10 TECHNICAL DESCRIPTION OF EQUIPMENT

10.1 Function of Each Semiconductor or Active Device (FCC \ 2.983 (d)(6))

ANTENNA UNIT

Modulator Trigger PCB 03P9237

CR1: Voltage Shifter

CR2: Transient Suppression CR3: Transient Suppression

CR4: Voltage Shifter

CR6: Rectifier CR7: Rectifier

Voltage Shifter CR8: Noise Rejection L1: **Transistor Amplifier** Q1: Q2: **Pulse Amplifier** Pulse Amplifier Q3: Pulse Amplifier Q4: Q5: Pulse Amplifier Pulse Amplifier Q6: Q7: Pulse Amplifier Q8: Pulse Amplifier **Pulse Amplifier** Q9:

Q10: Magnetron Current Detector

U1: Pulse Forming Network

Chassis Mounted Parts

HY801: 3 Ports Circulator

U801: MIC Frequency Converter with Limiter

V801: Magnetron CR810: Limiter

I.F. Amplifire PCB IF-9099

CR601: Switching
CR602: Switching
CR603: Switching
CR604: Switching
CR605: Switching
CR606: Switching
CR607: Switching

CR608: Over Voltage Protection

CR609: Switching

CR616: Reverse Voltage Protection

CR622: Thermal sensor

CR625: Over Voltage Protection

CR626: Switching

CR629: Over Voltage Protection CR630: Over Voltage Protection CR633: Over Voltage Protection

Q601: I.F. Amplifier in Cascade Connection Q602: I.F. Amplifier in Cascade Connection

Q603: Switching

Q609: I.F. Amplifier in Cascade Connection
Q610: I.F. Amplifier in Cascade Connection
Q614: I.F. Amplifier in Cascade Connection
Q615: I.F. Amplifier in Cascade Connection

Q616: Detector Q617: Detector Q618: DC Amplifier DC Amplifier Q619: DC Amplifier Q620: Video Amplifier Q625: Q626: Video Amplifier Q627: Video Amplifier Video Amplifier Q628:

Q630: Emitter-follower Amplifier

Q635: Switching Q636: **Switching** U601: I.F. Amplifier I.F. Amplifier U602: U603: I.F. Amplifier DC Amplifier U604: U605: DC Regulator DC Regulator U606: U607: DC Regulator **DC** Regulator U608: U609: DC Regulator Inverter U610:

Motor Soft Starter PCB 03P9250

CR1: Reverse Voltage Protection

CR2: C3 discharger
CR3: Level Shifter
CR4: Soft starter sw

CR4: Soft starter switch

CR5: Reverse Voltage Protection
Q1: Buffer for bearing pulse
Q2: Buffer for bearing pulse
Q3: Trigger switch for CR4

Power Supply PCB 03P9236

CR51: Rectifier
CR52: Rectifier
CR53: Rectifier
CR54: Rectifier

L51: Noise Rejection

Q51: 45 kHz PWM Output MOS FET

Q52: IF Bandwidth Select

Q56: Power Supply Protection Thyristor Q57: Power Supply Protection Thyristor

U51: 45 kHz PWM Inverter
U52: Over Current Detector
U53: Voltage Detector
U54: Voltage Detector

DISPLAY UNIT

Filter Board FIL-9148

CR1: Reverse Polarity Protector Diode

Trackball Board TB-9152

U1: Trackball Pulse Generator
U2: Trackball Pulse Generator
U3: Trackball Pulse Generator
U4: Trackball Pulse Generator

Power Supply Board PTU-9149

CR1: Current Detector Time delay

CR31: Rectifier
CR32: Rectifier
CR33: Rectifier
CR34: Rectifier

CR35: Voltage Detector
CR36: Voltage Detector
CR37: Voltage Detector
CR38: Q33 Driver

CR39: Fly Wheel Diode CR40: Rectifier

CR40: Rectiller
CR41: K2 discharger
CR51: Q52 Driver

Q1: 45 kHz PWM Invertor Output FET
Q2: 45 kHz PWM Invertor Output FET
Q3: 45 kHz PWM Invertor Output FET
Q4: 45 kHz PWM Invertor Output FET

Q5: 10V Regulator

Q6: Overcurrent Protector Swiching

Q31: Voltage Detector

Q32: Q33 Driver

Q33: Stepdown Switching Regulator Output FET

Q41: K2 Driver Q51: Q52 Driver

Q52: Soft start Output FET U1: Power Relay Control

U2: 10V Regulator

U3: 45 kHz PWM Invertor Control

U4: Current Detector U5: Voltage Detector

U6: Stepdown Switching Regulator Control

U7: Voltage Detector U8: Output Interface

U9: Isolation

U10: Voltage Detector

Display Main Board SPU-9211

CR1~CR23: Over Voltage Protection

Q1: NMEA Driver Q2: NMEA Driver Q3: TX Trigger Driver

Q4: Inverter Q5: Switch Q6: Switch

Q7: GYRO DATA Driver
Q8: GYRO DATA Driver
Q9: External Trigger Inverter
Q10: Sector Blank Switch
Q11: TX Trigger Driver
Q12: Video Amplifier

Q13: Bearing pulse Inverter

Q14: Voltage Buffer

Q15: Inverter Q16: Switch Q17: Slicer

Q18: Video Amplifier
Q19~Q26: CRT Video Driver
Q27: Voltage Buffer
Q28: Voltage Buffer
Q29: Inverter

Q29: Inverte Q30: Switch

Q31: CRT Video Driver Q32: CRT Video Driver

Q33: Switch

Q34: CRT Contrast Driver Q35: CRT Brillance Driver

Q36: Switch

Q37: Bearing pulse Driver Q38: Bearing pulse Driver Q39: Video Amplifier

Q40: Switch

Q41: Slave Video Driver
Q42: Sampling Trigger Driver
Q43: Sampling Trigger Driver
Q44: MBS Level Signal Driver

Q45: Video Amplifier
Q46: Voltage Buffer
Q47: Voltage Buffer
Q48: Video Amplifier
Q49: Video Amplifier
Q50: Video Amplifier
Q51: Video Amplifier

Q52: Signal Level Converter
U1~U4: Isolator(Photo cupler)
U5: Auto Tuning Voltage Adder

U6: -9V Regulator
U7: Voltage Buffer
U8: PLL Oscillator

U9: Schmitt Imput Buffer

U10∼U12: Video Signal Switch

U13: Synchronous Signal Buffer

U14: EE Potentiometer (EE=Electrical Erasable)

U15: STC Voltage Amplifier

U16: Video Amplifier U17: +9V Regulator U18: Voltage Buffer

U19: Voltage Buffer (Transistor Array)

U20: A/D Converter

U21: 12 CH. D/A Converter

U22~U27: A/D Converter
U29: CPU SRAM
U30: Echo Video RAM
U31: Echo Video RAM

U32: CPU (Internal 16 Bit, External 8 Bit)

U33: Graphic Display Controller
U34: Crystal Oscillter (Sampling)
U35: Crystal Oscillter (Graphic)

U36: Flash Memory
U37: Frequency Divider
U38: Frequency Divider

U39: NOR Gate

U40: Scan Converter Gate Array

U41: OR Gate

U42: CPU Peripheral Gate Array

U43: Graphic Video RAM
U44: Graphic Video RAM
U45: Graphic Gate Array
U46: Sampling Gate Array

U47: Inverter

U48: Bach-up Interface

U50: Reset IC

U51: RS-232C Transister

U52: AND Gate

Y1: CPU Clock Oscillator

Panel Board PNL-9150

CR1: Pilot lamp
CR2~CR23: Illumination
Q1: LED Driver
Q2: Buzzer Driver
Q3: LED Driver

10.2 Description of the circuits employed for suppression of spurious radiation, for limiting or shaping the control pulse, and for limiting or controlling power (FCC §2.983(d)(11))

Modulator PCB 03P9237 (in Scanner unit)

The primary function of the modulator is to produce narrow high tension pulses to drive the magnetron. To produce such pulses, the modulator board incorporates a modulator trigger circuit, a modulating pulse generator and a booster pulse transformer.

The modulator trigger cicuit is composed of U1 and associated components. It generates pulses that fire modulator FET Q6, Q7,Q8 and Q9. Normally, the circuit is stable with U1 on. The pulse to fire the modulator FET is produced when U1 turns off upon reciving the TX trigger pulse from the display unit. When U1 turns off at the positive-going edge of the TX trigger pulse, it produces a narrow pulse. This narrow pulse is boosted by pulse transformer T801 by the ratio 1:25. The resultant pulse, its level being 5.7kV, is provided to limit the magnetron current.

C801 decouples the pulse energy that is liable to occur across the magnetron heater when T801's secondary windings are unbalanced or the load is asymmetric.

Power Supply PCB 03P9236

The PCB 03P9236 cotaints power supply circuits including TX-HV circuit and magnetron heater power supply. The TX-HV circuit provides a high tension of about 320V to the pulse forming network through CR51 and CR52. A DC voltage of 7.5V is supplied to the magnetron heater through CR54.

Duplexer and Frequency Converter (in Scanner unit))

The microwave energy produced by the magnetron enters the circulator from port 2. It is fed to port 3 with a negligible loss of energy; port 1 at this time is isolated. In the same manner, the received signal entering into port 3 is transferred to port 1, isolating port 2. This operation of the circulator protects the receiver during transmission and minimizes the loss of the received signal. Thus, the circulator allows a single antenna radiator to be used for transmission and reception of radar signals.

During transmission cyclles the receiver circuits are isolated from high-level RF energy by diode limiter CR810 and second stage limiter built in MIC U801. It is a passive switching device which allows the low-level RF signal to pass through and prohibits relatively strong microwave energy, such as the leak from the magnetron. It also protects the sensitive amplifier from pulses received direct from other radars in the proximity.

When a low-level signal is received, the PIN diodes remain in the cutoff state, and the limiter's input impedance matches the characteristic impedance of the receiver allowing the signal to be delivered to the frequency converter of U801. When strong microwave energy is received, the PIN diodes are put in the conductive state (or short-circuited) causing the input energy to be attenuated. The strong input is further reduced to about 150 mW by the varacter diode.

The MIC converts 9 GHz RF signal into an intermediate frequency of 60 MHz. It is achieved by mixing the received signal with the local oscillator signal in the frequency converter of the MIC. The built-in local oscillator oscillates at a frequency 60 MHz higher than the magnetron frequency of 9410 MHz.

I.F. Amplifier IF9099

The IF signal of 60 MHz coming from the MIC is amplified and converted into a video signal, which is delivered to the display unit.

The IF amplifier is composed of six major circuits; Linear Amplifier (Q601/Q602), Logarithmic Amplifier (U601/U602, Q625/Q626), Video Amplifier (Q627/Q628), Bandpass Selector (U604, CR601 to CR607), Tuning Indicator Circuit (Q609/Q610, Q614 to Q620, U603) and Main Bang Suppression Circuit (U610, Q630, Q635/Q636, CR626/CR633).

The signal applied to the base of Q601 is amplified in cascade by Q601 and Q602, and sent to the bandpass selector.

The IF amplifier operates in narrow or wide bandwidth mode depending on the settings of the RANGE switch and TX touchpad. For short ranges, a wide bandwidth (25 MHz) is selected, since the levels at pin #3 of U604 and pin #6 of U604 go high, thus CR602 to CR605 and CR607 are conductive and CR601/CR606 are cut off, causing the signal to pass through CR603/CR604. On the contrary, CR602 to CR605 and CR607 are cut off and CR601/CR606 are conductive, which causes the signal to pass through T603, selecting a narrow bandwidth (5 MHz) on medium and long ranges.

The signal through the bandpass selector is coupled to the logarithmic amplifier and amplified by U601/U602 and Q625/Q626. Thus, the output signals of Q625/Q626 are fed to Q627/Q628 to be amplified further, and then sent to the display unit.

The IF signal of 60 MHz is amplified by Q609/Q610, U603, Q614/Q615 and detected by Q616/Q617. Then the detected signal (Tuning Indicator Signal) is sent to the display unit via Q618 to Q620.

On the other hand, Q609/Q610 and U603 are additional amplifier circuits to make the dynamic range of the IF signal wider, causing the discrimination of the target echoes to get better. The IF signal from the MIC is fed to Q609/Q610 as well as through resistor R651 which is employed to attenuate the signal level. Therefore, Q609/Q610 amplifies even a strong signal which may be saturated in Q601/Q602 and U601/U602, and then sent to logarithmic amplifier U603. This signal is added to the saturated signal in U601/U602, causing the saturation level of the IF signal to become high.