

Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

$$S = \frac{PG}{4\pi R^2}$$

where: S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to isotropic radiator

R = distance to the center of radiation of the antenna

10.3	(dBm)	*
3	(dBi)	*
2.00	(numeric)	
100	(%)	*
20	(cm)	*
2480	(MHz)	*
1.000	(mW/cm ²)	
17.33	(W/m^2)	
0.004	(mW/cm ²)	
0.04	(W/m^2)	
	10.6 3 2.00 100 20 2480 1.000 17.33	10.3 (dBm) 10.6 (mW) 3 (dBi) 2.00 (numeric) 100 (%) 20 (cm) 2480 (MHz) 1.000 (mW/cm²) 17.33 (W/m²) 0.004 (mW/cm²)