Page: 1 of 49

Radio Test Report

FCC ID: ACQ-VIP7300

IC: 109AS-VIP7300

Report No. : TBR-C-202202-0006-4

Applicant : ARRIS

Equipment Under Test (EUT)

EUT Name : TV DECODER

Model No. : VIP7300

Series Model No. : ----

Brand Name : ARRIS

Sample ID : 202202-0006-4-1#&202202-0006-4-2#

Receipt Date : 2022-02-18

Test Date : 2022-02-19 to 2022-03-30

Issue Date : 2022-03-31

Standards : FCC Part 15 Subpart C 15.247

RSS-247 Issue 2 February 2017

RSS-Gen Issue 5 March 2019

Test Method : ANSI C63.10: 2013

KDB 558074 D01 15.247 Meas Guidance v05r02

Conclusions : PASS

In the configuration tested, the EUT complied with the standards specified above.

Witness Engineer :

Engineer Supervisor : WW SV

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Contents

CON	NTENTS	2
1.	GENERAL INFORMATION ABOUT EUT	5
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	
	1.3 Block Diagram Showing the Configuration of System Tested	
	1.4 Description of Support Units	7
	1.6 Description of Test Software Setting	9
	1.7 Measurement Uncertainty	9
	1.8 Test Facility	10
2.	TEST SUMMARY	11
3.	TEST SOFTWARE	11
4.	TEST EQUIPMENT	12
5.	CONDUCTED EMISSION	13
	5.1 Test Standard and Limit	13
	5.2 Test Setup	
	5.3 Test Procedure	
	5.4 Deviation From Test Standard	14
	5.5 EUT Operating Mode	14
	5.6 Test Data	14
6.	RADIATED AND CONDUCTED UNWANTED EMISSIONS	15
	6.1 Test Standard and Limit	15
	6.2 Test Setup	16
	6.3 Test Procedure	17
	6.4 Deviation From Test Standard	
	6.5 EUT Operating Mode	18
	6.6 Test Data	18
7.	EMISSIONS IN RESTRICTED BANDS	19
	7.1 Test Standard and Limit	19
	7.2 Test Setup	19
	7.3 Test Procedure	20
	7.4 Deviation From Test Standard	
	7.5 EUT Operating Mode	
	7.6 Test Data	
8.	99% OCCUPIED AND 20DB BANDWIDTH	
	8.1 Test Standard and Limit	
	8.2 Test Setup	
	8.3 Test Procedure	
	8.4 Deviation From Test Standard	
	8.5 EUT Operating Mode	
	8.6 Test Data	23

9.	PEAK OUTPUT POWER TEST	24
	9.1 Test Standard and Limit	24
	9.2 Test Setup	
	9.3 Test Procedure	24
	9.4 Deviation From Test Standard	25
	9.5 EUT Operating Mode	25
	9.6 Test Data	
10.	CARRIER FREQUENCY SEPARATION	26
	10.1 Test Standard and Limit	26
	10.2 Test Setup	26
	10.3 Test Procedure	26
	10.4 Deviation From Test Standard	27
	10.5 Antenna Connected Construction	27
	10.6 Test Data	27
11.	TIME OF OCCUPANCY (DWELL TIME)	28
	11.1 Test Standard and Limit	
	11.2 Test Setup	
	11.3 Test Procedure	
	11.4 Deviation From Test Standard	29
	11.5 Antenna Connected Construction	29
	11.6 Test Data	29
12.	NUMBER OF HOPPING FREQUENCIES	30
	12.1 Test Standard and Limit	30
	12.2 Test Setup	30
	12.3 Test Procedure	30
	12.4 Deviation From Test Standard	31
	12.5 Antenna Connected Construction	31
	12.6 Test Data	31
13.	ANTENNA REQUIREMENT	32
	13.1 Test Standard and Limit	32
	13.2 Deviation From Test Standard	32
	13.3 Antenna Connected Construction	32
	13.4 Test Data	32
ATT	ACHMENT A CONDUCTED EMISSION TEST DATA	33
	A CHIMENT D. LINIMANTED EMICCIONO DATA	

Report No.: TBR-C-202202-0006-4 Page: 4 of 49

Revision History

Report No.	Version	Description	Issued Date
TBR-C-202202-0006-4	Rev.01	Initial issue of report	2022-03-31
Emp (CAL BI	1000	Charles of the Control of the Contro
	33	1000	100
THE WAY			
A GUID			
The state of the s	001		The state of the s
The same of the sa		33	3
	MBY		
			W COURT
may my	133	TOTAL STORY	
miles and the second			mn33
			m (28m
	110		

Page: 5 of 49

1. General Information about EUT

1.1 Client Information

Applicant	63	ARRIS
Address		101 Tournament Drive, Horsham PA, 19044
Manufacturer : Shenzhen SDMC Technology Co.,Ltd.		Shenzhen SDMC Technology Co.,Ltd.
Address		19/F, Changhong Science & Technology Mansion, No.18, Keji South 12th Road, High-tech Industrial Park, Nanshan District, Shenzhen, China, 518000

1.2 General Description of EUT (Equipment Under Test)

EUT Name		TV DECODER	The state of the s	
HVIN/Models No.		VIP7300		
Model Different		N/A		
4000		Operation Frequency:	Bluetooth 5.0(BDR+EDR): 2402MHz~2480MHz	
Duaduat		Number of Channel:	79 channels	
Product Description	:	Antenna Gain:	2.95dBi FPC Antenna	
N TO		Modulation Type:	GFSK(1Mbps) π /4-DQPSK(2Mbps) 8-DPSK(3Mbps)	
Power Rating		Adapter1#:(DCT12W120100US-A0) Input: 100-240V~, 50/60Hz 0.3A max. Output: DC 12.0V, 1.0A Adapter2#:(TPQ-233A120100UW01) Input: 100-240V~, 50/60Hz 0.4A Output: DC 12.0V, 1.0A		
Software Version		10		
Hardware Version	:	DV8947-V5		

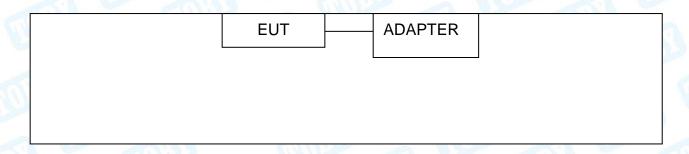
Remark:

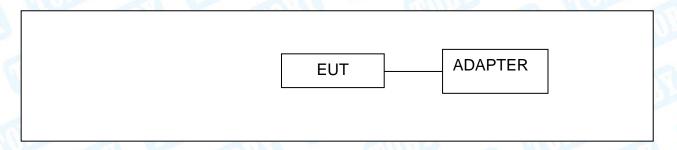
- (1) The antenna gain and adapter provided by the applicant, the verified for the RF conduction test provided by TOBY test lab.
- (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- (3) Antenna information provided by the applicant.

The TV DECODER has different versions of RAM(2GB/3GB/4GB), more information please see the Appearance of PCB.

Report No.: TBR-C-202202-0006-4 Page: 6 of 49

(4) Channel List:


Bluetooth Channel List						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
00	2402	27	2429	54	2456	
01	2403	28	2430	55	2457	
02	2404	29	2431	56	2458	
03	2405	30	2432	57	2459	
04	2406	31	2433	58	2460	
05	2407	32	2434	59	2461	
06	2408	33	2435	60	2462	
07	2409	34	2436	61	2463	
08	2410	35	2437	62	2464	
09	2411	36	2438	63	2465	
10	2412	37	2439	64	2466	
11	2413	38	2440	65	2467	
12	2414	39	2441	66	2468	
13	2415	40	2442	67	2469	
14	2416	41	2443	68	2470	
15	2417	42	2444	69	2471	
16	2418	43	2445	70	2472	
17	2419	44	2446	71	2473	
18	2420	45	2447	72	2474	
19	2421	46	2448	73	2475	
20	2422	47	2449	74	2476	
21	2423	48	2450	75	2477	
22	2424	49	2451	76	2478	
23	2425	50	2452	77	2479	
24	2426	51	2453	78	2480	
25	2427	52	2454			
26	2428	53	2455			


Page: 7 of 49

1.3 Block Diagram Showing the Configuration of System Tested

Conducted Test

Radiated Test

1.4 Description of Support Units

	Equipment Information						
Name Model FCC ID/VOC Manufacturer L							
1	N						
	Cable Information						
Number	Shielded Type	Ferrite Core	Length	Note			
			(41)00	110			

Page: 8 of 49

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Test					
Final Test Mode Description					
Mode 1	TX GFSK Mode Channel 00				
	For Radiated Test				
Final Test Mode	Description				
Mode 1	TX GFSK Mode Channel 00				
Mode 2	TX Mode(GFSK) Channel 00/39/78				
Mode 3	TX Mode(IT /4-DQPSK) Channel 00/39/78				
Mode 4	TX Mode(8-DPSK) Channel 00/39/78				
Mode 5	Hopping Mode(GFSK)				
Mode 6 Hopping Mode(π /4-DQPSK)					
Mode 7 Hopping Mode(8-DPSK)					

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

TX Mode: GFSK (1 Mbps)
TX Mode: π /4-DQPSK (2 Mbps)
TX Mode: 8-DPSK (3 Mbps)

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a Mobile unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

Page: 9 of 49

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF setting.

Test Software Version	m B	Ampak RFTestTo	ool
Frequency	2402 MHz	2441MHz	2480 MHz
GFSK	DEF	DEF	DEF
π/4-DQPSK	DEF	DEF	DEF
8-DPSK	DEF	DEF	DEF

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	±3.50 dB ±3.10 dB
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.50 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB

Page: 10 of 49

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1/F.,Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an District, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.FCC Accredited Test Site Number: 854351. Designation Number: CN1223.

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A. CAB identifier: CN0056.

Report No.: TBR-C-202202-0006-4 Page: 11 of 49

2. Test Summary

Standard Section		Took Hom	T(O(-)	1	Damad
FCC	IC	Test Item	Test Sample(s)	Judgment	Remark
FCC 15.207(a)	RSS-Gen 8.8	Conducted Emission	202202-0006-4-1#	PASS	N/A
FCC 15.209 & 15.247(d)	RSS-Gen 8.9 & RSS 247 5.5	Radiated Unwanted Emissions	202202-0006-4-1#	PASS	N/A
FCC 15.203	RSS-247 6.8	Antenna Requirement	202202-0006-4-2#	PASS	N/A
FCC 15.247(a)	RSS-Gen 6.7 RSS 247 5.1 (1)	99% Occupied Bandwidth & 20dB Bandwidth	202202-0006-4-2#	PASS	N/A
FCC 15.247(b)(1)	RSS 247 5.4 (2)	Peak Output Power	202202-0006-4-2#	PASS	N/A
FCC 15.247(a)(1)	RSS 247 5.1 (2)	Carrier frequency separation	202202-0006-4-2#	PASS	N/A
FCC 15.247(a)(1)	RSS 247 5.1 (4)	Time of occupancy	202202-0006-4-2#	PASS	N/A
FCC 15.247(b)(1)	RSS 247 5.1 (4)	Number of Hopping Frequency	202202-0006-4-2#	PASS	N/A
FCC 15.247(d)	RSS-Gen 8.10 RSS-247 5.5	Band Edge	202202-0006-4-2#	PASS	N/A
FCC 15.207(a)	RSS-247 5.5	Conducted Unwanted Emissions	202202-0006-4-2#	PASS	N/A
FCC 15.205	RSS-Gen 8.10	Emissions in Restricted Bands	202202-0006-4-2#	PASS	N/A
	1	On Time and Duty Cycle	202202-0006-4-2#		N/A

Note: N/A is an abbreviation for Not Applicable.

3. Test Software

Test Item	Test Software	Manufacturer	Version No.
Conducted Emission	EZ-EMC	EZ	CDI-03A2
Radiation Emission	EZ-EMC	EZ	FA-03A2RE
Radiation Emission	EZ-EMC	EZ	FA-03A2RE+
RF Conducted Measurement	MTS-8310	MWRFtest	V2.0.0.0
RF Test System	JS1120	Tonscend	V2.6.88.0336

Report No.: TBR-C-202202-0006-4 Page: 12 of 49

4. Test Equipment

Conducted Emissio	n Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul. 02, 2021	Jul. 01, 2022
	Compliance				
RF Switching Unit	Direction Systems	RSU-A4	34403	Jul. 02, 2021	Jul. 01, 2022
	Inc				WIND.
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 02, 2021	Jul. 01, 2022
LISN	Rohde & Schwarz	ENV216	101131	Jul. 02, 2021	Jul. 01, 2022
Radiation Emission	Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jul. 02, 2021	Jul. 01, 2022
MXA Signal Analyzer	Agilent	N9020A	MY47380425	Sep. 03, 2021	Sep. 02, 2022
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 02, 2021	Jul. 01, 2022
EMI Test Receiver	Rohde & Schwarz	ESU-8	100472	Feb. 26, 2022	Feb. 25, 2023
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Feb. 27, 2022	Feb. 26, 2024
Bilog Antenna	SCHWARZBECK	VULB 9168	1225	Dec. 05, 2021	Dec. 04, 2023
Horn Antenna	ETS-LINDGREN	3117	00143207	Feb. 26, 2022	Feb. 25, 2024
Horn Antenna	SCHWARZBECK	BBHA 9120 D	2463	May 20, 2021	May 19, 2022
Horn Antenna	SCHWARZBECK	BBHA 9170	1118	Feb. 26, 2022	Feb. 25, 2024
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 06, 2021	Jul. 05, 2022
Pre-amplifier	SONOMA	310N	185903	Feb. 26, 2022	Feb. 25, 2023
Pre-amplifier	HP	8449B	3008A00849	Feb. 26, 2022	Feb. 25, 2023
HF Amplifier	Tonscend	TAP9E6343	AP21C806117	Sep. 03, 2021	Sep. 02, 2022
HF Amplifier	Tonscend	TAP051845	AP21C806141	Sep. 03, 2021	Sep. 02, 2022
HF Amplifier	Tonscend	TAP0184050	AP21C806129	Sep. 03, 2021	Sep. 02, 2022
Antenna Conducted	Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 02, 2021	Jul. 01, 2022
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jul. 02, 2021	Jul. 01, 2022
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Sep. 03, 2021	Sep. 02, 2022
Spectrum Analyzer	KEYSIGT	N9020B	MY60110172	Sep. 03, 2021	Sep. 02, 2022
W.	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Sep. 03, 2021	Sep. 02, 2022
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Sep. 03, 2021	Sep. 02, 2022
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Sep. 03, 2021	Sep. 02, 2022
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Sep. 03, 2021	Sep. 02, 2022
RF Control Unit	Tonsced	JS0806-2	21F8060439	Sep. 03, 2021	Sep. 02, 2022

Page: 13 of 49

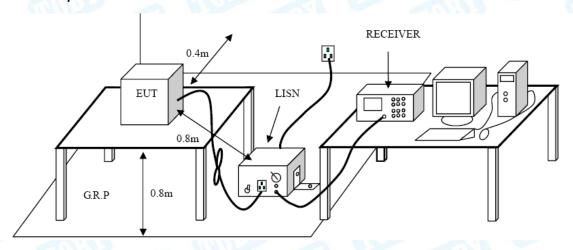
5. Conducted Emission

5.1 Test Standard and Limit

5.1.1 Test Standard

RSS-Gen 8.8

FCC Part 15.207


5.1.2 Test Limit

Francis	Maximum RF Line Voltage (dBμV)			
Frequency	Quasi-peak Level Average Level 66 ~ 56 * 56 ~ 46 *			
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *		
500kHz~5MHz	56	46		
5MHz~30MHz	60	50		

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

5.2 Test Setup

5.3 Test Procedure

- The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.
- Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- ●I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- ●LISN at least 80 cm from nearest part of EUT chassis.
- ●The bandwidth of EMI test receiver is set at 9 kHz, and the test frequency band is from 0.15MHz to 30MHz.

Page: 14 of 49

5.4 Deviation From Test Standard

No deviation

5.5 EUT Operating Mode

Please refer to the description of test mode.

5.6 Test Data

Please refer to the Attachment A inside test report.

Page: 15 of 49

6. Radiated and Conducted Unwanted Emissions

6.1 Test Standard and Limit

6.1.1 Test Standard

RSS-Gen 8.9 & RSS 247 5.5 FCC Part 15.209 & FCC Part 15.247(d)

6.1.2 Test Limit

General field strength limits at frequencies Below 30MHz						
Frequency Field Strength Field Strength Measurement						
(MHz)	(µA/m)*	(microvolt/meter)**	Distance (meters)			
0.009~0.490	6.37/F (F in kHz)	2400/F(KHz)	300			
0.490~1.705	63.7/F (F in kHz)	24000/F(KHz)	30			
1.705~30.0	0.08	30	30			

Note: 1, The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

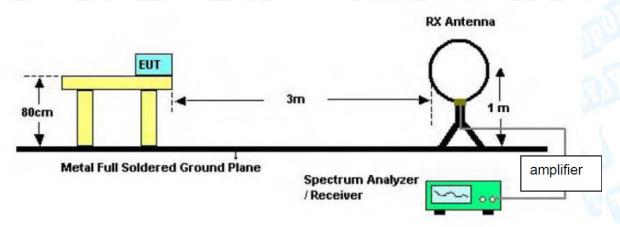
2, *is for RSS Standard, **is for FCC Standard.

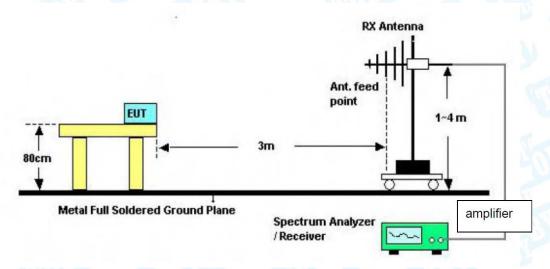
General field strength limits at frequencies above 30 MHz					
Frequency (MHz)	Field strength (µV/m at 3 m)	Measurement Distance (meters)			
30~88	100	3			
88~216	150	3			
216~960	200	3			
Above 960	500	3			

General field strength limits at frequencies Above 1000MHz						
Frequency	Frequency Distance of 3m (dBuV/m)					
(MHz)	Peak	Average				
Above 1000	74	54				
- 10						

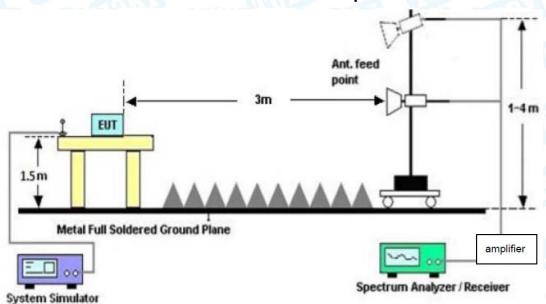
Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level(dBuV/m)=20log Emission Level(uV/m)


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

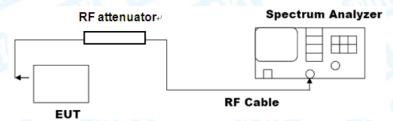

Page: 16 of 49

6.2 Test Setup


Radiated measurement

Below 30MHz Test Setup

Below 1000MHz Test Setup



Above 1GHz Test Setup

Page: 17 of 49

Conducted measurement

6.3 Test Procedure

---Radiated measurement

- The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Below 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- Testing frequency range 30MHz-1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection. Testing frequency range 9KHz-150Hz the measuring instrument use VBW=200Hz with Quasi-peak detection. Testing frequency range 9KHz-30MHz the measuring instrument use VBW=9kHz with Quasi-peak detection.
- Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- For the actual test configuration, please see the test setup photo.

Page: 18 of 49

--- Conducted measurement

Reference level measurement

Establish a reference level by using the following procedure:

- a) Set instrument center frequency to DTS channel center frequency.
- b) Set the span to≥1.5 times the DTS bandwidth.
- c) Set the RBW = 100 kHz.
- d) Set the VBW≥[3*RBW].
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum PSD level.

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

Emission level measurement

Establish an emission level by using the following procedure:

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW≥[3*RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11. Report the three highest emissions relative to the limit.

6.4 Deviation From Test Standard

No deviation

6.5 EUT Operating Mode

Please refer to the description of test mode.

6.6 Test Data

Radiated measurement please refer to the Attachment B inside test report. Conducted measurement please refer to the Appendix B section 8.

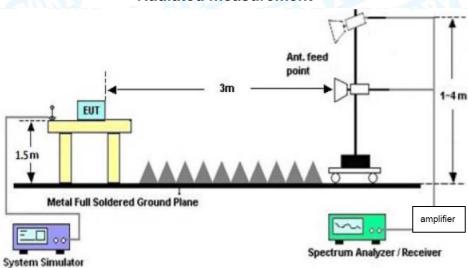
Page: 19 of 49

7. Emissions in Restricted Bands

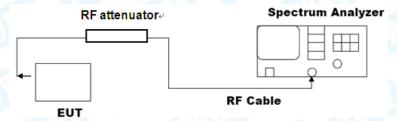
7.1 Test Standard and Limit

7.1.1 Test Standard

RSS-Gen 8.10 & RSS 247 5.5 FCC Part 15.205 & FCC Part 15.247(d)


7.1.2 Test Limit

Restricted Frequency	Distance Meters(at 3m)			
Band (MHz)	Peak (dBuV/m)	Average (dBuV/m)		
2310 ~2390	74	54		
2483.5 ~2500	74	54		
	Peak (dBm)see 7.3 e)	Average (dBm) see 7.3 e)		
2310 ~2390	-21.20	-41.20		
2483.5 ~2500	-21.20	-41.20		


Note: According the ANSI C63.10 11.12.2 antenna-port conducted measurements may also be used as an alternative to radiated measurements for determining compliance in the restricted frequency bands requirements. If conducted measurements are performed, then proper impedance matching must be ensured and an additional radiated test forcabinet/case emissions is required.

7.2 Test Setup

Radiated measurement

Conducted measurement

Page: 20 of 49

7.3 Test Procedure

---Radiated measurement

- Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- ●The Peak Value and average value both need to comply with applicable limit above 1 GHz.
- Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- For the actual test configuration, please see the test setup photo.

--- Conducted measurement

- a) Measure the conducted output power (in dBm) using the detector specified by the appropriate regulatory agency (see 11.12.2.3 through 11.12.2.5 for guidance regarding measurement procedures for determining quasi-peak, peak, and average conducted output power, respectively).
- b) Add the maximum transmit antenna gain (in dBi) to the measured output power level to determine the EIRP (see 11.12.2.6 for guidance on determining the applicable antenna gain).
- c) Add the appropriate maximum ground reflection factor to the EIRP (6 dB for frequencies ≤30 MHz; 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive; and 0 dB for frequencies > 1000 MHz).
- d) For MIMO devices, measure the power of each chain and sum the EIRP of all chains in linear terms (i.e., watts and mW).
- e) Convert the resultant EIRP to an equivalent electric field strength using the following relationship:

 $E = EIRP-20 \log d + 104.8$

where

E is the electric field strength in dBuV/m

EIRP is the equivalent isotropically radiated power in dBm

d is the specified measurement distance in m

- f) Compare the resultant electric field strength level with the applicable regulatory limit.
- g) Perform the radiated spurious emission test.

Page: 21 of 49

7.4 Deviation From Test Standard

No deviation

7.5 EUT Operating Mode

Please refer to the description of test mode.

7.6 Test Data

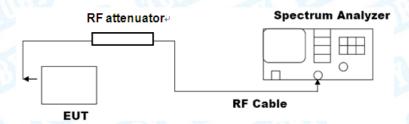
Remark: The test uses antenna-port conducted measurements as an alternative to radiated measurements for determining compliance in the restricted frequency bands requirements.

Please refer to the Appendix B section 7&10.

Page: 22 of 49

8. 99% Occupied and 20dB Bandwidth

8.1 Test Standard and Limit


8.1.1 Test Standard

RSS-Gen 6.7 & RSS 247 5.1(a) FCC Part 15.205 & FCC Part 15.247(a)

8.1.2 Test Limit

For an FHSS system operating in the 2400 to 2483.5 MHz band, there are no limits for 20dB bandwidth and 99% occupied bandwidth.

8.2 Test Setup

8.3 Test Procedure

- The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:
- a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.
- b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.
- c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.
- d) Step a) through step c) might require iteration to adjust within the specified range.
- e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
- f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.
- g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The

Page: 23 of 49

99% power bandwidth is the difference between these two frequencies.

h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

8.4 Deviation From Test Standard

No deviation

8.5 EUT Operating Mode

Please refer to the description of test mode.

8.6 Test Data

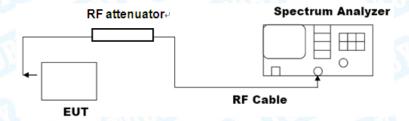
Please refer to the Appendix B section 1&2.

Page: 24 of 49

9. Peak Output Power Test

9.1 Test Standard and Limit

9.1.1 Test Standard


RSS 247 5.4(2)

FCC Part 15.247(b)(1)

9.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
	<i>P</i> max-pk ≤ 1 W	
	<i>N</i> _{ch} ≥ 75	
	f ≥ MAX { 25 kHz, BW20dB }	
	max. BW20dB not specified	
	tch ≤ 0.4 s for $T = 0.4*N$ ch	
Peak Output Power	<i>P</i> max-pk ≤ 0.125 W	2400~2483.5
MULL	Nch ≥ 15	
	f ≥ [MAX{25 kHz, 0.67*BW _{20dB} }	
	OR MAX{25 kHz, BW20dB}]	
	max. BW20dB not specified	
	t ch ≤ 0.4 s for $T = 0.4*N$ ch	
tch = average time of occ	cupancy; $T = \text{period}$; $N_{\text{ch}} = \# \text{ hopping for } M_{\text{ch}} = \# \text{ hopping for } M_{$	requencies; BW = bandwidth;
f	= hopping channel carrier frequency s	eparation

9.2 Test Setup

9.3 Test Procedure

- This is an RF-conducted test to evaluate maximum peak output power. Use a direct connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation. The hopping shall be disabled for this test:
- a) Use the following spectrum analyzer settings:
 - 1) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel.
 - 2) RBW > 20 dB bandwidth of the emission being measured.
 - 3) VBW≥ RBW.
 - 4) Sweep: Auto.
 - 5) Detector function: Peak.
 - 6) Trace: Max hold.
- b) Allow trace to stabilize.
- c) Use the marker-to-peak function to set the marker to the peak of the emission.

Page: 25 of 49

d) The indicated level is the peak output power, after any corrections for external attenuators and cables.

e) A plot of the test results and setup description shall be included in the test report.

NOTE-A peak responding power meter may be used, where the power meter and sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum analyzer.

9.4 Deviation From Test Standard

No deviation

9.5 EUT Operating Mode

Please refer to the description of test mode.

9.6 Test Data

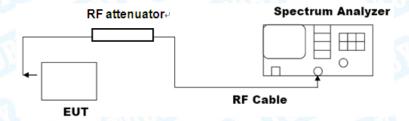
Please refer to the Appendix B section 3.

Page: 26 of 49

10. Carrier frequency separation

10.1 Test Standard and Limit

10.1.1 Test Standard


RSS 247 5.1(2)

FCC Part 15.247(a)(1)

10.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)			
	P _{max-pk} ≤ 1 W				
	<i>N</i> _{ch} ≥ 75				
	f ≥ MAX { 25 kHz, BW _{20dB} }	A STATE OF THE STA			
	max. BW20dB not specified	TUDE			
Carrier frequency	t ch ≤ 0.4 s for $T = 0.4*N$ ch				
Carrier frequency	<i>P</i> max-pk ≤ 0.125 W	2400~2483.5			
separation	Nch ≥ 15				
000	f ≥ [MAX{25 kHz, 0.67*BW _{20dB} }				
	OR MAX{25 kHz, BW20dB}]				
	max. ВW20dв not specified				
	t ch $\leq 0.4 \text{ s for } T = 0.4*N_{\text{ch}}$	THE WAY			
t_{ch} = average time of occupancy; T = period; N_{ch} = # hopping frequencies; BW = bandwidth;					
f = hopping channel carrier frequency separation					

10.2 Test Setup

10.3 Test Procedure

- ●The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:
- a) Span: Wide enough to capture the peaks of two adjacent channels.
- b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.
- c) Video (or average) bandwidth (VBW) ≥ RBW.
- d) Sweep: Auto.
- e) Detector function: Peak.
- f) Trace: Max hold.
- g) Allow the trace to stabilize.

Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

Page: 27 of 49

Compliance of an EUT with the appropriate regulatory limit shall be determined. A plot of the data shall be included in the test report.

10.4 Deviation From Test Standard

No deviation

10.5 Antenna Connected Construction

Please refer to the description of test mode.

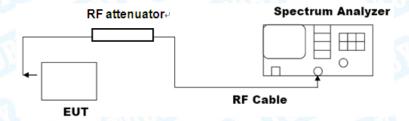
10.6 Test Data

Please refer to the Appendix B section 4.

Page: 28 of 49

11. Time of occupancy (dwell time)

11.1 Test Standard and Limit


11.1.1 Test Standard

RSS 247 5.1(2) FCC Part 15.247(a)(1)

11.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)				
TOBY	<i>P</i> _{max-pk} ≤ 1 W					
	<i>Nch</i> ≥ 75					
	f ≥ MAX { 25 kHz, BW _{20dB} }					
	max. BW20dB not specified					
Time of accurancy	t ch ≤ 0.4 s for $T = 0.4*N$ ch					
Time of occupancy (dwell time)	<i>P</i> max-pk ≤ 0.125 W	2400~2483.5				
(dweii time)	Nch ≥ 15					
	f ≥ [MAX{25 kHz, 0.67*BW _{20dB} }					
	OR MAX{25 kHz, BW20dB}]					
	max. BW20dB not specified					
	tch ≤ 0.4 s for $T = 0.4*N$ ch	THE PARTY OF THE				
$t_{\rm ch}$ = average time of o	t_{ch} = average time of occupancy; T = period; N_{ch} = # hopping frequencies; BW = bandwidth;					
f = hopping channel carrier frequency separation						

11.2 Test Setup

11.3 Test Procedure

- The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:
- a) Span: Zero span, centered on a hopping channel.
- b) RBW shall be \Box channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel.
- c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel.
- d) Detector function: Peak.
- e) Trace: Max hold.

Page: 29 of 49

Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time.

Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements. Determine the number of hops over the sweep time and calculate the total number of hops in the period specified in the requirements, using the following equation:

(Number of hops in the period specified in the requirements) =

(number of hops on spectrum analyzer)x(period specified in the requirements / analyzer sweep time)

The average time of occupancy is calculated from the transmit time per hop multiplied by the number of hops in the period specified in the requirements. If the number of hops in a specific time varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation.

The measured transmit time and time between hops shall be consistent with the values described in the operational description for the EUT.

11.4 Deviation From Test Standard

No deviation

11.5 Antenna Connected Construction

Please refer to the description of test mode.

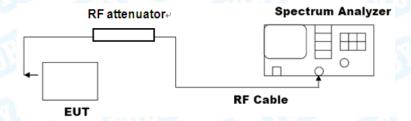
11.6 Test Data

Please refer to the Appendix B section 5.

Page: 30 of 49

12. Number of hopping frequencies

12.1 Test Standard and Limit


12.1.1 Test Standard

RSS 247 5.1(4) FCC Part 15.247(b)(1)

12.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)			
	P _{max-pk} ≤ 1 W				
	<i>N</i> _{ch} ≥ 75				
	f ≥ MAX { 25 kHz, BW _{20dB} }	A STATE OF THE STA			
	max. BW20dB not specified	TUDE			
Carrier frequency	t ch ≤ 0.4 s for $T = 0.4*N$ ch				
Carrier frequency	<i>P</i> max-pk ≤ 0.125 W	2400~2483.5			
separation	Nch ≥ 15				
000	f ≥ [MAX{25 kHz, 0.67*BW _{20dB} }				
	OR MAX{25 kHz, BW20dB}]				
	max. ВW20dв not specified				
	t ch $\leq 0.4 \text{ s for } T = 0.4*N_{\text{ch}}$	THE TOTAL			
t_{ch} = average time of occupancy; T = period; N_{ch} = # hopping frequencies; BW = bandwidth;					
f = hopping channel carrier frequency separation					

12.2 Test Setup

12.3 Test Procedure

- The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:
- a) Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.
- b) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.
- c) VBW ≥ RBW.
- d) Sweep: Auto.
- e) Detector function: Peak.
- f) Trace: Max hold.
- g) Allow the trace to stabilize.

Page: 31 of 49

It might prove necessary to break the span up into subranges to show clearly all of the hopping frequencies.

Compliance of an EUT with the appropriate regulatory limit shall be determined for the number of hopping channels. A plot of the data shall be included in the test report.

12.4 Deviation From Test Standard

No deviation

12.5 Antenna Connected Construction

Please refer to the description of test mode.

12.6 Test Data

Please refer to the Appendix B section 6.

Page: 32 of 49

13. Antenna Requirement

13.1 Test Standard and Limit

11.1.1 Test Standard

RSS 247 6.8 FCC Part 15.203

11.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

13.2 Deviation From Test Standard

No deviation

13.3 Antenna Connected Construction

The gains of the antenna used for transmitting is 2.95dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

13.4 Test Data

The EUT antenna is a FPC Antenna. It complies with the standard requirement.

Antenna Type	
Permanent attached antenna	
⊠Unique connector antenna	
Professional installation antenna	

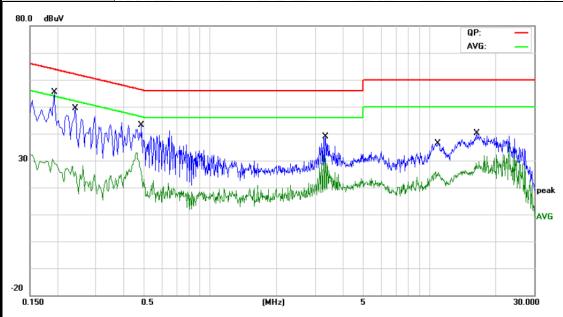
Page: 33 of 49

Attachment A-- Conducted Emission Test Data

				191	R. J. L. Branch				
Temper	ature:	24.4℃			Relative Hum	idity:	44%	CALL DE	
Test Vo	ltage:	AC 120V/60Hz							
Termina	d:	Line							
Test Mo		Mode 1 with adapter 1#							
Remark	:	Only wo	rse case	RAM 3GE	3 is reported.				
30 dBu	Mary Mary			**************************************		Mak podratilació	QP: AVG:	peak	
-20 0.150		0.5		(MHz)	5			30.000	
No. M	k. Fr		leading Level	Correct Facto		Limit	Over		
	M	Нz	dBuV	dB	dBuV	dBuV	dB	Detector	
1	0.23	800	37.46	11.64	49.10	62.45	-13.35	QP	
2	0.23	800	17.45	11.64	29.09	52.45	-23.36	AVG	
3 *	0.29	940	36.38	11.60	47.98	60.41	-12.43	QP	
4	0.29	940	14.52	11.60	26.12	50.41	-24.29	AVG	
5	0.54	60	24.79	11.47	36.26	56.00	-19.74	QP	
6	0.54	60	12.78	11.47	24.25	46.00	-21.75	AVG	
7	1.26	60	16.55	11.02	27.57	56.00	-28.43	QP	
8	1.26	60	0.29	11.02	11.31	46.00	-34.69	AVG	
9	3.35	540	24.13	10.20	34.33	56.00	-21.67	QP	
10	3.35	40	16.42	10.20	26.62	46.00	-19.38	AVG	
11	18.24	20	24.06	10.28	34.34	60.00	-25.66	QP	
12	18.24	20	18.51	10.28	28.79	50.00	-21.21	AVG	
Remark:									

Remark:

- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)


	- 1 102						
Temperature:	24.4℃		Relative Hu	ımidity:	44%		
Test Voltage:	AC 120V/60Hz						
Terminal:	Neutral Made 4 with adoptor 4 #						
Test Mode:	Mode 1 with adapter 1#						
Remark: Only worse case RAM 3GB is reported.							
30 dBuV		Magay-participation and company	XX	man de se a como de la	QP: AVG:	peak	
-20 0.150	0.5 Reading	(MHz)	Measure-			30.000	
No. Mk. Free	q. Level	Factor	ment	Limit	Over		
MHz	z dBuV	dB	dBuV	dBuV	dB	Detector	
1 0.158	38.53	11.60	50.13	65.56	-15.43	QP	
2 0.158	30 23.30	11.60	34.90	55.56	-20.66	AVG	
3 * 0.290	00 35.15	11.59	46.74	60.52	-13.78	QP	
4 0.290	0 15.59	11.59	27.18	50.52	-23.34	AVG	
5 0.478	30 28.26	11.50	39.76	56.37	-16.61	QP	
6 0.478	9.78	11.50	21.28	46.37	-25.09	AVG	
7 0.842	20 18.83	11.33	30.16	56.00	-25.84	QP	
8 0.842	20 3.00	11.33	14.33	46.00	-31.67	AVG	
9 3.350	00 23.75	10.15	33.90	56.00	-22.10	QP	
10 3.350	00 19.07	10.15	29.22	46.00	-16.78	AVG	
11 14.026	18.93	10.31	29.24	60.00	-30.76	QP	
12 14.026	0 12.06	10.31	22.37	50.00	-27.63	AVG	
Remark: 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB) 2. Margin (dB) = QuasiPeak/Average (dBuV)-Limit (dBuV)							

Page: 35 of 49

Temperature:	24.4℃	Relative Humidity:	44%
Test Voltage:	AC 120V/60Hz	TUDE OF	The same
Terminal:	Line	an's	MAL
Test Mode:	Mode 1 with adapter 2#	10	TO BY
Remark:	Only worse case RAM 3G	B is reported.	

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1940	32.91	11.65	44.56	63.86	-19.30	QP
2		0.1940	15.93	11.65	27.58	53.86	-26.28	AVG
3		0.2420	28.81	11.63	40.44	62.02	-21.58	QP
4		0.2420	11.16	11.63	22.79	52.02	-29.23	AVG
5		0.4860	22.33	11.48	33.81	56.24	-22.43	QP
6		0.4860	10.10	11.48	21.58	46.24	-24.66	AVG
7		3.3500	26.15	10.21	36.36	56.00	-19.64	QP
8	*	3.3500	20.43	10.21	30.64	46.00	-15.36	AVG
9		10.9500	22.18	10.25	32.43	60.00	-27.57	QP
10		10.9500	13.95	10.25	24.20	50.00	-25.80	AVG
11		16.4700	23.72	10.36	34.08	60.00	-25.92	QP
12	,	16.4700	16.79	10.36	27.15	50.00	-22.85	AVG

Remark

- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Temperature:	24.4℃		Relative H	umidity:	44%		
Test Voltage:	AC 120V/60Hz	M V				CHILL	
Terminal:	Neutral		aW		1100		
Test Mode:	Mode 1 with adapter 2#						
Remark:	Remark: Only worse case RAM 3GB is reported.						
30 MM	Many hipsperhouse	tiple of yorkelly promoner conferences	Market Market Andrews	hand of good by the good	QP: AVG:	peak AVG	
-20 0.150	0.5	(MHz)	5			30.000	
No. Mk. Fre	Reading q. Level	Correct Factor	Measure- ment	Limit	Over		
MH	z dBuV	dB	dBuV	dBuV	dB	Detector	
1 0.194	40 33.78	11.65	45.43	63.86	-18.43	QP	
2 0.194	40 18.10	11.65	29.75	53.86	-24.11	AVG	
3 0.226	30 29.50	11.64	41.14	62.59	-21.45	QP	
4 0.226	30 13.92	11.64	25.56	52.59	-27.03	AVG	
5 0.462	20 30.71	11.47	42.18	56.66	-14.48	QP	
6 * 0.462	20 25.42	11.47	36.89	46.66	-9.77	AVG	
7 3.350	00 26.77	10.21	36.98	56.00	-19.02	QP	
8 3.350	00 20.82	10.21	31.03	46.00	-14.97	AVG	
9 10.746	60 18.97	10.26	29.23	60.00	-30.77	QP	
10 10.746	30 12.10	10.26	22.36	50.00	-27.64	AVG	
11 23.129	99 26.66	10.43	37.09	60.00	-22.91	QP	
12 23.129	99 24.23	10.43	34.66	50.00	-15.34	AVG	
Remark: 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB) 2. Margin (dB) = QuasiPeak/Average (dBuV)-Limit (dBuV)							

Page: 37 of 49

Attachment B--Unwanted Emissions Data

--- Radiated Unwanted Emissions

9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB

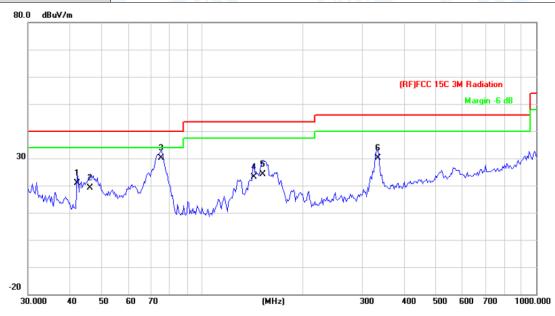
Below the permissible value has no need to be reported.

30MHz~1GHz

Temperature:	23.5℃	Relative Humidity:	46%
Test Voltage:	AC 120V/60Hz		The same of
Ant. Pol.	Horizontal	WUP?	LINE OF THE PERSON OF THE PERS
Test Mode:	Mode 2 with adapter 1#		
Remark:	Only worse case is reported		

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		30.8535	32.28	-14.04	18.24	40.00	-21.76	QP
2		46.6664	34.70	-22.46	12.24	40.00	-27.76	QP
3		75.1822	39.40	-23.15	16.25	40.00	-23.75	QP
4		153.7385	35.61	-21.36	14.25	43.50	-29.25	QP
5	*	332.5187	47.49	-15.24	32.25	46.00	-13.75	QP
6		566.6223	35.10	-8.86	26.24	46.00	-19.76	QP

^{*:}Maximum data x:Over limit !:over margin

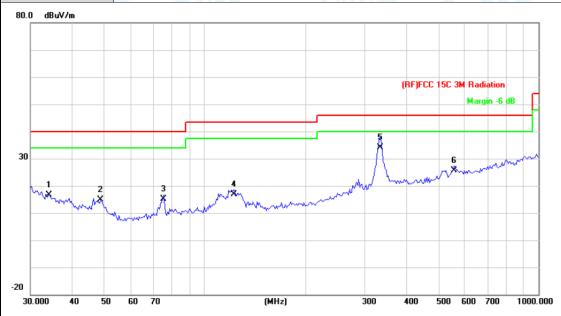

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Page: 38 of 49

Temperature:	23.5℃	Relative Humidity:	46%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical		
Test Mode:	Mode 2 with adapter 1#		WU -
Remark:	Only worse case is reported	ed.	

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		42.0066	41.30	-20.45	20.85	40.00	-19.15	QP
2		46.0164	41.50	-22.25	19.25	40.00	-20.75	QP
3	*	75.1822	53.16	-23.15	30.01	40.00	-9.99	QP
4		142.3243	45.52	-22.38	23.14	43.50	-20.36	QP
5		151.5972	45.73	-21.48	24.25	43.50	-19.25	QP
6		334.8589	45.31	-15.17	30.14	46.00	-15.86	QP

^{*:}Maximum data x:Over limit !:over margin

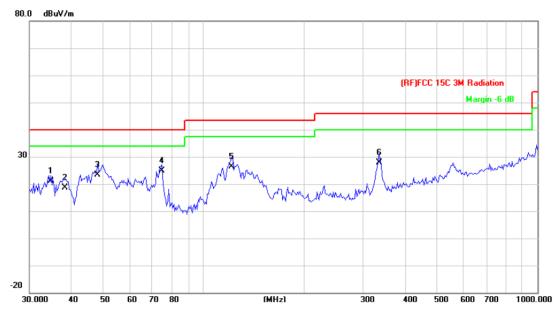

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Page: 39 of 49

Temperature:	23.5℃	Relative Humidity:	46%				
Test Voltage:	AC 120V/60Hz						
Ant. Pol.	Horizontal	Horizontal					
Test Mode:	Mode 2 with adapter 2#	Mode 2 with adapter 2#					
Remark:	Only worse case is report	ed.					
Ī			·				

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		34.0365	33.17	-16.42	16.75	40.00	-23.25	QP
2		48.6719	37.98	-23.12	14.86	40.00	-25.14	QP
3		75.1822	38.40	-23.15	15.25	40.00	-24.75	QP
4		121.9755	39.33	-22.46	16.87	43.50	-26.63	QP
5	*	334.8589	49.42	-15.17	34.25	46.00	-11.75	QP
6		558.7302	34.54	-8.96	25.58	46.00	-20.42	QP

^{*:}Maximum data x:Over limit !:over margin


- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Page: 40 of 49

20V/60Hz	The state of the s				
				MAN	
Vertical					
Mode 2 with adapter 2#					
worse case is re	ported.	W.		NO.	
	e 2 with adapter 2		e 2 with adapter 2#	e 2 with adapter 2#	

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		34.7602	37.99	-16.96	21.03	40.00	-18.97	QP
2		38.3462	37.35	-18.70	18.65	40.00	-21.35	QP
3		47.9940	46.34	-22.89	23.45	40.00	-16.55	QP
4	*	74.6569	48.08	-23.22	24.86	40.00	-15.14	QP
5		121.1231	48.90	-22.45	26.45	43.50	-17.05	QP
6		334.8589	43.06	-15.17	27.89	46.00	-18.11	QP

^{*:}Maximum data x:Over limit !:over margin

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Page: 41 of 49

Above 1GHz

Temperature:	26 ℃	Relative Humidity:	54%				
Test Voltage:	AC 120V/60HZ	AC 120V/60HZ					
Ant. Pol.	Horizontal	Horizontal					
Test Mode:	TX GFSK Mode 2402	TX GFSK Mode 2402MHz with adapter 1#.					
Remark:	Only worse case is rep	oorted.	J. Hilliam				

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F
1	4803.660	51.47	-18.62	32.85	74.00	-41.15	peak	Р
2 *	4804.043	40.33	-18.62	21.71	54.00	-32.29	AVG	Р

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%				
Test Voltage:	AC 120V/60HZ	W. Commercial Commerci					
Ant. Pol.	Vertical	Vertical					
Test Mode:	TX GFSK Mode 2402MHz	TX GFSK Mode 2402MHz with adapter 1#.					
Remark:	Only worse case is reporte	ed.					

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)			Detector	P/F
1	4803.675	50.42	-18.62	31.80	74.00	-42.20	peak	Р
2 *	4804.085	55.41	-18.62	36.79	54.00	-17.21	AVG	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 42 of 49

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60HZ		(UII)
Ant. Pol.	Horizontal		
Test Mode:	TX GFSK Mode 244	1MHz with adapter 1#.	
Remark:	Only worse case is re	eported.	

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F
1	4881.999	50.61	-18.45	32.16	74.00	-41.84	peak	Р
2 *	4882.187	60.79	-18.45	42.34	54.00	-11.66	AVG	Р

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60HZ		
Ant. Pol.	Vertical		MILLOR
Test Mode:	TX GFSK Mode 2441MHz wit	h adapter 1#.	
Remark:	Only worse case is reported.		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	4881.922	41.43	-18.45	22.98	54.00	-31.02	AVG	Р
2	4882.204	49.59	-18.45	31.14	74.00	-42.86	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 43 of 49

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60HZ		CHID Se
Ant. Pol.	Horizontal	1 10	
Test Mode:	TX GFSK Mode 2480MHz wi	th adapter 1#.	
Remark:	Only worse case is reported.		

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F
1	4959.634	56.83	-18.19	38.64	74.00	-35.36	peak	Р
2 *	4959.949	48.76	-18.19	30.57	54.00	-23.43	AVG	Р

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60HZ		
Ant. Pol.	Vertical		110
Test Mode:	TX GFSK Mode 2480MHz	with adapter 1#.	CALL TO
Remark:	Only worse case is reported	ed.	(C)

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	4960.494	52.02	-18.19	33.83	54.00	-20.17	AVG	Р
2	4960.500	70.10	-18.19	51.91	74.00	-22.09	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 44 of 49

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60HZ		Ullip
Ant. Pol.	Horizontal	70 100	
Test Mode:	TX π /4-DQPSK Mode	2402MHz with adapter 1#.	
Remark:	Only worse case is re	ported.	

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	4803.980	50.13	-18.62	31.51	54.00	-22.49	AVG	Р
2	4804.198	59.07	-18.63	40.44	74.00	-33.56	peak	Р

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

26℃	Relative Humidity:	54%
AC 120V/60HZ		
Vertical	The same of the sa	
TX π /4-DQPSK Mode 240	02MHz with adapter 1#.	
Only worse case is reporte	ed.	
	AC 120V/60HZ Vertical TX π /4-DQPSK Mode 240	AC 120V/60HZ

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F
1	4803.524	59.67	-18.62	41.05	74.00	-32.95	peak	Р
2 *	4804.015	48.88	-18.62	30.26	54.00	-23.74	AVG	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 45 of 49

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60HZ		CHILL
Ant. Pol.	Horizontal		
Test Mode:	TX π /4-DQPSK Mod	e 2441MHz with adapter 1#.	U.S.
Remark:	Only worse case is re	eported.	

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	4881.988	45.02	-18.45	26.57	54.00	-27.43	AVG	Р
2	4882.422	57.05	-18.45	38.60	74.00	-35.40	peak	Р

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26 ℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60HZ	000	WILLIAM STATE
Ant. Pol.	Vertical	NU TO	
Test Mode:	TX π /4-DQPSK Mode 2441	MHz with adapter 1#.	
Remark:	Only worse case is reported	d.	

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)			Detector	P/F
1	4881.593	50.88	-18.45	32.43	74.00	-41.57	peak	Р
2 *	4881.988	41.72	-18.45	23.27	54.00	-30.73	AVG	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 46 of 49

Temperature:	26℃	Relative Humidity:	54%			
Test Voltage:	AC 120V/60HZ		Ullin			
Ant. Pol.	Horizontal	Horizontal				
Test Mode:	TX π /4-DQPSK Mode 2	TX π /4-DQPSK Mode 2480MHz with adapter 1#.				
Remark:	Only worse case is repo	rted.				

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F
1	4959.647	49.50	-18.19	31.31	74.00	-42.69	peak	Р
2 *	4959.803	40.65	-18.19	22.46	54.00	-31.54	AVG	Р

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60HZ	Min and a second	THU THE
Ant. Pol.	Vertical		
Test Mode:	TX π /4-DQPSK Mode 2480M	Hz with adapter 1#.	100
Remark:	Only worse case is reported.		

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	4960.455	51.50	-18.19	33.31	54.00	-20.69	AVG	Р
2	4960.487	67.27	-18.19	49.08	74.00	-24.92	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 47 of 49

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60HZ		TO VI
Ant. Pol.	Horizontal		
Test Mode:	TX 8-DPSK Mode 2402MHz	with adapter 1#.	
Remark:	Only worse case is reported	· VIV	

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	4803.630	42.70	-18.62	24.08	54.00	-29.92	AVG	Р
2	4804.121	56.23	-18.62	37.61	74.00	-36.39	peak	Р

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26 ℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60HZ	THE STATE OF THE S	CIE
Ant. Pol.	Vertical	WILLIAM TO	The state of the s
Test Mode:	TX 8-DPSK Mode 2402MI	Hz with adapter 1#.	
Remark:	Only worse case is reporte	ed.	

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F
1	4803.630	54.09	-18.62	35.47	74.00	-38.53	peak	Р
2 *	4803.630	44.69	-18.62	26.07	54.00	-27.93	AVG	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)
 The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 48 of 49

Temperature:	26℃	Relative Humidity:	54%				
Test Voltage:	AC 120V/60HZ		CHID :				
Ant. Pol.	Horizontal	Horizontal					
Test Mode:	TX 8-DPSK Mode 2441MHz with adapter 1#.						
Remark:	Only worse case is report	ed.	WILL STATE OF THE				

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F
1	4881.603	55.50	-18.45	37.05	74.00	-36.95	peak	Р
2 *	4882.004	48.39	-18.45	29.94	54.00	-24.06	AVG	Р

Remark

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%				
Test Voltage:	AC 120V/60HZ		MILES				
Ant. Pol.	Vertical						
Test Mode:	TX 8-DPSK Mode 2441MHz with adapter 1#.						
Remark:	Only worse case is reported	d.					

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	4881.955	46.86	-18.45	28.41	54.00	-25.59	AVG	Р
2	4882.282	54.93	-18.45	36.48	74.00	-37.52	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 49 of 49

Temperature:	26℃	Relative Humidity:	54%			
Test Voltage:	AC 120V/60HZ		MILL			
Ant. Pol.	Horizontal					
Test Mode:	TX 8-DPSK Mode 2480MHz	with adapter 1#.				
Remark:	Only worse case is reported		WILD TO SERVICE			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	4959.619	48.33	-18.19	30.14	54.00	-23.86	AVG	Р
2	4960.130	65.21	-18.19	47.02	74.00	-26.98	peak	Р

Remark:

TOBY

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%				
Test Voltage:	AC 120V/60HZ	10					
Ant. Pol.	Vertical	Upps -					
Test Mode:	TX 8-DPSK Mode 2480MHz with adapter 1#.						
Remark:	Only worse case is reported.						

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)			Detector	P/F
1 *	4960.072	52.04	-18.19	33.85	54.00	-20.15	AVG	Р
2	4960.447	66.35	-18.19	48.16	74.00	-25.84	peak	Р

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

----END OF REPORT-----