own dynamic data17			
	1.10) Messa	ages18			
		1.10.1	Sending a message18			
		1.10.2	Receiving messages18			
		1.10.3	Message logs20			
	1.11	Regio	nal Operating Channels22			
		1.11.1	Viewing channels, Tx power22			
		1.11.2	Displaying, editing regional			
			operating area status23			
	1.12	2 Enabl	ing/Disabling the Buzzer25			
	1.13	3 Long	Range Mode26			

		IANCE,	
TROU	IBLES	SHOOTING	27
2.1	Mainte	enance	27
2.2	Reset	ting the Breaker	28
2.3	Repla	cement of Battery	28
2.4	Troub	leshooting	29
2.5	Diagn	ostics	30
	2.5.1	Displaying program number	30
	2.5.2	Memory test	31
	2.5.3	Keyboard test	31
	2.5.4	LCD test	32
	2.5.5	On/off history	32
	2.5.6	GPS test	33
2.6	Alarm	Status	34
2.7	Error I	Messages	35
2.8	GPS N	Monitor	36
2.9	Displa	ying Sensor Status	37
2.10	Resto	ring Default Settings	38
APPE	NDIX.		AP-1
		ion	
		face (IEC 61162-2)	
SPEC	IFICA	TIONS	SP-1
INDEX	X		.IN-1
Decla	ration	of conformity	

FOREWORD

A Word to the Owner of the FA-100

FURUNO Electric Company thanks you for purchasing the FA-100 UAIS Transponder. We are confident you will discover why the FURUNO name has become synonymous with quality and reliability.

For over 50 years FURUNO Electric Company has enjoyed an enviable reputation for quality and reliability throughout the world. This dedication to excellence is furthered by our extensive global network of agents and dealers.

Your equipment is designed and constructed to meet the rigorous demands of the marine environment. However, no machine can perform its intended function unless properly operated and maintained. Please carefully read and follow the operation and maintenance procedures set forth in this manual.

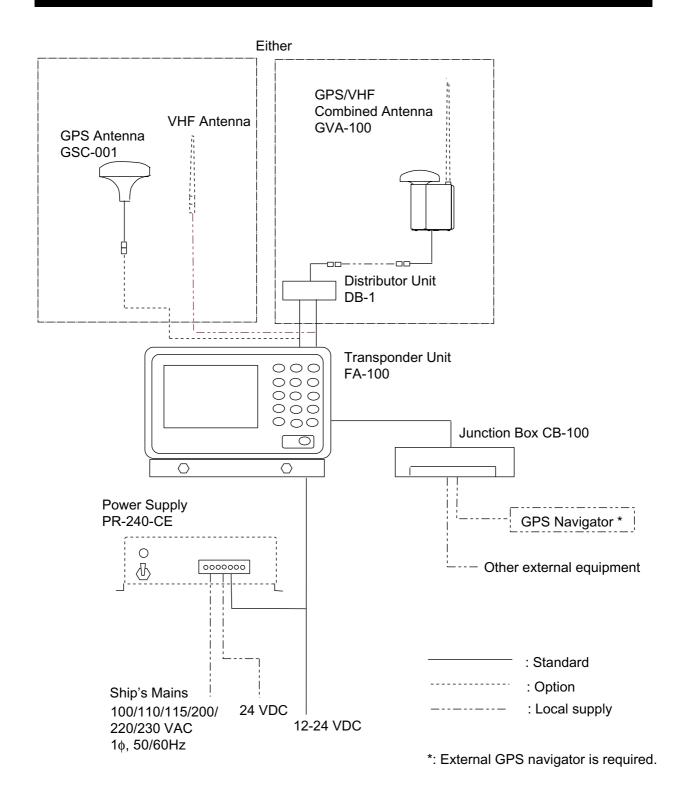
We would appreciate feedback from you, the end-user, about whether we are achieving our purposes.

Thank you for considering and purchasing FURUNO.

Note: The example screens shown in this manual may not match the screens you see on your display. The screen you see depends on your system configuration and equipment settings.

Features

The FA-100 is a universal shipborne AIS (Automatic Identification System) capable of exchanging navigation and ship data between own ship and other ships or coastal stations. It complies with IMO MSC.74(69) Annex 3, A.694, ITU-R M.1371-1 and DSC ITU-R M.825. It also complies with IEC 61993-2 (Type testing standard), IEC 60945 (EMC and environmental conditions).


The FA-100 consists of VHF/GPS antennas, a transponder unit and several associated units. The transponder contains a VHF transmitter, two TDMA receivers on two parallel VHF channels, a DSC channel 70 receiver, interface, communication processor, LCD display, and internal GPS receiver. The internal GPS is a 12-channel all-in-view receiver with a differential capability, and provides UTC reference for system synchronization to eliminate clash among multiple users. It also gives position, COG and SOG when the external GPS fails.

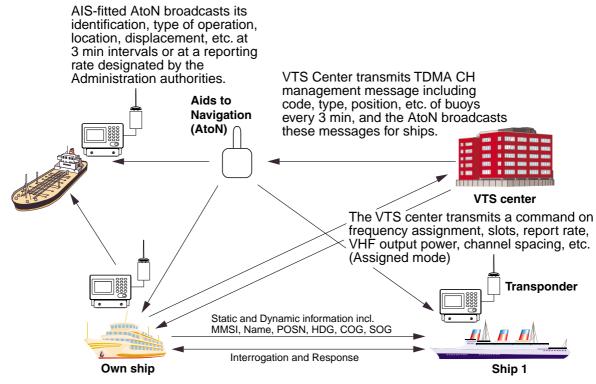
The LCD panel displays all required information about static data, dynamic data, voyage-related data and short safety-related messages. The information and messages are automatically updated according to the ITU-R M.1371-1, e.g., static information every 6 min and on request, dynamic information every 10 s on ship faster than 3 kt and 3.3 s when changing course at 0-14 kt, etc.

The main features are

- Safety of navigation by automatically exchanging navigational data between ships and between ship and coast.
- Static data:
 - MMSI (Maritime Mobile Service Identity)
 - IMO number (where available)
 - Call sign & name
 - Length and beam
 - Type of ship
 - Location of position-fixing antenna on the ship
- Dynamic data:
 - Ship's position with accuracy indication and integrity status
 - UTC
 - Course over ground (COG)
 - Speed over ground (SOG)
 - Heading
 - Navigation status (manual input)
 - Rate of turn (where available)
- Voyage-related data
 - Ship's draught
 - Hazardous cargo (type)
 - Destination and ETA (at master's discretion)
- Short safety-related messages, Free messages
- LCD panel satisfying the IMO minimum requirements plus simple plotting modes
- Interfaces for radar, ECDIS, PC, LAN for future networking expansion
- GPS/VHF combined antenna for easy installation available
- CPA/TCPA alarm
- Built-in GPS receiver for UTC synchronization and backup position fixing

SYSTEM CONFIGURATION

PROGRAM NUMBER


PCB	Version No.	Date	Reason for Modification
MAIN	245-0001-001	09/2002	
SUB	245-0002-001	09/2002	
H8S1	245-0003-001	09/2002	
H8S2	245-0004-001	09/2002	
H8S3	245-0005-001	09/2002	

SYSTEM OVERVIEW

System overview

The Automatic Identification System (AIS) was originally developed to aid the Vessel Traffic Services (VTS) by use of a VHF transponder working on Digital Selective Call (DSC) at VHF CH70, and is still in use along the UK coastal areas and others. Some time later the IMO developed a Universal AIS using the new sophisticated technology called Self-Organized Time Division Multiple Access (SOTDMA) based on a VHF Data Link (VDL).

The system operates in three modes – autonomous (continuous operation in all areas), assigned (data transmission interval remotely controlled by authority in traffic monitoring service) and polled (in response to interrogation from a ship or authority). It is synchronized with GPS time to avoid conflict among multiple users (IMO minimum 2000 reports per minute and IEC requires 4500 reports on two channels). The VHF channels 87B and 88B are commonly used and in addition there are local AIS frequencies. Shipborne AIS transponders exchange various data as specified by the IMO and ITU on either frequency automatically set up by the frequency management telecommand received by the DSC receiver on ship. VHF transmit power is also set up for 12.5 W or 2 W automatically.

All ships broadcast Static and Dynamic information (autonomous and continuous mode). If OS wants to know information about ship 1, OS shall send an interrogation in polling mode; then ship 1 will transmit her response on the same VHF channel without operator intervention.

AIS system

Not all ships carry AIS

The Officer of the Watch (OOW) should always be aware that other ships, and in particular leisure craft, fishing boats and warships, and some coastal shore stations including Vessel Traffic Service centers might not be fitted with AIS.

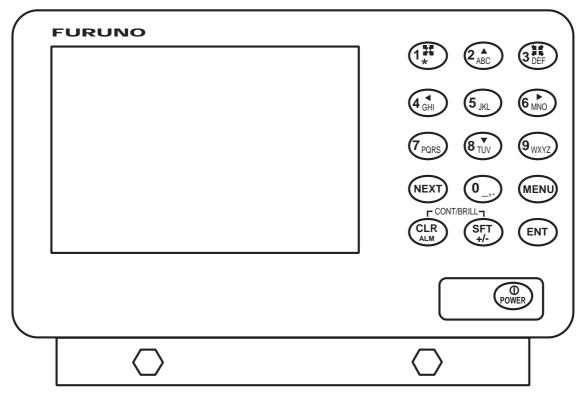
The OOW should also be aware that AIS fitted on other ships as a mandatory carriage requirement might be switched off by professional judgment of the master. Thus, users are therefore cautioned to always bear in mind that information provided by AIS may not be giving a complete or correct "picture" of shipping traffic in their vicinity.

Use of AIS in collision avoidance

As an anti-collision aid the AIS has the following advantages over radar:

- Information provided in near real-time
- Capable of instant presentation of target course alterations
- · Not subject to target swap
- Not subject to target loss in clutter
- Not subject to target loss due to fast maneuvers
- Able to detect ships within VHF/FM coverage, including in some circumstances, around bends and behind islands.

When using the AIS for anti-collision purposes it is important to remember that the AIS is an additional source of navigation information. It does not replace other navigational systems. Once again, remember that the AIS may not be giving a complete or correct "picture" of shipping traffic in their vicinity.

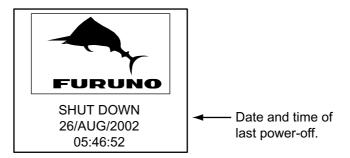

The use of the AIS does not negate the responsibility of the OOW to comply with all collision regulation requirements, especially the maintaining of a proper look-out. The prudent navigator uses all aids available to navigate the ship.

Erroneous information

Erroneous information implies a risk to other ships as well as your own. Poorly configured or calibrated sensors might lead to incorrect information being transmitted. It is the user's responsibility to ensure that all information entered into the system is correct and up to date.

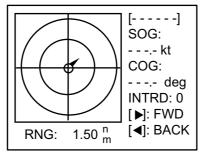
1 OPERATION

1.1 Description of Controls


FA-100 Transponder unit

Description of controls

Control	Description		
0 - 9	Alphanumeric, symbol input keys		
2(▲) and 8(▼)	Adjust display brilliance and keyboard backlighting; scroll display.		
4(◄) and 6(▶)	Shift the cursor left and right (pressed with [SFT/ +/-]), respectively; adjust contrast.		
CLR/ALM	Clears an entry; silences the audio alarm.		
SFT/ +/-	Selects numeric or alphabet entry mode alternately; selects options on menus.		
CLR/ALM + SFT/ +/-	Change the contrast and brilliance.		
ENT	Concludes an entry.		
NEXT	Chooses next line. Press together with [SFT/ +/-] to shift cursor in reverse direction.		
MENU	Displays menu. Also used to perform "escape".		
POWER	Turns the power on and off.		


1.2 Turning On and Off

Press the [POWER] key to turn the equipment on and off. The startup screen appears. Showing FURUNO logo along with the date and time of last power-off.

Startup screen

After the FURUNO logo disappears, the screen displays "NOW STARTING...CHECKING MEMORY. At this time the BIIT (built-in integrity test facility) checks the major circuits including RAM, ROM, interface, etc. The plotter display appears, showing the message "NOW SORTING." This means the equipment is sorting targets by distance, from closest to furthest. This takes several seconds to complete.

"Please Wait!" is shown when no data is being received.

PLOTTER display

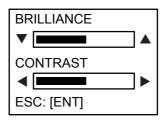
The FA-100 should be powered while underway or at anchor. The master may switch off the AIS if he believes that the continual operation of the AIS might compromise the safety or security of his ship. The AIS should be restarted once the source of danger has disappeared.

The equipment transmits own ship static data within two minutes of start-up and it is transmitted at six-minute intervals. Static data includes MMSI number, IMO number, call sign, ship name, ship length and width, ship type and GPS antenna position.

In addition to static data, ship's dynamic data is also transmitted. This data includes position with accuracy, SOG, COG, rate of turn, heading, etc. Dynamic data is transmitted ever 2 s to 3 min depending on ship's speed and course change, voyage-related data, such as ship draft, hazardous cargo, destination and estimated time of arrival, are transmitted at six-minute intervals.

The FA-100 starts receiving data from AIS-equipped ships as soon as it is turned on, and the ships' location on the plotter display is shown with the AIS symbol. (To learn more about the plotter display, see paragraph 1.7.) With connection of a radar or ECDIS, the AIS target symbols may be overlaid on the radar or ECDIS.

Note 1: If no navigation sensor is installed or a sensor such as a gyrocompass has failed, the AIS automatically transmits "not available" data.


Note 2: The reporting intervals are as follows

Ship's navigation status and reporting interval

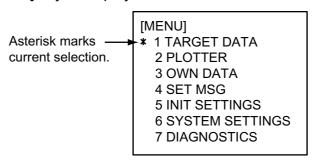
Ship's navigation status	Reporting interval
Moored	3 min
0-14 kt speed	10 s
0-14 kt speed with course change	3+1/3 s
14-23 kt speed	6 s
14-23 kt speed with course change	2 s
Speed higher than 23 kt	2 s
Speed higher than 23 kt with course change	2 s

1.3 Adjusting Display Brilliance and Contrast

1. Press the [CLR/ALM]+[SFT/ +/-] keys together to show the dialog box below.

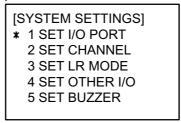
Dialog box for adjustment of brilliance and contrast

- 2. Use the [▲] or [▼] key to adjust brilliance; [◄] or [▶] key to adjust contrast.
- 3. Press the [ENT] key to close the dialog box.

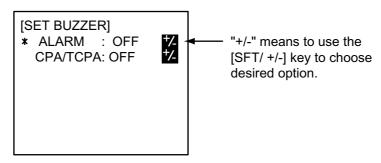

Note: If you turn off the equipment with minimum contrast, the startup screen is displayed in high contrast at the next power-on. However, the plotter display, which appears after the startup screen, will be shown in minimum contrast. Therefore, adjust the contrast as described above.

1.4 Menu Overview

You can choose the functionality of the equipment through the menu. If you get lost in operation, press the [MENU] key until you return to the main menu. The complete menu tree is provided in the Appendix.


1.4.1 Menu operating procedure

1. Press the [MENU] key to display the main menu.


Main menu

 Press appropriate numeric key to choose a wanted sub-menu. For example, press the [6] key to choose the SYSTEM SETTINGS sub-menu. (You may also choose a sub-menu by pressing the [NEXT] key to choose it and then pressing the [ENT] key.)

SYSTEM SETTINGS sub-menu

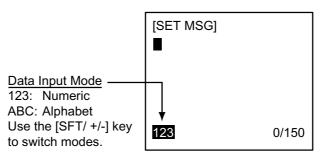
3. Press appropriate numeric key to choose sub-menu desired. For example, press the [5] key to show the SET BUZZER sub-menu.

SET BUZZER sub-menu

- 4. Choose item with the [NEXT] key. The asterisk shows current selection.
- 5. Depending on the sub-menu shown, use the alphanumeric keys to enter data, or use the [SFT/ +/-], [▲], [▼], [◄] or [▶] key to choose data.
- 6. Press the [ENT] key to register data.
- 7. Press the [MENU] key several times to return to the main menu.

1.4.2 Remarks on menu operation

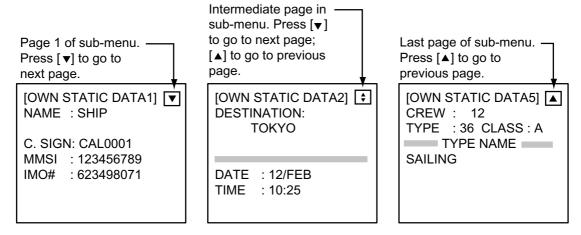
Confirming entry


If, after you have changed data, you pressed the [MENU] key without pressing the [ENT] key, the message shown below appears. If you want to cancel the data, press the [ENT] key. If you wish to save, use the [▼] key to choose NO, press the [ENT] key and then press the [ENT] key again.

"Are you sure" confirmation dialog

Choosing data input mode

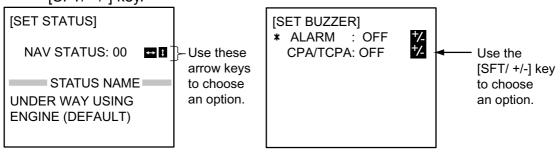
To enter a specific numeric, alphabet or symbol, choose the appropriate data input mode, numeric or alphabet. The active data input mode is shown at the bottom left-hand corner of the screen. Use the [SFT/ +/-] key to select desired mode. To enter a numeric, simply press appropriate numeric key. For alphabet or symbol, press appropriate key until desired character or symbol appears.


SET MSG screen

Shifting the cursor

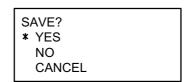
To shift the cursor backward or forward, press [SFT/ +/-] + [◀] together to shift it backward; [SFT/ +/-] + [▶] together to shift it forward. This is convenient for creating a space or using the same key consecutively.

Multiple page sub-menus


Some sub-menus have more than one page. In this case, an arrow(s) appears at the top of the display to show which arrow key(s) to press to change the page.

OWN STATIC DATA displays 1, 2 and 5

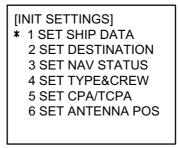
Choosing options


Menu options may be chosen with the $[\blacktriangle]$, $[\blacktriangledown]$, $[\blacktriangledown]$ or $[\blacktriangleright]$ key or [SFT/+/-]key depending on the sub-menu. In the examples below, you may choose NAV STATUS option with the $[\blacktriangle]$, $[\blacktriangledown]$, $[\blacktriangledown]$ or $[\blacktriangleright]$ key and ALARM option with the [SFT/ +/-] key.

SET STATUS sub-menu

Saving settings

When the [MENU] key is pressed after changing an option (to register setting), you are asked if you want to save the setting. To save the setting, press the [ENT] key. To retain the previous setting, select NO and press the [ENT] key. To escape, choose [CANCEL] and press the [ENT] key.



Save confirmation dialog

1.5 Setting Up for a Voyage

There are five items on the INIT SETTINGS menu (Menu #5) you will need to enter at the start of a voyage: draught, destination, navigation status, ship type and number of crew.

- 1. Press the [MENU] key to open the main menu.
- 2. Press the [5] key to open the INIT SETTINGS menu.

INIT SETTING sub-menu

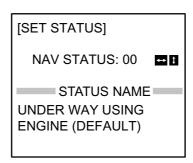
3. Press the [1] key to choose SET SHIP DATA. The ship's name and call sign have been entered at installation. Confirm that they are correct.

SET SHIP DATA sub-menu

- 4. Press the [NEXT] key to choose DRUGHT (draught).
- 5. Use the numeric keys to enter ship's current draught for the voyage. (Be sure to amend it if it changes during the voyage.)

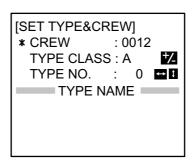
Note: DTE should not be changed from "DEFAULT."

- 6. Press the [ENT] key to register data and return to the INIT SETTINGS menu.
- 7. Press the [2] key to choose SET DESTINATION.


Dialog box for entry of destination

- 8. DATE is selected; enter estimated day and month of arrival at destination and then press the [NEXT] key to choose TIME.
- 9. Enter estimated time of arrival at destination and then press the [NEXT] key to choose DESTINATION.

10. Enter name of destination and then press the [ENT] key to register data and return to the INIT SETTINGS menu.


Note: Be sure to change destination information when it changes.

11. Press the [3] key to choose SET NAV STATUS.

SET STATUS sub-menu

- 12. Use the [▲], [▼], [◄] or [▶] key to choose appropriate navigation status referring to the list below.
 - [▲], [▼]: Increment, decrement selection number by 1.
 - [◄], [▶]: Increment, decrement selection number by 10.
 - 00: Underway using engine (default)
 - 01: At anchor
 - 02: Not under command
 - 03: Restricted maneuverability
 - 04: Constrained by draught
 - 05: Moored
 - 06: Aground
 - 07: Engaged in fishing
 - 08: Underway by sailing
 - 09: Reserved for high speed craft (HSC)
 - 10: Reserved for wing in ground (WIG, for example, hydrofoil)
 - 11-15: Reserved for future use
- 13. Press the [ENT] key to register data and return to the INIT SETTINGS menu.
- 14. Press the [4] key to choose SET TYPE&CREW.

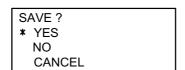
SET TYPE&CREW sub-menu

15. CREW is selected; enter number of crew with the numeric keys.

Note: TYPE CLASS is entered at installation. Do not change the setting from "A."

16. Press the [NEXT] key to choose TYPE NO.

Note: TYPE NO. is entered at installation. However, if the ship carries hazardous cargo, dangerous goods, harmful substances or marine pollutants it should be entered.

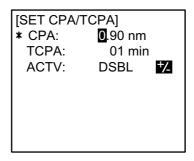

17. Use $[\blacktriangle]$, $[\blacktriangledown]$, $[\blacktriangledown]$ to choose appropriate type number.

[▲], [▼]: Increment, decrement selection number by 1.

[◄], [▶]: Increment, decrement selection number by 10.

10	EUTURE USE	ALL OLUDO OF THIS TYPE	00	DAGOENICED OLUBO	ALL OLUBO OF THE TYPE	
	1.	ALL SHIPS OF THIS TYPE			ALL SHIPS OF THIS TYPE	
		CARRYING DG, HS, OR, MP(A)			CARRYING DG, HS, OR, MP(A)	
	8	CARRYING DG, HS, OR, MP(B)			CARRYING DG, HS, OR, MP(B)	
		CARRYING DG, HS, OR MP(C)			CARRYING DG, HS, OR MP(C)	
		CARRYING DG, HS, OR, MP(D)			CARRYING DG, HS, OR, MP(D)	
	FUTURE USE			PASSENGER SHIPS		
	FUTURE USE		66	PASSENGER SHIPS	FUTURE USE	
17	FUTURE USE	FUTURE USE	67	PASSENGER SHIPS	FUTURE USE	
	FUTURE USE			PASSENGER SHIPS		
19	FUTURE USE	NONE	69	PASSENGER SHIPS	NONE	
	_	ALL SHIPS OF THIS TYPE		CARGO SHIP	ALL SHIPS OF THIS TYPE	
21	WIG	CARRYING DG, HS, OR, MP(A)		CARGO SHIP	CARRYING DG, HS, OR, MP(A)	
22	WIG	CARRYING DG, HS, OR, MP(B)	72	CARGO SHIP	CARRYING DG, HS, OR, MP(B)	
23	WIG	CARRYING DG, HS, OR MP(C)	73	CARGO SHIP	CARRYING DG, HS, OR MP(C)	
24	WIG	CARRYING DG, HS, OR, MP(D)	74	CARGO SHIP	CARRYING DG, HS, OR, MP(D)	
25	WIG	FUTURE USE	75	CARGO SHIP	FUTURE USE	
26	WIG	FUTURE USE	76	CARGO SHIP	FUTURE USE	
27	WIG	FUTURE USE	77	CARGO SHIP	FUTURE USE	
28	WIG	FUTURE USE	78	CARGO SHIP	FUTURE USE	
29	WIG	NONE	79	CARGO SHIP	NONE	
30	FISHING		80	TANKER	ALL SHIPS OF THIS TYPE	
31	TOWING		81	TANKER	CARRYING DG, HS, OR, MP(A)	
32	LENGTH OF THE	TOW EXCEEDS 200M OR BREADTH EXCEEDS 25M	82	TANKER	CARRYING DG, HS, OR, MP(B)	
33	ENGAGED IN	DREDGING OR UNDERWATER OPERATIONS	83	TANKER	CARRYING DG, HS, OR MP(C)	
34	ENGAGED IN	DIVING OPEARATIONS	84	TANKER	CARRYING DG, HS, OR, MP(D)	
35	ENGAGED IN	MILITARY OPEARATIONS	85	TANKER	FUTURE USE	
36	SAILING		86	TANKER	FUTURE USE	
37	PLEAURE CR	AFT	87	TANKER	FUTURE USE	
38	FUTURE USE		88	TANKER	FUTURE USE	
39	FUTURE USE		89	TANKER	NONE	
	HSC	ALL SHIPS OF THIS TYPE	90	OTHER TYPE OF SH	I ALL SHIPS OF THIS TYPE	
	HSC	CARRYING DG, HS, OR, MP(A)			I CARRYING DG, HS, OR, MP(A)	
	HSC	CARRYING DG, HS, OR, MP(B)			I CARRYING DG, HS, OR, MP(B)	
	HSC	CARRYING DG, HS, OR MP(C)			I CARRYING DG, HS, OR MP(C)	
	HSC	CARRYING DG, HS, OR, MP(D)			CARRYING DG, HS, OR, MP(D)	
	HSC	FUTURE USE		OTHER TYPE OF SH	` '	
	HSC	FUTURE USE		OTHER TYPE OF SH		
	HSC	FUTURE USE		OTHER TYPE OF SH		
	ě .	FUTURE USE		OTHER TYPE OF SH		
	HSC	NONE		OTHER TYPE OF SH		
	PILOT				- · -	
	1	RESCURE VESSELS		WIG: Wing in groun		
	2 TUGS			HSC: HIgh speed craft		
	PORT TENDERS			DG: Dangerous goods		
	VESSELS WITH ANTI-POLUUTION FACILITIES OR EQUIPMENT			HS: Harmful subst		
	5 LAW ENFOREMENT VESSELS			MP: Marine polluta		
		ASSIGNMENTS TO LOCAL VESSELS		0-9: Undefined		
		ASSIGNMENTS TO LOCAL VESSELS	l '	o o. Ondonnou		
	MEDICAL TRA					
	I.	RDING TO RESOLUTION NO 18				

- 18.Press the [ENT] key to register settings and return to the INIT SETTINGS menu.
- 19. Press the [MENU] key. You are asked if you are sure to save settings.



20. Press the [ENT] key to save settings.

1.6 Setting CPA/TCPA

Set the CPA (Closest Point of Approach and TCPA (Time to Closest Point of Approach) of AIS targets for which you want to be alerted to targets close to own ship. When a ship whose CPA and TCPA are lower than set here the audio alarm sounds (if active). (The audio alarm may be activated or deactivated through the menu. See paragraph 1.12.)

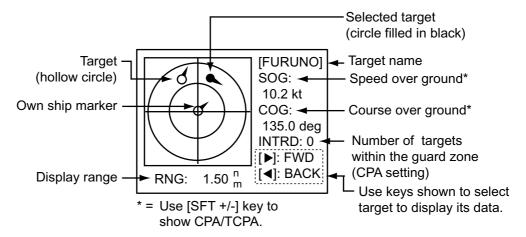
- 1. Press the [MENU] key to open the main menu.
- 2. Press the [5] key to open the INIT SETTINGS menu.
- 3. Press the [5] key to choose SET CPA/TCPA.

Dialog box for entry of CPA/TCPA

- 4. Enter desired CPA (setting range: 0-6.00 nm) with the numeric keys and then press the [NEXT] key to choose TCPA.
- 5. Enter desired TCPA (setting range: 0-60 min) with the numeric keys and then press the [NEXT] key to chose ACTV.
- 6. Press the [SFT/ +/-] key to choose ENBL to activate the CPA/TCPA alarm; DSBL to disable it.
- 7. Press the [ENT] key to return to the INIT SETTINGS menu.
- 8. Press the [MENU] key. You are asked if you are sure to save settings.

SAVE confirmation screen

9. Press the [ENT] key to save settings.


If, when ACTV is set to ENBL, a target whose CPA and TCPA are lower than set here is detected, the message WNG COLLISION appears and the audio alarm sounds (if active). Press the [CLR/ALM] key to erase the message and silence the alarm.

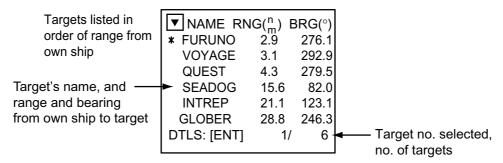
1.7 Plotter Display

The plotter display automatically appears at each power on. You may also display it as below. AIS targets are displayed automatically.

A target (target marker is hollow) indicates the presence of a vessel equipped with AIS in a certain location and course. If you desire to know more about a vessel's data, select as in step 4 below.

- 1. Press the [MENU] key to open the menu.
- 2. Press the [2] key to show the PLOTTER display.
- 3. Use the [1] or [3] key to choose the range: [1] key to lower it; [3] key to raise it. The available ranges are (in nm) 0.125, 0.25, 0.5, 0.75, 1.5, 3, 6, 12, and 24.
- 4. To find a target's data, do the following:
 - a) Use the [◀] or [▶] key to fill a wanted target marker in black; namely, activate the target.
 - b) Press the [SFT/ +/-] key to display SOG/COG and CPA/TCPA alternately.
 - c) Press the [ENT] key to display other data. Use the [▼] or [▲] key to scroll the data. The data is the same as that shown on the TARGET DATA sub-menu. For details, see paragraph 1.8.

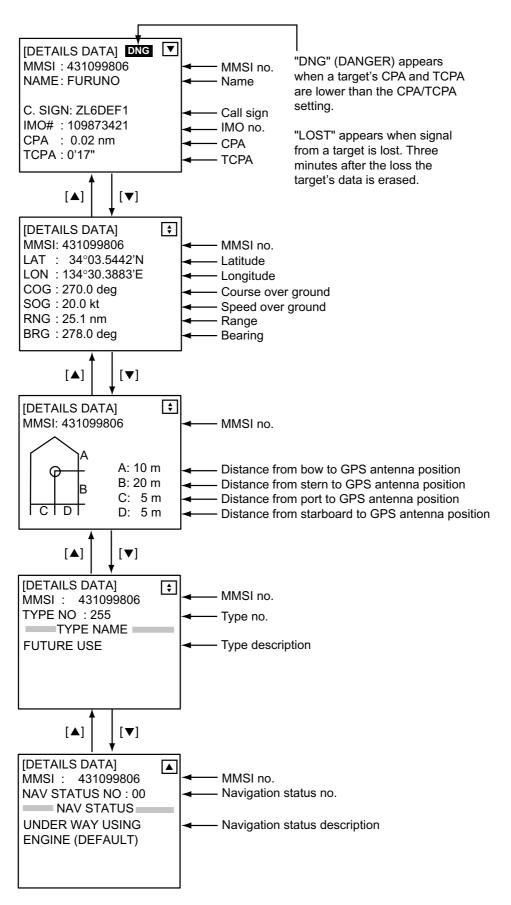
Plotter display


- **Note 1:**If no signal is received from an AIS target for one minute and thirty seconds it is declared a lost target. Three minutes later it is erased from the screen.
- Note 2: When a target's CPA and TCPA are lower than set in paragraph 1.6, the target flashes and the audio alarm sounds (if active). Press the [CLR/ALM] key to stop the flashing and silence the audio alarm. Take suitable measures to avoid collision.

1.8 Target Data Display

If you desire detailed information about a target, do the following:

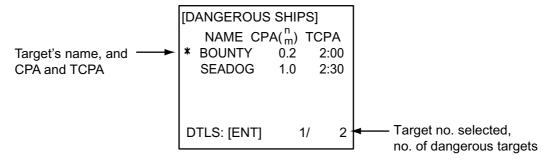
1.8.1 Normal target data


- 1. Press the [MENU] key to open the menu.
- 2. Press the [1] key to choose TARGET DATA. (To show the DANGEROUS SHIPS display at this time, press the [SFT/ +/-] key. For further details about the DANGEROUS SHIPS display see paragraph 1.8.2.)

Target list

- 3. Use the [▼] or [▲] key to choose the target whose data you wish to view, and then press [ENT] key.
- Use the [▼] or [▲] key to scroll the display.
- 5. Press the [MENU] key twice to return to the main menu.

See the illustration on the next page for target data display examples.



Target data displays

1.8.2 Finding dangerous ship's data

You can easily find dangerous ships whose CPA and TCPA are lower than the preset CPA and TCPA values set on the INIT SETTINGS menu.

- 1. Press the [MENU] key to open the menu.
- 2. Press the [1] key to choose TARGET DATA.
- 3. Press the [SFT/ +/-] key to show the DANGEROUS SHIPS display.

Dangerous ships display

- 4. To find a dangerous target's details, choose it using the [▲] or [▼] key and then press the [ENT] key. The data format is the same as that shown on the previous page.
- 5. Press the [MENU] key several times to return to the main menu.

Note: The message "LOST" appears at the top of the DANGEROUS SHIPS display when no AIS signal is received from the selected target.

1.9 Own Ship's Information

The OWN DATA menu (Menu #3) shows your ship's information and status (set on the INIT SETTING menu) and navigation data.

1.9.1 Own static data

The OWN STATIC DATA display shows your ship's static data, which includes MMSI, call sign and name, IMO number, length and beam, type of ship and location of position fixing antenna. This data should be checked once per voyage or once per month whichever is shorter. Data may be changed only on the authority of the master.

- 1. Press the [MENU] key to show the menu.
- 2. Press the [3] key to open the OWN DATA sub-menu.

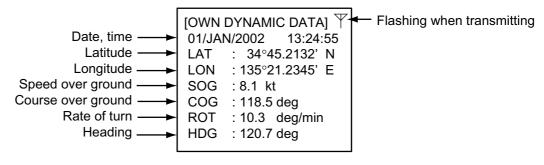
[OWN DATA]

* 1 OWN STATIC DATA
2 OWN DYNAMIC DATA
3 ALARM STATUS
4 SENSOR STATUS
5 INTERNAL GPS

OWN DATA sub-menu

- 3. Press the [1] key to choose OWN STATIC DATA.
- 4. Use the [▼] or [▲] key to view other pages.
- 5. Press the [MENU] key twice to return to the main menu.

See the illustration on the next page for own static data examples.


OWN STATIC DATA displays

1.9.2 Own dynamic data

The OWN DYNAMIC DATA display shows your ship's dynamic data, which includes time, date, ship's position, course over ground (COG), speed over ground (SOG), rate of turn (ROT), and heading.

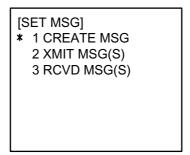
The OOW should periodically check position, speed over ground and sensor information.

- 1. Press the [MENU] key to open the menu.
- 2. Press the [3] key to choose OWN DATA.
- 3. Press the [2] key to choose OWN DYNAMIC DATA.

OWN DYNAMIC DATA display

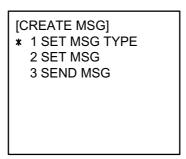
4. Press the [MENU] key to close the display.

1.10 Messages

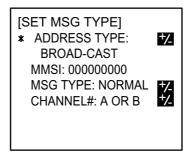

You may send and receive messages via the VHF link, to a specified destination (MMSI) or all ships in the area. Messages can be sent to warn of safety of navigation, for example, an iceberg sighted. Routine messages are also permitted.

Short safety related messages are only an additional means to broadcast safety information. They do not remove the requirements of the GMDSS.

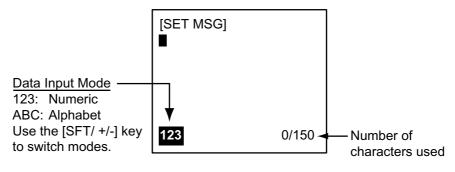
When a message is received, the equipment beeps and the indication "MESSAGE" appears. The contents of the message may be viewed on the receive message log.


1.10.1 Sending a message

- 1. Press the [MENU] key to open the main menu.
- 2. Press the [4] key to open the SET MSG sub-menu.


SET MSG sub-menu

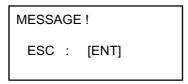
3. Press the [1] key to open the CREATE MSG sub-menu.


CREATE MSG sub-menu

4. Press the [1] key to choose SET MSG TYPE.

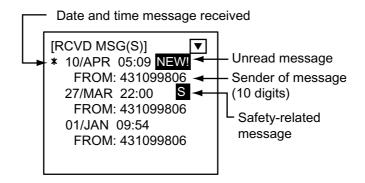
SET MSG TYPE sub-menu

- 5. ADDRESS TYPE is selected; use the [SFT/ +/-] key to choose address type: ADDRESS-CAST for a specific ship, or BROAD-CAST for all ships. For BROAD-CAST go to step 7.
- 6. For ADDRESS-CAST, press the [NEXT] key to choose "MMSI," and then enter the MMSI of the receiving ship.
- 7. Press the [NEXT] key to choose MSG TYPE.
- 8. Use the [SFT/ +/-] key to choose message type: NORMAL (message other than safety) or SAFETY (important navigational or meteorological warning).
- 9. Press the [NEXT] key to choose CHANNEL#.
- 10. Use the [SFT/ +/-] key to choose which channel to transmit your message over; CH-A, CH-B, BOTH (CH-A and CH-B), or "A OR B" (either channel).
- 11. Press the [ENT] key to register settings and return to the CREATE MSG sub-menu.
- 12. Press the [2] key to choose SET MSG.


SET MSG screen

- 13. Key in your message, using up to 150 alphanumeric characters. Use the [SFT/ +/-] key to switch between numeric and alphabet input. If you enter a wrong character, use the [CLR/ALM] key to erase it.
- 14. Press the [ENT] key to save the message and return to the CREATE MSG sub-menu.
- 15. Press the [3] key (SEND MSG) to send your message.

The screen displays "NOW SENDING" during transmission and "SEND COMPLETED!" when transmission has been completed. (MMSI no. is shown along with "SEND COMPLETED" if the message was transmitted to a specific ship.) If the message could not be sent, "SEND FAILED" appears. And if you did not receive acknowledgement of a message, despite successful transmission, "UNSUCCESSFUL" appears.

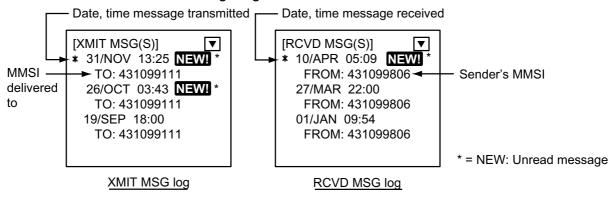

1.10.2 Receiving messages

When a message is received the window below appears on the display. To view the contents of the message do the following:

Message received

- 1. Press the [ENT] key to erase the "message received" window.
- 2. Press the [MENU] key to show the main menu.
- 3. Press the [4] key to choose SET MSG.
- 4. Press the [3] key to choose RCVD MSG(S).

Sample received message


5. Press the [NEXT] key to choose message marked with "NEW" and press the [ENT] key to view the contents of the message.

1.10.3 Message logs

The FA-100 automatically saves five each of transmitted and received messages to their respective message logs. When a log becomes full, the oldest message in the log is automatically deleted to make room for the latest.

To display a message log, do the following:

- 1. Press the [MENU] key to open the menu.
- 2. Press the [4] key to choose SET MSG.
- 3. Press the [2] key to display the XMIT message log, or the [3] key to display the RCVD message log.

XMIT and RCVD message logs

- 4. To view a message, choose it with the [▼] or [▲] key and then press the [ENT] key.
- 5. Press the [MENU] key twice to close the log and return to the main menu.

1.11 Regional Operating Channels

AIS operates primarily on two dedicated VHF channels, CH 2087 and CH2088. Where these channels are not available regionally, the AIS is capable of being automatically switching to designated alternate channels by means of a message from a shore facility. Where no shore based AIS or GMDSS sea area A1 station is in place, the AIS should be switched manually as in paragraph 1.11.2.

A regional operating area is set with the procedure below. The most recent eight areas are memorized.

- Automatic setting of VHF DSC (channel 70) from shore-based AIS
- Automatic setting by AIS message from shore-based AIS
- · Setting by shipboard system such as ECDIS
- · Manual setting

The default area is as follows:

• Tx power: 12.5 W

Channel no. 2087, 2088

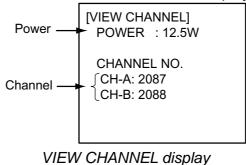
Frequency bandwidth: 25 kHz

• Tx/Rx mode: Tx/Rx

1.11.1 Viewing channels, Tx power

Do the following to view current channels.

- 1. Press the [MENU] key to open the menu.
- 2. Press the [6] key to open the SYSTEM SETTINGS sub-menu.
- 3. Press the [2] key to choose SET CHANNEL.

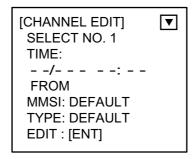

[SET CHANNEL]

* 1 VIEW CHANNEL

2 CHANNEL EDIT

SET CHANNEL menu

4. Press the [1] key to show the VIEW CHANNEL display.


5. Press the [MENU] key to close the display.

1.11.2 Displaying, editing regional operating area status

You may display the status of regional operating areas currently memorized in the equipment. Nine of any combination of AIS message from shore-based AIS, DSC message, manual settings and commands from ECDIS or a PC may be registered and one will be a default value.

About registering areas

- AIS and DSC messages registered within last two hours cannot be edited.
- An item labeled DEFAULT cannot be registered. ("DEFAULT" are data used for international waters not controlled by shore-based AIS.)
- If two areas overlap one another the oldest data is deleted.
- Data older than five weeks is deleted.
- Area data is deleted when it is more than 500 miles from the area for which it was registered.
- 1. Press the [MENU] key to open the menu.
- 2. Press the [6] key to open the SYSTEM SETTINGS sub-menu.
- 3. Press the [2] key to choose SET CHANNEL.
- 4. Press the [2] key to open the CHANNEL EDIT sub-menu.

CHANNEL EDIT sub-menu, page 1

SELECT NO.: File number, 1-9. In order of distance from own ship,

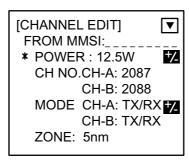
from closest to furthest.

TIME: Data and time equipment controlled by external source.

MMSI: MMSI displayed for control by DSC or shore-based AIS.

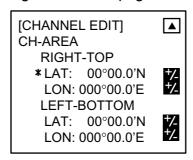
Dashes or "EMPTY" (no data) otherwise.

TYPE: How channel is controlled:


AIS, AIS message; PI, ECDIS or PC; DSC, DSC, MANUAL,

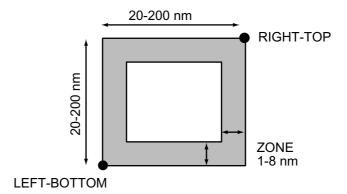
manual control

Note: MMSI and TYPE must be set to other DEFAULT to edit.


Use the [▲] or [▼] key to choose file number from SELECT NO.

6. Press the [ENT] key to show details.

CHANNEL EDIT sub-menu, page 2


- 7. POWER is selected; press the [SFT/ +/-] key to choose power: 12.5 W or 2 W
- 8. Press the [NEXT] key to choose CH NO.
- 9. Key in channel number for channel A and B with the numeric keys.
- 10. Press the [NEXT] key to choose MODE.
- 11. Press the [SFT/ +/-] key to assign mode for channel A and B. Each time the key is pressed the selection changes in the sequence of TX/RX, TX/RX; TX/RX, RX; RX, TX/RX; RX, RX; RX, UNUSED; UNUSED, RX.
- 12. Press the [NEXT] key to choose ZONE. In this zone, the #1 channel in selected area and the #1 channel in the adjacent zone are used for communications.
- 13. Key in the zone distance. The setting range is 0 to 8 (nm), and the default setting is 5 nm.
- 14. Press the [NEXT] key to go to the next page.

CHANNEL EDIT sub-menu, page 3

- 15. Key in the latitude and longitude for the right-top position (northeast point) of the AIS operating area. Use the [SFT/ +/-] key to switch coordinate, if necessary.
- 16. Press the [NEXT] key to choose LEFT-BOTTOM.
- 17. Key in the latitude and longitude for the left-bottom position (southwest position) of the AIS operating area. Use the [SFT/ +/-] key to switch coordinate, if necessary.

Note: The available range is 20-200 nm. If the area contains overlapping data the older data will be erased.

Description of RIGHT-TOP, LEFT-BOTTOM, ZONE

Note: To check or edit settings on previous page, press the [NEXT] key while pressing the [SFT +/-] key.

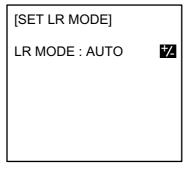
- 18. Press the [ENT] key.
- 19. YES is selected; press the [ENT] key to register settings. (If the password entry screen is displayed, MMSI is set to DEFAULT. This cannot be changed.)
- 20. Press the [MENU] key several times to close the menu.

Note: If you enter invalid data an appropriate error message appears. Press the [ENT] key and then reenter data.

1.12 Enabling/Disabling the Buzzer

The buzzer that sounds against CPA or TCPA violation and system trouble may be enabled or disabled as below. Note that this buzzer is not related to a radar or ECDIS alarm.

- 1. Press the [MENU] key to open the menu.
- 2. Press the [6] key to open the SYSTEM SETTINGS menu.
- 3. Press the [5] key to choose SET BUZZER.


SET BUZZER menu

- 4. ALARM is selected; press the [SFT/ +/-] key to choose ON or OFF as appropriate. This alarm is given to system trouble.
- 5. Press the [NEXT] key to choose CPA/TCPA, and then press the [SFT/ +/-] key to choose ON or OFF as appropriate.
- 6. Press the [ENT] key to register settings.
- 7. Press the [MENU] key several times to close the menu.

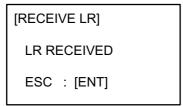
1.13 Long Range Mode

The long range mode sets how to reply to a request for own ship data from a distant station, for example, Inmarsat C station. You may reply automatically or manually.

- 1. Press the [MENU] key to open the menu.
- 2. Press the [6] key to open the SYSTEM SETTINGS menu.
- 3. Press the [3] key to choose SET LR MODE.

SET LR MODE menu

- 4. Press the [SFT/ +/-] key to choose AUTO or MANUAL as appropriate. AUTO for automatic replay, MANUAL for manual reply.
- 5. Press the [ENT] key to register setting.
- 6. Press the [MENU] key several times to close the menu.


Manual reply

For manual reply, the message below appears when a request for own ship data arrives from a distant station. Press the [ENT] key to send the data, or choose NO and press the [ENT] key to send no data.

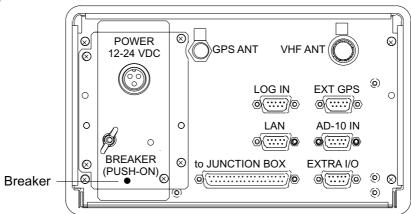
```
[RECEIVE LR]
RESPONSE?
* YES
NO
```

Automatic reply

For automatic reply, the message below appears when a request for own ship data arrives from a distant station and its data is automatically transmitted. Press the [ENT] key to erase the message.

2 MAINTENANCE, TROUBLESHOOTING

2.1 Maintenance


Regular maintenance is necessary to maintain performance. A monthly maintenance program should be established and should at least include the items in the table below.

Maintenance items

Item	Check point
Connectors	Check that all connectors on the rear panel of the transponder unit are firmly connected.
Cabling	Check cabling for damage. Replace if damaged.
Ground terminal	Check the ground terminal for rust. Clean if necessary.
Ground wire	Confirm that the ground wire is firmly fastened.
Transponder unit cleaning	Dirt and dust should be removed from the transponder unit with a soft, dry cloth. Wipe the LCD carefully to prevent scratching, using tissue paper and an LCD cleaner. To remove dirt or salt deposits, use an LCD cleaner, wiping slowly with tissue paper so as to dissolve the dirt or salt. Change paper frequently so the salt or dirt will not scratch the LCD. Do not use solvents such as thinner, acetone or benzene for cleaning; they can remove paint and marks and deform the equipment.

2.2 Resetting the Breaker

The BREAKER button on the rear panel pops out when internal fault or overcurrent is detected. Find the cause before pushing in the breaker to restore normal operation.

FA-100 Transponder unit, rear view

2.3 Replacement of Battery

The lithium battery on the MPB Board (24P0015) stores data while the power is turned off, and its life is about five years. When the voltage of the battery goes below a certain level, the message BACKUP ERROR appears when turning on the power. When this occurs, turn off the power and contact a FURUNO agent or dealer to request replacement of the battery, at your earliest convenience.

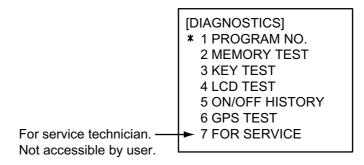
The battery stores own ship's static data: MMSI no., IMO no., ship name, call sign, ship's length and width and GPS antenna position. After the battery has been replaced, reenter own ship's static data.

Battery Type	Code No.
CR2/3-8LF1ST1SN	000-145-543

2.4 Troubleshooting

The troubleshooting table below provides common symptoms of trouble and the means to rectify them. If you cannot restore normal operation, do not attempt to check inside the equipment. Refer any repair work to a qualified technician.

Troubleshooting


Symptom	Remedy
Power	
Cannot turn on the power.	 Check that the power connector is firmly fastened. Check if the breaker (red button) on the rear panel of the transponder unit has popped out. Find out the cause before pushing in the breaker to restore normal operation. Check the power supply.
Transmitting, receiving mo	essages
Cannot transmit or receive.	 Check that the VHF antenna cable is firmly fastened. Check the VHF antenna. For TX message, try different TX channel (operating sequence: [MENU], [4], [1], [1]).
Can transmit but message is sent to wrong party.	On the SET MSG TYPE sub-menu, check that ADDRESS TYPE is selected to ADDRESS-CAST and MMSI is correct, before sending a message. (operating sequence: [MENU], [4], [1], [1])
Position data	
No position data	Check the GPS antenna for damage.Check the GPS antenna cable and its connectors.

2.5 Diagnostics

The FA-100 provides diagnostic tests to check program no., memory, keyboard, LCD and built-in GPS receiver.

2.5.1 Displaying program number

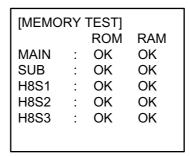
- 1. Press the [MENU] key to open the main menu.
- 2. Press the [7] key to open the DIAGNOSTICS sub-menu.

DIAGNOSTICS sub-menu

3. Press the [1] key to choose PROGRAM NO.

[PROGRAM NO.]
MAIN: 245-0001-0**
SUB: 245-0002-0**
H8S1: 245-0003-0**
H8S2: 245-0004-0**
H8S3: 245-0005-0**

PROGRAM NO. display

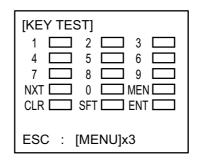

4. Press the [MENU] key to return to the DIAGNOSTICS sub-menu.

^{** =} Program version no.

2.5.2 Memory test

The memory can be checked for proper operation as follows:

- 1. Press the [MENU] key to open the main menu.
- 2. Press the [7] key to open the DIAGNOSTICS sub-menu.
- Press the [2] key to choose MEMORY TEST to test the memory. The results are shown as OK or NG (No Good). For any NG, contact your dealer for advice.

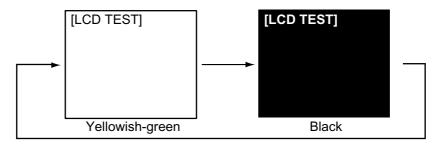

MEMORY TEST display

4. Press the [MENU] key to return to the DIAGNOSTICS sub-menu.

2.5.3 Keyboard test

The keyboard can be checked for proper operation as follows:

- 1. Press the [MENU] key to open the main menu.
- 2. Press the [7] key to open the DIAGNOSTICS sub-menu.
- 3. Press the [3] key to choose KEY TEST.

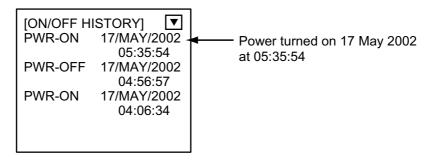

KEY TEST display

- 4. Press each key (except the [POWER] key) one by one. A key's on-screen location fills in black while the key is pressed, if the key is functioning properly.
- 5. To escape from the keyboard test, press the [MENU] key three times.

2.5.4 LCD test

The LCD can be checked for proper display as follows:

- 1. Press the [MENU] key to open the main menu.
- 2. Press the [7] key to open the DIAGNOSTICS sub-menu.
- 3. Press the [4] key to choose LCD TEST. The screen color automatically changes from yellowish-green to black alternately if the LCD is normal.


LCD TEST display

4. Press the [MENU] key to return to the DIAGNOSTICS sub-menu.

2.5.5 On/off history

The ON/OFF HISTORY log shows the date and time of the latest 30 power-ons and power-offs. In special cases, on and off times of 0 W transmission may also be shown.

- 1. Press the [MENU] key to open the main menu.
- 2. Press the [7] key to open the DIAGNOSTICS sub-menu.
- 3. Press the [5] key to choose ON/OFF HISTORY.

ON/OFF HISTORY log

- 4. Use the [▼] or [▲] key to scroll the log.
- 5. Press the [MENU] key to return to the DIAGNOSTICS sub-menu.

2.5.6 **GPS** test

The GPS test checks the built-in GPS receiver for proper operation.

- 1. Press the [MENU] key to open the main menu.
- 2. Press the [7] key to open the DIAGNOSTICS sub-menu.
- 3. Press the [6] key to choose GPS TEST.

[GPS TEST]

START OF TEST

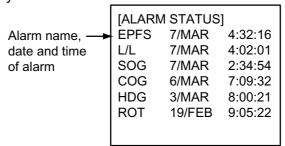
PUSH [ENT]

GPS TEST display

4. Press the [ENT] key to start the test. "NOW TESTING..." is displayed during the testing and the results are displayed as shown in the illustration below. SELF TEST1 shows OK for normal operation; NG (No Good) for abnormal operation. SELF TEST shows "0" for normal operation; other numeric for abnormal operation.

[GPS TEST]
PROGRAM No.: 4850218
PROGRAM Ver.: 0**
SELF TEST1: OK
SELF TEST2: 0
■ERROR CONTENTS

** = Program Version No.


GPS test results

5. Press the [MENU] key to return to the DIAGNOSTICS sub-menu.

2.6 Alarm Status

The alarm status log shows the date and time alarms were violated.

- 1. Press the [MENU] key to open the main menu.
- 2. Press the [3] key to choose OWN DATA.
- 3. Press the [3] key to choose ALARM STATUS.

ALARM STATUS display

- 4. Use the [▼] or [▲] key to scroll the log.
- 5. Press the [MENU] key to close the log.

Alarm statuses and their meanings

Alarm Status Indication	Alarm Message	Meaning
TX	Tx malfunction	TX malfunction
ANT	Antenna VSWR exceed limit	Antenna VSWR trouble. Continued operation possible.
CH1	Rx channel 1 malfunction	TDMA RX 1 Board trouble. TX stopped on corresponding TX channel.
CH2	Rx channel 2 malfunction	TDMA RX2 Board trouble. TX stopped on corresponding TX channel.
CH70	Rx channel 70 malfunction	DSC RX Board trouble, transmission stopped on CH70.
EPFS	External EPFS lost	No data from external navigator. Continued operation possible.
L/L	No sensor positioning in use	No L/L data
SOG	No valid SOG information	Invalid SOG data
COG	No valid COG information	Invalid COG data
HDG	Heading lost/invalid	Invalid/nonexistent HDG data
ROT	No valid ROT information	Invalid ROT data

2.7 Error Messages

The FA-100 displays the following error messages to alert you to invalid data, etc..

Error messages

Message	Meaning
BATTERY ERROR!	Voltage of backup battery is getting low.
BACKUP ERROR	ROM contents erased because voltage of backup battery is too low.
ENTER MMSI	Your MMSI was not found when turning on the power.
NO SEL. RENEW AGAIN	No data found for target selected (target data, dangerous ship).
CAN'T DISPLAY OVER LAT85°	Own ship's latitude is higher than 85°.
INVALID DATA	Invalid own ship position.
NO MMSI	MMSI not entered when SEND MSG is set for ADDRESS-CAST.
SYNCHRONISM CAN'T TAKEN	Slot synchronization not yet performed when you attempted to send a message.
NO MESSAGE!	No TX message when you attempted to send a message.
SEND FAILED!	Transmission failed.
UNSUCCESSFUL!	Message sent did not reach specified station. (Not receiving ACK.)
NO MESSAGE	No TX or RX message.
OUT OF RANGE!: DRAUGHT:0-25.5	Invalid draught entered in SET SHIP DATA.
OUT OF RANGE!: YEAR	Invalid year entered in SET DESTINATION.
OUT OF RANGE!: MONTH:1-12	Invalid month entered in SET DESTINATION.
OUT OF RANGE!: DAY:1-29/30/31	Invalid day entered in SET DESTINATION.
OUT OF RANGE!: HOUR:0-23	Invalid hour entered in SET DESTINATION.
OUT OF RANGE!: MINUTE:0-59	Invalid minute entered in SET DESTINATION.
OUT OF RANGE!: CREW:0-8191	Invalid crew no. entered in SET CREW&TYPE.
OUT OF RANGE!: CPA:0-6.00	Invalid CPA range entered.
OUT OF RANGE!: TCPA:0-60	Invalid TCPA entered.
OUT OF RANGE!: CH-A:IT DOESN'T EXIST	Invalid CH-NO. A entered on the CHANNEL EDIT sub-menu.
OUT OF RANGE!: CH-A:IT DOESN'T EXIST	Invalid CH-NO. A entered on the CHANNEL EDIT sub-menu.
OUT OF RANGE!: ZONE:1-8	Invalid ZONE entered on the CHANNEL EDIT sub-menu.
ERROR REGIST	Duplicate data in overlapping sea areas.
OUT OF RANGE!: ROT CYCLE:1-10	Invalid ROT entered in SET I/O menu.

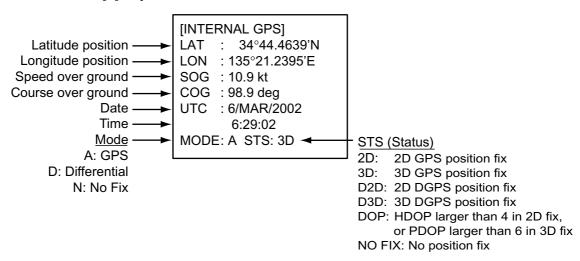
Note: Detection of RX Malfunction

1) Detection of TDMA RX malfunction

Frequency error

PLL chip on receiver board generates lock or unlock signal for synthesizer. MPU watches and sets status flag which reflects data of ALR sentence. ID 003 for RX1, ID 004 for RX2

2) Detection of DSC RX malfunction

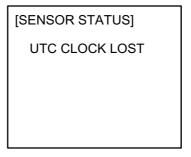

General error

DSC Error (ID: 005) will happen in case of DSC MPU could not receive format specifier of the data from DSC amplifier unless RSSI exists more than four seconds.

2.8 GPS Monitor

The GPS monitor display shows information about the built-in GPS receiver, including position, speed over ground, course over ground, date, time, mode and status.

- 1. Press the [MENU] key to open the menu.
- Press the [3] key to choose OWN DATA.
- 3. Press the [5] key to choose INTERNAL GPS.


Internal GPS monitor

5. Press the [MENU] key to close the display.

2.9 Displaying Sensor Status

The SENSOR STATUS display monitors sensor status.

- 1. Press the [MENU] key.
- 2. Press the [3] key to choose OWN DATA.
- 3. Press the [4] key to choose SENSOR STATUS.

Sensor status display

4. Press the [MENU] key to close the menu.

2.10 Restoring Default Settings

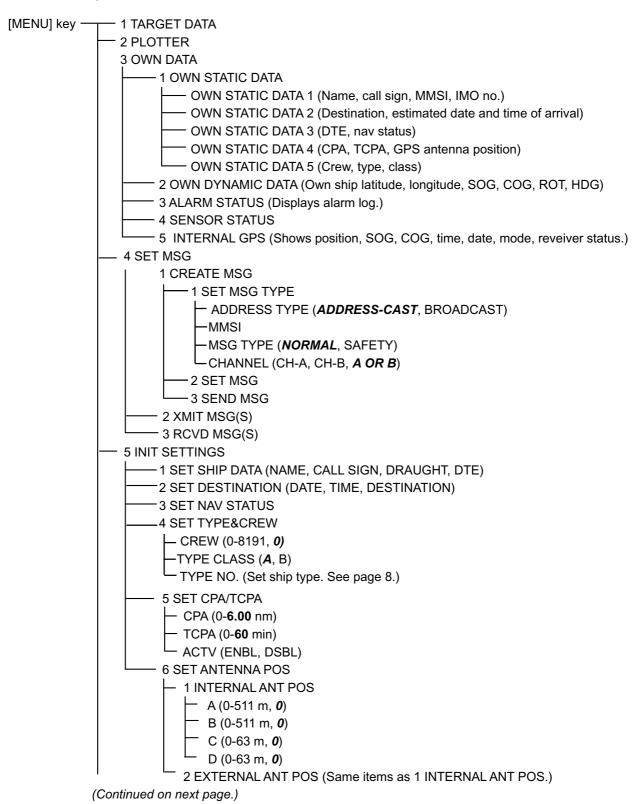
You may clear all settings to start afresh with default settings. When this is done, the default options for all items in the INIT SETTING and SYSTEM SETTINGS sub-menus are restored. GPS data is also cleared; however, MMSI and IMO numbers are not cleared.

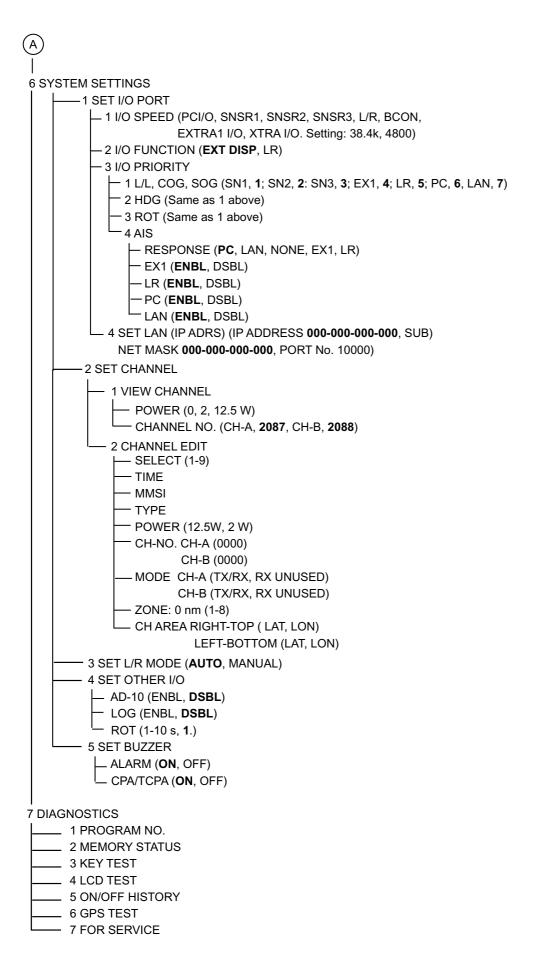
 Turn on the power while pressing and holding down the [CLR/ALM] key. Hold down the [CLR/ALM] key until the "SHUT DOWN" screen below appears.

Shut down screen

2. The equipment then starts restoring default settings, showing "COMPLETE" when finished.

NOW STARTING . . . CHECKING MENORY COMPLETE

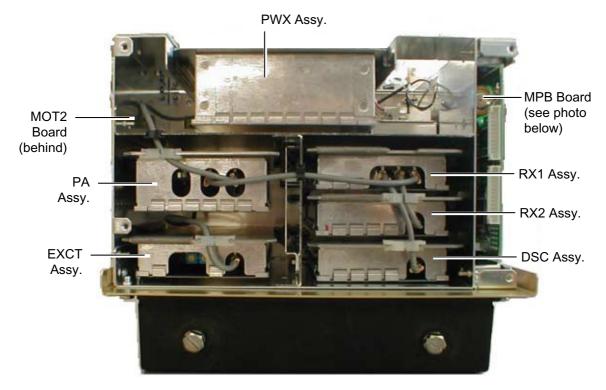

Screen after memory has been cleared


- 3. Press the [CLR/ALM] key. The plotter display appears.
- 4. Set items in INIT SETTINGS and SYSTEM SETTINGS, referring to Chapter 1.

APPENDIX

Menu Tree

Default settings in bold italics.

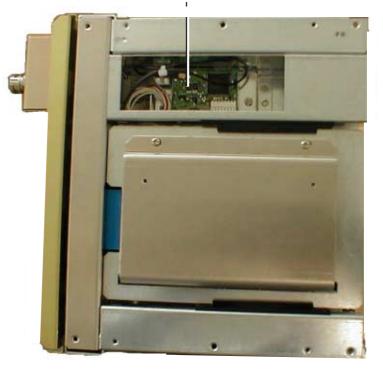


Parts List


This equipment contains complex modules in which fault diagnosis and repair down to component level are not practical (IMO A.694(17)/8.3.1. Only some discrete components are used. FURUNO Electric Co., Ltd. believes identifying these components is of no value for shipboard maintenance; therefore, they are not listed in the manual. Major modules can be located on the parts location photo on page AP-4.

FURUNO		Model	FA-100		
		Unit			
			TRANSPON	IDER UNIT	
ELECTR	ICAL PARTS LIST				
	2002-June	Blk.No.			
SYMBOL	TYPE	•	CODE No.	REMARKS	SHIPPABLE
					ASSEMBLY
	PRINTED CIRCUIT BOARI)			
	24P0026, LKY2		005-950-780		Х
	24P0025, OCN2		005-950-790		X
	24P0024, MOT2		005-950-800		X
	24P0015, MPB		005-950-880		Χ
	ASSEMBLY				
	RX1		005-952-240	24P0010A	X
	RX2		005-952-250	24P0010B	Χ
	EXCT		005-952-260	24P0012	Χ
	DSC		005-952-270	24P0013	X
	PA		005-952-280	24P0014	X
	PWX		005-952-290	24P0016	X
	FRONT PANEL ASSEMBL	Υ			
	FA-100		005-952-310		X
	FILTER ASSEMBLY				
	FA-100		005-952-230		Х
	BREAKER				
BK1	TBC5101-01-1211		000-119-400		
	GPS ASSEMBLY				
	GN-7N5A-N		005-952-860		

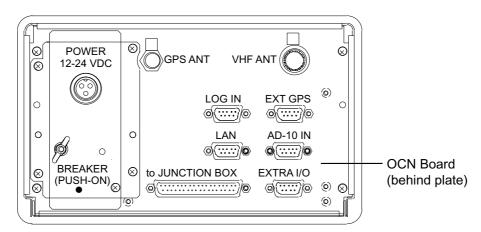
Parts Location



Transponder unit, front view, front panel removed

Transponder unit, right side view, cover removed

GPS Receiver GN-79N5A-N


Transponder unit, top view, cover removed

Front panel of transponder unit

FA-100, front view

FA-100, rear view

Digital Interface (IEC 61162-2)

Sentence data

Input sentences

ABM, ACA, ACK, AIR, BBM, DTM, GBS, GGA, GLL, GNS, HDT, LRF, LRI, OSD, RMC, ROT, SSD, VBW, VSD, VTG

Output sentences

ABK, ACA, ALR, LRF, LR1, LR2, LR3, TXT, VDM, VDO

Transmission interval

ABK: With each event

ACA: At RX

ALR: 30 s during alarm, 2 min normally no alarm

LRF, LR1, LR2, LR3: At RX

TXT: Each update

VDM: At RX VDO: 1 s

Load requirements as listener

Isolation: None

Input Impedance: 6.3 k ohms Max. Voltage: ±15 V

Threshold: ±0.2 V (A-B)

Data transmission

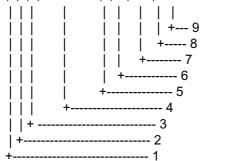
Data is transmitted in serial asynchronous form in accordance with the standard referenced in 2.1 of IEC 61162-2. The first bit is a start bit and is followed by data bits, least-significant-bit as illustrated below.


The following parameters are used:

Baud rate: 38.4 Kbps /4800 bps Data bits: 8 (D7 = 0), parity none

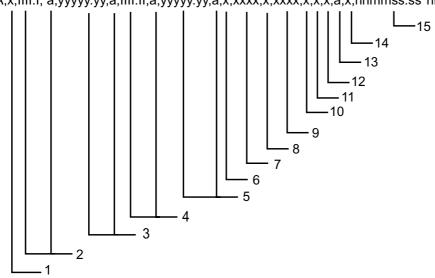
Stop bits: 1

Serial interface I/O circuit

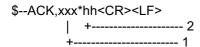

Sentence description

Input

ABM - Addressed binary and safety related message


This sentence provides an external application with a means to exchange data using an AIS.

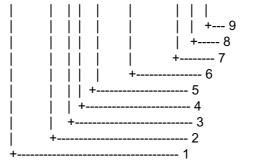
!--ABM,x,x,x,xxxxxxxxxxx,x,xx,s--s,x*hh<CR><LF>


- 1. Total number of sentences needed to transfer the message, 1 to 9
- 2. Message sentence number, 1 to 9
- 3. Message sequence identifier, 0 to 3
- 4. The MMSI of destination AIS unit for the ITU-R M.1371 message 6 or 12
- 5. AIS channel for broadcast of the radio message
- 6. VDL message number(6 or 12), see ITU-R M.1371
- 7. Encapsulated data
- 8. Number of fill-bits, 0 to 5
- 9. Checksum

ACA - AIS regional channel assignment message

- 1. Sequence number, 0 to 9
- 2. Region Northeast corner latitude N/S
- 3. Region Northeast corner longitude E/W
- 4. Region Southwest corner latitude N/S
- 5. Region Southwest corner longitude E/W
- 6. Transition Zone Size
- 7. Channel A
- 8. Channel A bandwidth
- 9. Channel B
- 10. Channel B bandwidth
- 11. Tx/Rx mode control
- 12. Power level control
- 13. Information source
- 14. In-use flag
- 15. Time of in-used change

ACK- Acknowledge alarm

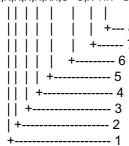


- 1. Local alarm number(identifier)
- 2. Checksum

AIR - AIS interrogation request

This sentence provides an external application with the means to initiate a request for specific ITU-R M.1371 message from distant mobile or base AIS stations.

\$--AIR,xxxxxxxxx,x.x,x,x,x,x,xxxxxxxxxxx,x.x,x*hh<CR><LF>

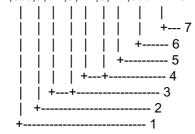


- 1. MMSI of interrogated satation 1
- 2. ITU-R M.1371 message requested from station 1
- 3. Message 5 data set indicator
- 4. Number of second message requested from station 1
- 5. Message 5 data set indicator
- 6. MMSI of interrogated station 2
- 7. Number of message requested from station 2
- 8. Message 5 data set indicator
- 9. Checksum

BBM - UAIS broadcast binary message

This sentence provides an external application with a means to broadcast data, as defined by the application only – not the AIS.

!--BBM,x,x,x,x,xx,s--s,x*hh<CR><LF>



- 1. Total number of sentences needed to transfer the message, 1 to 9
- 2. Message sentence number, 1 to 9
- 3. Sequential Message identifier, 0 to 9
- 4. AIS channel for broadcast of the radio message
- 5. VDL message number(8,14,19 or 21), see ITU-R M.1371
- 6. Binary data
- 7. Number of fill-bits, 0 to 5
- 8. Checksum

DTM - Datum reference

Local geodetic datum to which a position location is referenced.

\$--DTM,ccc,a,x.x,a,x.x,a,x.x,ccc*hh<CR><LF>

1. Local datum W84 - WGS84

W72 - WGS72

S85 - SGS85

P90 - PE90

999 - User defined

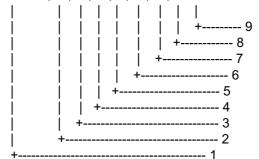
IHO datum code

- 2. Local datum subdivision code
- 3. Lat offset, min, N/S
- 4. Lon offset, min, E/W
- 5. Altitude offset, m (Not used.)
- 6. Reference dattum W84 WGS84

W72 - WGS72

S85 - SGS85

P90 - PE90

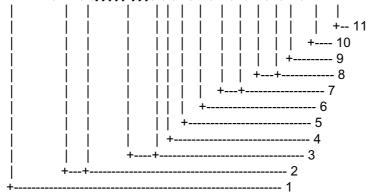

7. Checksum

GBS - GNSS satellite fault detection

This message is used to support receiver autonomous integrity monitoring (RAIM). Given that a GPS receiver is tracking enough satellites to perform integrity checks of the positioning quality of the position solution, a message is needed to report the output of this process to other systems to advise the system user. With the RAIM in the GPS receiver, the receiver can isolate faults to individual satellites and not use them in its position and velocity calculations. Also, the GPS receiver can still track the satellite and easily judge when it is back within tolerance.

This message shall be used for reporting this RAIM information. To perform these integrity functions, six channels of satellite tracking are a minimum while all-in-view tracking is most desirable.

\$--GBS,hhmmss.ss,x.x,x.x,x.x,x.x,x.x,x.x*hh<CR><LF>

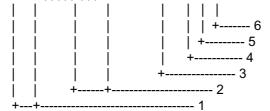


- 1. UTC time of the GGA or GNS fix addociated with this sentence
- 2. Expected error in latitude
- 3. Expected error in longitude
- 4. Expected error in altitude
- 5. ID number of most likely failed satellite
- 6. Probability of missed detection for most likely failed satellite
- 7. Estimate of bias on most likely failed satellite
- 8. Standard deviation of bias estimate
- 9. Checksum

GGA - Global positioning system (GPS) fix data

Time, position and fix related data for a GPS receiver.

 $\$--\mathsf{GGA}, \mathsf{hhmmss.ss}, \mathsf{IIII}.\mathsf{III}, \mathsf{a}, \mathsf{yyyyy}.\mathsf{yyy}, \mathsf{a}, \mathsf{x}, \mathsf{xx}, \mathsf{x.x}, \mathsf{x.x}, \mathsf{x.x}, \mathsf{M}, \mathsf{x.x}, \mathsf{xxxxx} * \mathsf{hh} < \mathsf{CR} > < \mathsf{LF} > \mathsf{CR} > \mathsf{CR}$



- 1. UTC of position (Not used.)
- 2. Latitude, N/S
- 3. Longitude, E/W
- 4. GPS quality indicator
- 5. Number of satllite in use,00-12, may be different from the number in view (Not used.)
- 6. Horizontal dilution of precision (Not used.)
- 7. Antenna altitude above/below mean sealevel, m (Not used.)
- 8. Geoidal separation, m (Not used.)
- 9. Age of differential GPS data (Not used.)
- 10. Differential reference station ID, 0000-1023 (Not used.)
- 11. Checksum

GLL - Geographic position - latitude/longitude

Latitude and longitude of present vessel position, time of position fix and status.

\$--GLL,IIII.III,a,yyyyy,yyy,a,hhmmss.ss,A,a*hh<CR><LF>

- 1. Latitude, N/S
- 2. Longitude, E/W
- 3. UTC of position (Not used.)
- 4. Status: A=data valid, V=data invalid
- 5. Mode indicator(see note)
- 6. Checksum

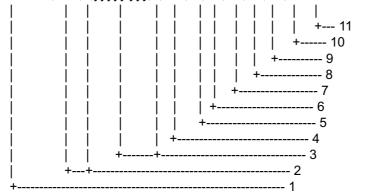
NOTE Positioning system Mode indicator:

A = Autonomous

D = Differential

E = estimated(dead reckoning)

M = Manual input


S = Simulator

N = Data not valid

The Mode indicator field supplements the Status field. The Status field shall be set to V=invalid for all values of Operating Mode except for A=Autonomous and D=Differential. The positioning system Mode indicator and Status field shall not be null fields.

GNS - GNSS fixed data

-GNS,hhmmss.ss,llll.lll,a,yyyyy,yy,a,c--c,xx,x.x,x.x,x.x,x.x,x.x*hh<-CR>-LF>

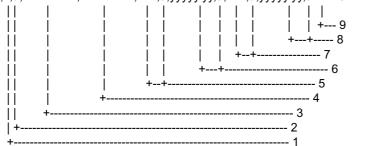
- 1. UTC of position (Not used.)
- 2. Latitude, N/S
- 3. Longitude, E/W
- 4. Mode indicator
- 5. Total number of satllite in use,00-99 (Not used.)
- 6. HDOP (Not used.)
- 7. Antenna altitude, metres, re:mean-sea-level(geoid) (Not used.)
- 8. Geoidal separation (Not used.)
- 9. Age of differential data (Not used.)
- 10. Differential reference station ID (Not used.)
- 11. Checksum

HDT - Heading - true

Actual vessel heading in degrees true produced by any device or system producing true bearing.

- 1. Heading, degrees true
- 2. Checksum

LRF – Long-range function

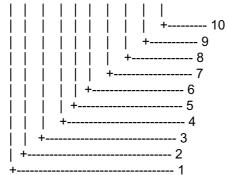

This sentence is used in both long-range interrogation and long-range interrogation replies. The LRF-sentence is the second sentence of the long-range range interrogation request pair, LRI and LRF.

- 1. Sequence number, 0 to 9
- 2. MMSI of requestor
- 3. Name of requestor, 1 to 20 characters
- 4. Function, 1 to 26 characters
- 5. Checksum

LRI – Long-range interrogation

The LRI-sentence contains the information that the AIS needs in order to determine if the reply sentences need to be constructed.

\$--LRI,x,a,xxxxxxxxx,xxxxxxxxx,IIII.II,a,yyyyy.yy,a,IIII.II,a,yyyyy.yy,a*hh<CR><LF>



- 1. Sequence number, 0 to 9
- 2. Control Flag
- 3. MMSI of requestor
- 4. MMSI of destination
- 5. Latitude N/S(north-east coordinate)
- 6. Longitude E/W(north-east coordinate)
- 7. Latitude N/S(south-west coordinate)
- 8. Longitude E/W(south-west coordinate)
- 9. Checksum

OSD - Own ship data

Heading. course, speed, set and drift summary. Useful for, but not limited to radar/ARPA application.

\$--OSD,x.x,A,x.x,a,x.x,a,x.x,x.x,a*hh<CR><LF>

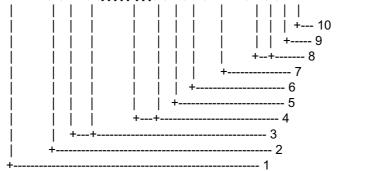
- 1. Heading, degrees true
- 2. Heading status: A=data valid, V=data invalid
- 3. Vessel course, degrees true
- 4. Course reference, B/M/W/R/P(see note)
- 5. Vessel soeed
- 6. Speed refereence, B/M/W/R/P(see note)
- 7. Vessel set, degrees true---Manually entered (Not used.)
- 8. Vessel drift(speed) ---Manually entered (Not used.)
- 9. Speed units, K(km/h) / N(Knots) / S(statute miles/h)
- 10. Checksum

NOTES - Reference systems(speed/course):

B = bottom tracking log

M = manually entered

W = water referenced


R = radar tracking(of fixed target)

P = positioning system ground reference

RMC - Recommended minimum specific GPS/TRANSIT data

Time, date, position, course and speed data provided by a GPS or TRANSIT navigation receiver. Checksum is mandatory in this sentence. This sentence is transmitted at intervals not exceeding 2 s and is always accompanied by RMB when a destination waypoint is active. RMC and RMB are the recommended minimum data to be provided by a GPS or TRANSIT receiver. All data fields must be provided, null fields used only when data is temporarily unavailable.

\$--RMC,hhmmss.ss,A,IIII.III,a,yyyyy,a,x.x,x.x,xxxxxxx,x.x,a,a*hh<CR><LF>

- 1. UTC of position fix (Not used.)
- 2. Status: A=data valid, V=navigation receiver warning
- 3. Latitude, N/S
- 4. Longitude, E/W
- 5. Speed over ground, knots
- 6. Course over ground, degrees true
- 7. Date: dd/mm/yy (Not used.)
- 8. Magnetic variation, degrees E/W (Not used.)
- 9. Mode indicator(see note)
- 10. Checksum

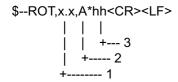
NOTE Positioning system Mode indicator:

A = Autonomous

D = Differential

E = estimated(dead reckoning)

M = Manual input

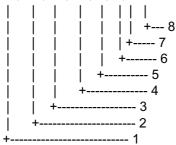

S = Simulator

N = Data not valid

The Mode indicator field supplements the Status field. The Status field shall be set to V=invalid for all values of Operating Mode except for A=Autonomous and D=Differential. The positioning system Mode indicator and Status field shall not be null fields.

ROT - Rate of turn

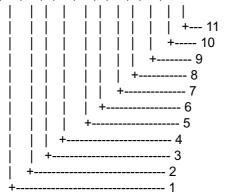
Rate of turn and direction of turn.



- 1. Rate of turn, deg/min, "-"=bow turns to port
- 2. Status: A=data valid, V=data invalid
- 3. Checksum

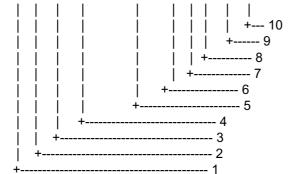
SSD - UAIS ship static data

This sentence is used to enter static parameters into a shipboard AIS. The parameters in this sentence support a number of ITU-R M.1371 messages.


\$--SSD,c--c,c--c,xxx,xxx,xxx,xx,c*hh<CR><LF>

- 1. Ship's Call Sign, 1 to 7 characters
- 2. Ship'S Name, 1 to 20 characters
- 3. Pos. ref. point distance, "A," from bow, 0 to 511 Meters
- 4. Pos. ref. point distance, "B," from stern, 0 to 511 Meters
- 5. Pos. ref. point distance, "C," from port beam, 0 to 63 Meters
- 6. Pos. ref. point distance, "D," from starboard beam, 0 to 63 Meters
- 7. DTE indicator flag
- 8. Checksum

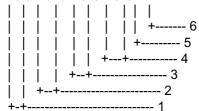
VBW - Dual ground/water speed


\$--VBW,x.x,x.x,A,x.x,A,x.x,A,x.x,A*hh<CR><LF>

- 1. Longitudial water speed, knots
- 2. Transverse water speed, knots
- 3. Status: water speed, A=data valid V=data invalid
- 4. Longitudial ground speed, knots
- 5. Transverse ground speed, knots
- 6. Status: ground speed, A=data valid V=data invalid
- 7. Stern transverse water speed, knots
- 8. Status: stern water speed, A=data valid V=data invalid
- 9. Stern transverse ground speed, knots
- 10. Status: stern ground speed, A=data valid V=data invalid
- 11. Checksum

VSD - UAIS voyage static data

\$--VSD,x.x,x.x,x.x,c--c,hhmmss.ss,xx,xx,x.x,x.x*hh<CR><LF>



- 1. Type of ship and cargo category, 0 to 255
- 2. Maximum present static draught, 0 to 25.5 Meters
- 3. Persons on-board, 0 to 8191
- 4. Destination, 1-20 characters
- 5. Estimated UTC of arrival at destination
- 6. Estimated day of arrival at destination, 00 to 31(UTC)
- 7. Estimated month of arrival at destination, 00 to 12(UTC)
- 8. Navigational status, 0 to 15
- 9. Regional application flags, 0 to 15
- 10. Checksum

VTG - Course over ground and ground speed

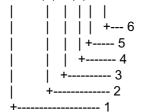
The actual course and speed relative to the ground.

\$--VTG,x.x,T,x.x,M,x.x,N,x.x,K,a*hh<CR><LF>

- 1. Course over ground, degrees true
- 2. Course over ground, degrees magnetic (Not used.)
- 3. Speed over ground, knots
- 4. Speed over ground, km/h
- 5. Mode indicator(see note)
- 6. CHecksum

NOTE Positioning system Mode indicator:

- A = Autonomous
- D = Differential
- E = estimated(dead reckoning)
- M = Manual input
- S = Simulator
- N = Data not valid


The positioning system Mode indicator field shall not be a null field.

Output

ABK - UAIS addressed and binary broadcast acknowledgement

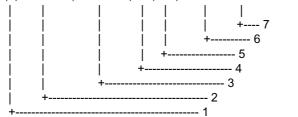
The ABK-sentence is generated when a transaction, initiated by reception of an ABM, AIR or BBM sentence, is completed or terminated.

\$--ABK,xxxxxxxxxx,x,x.x,x*hh<CR><LF>

- 1. MMSI of the addressed AIS unit
- 2. AIS channel of reception
- 3. Message type
- 4. Message sequence number
- 5. Type of acknowledgement
- 6. Checksum

ACA- See "Input" section.

ALR -Set alarm state


- 1. Time of alarm condition change, UTC
- 2. Local alarm number(identifier)
- 3. Alarm condition(A=threshold exceeded, V=not exceeded)
- 4. Alarm's acknowledge state, A=acknowledged V=unacknowledged
- 5. Alarm's description text
- 6. Checksum

LRF - Long-range function

See input section.

LR1 - Long-range reply with destination for function request "A"

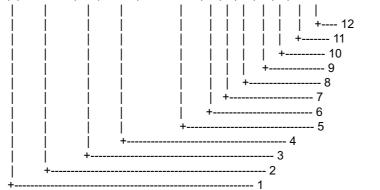
The LRI sentence identifies the destination for the reply and contains the information requested by the "A" function identification character.

- 1. Sequence Number
- 2. MMSI of responder
- 3. MMSI of requestor(reply destination)
- 4. Ship's name, 1 to 20 characters
- 5. Call Sign, 1 to 7 characters
- 6. IMO Number, 9-digit number
- 7. Checksum

LR2 - Long-range reply for function requests "B, C, E, and F"

The LR2-sentence contains the information requested by the "B, C, E and F" function identification characters.

\$--LR2,x,xxxxxxxx,xxxxxxx,hhmmss.ss,IIII.II,a,yyyyy,yy,a,x.x,T,x.x,N*hh<CR><LF>



- 1. Sequence Number
- 2. MMSI of responder
- 3. Date: ddmmyy
- 4. UTC of Position
- 5. Latitude N/S
- 6. Longitude E/W
- 7. Course over ground, degrees True
- 8. Speed over ground, Knots
- 9. Checksum

LR3- - Long-range reply for function requests "I, O, P, U and W"

The LR3-sentence contains the information requested by the "I, O, P, U and W" function identification characters.

\$--LR3,x,xxxxxxxxx,c--c,xxxxxx,hhmmss.ss,x.x,cc,x.x,x.x,cc,x.x*hh<CR><LF>

- 1. Sequence Number
- 2. MMSI of responder
- 3. Voyage destination, 1 to 20 characters
- 4. ETA Date: ddmmyy
- 5. ETA Time
- 6. Draught
- 7. Ship/cargo(ITU-R M.1371, Table 18)
- 8. Ship length
- 9. Ship breadth
- 10. Ship type(ITUR-R M.1371, Table 18)
- 11. Persons, 0 to 8191
- 12. Checksum

TXT - Text transmission

\$--TXT,xx,xx,xx,c--c*hh<CR><LF>
| | | | | |
| | | | +--- 5
| | | +---- 4
| | +----- 3
| +------ 2

- 1. Total number of message, 01 to 99
- 2. Message number, 01 to 99
- 3. Text identifier
- 4. Text Message
- 5. Checksum

VDM – VHF data-link message

This sentence is used to transfer the entire contents of a received AIS message packet, as defined in ITU-R M.1371 and as received on the VHF Data Link (VDL), using the "6-bit" field type.

!--VDM,x,x,x,x,s--s,x*hh<CR><LF>
| | | | | | |
| | | | | +---- 7
| | | | | +---- 6
| | | | +----- 5
| | | +----- 3
| +------ 2

- 1. Total number of sentences needed to transfer the message, 1 to 9
- 2. Message sentence number, 1 to 9
- 3. Sequential message identifier, 0 to 9
- 4. AIS channel Number
- 5. Encapsulated ITU-R M.1371 radio message
- 6. Number of fill-bits, 0 to 5
- 7. Checksum

VDO - UAIS VHF data-link own-vessel report

!--VDO,x,x,x,x,s--s,x*hh<CR><LF>
| | | | | | |
| | | | | +--- 7
| | | | | +--- 6
| | | | +---- 5
| | | +---- 3
| +----- 2

- 1. Total number of sentences needed to transfer the message, 1 to 9
- 2. Message sentence number, 1 to 9
- 3. Sequential message identifier, 0 to 9
- 4. AIS channel Number
- 5. Encapsulated ITU-R M.1371 radio message
- 6. Number of fill-bits, 0 to 5
- 7. Checksum

SPECIFICATIONS OF THE U-AIS TRANSPONDER FA-100

The AIS shall improve the safety of navigation by assisting in the efficient navigation of ship's, protection of the environment, and operation of Vessel Traffic Services (VTS), by the functions of collision avoidance, ships' and cargo's information obtaining, and traffic management.

1 GENERAL

1.1 Display Monochrome STN-LCD, 60 (H) x 95 (W) mm, 120 x 64 dots

1.2 TX/RX Frequency 156.025 MHz to 162.025 MHz

1.3 Output Power 2 W/ 12.5 W or 0W exchangeable

1.4 Impedance 50 ohms

1.5 DSC Receiver CH70 fixed, 156.525 MHz, G2B, 1200 bps

1.6 Band Width 25 kHz/ 12.5 kHz

2 TRANSPONDER UNIT

2.1 CPU SH7709A, 76.0 MHz2.2 ROM Flash ROM 1 MW

2.3 Menu Target data/ Plotter/ Own data/ Set MSG/ Init Settings/

System Settings/ Diagnostics

3 GPS RECEIVER

3.1 Receiving Channels 12 channels parallel, 12 satellites tracking

3.2 Rx Frequency/ Rx Code 1575.42 MHz, C/A code

3.3 Position Fixing System All in view, 8-state Kalman filter

3.4 Position Accuracy Approx. 10 m, 95% of the time, (HDOP 4)

DGPS: approx. less than 5 m, 95% of the time

3.5 Tracking Velocity 900 kts

3.6 Position-fixing Time Warm start: 12 seconds, Cold start: 90 seconds

3.7 Position Update Interval 1 second

3.8 DGPS Data Receiving RTCM SC-104 Ver 2.1 formatted

4 INTERFACES

4.1 Sensor 1/2/3 (IEC61162-1/2)

Input: DTM, GNS, GLL, GGA, RMC, VBW, VTG, OSD, HDT, GBS,

ROT (GN>GP>GL>LC)

4.2 PC I/O, EXTRA1, LR or ECDIS/RADAR (IEC61162-1/2)

Input: VSD, SSD, ABM, BBM, ACA, ACK, AIR, DTM, GBS, GGA, GLL,

GNS, HDT, LRF, LRI, OSD, RMC, ROT, VBW, VTG

Output: VDM, VDO, ABK, ACA, ALR, TXT, LR1, LR2, LR3, LRF, LRI

4.3 Alarm Contact Closure4.4 LAN (10base-T) IEC61162-44.5 AD-10 AD-10 format

SP-1 E4417S01F

5 POWER SUPPLY

5.1 Transponder Unit 12-24 VDC: 7-3.5 A

5.2 AC/DC Power Supply Unit (PR-240, option) 100-115/200-230 VAC, 1 phase, 50/60 Hz

6 ENVIRONMENTAL CONDITION

6.1 Ambient Temperature

GPS Antenna Unit: -25°C to +70°C
Other units: -15°C to +55°C

6.2 Relative Humidity 95% at 40°C

6.3 Waterproof (IEC 61529)

Antenna Unit: IPX6
Other units: IPX0

6.4 Vibration IEC 60945 ed.3

7 COATING COLOR

7.1 GPS Antenna Unit: N9.5

7.2 Other units: 2.5GY5/1.5

SP-2 E4417S01F

INDEX

A	L	
Alarm status34	LCD test	32
В	Long range mode	26
Battery replacement28	M	
Brilliance3	Maintenance	27
Buzzer25	Memory clear	38
C	Memory test	31
Channels	Menu tree	AP-1
setting23	Messages	
viewing22	logs	21
Contrast	sending	18
Controls1	N	
CPA/TCPA range7	Navigation status	7
D	O	
Dangerous targets14	On/off history	32
Destination7	P	
Diagnostics	Parts location	ΔP-4
GPS test33	Plotter display	
keyboard test31	POWER key	
LCD test32	Program no	
memory test31	Program number record	
on/off history32	_	
program no30	S	0-
Digital interface AP-7	Sensor status	
Draught7	Ship type and crew	
Dynamic data17	Static data	
G	System configuration	
GPS monitor36	System overview	VI
GPS test	Τ	
	Target data	12
K	Troubleshooting	28
Keyboard test31		

FURUNO ELECTRIC CO., LTD.

9-52 Ashihara-Cho, Nishinomiya City, 662-8580, Hyogo, Japan Tel: +81 798-65-2111 Fax: +81 798-65-4200

Pub NO. DOC-481

Declaration of Conformity

(6 0560

We

FURUNO ELECTRIC CO., LTD.

(Manufacturer)

9-52 Ashihara-Cho, Nishinomiya City, 662-8580, Hyogo, Japan

(Address)

declare under our sole responsibility that the product

Universal Automatic Identification System (U-AIS) transponder Model FA-100

(Model name, serial number)

is in conformity with the essential requirements as described in the Directive 1999/5/EC of the European Parliament and of the Council of 9 March 1999 on radio equipment and telecommunications terminal equipment (R&TTE Directive) and satisfies all the technical regulations applicable to the product within this Directive

EN 60945: 1997-01 (IEC 60945 Third edition: 1996-11)

EN 61993-2: 2002-03 (IEC 61993-2: 2001-12) EN 60950: 2000 (IEC 60950 Third edition: 1999-04)

(title and/or number and date of issue of the standard(s) or other normative document(s))

For assessment, see

- Maritime test report 99321030 of 29 April 2002 prepared by Telefication, The Netherlands
- Test Report FLI 12-02-001 of 10 May 2002 and Safety Test Report FLI 12-02-009 of 10 May 2002 prepared by Furuno Labotech International Co., Ltd.

On behalf of Furuno Electric Co., Ltd.

Nishinomiya City, Japan July 26, 2002

(Place and date of issue)

Hiroaki Komatsu

Manager,

International Rules and Regulations

(name and signature or equivalent marking of authorized person)