Report Number: B30529D2
FCC Part 15 Subpart B and FCC Section 15.231 Test Report

Universal 2-Way Keyfob Receiver

Model: 2WAY-UNIVKFKIT

FCC PART 15, SUBPART B and C TEST REPORT

for

UNIVERSAL 2-WAY KEYFOB RECEIVER

MODEL: 2WAY-UNIVKFKIT

Prepared for NAPCO SECURITY GROUP 333 BAYVIEW AVENUE AMITYVILLE, NEW YORK 11701

Prepared by:	
	KYLE FUJIMOTO
Approved by:	

MICHAEL CHRISTENSEN

COMPATIBLE ELECTRONICS INC. 114 OLINDA DRIVE BREA, CALIFORNIA 92823 (714) 579-0500

DATE: SEPTEMBER 12, 2003

	REPORT		APPENDICES			TOTAL	
	BODY	A	В	C	D	E	
PAGES	16	2	2	2	10	12	44

This report shall not be reproduced except in full, without the written approval of Compatible Electronics.

FCC Part 15 Subpart B and FCC Section 15.231 Test Report

Universal 2-Way Keyfob Receiver

Model: 2WAY-UNIVKFKIT

TABLE OF CONTENTS

Section	n / Title	PAGE
GENEI	RAL REPORT SUMMARY	4
SUMM.	ARY OF TEST RESULTS	4
1.	PURPOSE	5
2.	ADMINISTRATIVE DATA	6
2.1	Location of Testing	6
2.2	Traceability Statement	6
2.3	Cognizant Personnel	6
2.4	Date Test Sample was Received	6
2.5	Disposition of the Test Sample	6
2.6	Abbreviations and Acronyms	6
2	APPLICABLE DOCUMENTS	7
3.	APPLICABLE DOCUMENTS	I
4.	Description of Test Configuration	8
4.1	Description of Test Configuration - EMI	8
4.1.1	Cable Construction and Termination	9
5.	LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT	10
5.1	EUT and Accessory List	10
5.2	EMI Test Equipment	11
3.2		11
6.	TEST SITE DESCRIPTION	12
6.1	Test Facility Description	12
6.2	EUT Mounting, Bonding and Grounding	12
7.	Test Procedures	13
7.1	Radiated Emissions (Spurious and Harmonics) Test	13
7.2	Bandwidth of the Fundamental	15
		17
8.	CONCLUSIONS	16

LIST OF APPENDICES

APPENDIX	TITLE		
A	Laboratory Recognitions		
В	Modifications to the EUT		
С	Additional Models Covered Under This Report		
D	Diagrams, Charts, and Photos		
	Test Setup Diagrams		
	Radiated Emissions Photos		
	Antenna and Effective Gain Factors		
Е	Data Sheets		

LIST OF FIGURES

FIGURE	TITLE
1	Plot Map And Layout of Radiated Site

GENERAL REPORT SUMMARY

This electromagnetic emission test report is generated by Compatible Electronics Inc., which is an independent testing and consulting firm. The test report is based on testing performed by Compatible Electronics personnel according to the measurement procedures described in the test specifications given below and in the "Test Procedures" section of this report.

The measurement data and conclusions appearing herein relate only to the sample tested and this report may not be reproduced without the written permission of Compatible Electronics, unless done so in full.

This report must not be used to claim product endorsement by NVLAP, NIST or any other agency of the U.S. Government.

Device Tested: Universal 2-Way Keyfob Receiver

Model: 2WAY-UNIVKFKIT

S/N: N/A

Product Description: See Expository Statement

Modifications: The EUT was not modified in order to meet the specifications.

Manufacturer: NAPCO Security Group

333 Bayview Avenue

Amityville, New York 11701

Test Date: May 29, 2003

Test Specifications: EMI requirements

CFR Title 47, Part 15 Subpart B; and Subpart C, Sections 15.205, 15.209, and 15.231

Test Procedure: ANSI C63.4: 2001

Test Deviations: The test procedure was not deviated from during the testing.

SUMMARY OF TEST RESULTS

TEST	DESCRIPTION	RESULTS
1	Conducted RF Emissions, 150 kHz - 30 MHz	This test was not performed because the EUT operates on DC power only and cannot be plugged into the AC public mains.
2	Radiated RF Emissions, 10 kHz - 4400 MHz	Complies with the Class B limits of CFR Title 47, Part 15, Subpart B; and Subpart C, sections 15.205, 15.209, and 15.231.

FCC Part 15 Subpart B and FCC Section 15.231 Test Report

Universal 2-Way Keyfob Receiver

Model: 2WAY-UNIVKFKIT

Report Number: B30529D2

1. PURPOSE

This document is a qualification test report based on the Electromagnetic Interference (EMI) tests performed on the Universal 2-Way Keyfob Receiver Model: 2WAY-UNIVKFKIT. The EMI measurements were performed according to the measurement procedure described in ANSI C63.4: 2001. The tests were performed in order to determine whether the electromagnetic emissions from the equipment under test, referred to as EUT hereafter, are within the Class B specification limits defined by CFR Title 47, Part 15, Subpart B; and Subpart C, sections 15.205, 15.209, and 15.231.

Report Number: B30529D2

2. ADMINISTRATIVE DATA

2.1 Location of Testing

The EMI tests described herein were performed at the test facility of Compatible Electronics, 114 Olinda Drive, Brea, California 92823.

2.2 Traceability Statement

The calibration certificates of all test equipment used during the test are on file at the location of the test. The calibration is traceable to the National Institute of Standards and Technology (NIST).

2.3 Cognizant Personnel

NAPCO Security Group

Michael A. Carrieri Senior Vice President Engineering

Compatible Electronics, Inc.

Kyle Fujimoto Test Engineer
Michael Christensen Sr. Test Engineer

2.4 Date Test Sample was Received

The test sample was received on May 29, 2003.

2.5 Disposition of the Test Sample

The sample has been returned to NAPCO Security Group on May 29, 2003.

2.6 Abbreviations and Acronyms

The following abbreviations and acronyms may be used in this document.

RF Radio Frequency

EMI Electromagnetic Interference EUT Equipment Under Test

P/N Equipment Under Tes

S/N Serial Number HP Hewlett Packard

ITE Information Technology Equipment

CML Corrected Meter Limit

LISN Line Impedance Stabilization Network

Model: 2WAY-UNIVKFKIT

Report Number: B30529D2

3. APPLICABLE DOCUMENTS

The following documents are referenced or used in the preparation of this EMI Test Report.

SPEC	TITLE
CFR Title 47, Part 15	FCC Rules – Radio frequency devices (including digital devices)
ANSI C63.4 2001	Methods of measurement of radio-noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz

Report Number: B30529D2

4. DESCRIPTION OF TEST CONFIGURATION

4.1 Description of Test Configuration - EMI

Setup and operation of the equipment under test.

Specifics of the EUT and Peripherals Tested

The Universal 2-Way Keyfob Receiver Model: 2WAY-UNIVKFKIT (EUT) was connected to the DC Power Supply. The EUT was continuously transmitting. The antennas are soldered onto the PCB. During normal operation, the EUT will turn off within 5 seconds of activation.

The final radiated data was taken in the mode above. Please see Appendix E for the data sheets.

4.1.1 Cable Construction and Termination

<u>Cable 1</u> This is a 1 meter cable connecting the EUT to the DC power supply's positive terminal. It is hard wired at each end.

<u>Cable 2</u> This is a 1 meter cable connecting the EUT to the DC power supply's negative terminal. It is hard wired at each end.

5. LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT

5.1 EUT and Accessory List

EQUIPMENT	MANUFACTURER	MODEL NUMBER	SERIAL NUMBER	FCC ID
UNIVERSAL 2-WAY KEYFOB RECEIVER (EUT)	NAPCO SECURITY GROUP	2WAY-UNIVKFKIT	N/A	AD82WAYUNIVKF

5.2 EMI Test Equipment

EQUIPMENT TYPE	MANU- FACTURER	MODEL NUMBER	SERIAL NUMBER	CAL. DATE	CAL. DUE DATE
Radiate Emissions Data Capture Program	Compatible Electronics	2.0	N/A	N/A	N/A
Spectrum Analyzer – Main Section	Hewlett Packard	8566B	3638A08784	June 14, 2002	June 14, 2003
Spectrum Analyzer – Display Section	Hewlett Packard	85662A	3701A22279	June 14, 2002	June 14, 2003
Quasi-Peak Adapter	Hewlett Packard	85650A	2430A00424	June 14, 2002	June 14, 2003
Preamplifier	Com Power	PA-102	1017	January 2, 2003	Jan. 2, 2004
Biconical Antenna	Com Power	AB-100	1548	September 19, 2002	Sept. 19, 2003
Log Periodic Antenna	Com Power	AL-100	16089	October 4, 2002 Oct. 4, 2003	
Antenna Mast	Com Power	AM-100	N/A	N/A	N/A
Turntable	Com Power	TT-100	N/A	N/A	N/A
Computer	Hewlett Packard	4530	US91912319	N/A	N/A
Monitor	Hewlett Packard	D5258A	TW74500641	N/A	N/A
Loop Antenna	Com-Power	AL-130	17070	June 19, 2002 June 19, 200	
Horn Antenna	Antenna Research	DRG-119/A	1053	January 13, 2002	Jan. 13, 2004
Microwave Preamplifier	Com-Power	PA-122	25195	January 2, 2003	Jan. 2, 2004

FCC Part 15 Subpart B and FCC Section 15.231 Test Report

Universal 2-Way Keyfob Receiver

Model: 2WAY-UNIVKFKIT

6. TEST SITE DESCRIPTION

6.1 Test Facility Description

Please refer to section 2.1 and 7.1 of this report for EMI test location.

EUT Mounting, Bonding and Grounding

The EUT was mounted on a 1.0 by 1.5 meter non-conductive table 0.8 meters above the ground plane.

The EUT was not grounded.

7. TEST PROCEDURES

The following sections describe the test methods and the specifications for the tests. Test results are also included in this section.

7.1 Radiated Emissions (Spurious and Harmonics) Test

The spectrum analyzer was used as a measuring meter along with the quasi-peak adapter. Amplifiers were used to increase the sensitivity of the instrument. The Com Power Preamplifier Model: PA-102 was used for frequencies from 30 MHz to 1 GHz, and the Com-Power Microwave Preamplifier Model: PA-122 was used for frequencies above 1 GHz. The spectrum analyzer was used in the peak detect mode with the "Max Hold" feature activated. In this mode, the spectrum analyzer records the highest measured reading over all the sweeps.

The measurement bandwidths and transducers used for the radiated emissions test were:

FREQUENCY RANGE	EFFECTIVE MEASUREMENT BANDWIDTH	TRANSDUCER
9 kHz to 150 kHz	200 Hz	Active Loop Antenna
150 kHz to 30 MHz	9 kHz	Active Loop Antenna
30 MHz to 300 MHz	120 kHz	Biconical Antenna
300 MHz to 1 GHz	120 kHz	Log Periodic Antenna
1 GHz to 4.40 GHz	1 MHz	Horn Antenna

The open field test site of Compatible Electronics, Inc. was used for radiated emission testing. This test site is set up according to ANSI C63.4: 2001. Please see section 6.2 of this report for mounting, bonding and grounding of the EUT. The turntable supporting the EUT is remote controlled using a motor. The turntable permits EUT rotation of 360 degrees in order to maximize emissions. Also, the antenna mast allows height variation of the antenna from 1 meter to 4 meters. Data was collected in the worst case (highest emission) configuration of the EUT. At each reading, the EUT was rotated 360 degrees and the antenna height was varied from 1 to 4 meters (for E field radiated field strength). The gunsight method was used when measuring with the horn antenna in order to ensure accurate results. The loop antenna was also rotated in the horizontal and vertical axis in order to ensure accurate results.

Radiated Emissions (Spurious and Harmonics) Test (con't)

The presence of ambient signals was verified by turning the EUT off. In case an ambient signal was detected, the measurement bandwidth was reduced temporarily and verification was made that an additional adjacent peak did not exist. This ensures that the ambient signal does not hide any emissions from the EUT. The EUT was tested at a 3 meter test distance to obtain final test data. The final qualification data sheets are located in Appendix E.

FCC Part 15 Subpart B and FCC Section 15.231 Test Report

Universal 2-Way Keyfob Receiver

Model: 2WAY-UNIVKFKIT

7.2 Bandwidth of the Fundamental

The -20 dB bandwidth was checked to see that it was within 0.25% of the fundamental frequency for the EUT. Plots of the -20 dB bandwidth are located in Appendix E.

FCC Part 15 Subpart B and FCC Section 15.231 Test Report

Universal 2-Way Keyfob Receiver

Model: 2WAY-UNIVKFKIT

8. CONCLUSIONS

The Universal 2-Way Keyfob Receiver Model: 2WAY-UNIVKFKIT meets all of the Class B specification limits defined in CFR Title 47, Part 15, Subpart B; and Subpart C, sections 15.205, 15.209, and 15.231.

APPENDIX A

LABORATORY RECOGNITIONS

LABORATORY RECOGNITIONS

Compatible Electronics has the following agency accreditations:

National Voluntary Laboratory Accreditation Program - Lab Code: 200528-0

Voluntary Control Council for Interference - Registration Numbers: R-983, C-1026, R-984 and C-1027

Bureau of Standards and Metrology Inspection - Reference Number: SL2-IN-E-1031

Conformity Assessment Body for the EMC Directive Under the US/EU MRA Appointed by NIST

Compatible Electronics is recognized or on file with the following agencies:

Federal Communications Commission

Industry Canada

Radio-Frequency Technologies (Competent Body)

APPENDIX B

MODIFICATIONS TO THE EUT

Report Number: B30529D2
FCC Part 15 Subpart B and FCC Section 15.231 Test Report

Universal 2-Way Keyfob Receiver

Model: 2WAY-UNIVKFKIT

MODIFICATIONS TO THE EUT

The modifications listed below were made to the EUT to pass FCC 15.231 or FCC Class B specifications.

All the rework described below was implemented during the test in a method that could be reproduced in all the units by the manufacturer.

No modifications were made to the EUT.

APPENDIX C

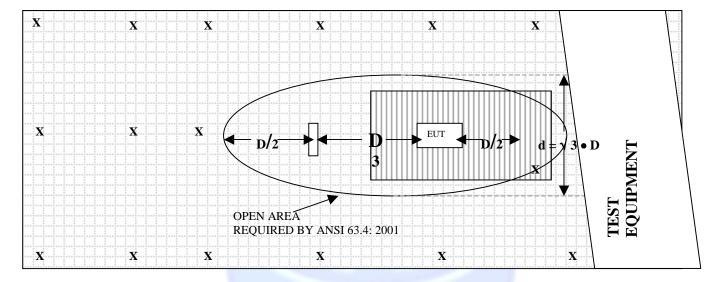
ADDITIONAL MODELS COVERED UNDER THIS REPORT

ADDITIONAL MODELS COVERED UNDER THIS REPORT

USED FOR THE PRIMARY TEST

Universal 2-Way Keyfob Receiver Model: 2WAY-UNIVKFKIT S/N: N/A

There were no additional models covered under this report.


APPENDIX D

DIAGRAMS, CHARTS, AND PHOTOS

FIGURE 1: PLOT MAP AND LAYOUT OF RADIATED SITE

OPEN LAND > 15 METERS

OPEN LAND > 15 METERS

X = GROUND RODS = GROUND SCREEN

D = TEST DISTANCE (meters) = WOOD COVER

COM-POWER AB-100

BICONICAL ANTENNA

S/N: 01548

CALIBRATION DATE: SEPTEMBER 19, 2002

FREQUENCY	FACTOR	FREQUENCY	FACTOR
(MHz)	(dB)	(MHz)	(dB)
30	14.30	120	10.70
35	14.00	125	11.40
40	13.70	140	12.70
45	12.00	150	12.50
50	11.40	160	12.90
60	9.70	175	14.10
70	8.30	180	14.70
80	7.60	200	15.10
90	7.80	250	16.90
100	8.60	300	19.10

COM-POWER AL-100

LOG PERIODIC ANTENNA

S/N: 16089

CALIBRATION DATE: OCTOBER 4, 2002

FREQUENCY	FACTOR	FREQUENCY	FACTOR
(MHz)	(dB)	(MHz)	(dB)
300	13.10	700	17.70
350	14.40	750	19.60
400	14.30	800	20.50
450	15.70	850	21.20
500	16.60	900	21.20
550	16.60	950	22.50
600	17.30	1000	24.60
650	18.80		

COM-POWER PA-102

PREAMPLIFIER

S/N: 1017

CALIBRATION DATE: JANUARY 2, 2003

FREQUENCY	FACTOR	FREQUENCY	FACTOR
(MHz)	(dB)	(MHz)	(dB)
30	38.4	300	38.3
40	38.4	350	38.3
50	38.3	400	38.3
60	38.4	450	37.9
70	38.4	500	38.1
80	38.4	550	38.2
90	38.4	600	38.1
100	38.3	650	37.9
125	38.4	700	37.9
150	38.4	750	37.7
175	38.2	800	37.4
200	38.4	850	37.6
225	38.2	900	37.4
250	38.3	950	36.7
275	38.5	1000	37.0

COM-POWER PA-122

MICROWAVE PREAMPLIFIER

S/N: 25195

CALIBRATION DATE: JANUARY 2, 2003

FREQUENCY (GHz)	FACTOR (dB)	FREQUENCY (GHz)	FACTOR (dB)
1.0	33.3	6.0	32.2
1.1	33.2	6.5	32.2
1.2	33.4	7.0	31.8
1.3	32.8	7.5	32.1
1.4	32.4	8.0	32.7
1.5	32.7	8.5	31.5
1.6	32.1	9.0	30.3
1.7	32.4	9.5	30.0
1.8	32.3	10.0	31.9
1.9	32.6	11.0	29.9
2.0	33.4	12.0	24.7
2.5	31.2	13.0	32.0
3.0	31.2	14.0	30.7
3.5	32.0	15.0	30.1
4.0	31.3	16.0	29.2
4.5	31.2	17.0	28.9
5.0	33.3	18.0	28.7
5.5	34.0		

ANTENNA RESEARCH DRG-118/A

HORN ANTENNA

S/N: 1053

CALIBRATION DATE: JANUARY 13, 2002

FREQUENCY (GHz)	FACTOR	FREQUENCY (GHz)	FACTOR
	(dB)		(dB)
1.0	25.5	10.0	39.7
1.5	26.6	10.5	40.9
2.0	29.4	11.0	40.7
2.5	30.4	11.5	42.4
3.0	31.2	12.0	42.6
3.5	32.3	12.5	42.4
4.0	32.9	13.0	41.5
4.5	33.0	13.5	41.0
5.0	34.8	14.0	40.5
5.5	35.2	14.5	43.6
6.0	36.4	15.0	43.7
6.5	36.6	15.5	43.3
7.0	38.8	16.0	42.8
7.5	38.8	16.5	43.0
8.0	38.0	17.0	42.7
8.5	38.1	17.5	44.0
9.0	39.9	18.0	41.8
9.5	39.1		

COM-POWER AL-130

LOOP ANTENNA

S/N: 17070

CALIBRATION DATE: JUNE 19, 2002

EDECLIENCY	NA CNIETIC	EL EGEDIG
FREQUENCY	MAGNETIC	ELECTRIC
(MHz)	(dB/m)	(dB/m)
0.009	-40.4	11.1
0.01	-40.3	11.2
0.02	-41.2	10.3
0.05	-41.6	9.9
0.07	-41.4	10.1
0.1	-41.7	9.8
0.2	-44.0	7.5
0.3	-41.6	9.9
0.5	-41.3	10.2
0.7	-41.4	10.1
1	-40.9	10.6
2	-40.6	10.9
3	-40.5	11.0
4	-40.8	10.7
5	-40.2	11.3
10	-40.7	10.8
15	-41.4	10.1
20	-41.6	9.9
25	-41.7	9.8
30	-42.9	8.6

FRONT VIEW

NAPCO SECURITY GROUP
UNIVERSAL 2-WAY KEYFOB RECEIVER
MODEL: 2WAY-UNIVKFKIT
FCC SUBPART B AND C - RADIATED EMISSIONS – 05-29-03

PHOTOGRAPH SHOWING THE EUT CONFIGURATION FOR MAXIMUM EMISSIONS

REAR VIEW

NAPCO SECURITY GROUP UNIVERSAL 2-WAY KEYFOB RECEIVER MODEL: 2WAY-UNIVKFKIT FCC SUBPART B AND C - RADIATED EMISSIONS – 05-29-03

PHOTOGRAPH SHOWING THE EUT CONFIGURATION FOR MAXIMUM EMISSIONS

APPENDIX E

DATA SHEETS

RADIATED EMISSIONS

DATA SHEETS

COMPANY	NAPCO SECURITY GROUP	DATE	5/29/03	
EUT	UNIVERSAL 2-WAY KEYFOB RECEIVER	DUTY CYCLE	32.175	%
MODEL	2WAY-UNIVKFKIT	PEAK TO AVG	-9.84962889	dB
S/N	N/A	TEST DIST.	3	Meters
TEST ENGINEER	Kyle Fujimoto	LAB	D	

Frequency	Peak Reading	Average (A) or Quasi-	Antenna Polar.	Antenna Height	EUT Azimuth	EUT Axis	EUT Tx	Antenna Factor	Cable Loss	Amplifier Gain	Distance Factor	Mixer Factor	*Corrected Reading	Delta **	Spec Limit	
MHz	(dBuV)	Peak (QP)	(V or H)	(meters)	(degrees)		Channel	(dB)	(dB)	(dB)	(dB)	(dB)	(dBuV/m)	(dB)	(dBuV/m)	Comments
433.9200	64.2	54.4 A	Н	1.0	0			15.2	3.9	0.0	0.0	0.0	73.5	-7.3	80.8	
433.9200	69.6	59.8 A	V	2.0	270			15.2	3.9	0.0	0.0	0.0	78.9	-1.9	80.8	
1888200	07.0	37.0 11		2.0	270			13.2	5.7	0.0	0.0	0.0	700	1.,,	00.0	

^{*} CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

PAGE 1 of PAGE 7

^{**} DELTA = SPEC LIMIT - CORRECTED READING

COMPANY	NAPCO SECURITY GROUP	DATE	5/29/03	
EUT	UNIVERSAL 2-WAY KEYFOB RECEIVER	DUTY CYCLE	32.175	%
MODEL	2WAY-UNIVKFKIT	PEAK TO AVG	-9.84962889	dB
S/N	N/A	TEST DIST.	3	Meters
TEST ENGINEER	Kyle Fujimoto	LAB	D	

Frequency	Peak	Average (A		Antenna		EUT	EUT	Antenna	Cable	Amplifier		Mixer	*Corrected		Spec	
MHz	Reading (dBuV)	or Quasi- Peak (QP)			Azimuth (degrees)		Tx	Factor (dB)	Loss (dB)	Gain (dB)	Factor (dB)	Factor (dB)	Reading (dBuV/m)	** (dB)	Limit (dBuV/m)	Comments
	40.6			1.0		(A, 1, L)	Chamer				0.0			-41.0	i i	Comments
867.8400	40.6	30.8 A	п	1.0	0			21.2	5.4	37.5	0.0	0.0	19.8	-41.0	60.8	
867.8400	58.0	48.2 A	V	1.0	0			21.2	5.4	37.5	0.0	0.0	37.2	-23.6	60.8	

^{*} CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

PAGE 2 of PAGE 7

^{**} DELTA = SPEC LIMIT - CORRECTED READING

COMPANY	NAPCO SECURITY GROUP	DATE	5/29/03	
EUT	UNIVERSAL 2-WAY KEYFOB RECEIVER	DUTY CYCLE	32.175	%
MODEL	2WAY-UNIVKFKIT	PEAK TO AVG	-9.84962889	dB
S/N	N/A	TEST DIST.	3	Meters
TEST ENGINEER	Kyle Fujimoto	LAB	D	

Frequency	Peak Reading	Average (A) or Quasi-	Antenna Polar.	Antenna Height	EUT Azimuth	EUT Axis	EUT Tx	Antenna Factor	Cable Loss	Amplifier Gain	Distance Factor	Mixer Factor	*Corrected Reading	Delta **	Spec Limit	
MHz	(dBuV)	Peak (QP)	(V or H)	(meters)	(degrees)		Channel	(dB)	(dB)	(dB)	(dB)	(dB)	(dBuV/m)	(dB)	(dBuV/m)	Comments
1301.7600	43.7	A	Н	1.0	270			26.2	1.9	32.8	0.0	0.0	39.0	-15.0	54.0	
1301.7600	46.7	A	V	1.0	180			26.2	1.9	32.8	0.0	0.0	42.0	-12.0	54.0	

^{*} CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

PAGE 3 of PAGE 7

^{**} DELTA = SPEC LIMIT - CORRECTED READING

COMPANY	NAPCO SECURITY GROUP	DATE	5/29/03	
EUT	UNIVERSAL 2-WAY KEYFOB RECEIVER	DUTY CYCLE	32.175	%
MODEL	2WAY-UNIVKFKIT	PEAK TO AVG	-9.84962889	dB
S/N	N/A	TEST DIST.	3	Meters
TEST ENGINEER	Kyle Fujimoto	LAB	D	

Frequency	Peak Reading	Average (A) or Quasi-	Antenna	Antenna Height	EUT Azimuth	EUT Axis	EUT Tx	Antenna Factor	Cable Loss	Amplifier Gain	Distance Factor	Mixer Factor	*Corrected Reading	Delta **	Spec Limit	
MHz	(dBuV)	Peak (QP)	(V or H)	(meters)	(degrees)			(dB)	(dB)	(dB)	(dB)	(dB)	(dBuV/m)		(dBuV/m)	Comments
1735.6800	42.3	A	Н	2.0	0			27.9	2.3	32.4	0.0	0.0	40.2	-20.6	60.8	
1735.6800	43.9	A	V	1.0	0			27.9	2.3	32.4	0.0	0.0	41.8	-19.0	60.8	
													1213			
									•							

^{*} CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

PAGE 4 of PAGE 7

^{**} DELTA = SPEC LIMIT - CORRECTED READING

COMPANY	NAPCO SECURITY GROUP	DATE	5/29/03	
EUT	UNIVERSAL 2-WAY KEYFOB RECEIVER	DUTY CYCLE	32.175	%
MODEL	2WAY-UNIVKFKIT	PEAK TO AVG	-9.84962889	dB
S/N	N/A	TEST DIST.	3	Meters
TEST ENGINEER	Kyle Fujimoto	LAB	D	

Frequency	Peak	Average (A)		Antenna		EUT	EUT	Antenna	Cable	Amplifier		Mixer	*Corrected	Delta **	Spec	
MHz	Reading (dBuV)				Azimuth (degrees)		Tx Channel	Factor (dB)	Loss (dB)	Gain (dB)	Factor (dB)	Factor (dB)	Reading (dBuV/m)		Limit (dBuV/m)	Comments
2169.6000	41.9	A	Н	1.0	180	(,-,)		29.7	3.8	32.7	0.0	0.0	42.8	-18.0	60.8	
2105.0000	11.5	11		1.0	100			25.7	5.0	32.7	0.0	0.0	12.0	10.0	00.0	
2169.6000	40.8	A	V	1.5	0			29.7	3.8	32.7	0.0	0.0	41.7	-19.1	60.8	

^{*} CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

PAGE 5 of PAGE 7

^{**} DELTA = SPEC LIMIT - CORRECTED READING

COMPANY	NAPCO SECURITY GROUP	DATE	5/29/03	
EUT	UNIVERSAL 2-WAY KEYFOB RECEIVER	DUTY CYCLE	32.175	%
MODEL	2WAY-UNIVKFKIT	PEAK TO AVG	-9.84962889	dB
S/N	N/A	TEST DIST.	3	Meters
TEST ENGINEER	Kyle Fujimoto	LAB	D	

Frequency	Peak Reading	Average (A) or Quasi-	Antenna Polar.	Antenna Height	EUT Azimuth	EUT Axis	EUT Tx	Antenna Factor	Cable Loss	Amplifier Gain	Distance Factor	Mixer Factor	*Corrected Reading	Delta **	Spec Limit	
MHz	(dBuV)	Peak (QP)	(V or H)	(meters)	(degrees)		Channel	(dB)	(dB)	(dB)	(dB)	(dB)	(dBuV/m)	(dB)	(dBuV/m)	Comments
2603.5200	40.8	A	Н	1.0	180			30.6	3.6	31.2	0.0	0.0	43.8	-17.0	60.8	
2603.5200	41.8	A	V	1.0	90			30.6	3.6	31.2	0.0	0.0	44.8	-16.0	60.8	

^{*} CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

PAGE 6 of PAGE 7

^{**} DELTA = SPEC LIMIT - CORRECTED READING

COMPANY	NAPCO SECURITY GROUP	DATE	5/29/03	
EUT	UNIVERSAL 2-WAY KEYFOB RECEIVER	DUTY CYCLE	32.175	%
MODEL	2WAY-UNIVKFKIT	PEAK TO AVG	-9.84962889	dB
S/N	N/A	TEST DIST.	3	Meters
TEST ENGINEER	Kyle Fujimoto	LAB	D	

Frequency	Peak	Average (A)	Antenna			EUT	EUT	Antenna	Cable	Amplifier		Mixer	*Corrected	Delta **	Spec	
MHz	Reading (dBuV)	or Quasi- Peak (QP)	Polar. (V or H)		Azimuth (degrees)		Tx Channel	Factor (dB)	Loss (dB)	Gain (dB)	Factor (dB)	Factor (dB)	Reading (dBuV/m)		Limit (dBuV/m)	Comments
3037.4400	37.4	A	Н	1.0	270			31.3	4.3	31.3	0.0	0.0	41.7	-19.1		No Emissions Nor
																Harmonics Found Beyond
																the 7th Harmonic
3037.4400	40.7	A	V	1.0	180			31.3	4.3	31.3	0.0	0.0	45.0	-15.8	60.8	

^{*} CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

PAGE 7 of PAGE 7

^{**} DELTA = SPEC LIMIT - CORRECTED READING

Report Number: B30529D2
FCC Part 15 Subpart B and FCC Section 15.231 Test Report
Universal 2-Way Keyfob Receiver
Model: 2WAY-UNIVKFKIT

Page: 1 of 1

Test location : Compatible Electronics

Customer : NAPCO Security Group Date : 5/29/2003 Manufacturer : NAPCO Security Group Time : 13.48 EUT name : Universal 2-Way KEYFOB Receiver

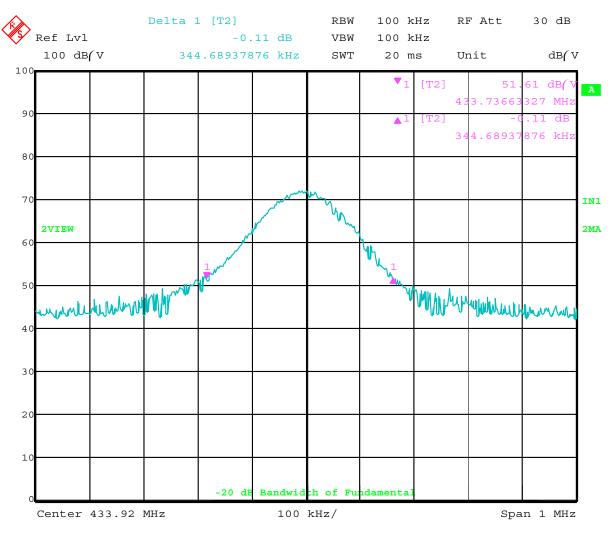
Model: 2WAY-UNIVKFKIT

Specification: Fcc_B Test distance: 3.0 mtrs Lab: D Distance correction factor(20*log(test/spec)) : 0.00 Test Mode : Spurious Emissions 10 kHz to 4400 MHz

Horizontal and Vertical Polarizations

Tested By: Kyle Fujimoto

Pol	Freq	•			Amp dg = R		limit Delta R-L
	MHz		dB	•	•		dBuV/m dB
1V	144.07	45.90	2.15	12.62	38.40	22.27	43.50 -21.23
2V	192.07	44.80	2.53	14.94	38.34	23.94	43.50 -19.56
3V	204.04	44.50	2.53	15.25	38.37	23.91	43.50 -19.59
4V	204.04	41.40	2.53	15.25	38.37	20.81	43.50 -22.69
5V	216.04	48.20	2.63	15.68	38.27	28.23	46.00 -17.77
6V	216.04	33.90	2.63	15.68	38.27	13.93	46.00 -32.07
7V	228.04	42.30	2.74	16.11	38.21	22.93	46.00 -23.07
8V	312.04	39.80	3.37	13.41	38.30	18.29	46.00 -27.71
9H	448.18	35.80	3.99	15.65	37.91	17.53	46.00 -28.47



-20 dB BANDWIDTH

DATA SHEET

Date: 15.OCT.2003 22:53:39