

FCC Test Report

FCC ID	:	ACQ-VIP5662W
Equipment	:	WiFi STB
Model No.	:	VIP5662W
Brand Name	:	ARRIS
Applicant	:	ARRIS Group, Inc.
Address	:	101 Tournament Drive, Horsham, Pennsylvania, United States, 19044
Standard	:	47 CFR FCC Part 15.247
Received Date	:	Oct. 02, 2015
Tested Date	:	Oct. 22 ~ Nov. 13, 2015

We, International Certification Corp., would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory.

Approved & Reviewed by:

Gary Chang / Manager

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Local Support Equipment List	8
1.3	Test Setup Chart	8
1.4	The Equipment List	9
1.5	Test Standards	10
1.6	Measurement Uncertainty	10
2	TEST CONFIGURATION	11
2.1	Testing Condition	11
2.2	The Worst Test Modes and Channel Details	11
3	TRANSMITTER TEST RESULTS	12
3.1	Conducted Emissions	12
3.1 3.2	Conducted Emissions Unwanted Emissions into Restricted Frequency Bands	
•		15
3.2	Unwanted Emissions into Restricted Frequency Bands	15 31
3.2 3.3	Unwanted Emissions into Restricted Frequency Bands Unwanted Emissions into Non-Restricted Frequency Bands	15 31 36
3.2 3.3 3.4	Unwanted Emissions into Restricted Frequency Bands Unwanted Emissions into Non-Restricted Frequency Bands Conducted Output Power	15 31 36 38
3.2 3.3 3.4 3.5	Unwanted Emissions into Restricted Frequency Bands Unwanted Emissions into Non-Restricted Frequency Bands Conducted Output Power Number of Hopping Frequency	15 31 36 38 40
3.2 3.3 3.4 3.5 3.6	Unwanted Emissions into Restricted Frequency Bands Unwanted Emissions into Non-Restricted Frequency Bands Conducted Output Power Number of Hopping Frequency 20dB and Occupied Bandwidth	15 31 36 38 40 42

Release Record

Report No.	Version	Description	Issued Date
FR500204AD	Rev. 01	Initial issue	Dec. 08, 2015

FCC Rules	Test Items	Measured	Result
15.207	Conducted Emissions	[dBuV]: 0.391MHz 40.02 (Margin -8.01dB) - AV	Pass
15.247(d)	Radiated Emissions	[dBuV/m at 3m]: 54.25MHz	Pass
15.209	Radiated Emissions	37.75 (Margin -2.25dB) - PK	F 855
15.247(d)	Band Edge	Meet the requirement of limit	Pass
15.247(b)(1)	Conducted Output Power	Power [dBm]: 2.7	Pass
15.247(a)(1)(iii)	Number of Hopping Channels	Meet the requirement of limit	Pass
15.247(a)(1)	Hopping Channel Separation	Meet the requirement of limit	Pass
15.247(a)(1)(iii)	Dwell Time	Meet the requirement of limit	Pass
15.203	Antenna Requirement	Meet the requirement of limit	Pass

Summary of Test Results

1 General Description

1.1 Information

1.1.1 Specification of the Equipment under Test (EUT)

RF General Information						
Frequency Range (MHz)	Bluetooth Mode			Data Rate		
2400-2483.5	BR	2402-2480	0-78 [79]	1 Mbps		
2400-2483.5	EDR	2402-2480	0-78 [79]	2 Mbps		
2400-2483.5	EDR	2402-2480	0-78 [79]	3 Mbps		

Note 1: RF output power specifies that Maximum Peak Conducted Output Power.

Note 2: Bluetooth BR uses a GFSK.

Note 3: Bluetooth EDR uses a combination of π /4-DQPSK and 8DPSK.

Note 4: The device has two versions for different HDMI port numbers (Version 1: HDMI port *1 / Version 2: HDMI port *2.)

1.1.2 Antenna Details

The device will be equipped with 2 brands of antennas (TSKY Ant. & Mag.Layers Ant.).

Ant. No.	Brand	Model	Туре	Connector	Gain (dBi)	Remarks
1	TSKY	A8-A006-00260 (180-100-0694R)	PCB	MHF PLUG	2	
1	Mag.Layers	PCA-5510-2G4C1-A3 (180-101-0694R)	РСВ	MHF PLUG	2	

1.1.3 Power Supply Type of Equipment under Test (EUT)

Power Supply Type	12Vdc from AC adapter
-------------------	-----------------------

1.1.4 Accessories

	Accessories					
No.	Equipment	Description				
1	AC adapter	Brand Name: APD Model Name: WA-30J12FU Power Rating: I/P: 100-120Vac, 50-60Hz, 0.9A O/P: 12.0Vdc, 2.5A Power line: DC 1.8m non-shielded cable w/o core				
2	AC adapter	Brand Name: Delta Model Name: ADP-30DW B Power Rating: I/P: 100-120Vac, 50-60Hz, 1.0A O/P: 12.0Vdc, 2.5A Power line: DC 1.8m non-shielded cable w/o core				
3	AC adapter	Brand Name: LiteOn Model Name: PB-1300-3AR1 Power Rating: I/P: 100-120Vac, 60Hz, 1.0A O/P: 12.0Vdc, 2.5A Power line: DC 1.8m non-shielded cable w/o core				
4	AC adapter	Brand Name: NetBit Model Name: NBS30E120250VU Power Rating: I/P: 100-120Vac, 60Hz, 0.9A O/P: 12.0Vdc, 2.5A Power line: DC 1.8m non-shielded cable w/o core				
5	HDMI Cable	Brand: WEBB & WELLS; Model: HF1257; 1.83m shielded cable w/o core.				
6	Internal HDD	Brand: TOSHIBA; Model name:MQ01ABD100V; Capacity: 1TB				
7	Remote control	Brand: Ruwido; Model: 2761-529				

1.1.5 Channel List

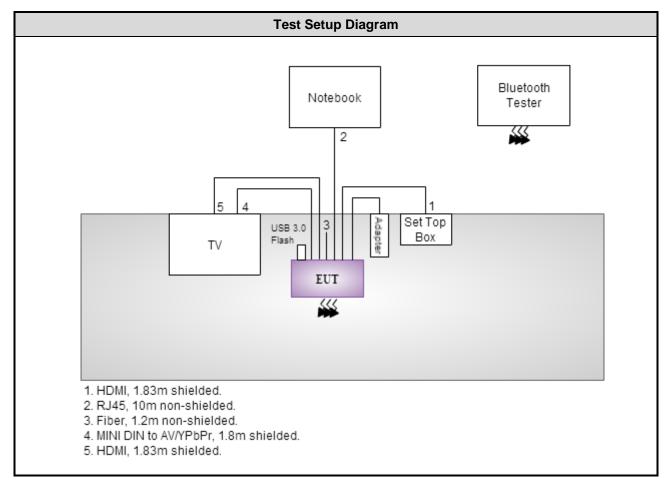
Frequency band (MHz)				2400~2483.5			
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461		

1.1.6 Test Tool and Duty Cycle

Test Tool	СВТ

1.1.7 Power Setting

Modulation Mode	Test Frequency (MHz)				
woodulation wode	2402	2441	2480		
GFSK/1Mbps	Default	Default	Default		
8DPSK/3Mbps	Default	Default	Default		



1.2 Local Support Equipment List

	Support Equipment List						
No. Equipment Brand Model FCC			FCC ID	Signal cable / Length (m)			
1	Notebook	DELL	Latitude E6430	DoC	RJ45, 10m non-shielded.		
2	ΤV	CHIMEI	TL-24LF500D		MINI DIN to AV/YPbPr, 1.8m shielded. HDMI, 1.83m shielded.		
3	USB 3.0 Flash	pqi	U273V 16G				
4	Set Top Box	ARRIS	VIP5602		HDMI, 1.83m shielded.		

Note: No.4, mini DIN to AV/YPbPr cable & HDMI cable were provided by applicant.

1.3 Test Setup Chart

1.4 The Equipment List

Test Item	Conducted Emission									
Test Site	Conduction room 1 / ((CO01-WS)								
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until					
EMC Receiver	R&S	ESCS 30	100169	Oct. 21, 2015	Oct. 20, 2016					
LISN	SCHWARZBECK	Schwarzbeck 8127	8127-667	Nov. 17, 2014	Nov. 16, 2015					
LISN (Support Unit)	SCHWARZBECK	Schwarzbeck 8127	8127-666	Nov. 26, 2014	Nov. 25, 2015					
RF Cable-CON	Woken	CFD200-NL	CFD200-NL-001	Dec. 31, 2014	Dec. 30, 2015					
50 ohm terminal (Support Unit)	NA	50	04	Apr. 15, 2015	Apr. 14, 2016					
Measurement Software	AUDIX	e3	6.120210k	NA	NA					

Test Item	Radiated Emission					
Test Site	966 chamber1 / (03CH	H01-WS)				
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until	
Spectrum Analyzer	R&S	FSV40	101498	Dec. 09, 2014	Dec. 08, 2015	
Receiver	R&S	ESR3	101657	Jan. 15, 2015	Jan. 14, 2016	
Bilog Antenna	SCHWARZBECK	VULB9168	VULB9168-522	Aug. 20, 2015	Aug. 19, 2016	
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1095	Oct. 07, 2015	Oct. 06, 2016	
Horn Antenna 18G-40G	SCHWARZBECK	BBHA 9170	BBHA 9170508	Jan. 05, 2015	Jan. 04, 2016	
Loop Antenna	TESEQ	HLA6120	24155	Mar. 12, 2015	Mar. 11, 2016	
Preamplifier	Burgeon	BPA-530	SN:100219	Sep. 10, 2015	Sep. 09, 2016	
Preamplifier	Agilent	83017A	MY39501308	Oct. 02, 2015	Oct. 01, 2016	
Preamplifier	EMC	EMC184045B	980192	Sep. 01, 2015	Aug. 31, 2016	
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16014/4	Dec. 15, 2014	Dec. 14, 2015	
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16019/4	Dec. 15, 2014	Dec. 14, 2015	
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16139/4	Dec. 15, 2014	Dec. 14, 2015	
LF cable 3M	Woken	CFD400NL-LW	CFD400NL-001	Dec. 15, 2014	Dec. 14, 2015	
LF cable 10M	Woken	CFD400NL-LW	CFD400NL-002	Dec. 15, 2014	Dec. 14, 2015	
Measurement Software	AUDIX	e3	6.120210g	NA	NA	

Note: Calibration Interval of instruments listed above is one year.

Test Item	RF Conducted				
Test Site	(TH01-WS)				
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until
Spectrum Analyzer	R&S	FSV40	101063	Feb. 03, 2015	Feb. 02, 2016
Power Meter	Anritsu	ML2495A	1241002	Sep. 21, 2015	Sep. 20, 2016
Power Sensor	Anritsu	MA2411B	1207366	Sep. 21, 2015	Sep. 20, 2016
Measurement Software	Sporton	Sporton_1	1.3.30	NA	NA
Bluetooth Tester	ROHDE&SCHWARZ	CBT	100959	Mar. 03, 2015	Mar. 02, 2016
Note: Calibration Inter	rval of instruments listed	d above is one year.			

1.5 Test Standards

According to the specification of EUT, the EUT must comply with following standards and KDB documents.

47 CFR FCC Part 15.247 FCC Public notice DA 00-705 ANSI C63.10-2013

1.6 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Measurement Uncertainty	
Parameters	Uncertainty
Bandwidth	±34.134 Hz
Conducted power	±0.808 dB
Power density	±0.463 dB
Conducted emission	±2.670 dB
AC conducted emission	±2.92 dB
Radiated emission ≤ 1GHz	±3.72 dB
Radiated emission > 1GHz	±5.65 dB

2 Test Configuration

2.1 Testing Condition

Test Item	Test Site	Ambient Condition	Tested By
AC Conduction	CO01-WS	21°C / 59%	Peter Lin
Radiated Emissions	03CH01-WS	24°C / 66%	Aska Huang Morgan Chen
RF Conducted	TH01-WS	23°C / 65%	Alex Huang

➢ FCC site registration No.: 657002

➢ IC site registration No.: 10807A-1

2.2 The Worst Test Modes and Channel Details

Test item	Mode	Test Frequency (MHz)	Data Rate (Mbps)	Test Configuration
Conducted Emissions	GFSK	2402	1Mbps	
Radiated Emissions ≤ 1GHz	GFSK	2402	1Mbps	
Radiated Emissions > 1GHz	GFSK 8DPSK	2402, 2441, 2480 2402, 2441, 2480	1Mbps 3Mbps	
Conducted Output Power	GFSK л /4 QDPSK 8DPSK	2402, 2441, 2480 2402, 2441, 2480 2402, 2441, 2480	1Mbps 2Mbps 3Mbps	
Number of Hopping Channels	GFSK 8DPSK	2402~2480 2402~2480	1Mbps 3Mbps	
Hopping Channel Separation	GFSK 8DPSK	2402, 2441, 2480 2402, 2441, 2480	1Mbps 3Mbps	
Dwell Time	GFSK 8DPSK	2402 2402	1Mbps 3Mbps	

NOTE:

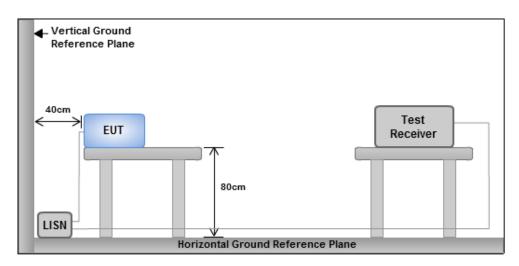
1. 4 Adapters had been pretested and found that **Adapter 1** was the worst case and was selected for final testing. (Adapter 1: APD; Adapter 2: Delta, Adapter 3: LiteOn Adapter 4: NetBit).

2. The device has two versions for different HDMI port numbers (Version 1: HDMI port *1; Version 2: HDMI port *2). 2 versions had been pretested and found that **Version 2** was the worst case and was selected for final testing.

3. Antenna 1 and Antenna 2 had been pretested and found that **Antenna1** was the worst case and was selected for final testing. (Antenna 1: TSKY; Antenna 2: Mag.Layers).

3 Transmitter Test Results

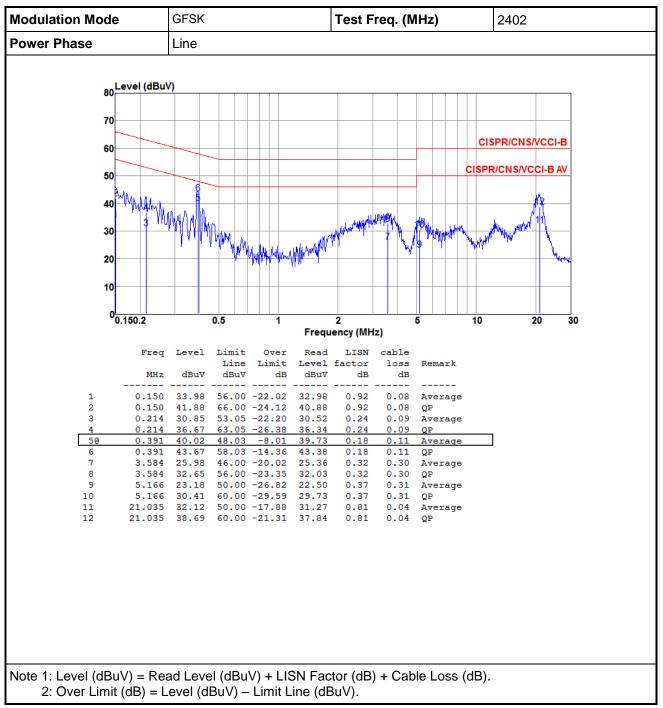
3.1 Conducted Emissions


3.1.1 Limit of Conducted Emissions

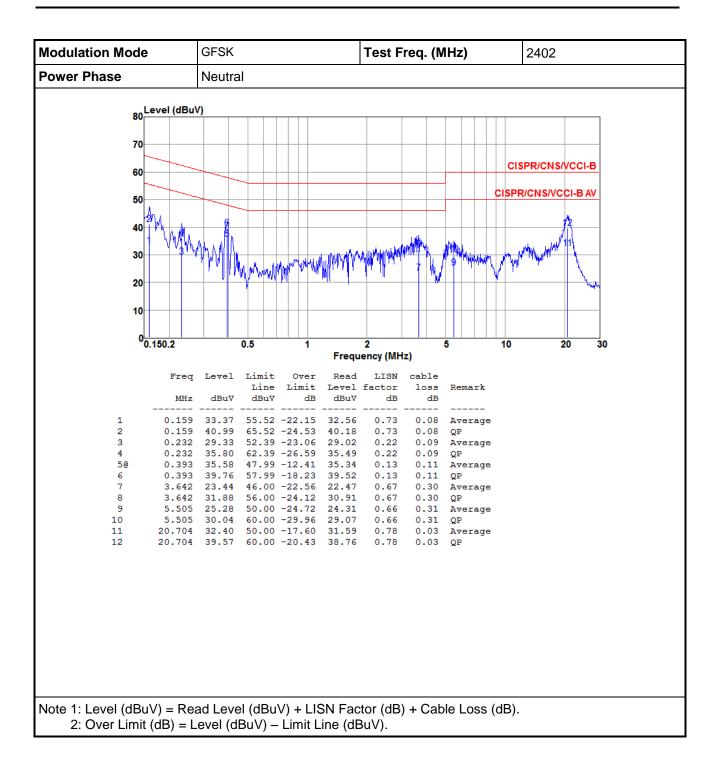
	Conducted Emissions Limit	
Frequency Emission (MHz)	Quasi-Peak	Average
0.15-0.5	66 - 56 *	56 - 46 *
0.5-5	56	46
5-30	60	50
Note 1: * Decreases with the logarith	nm of the frequency.	

3.1.2 Test Procedures

- 1. The device is placed on a test table, raised 80 cm above the reference ground plane. The vertical conducting plane is located 40 cm to the rear of the device.
- The device is connected to line impedance stabilization network (LISN) and other accessories are connected to other LISN. Measured levels of AC power line conducted emission are across the 50 Ω LISN port.
- 3. AC conducted emission measurements is made over frequency range from 150 kHz to 30 MHz.
- 4. This measurement was performed with AC 120V/60Hz


3.1.3 Test Setup

Note: 1. Support units were connected to second LISN.


2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

3.1.4 Test Result of Conducted Emissions

3.2 Unwanted Emissions into Restricted Frequency Bands

3.2.1 Limit of Unwanted Emissions into Restricted Frequency Bands

Restricted Band Emissions Limit									
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)						
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300						
0.490~1.705	24000/F(kHz)	33.8 - 23	30						
1.705~30.0	30	29	30						
30~88	100	40	3						
88~216	150	43.5	3						
216~960	200	46	3						
Above 960	500	54	3						

Note 1:

Qusai-Peak value is measured for frequency below 1GHz except for 9–90 kHz, 110–490 kHz frequency band. Peak and average value are measured for frequency above 1GHz. The limit on average radio frequency emission is as above table. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit **Note 2:**

Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below, Frequency at or above 30 MHz: 20 dB/decade Frequency below 30 MHz: 40 dB/decade.

3.2.2 Test Procedures

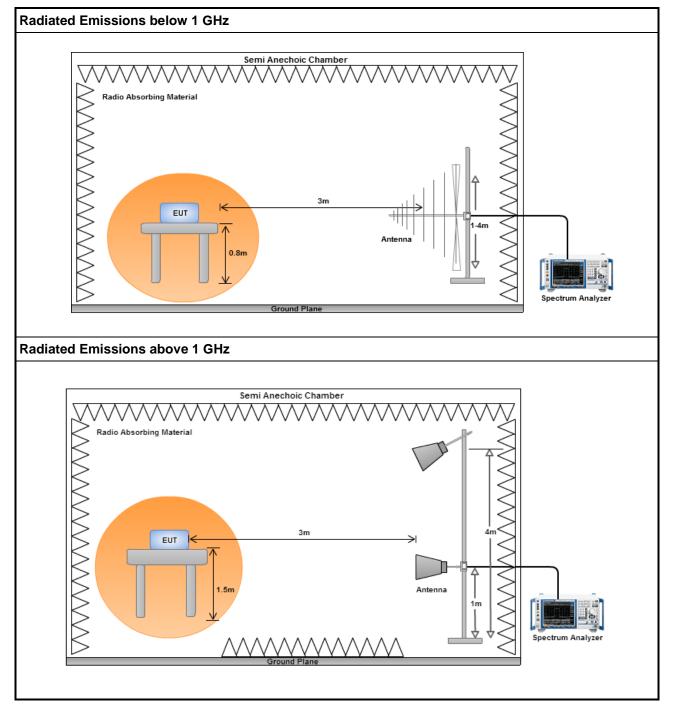
- Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at test table. For emissions testing at or below 1 GHz, the table height is 80 cm above the reference ground plane. For emission measurements above 1 GHz, the table height is 1.5 m
- Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
- 3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.

Note:

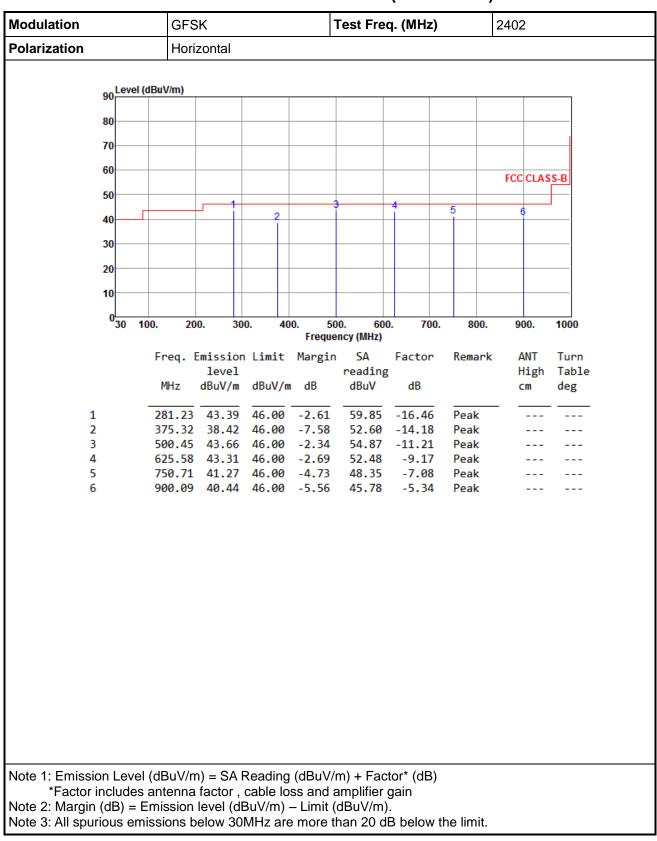
- 1. 120kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1GHz.
- 2. Radiated emission above 1GHz / Peak value RBW=1MHz, VBW=3MHz and Peak detector

Radiated emission above 1GHz / Average value for harmonics The average value is: Average = Peak value + 20log(Duty cycle) Where the duty factor is calculated from following formula for DH5 packet type which has worst duty factor:

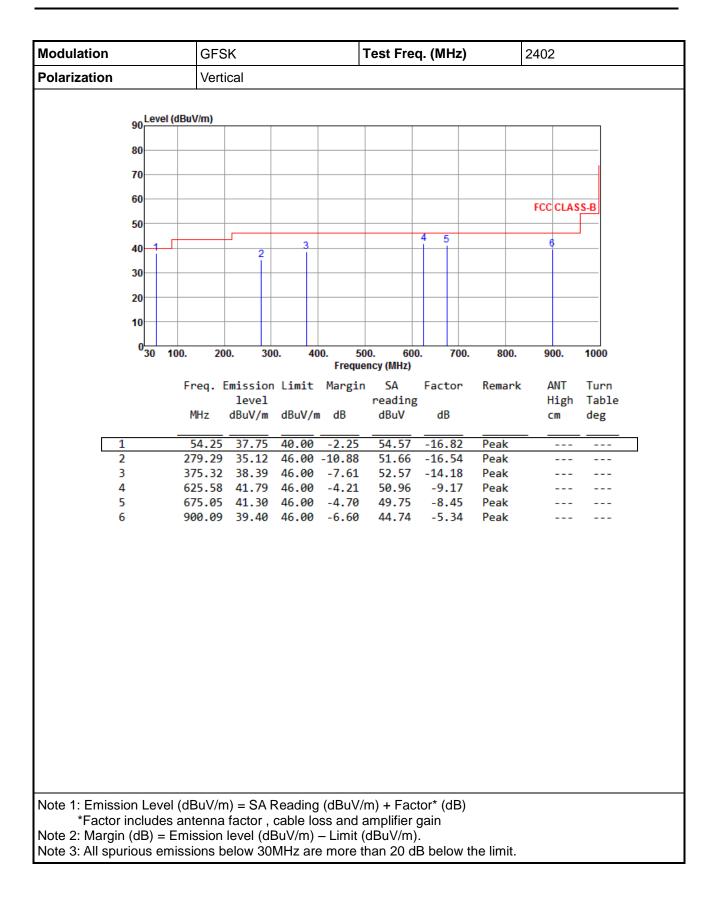
3.

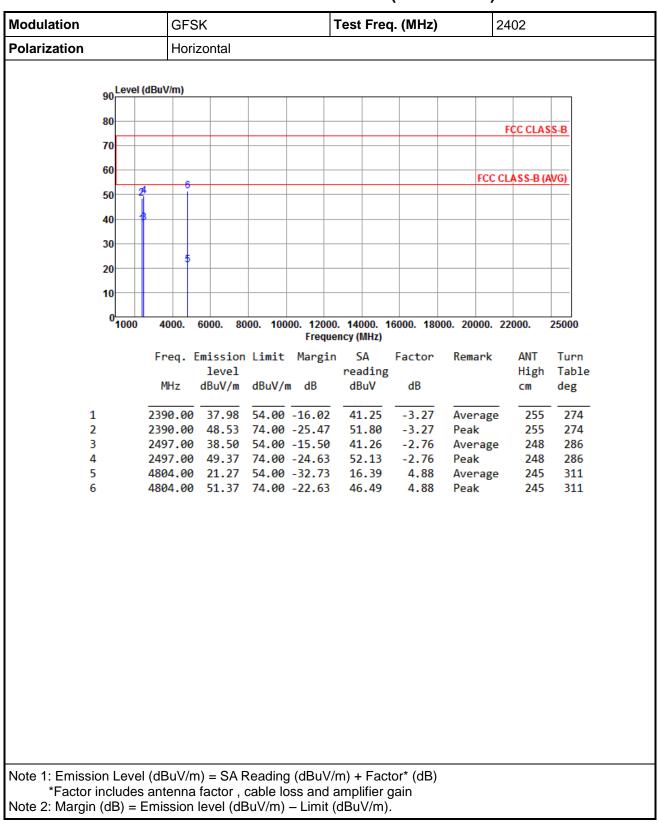

20log (Duty cycle) = 20log $\frac{1s / 1600 * 5}{100 \text{ ms}}$ = -30.1dB

4. Radiated emission above 1GHz / Average value for other emissions

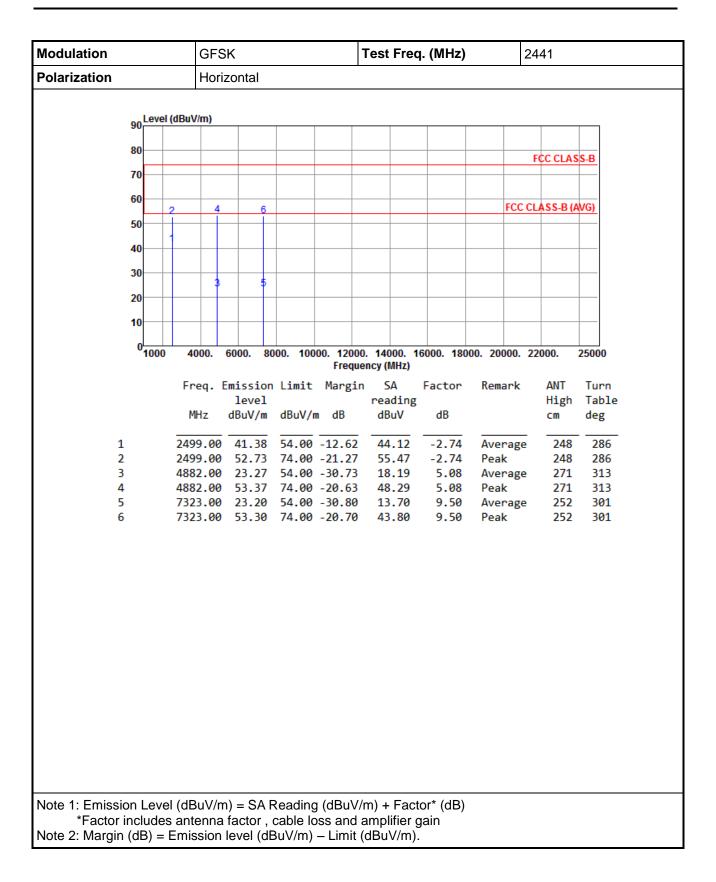

4. RBW=1MHz, VBW=1/T and Peak detector

3.2.3 Test Setup

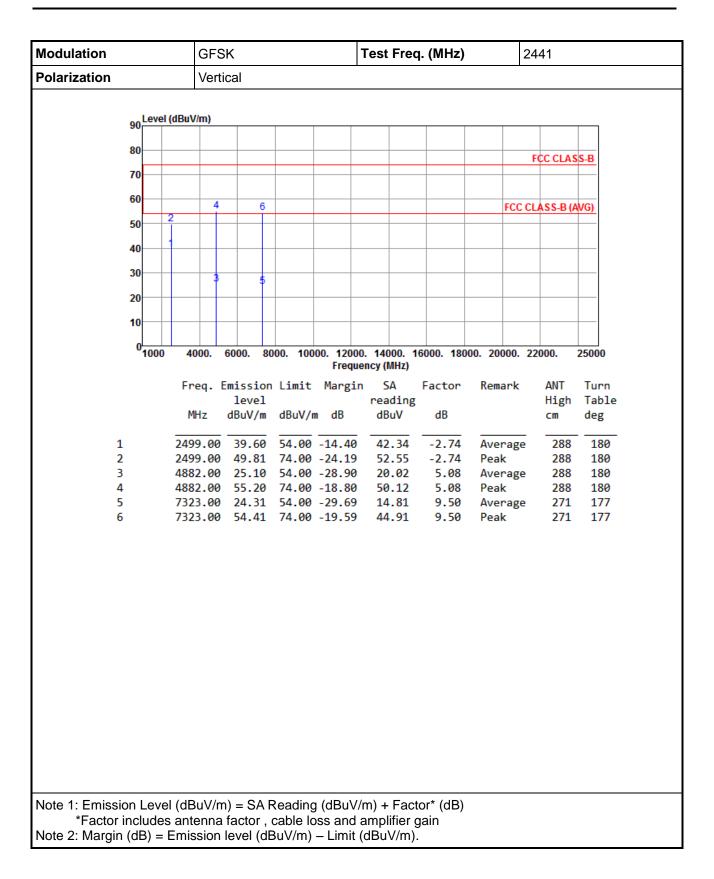




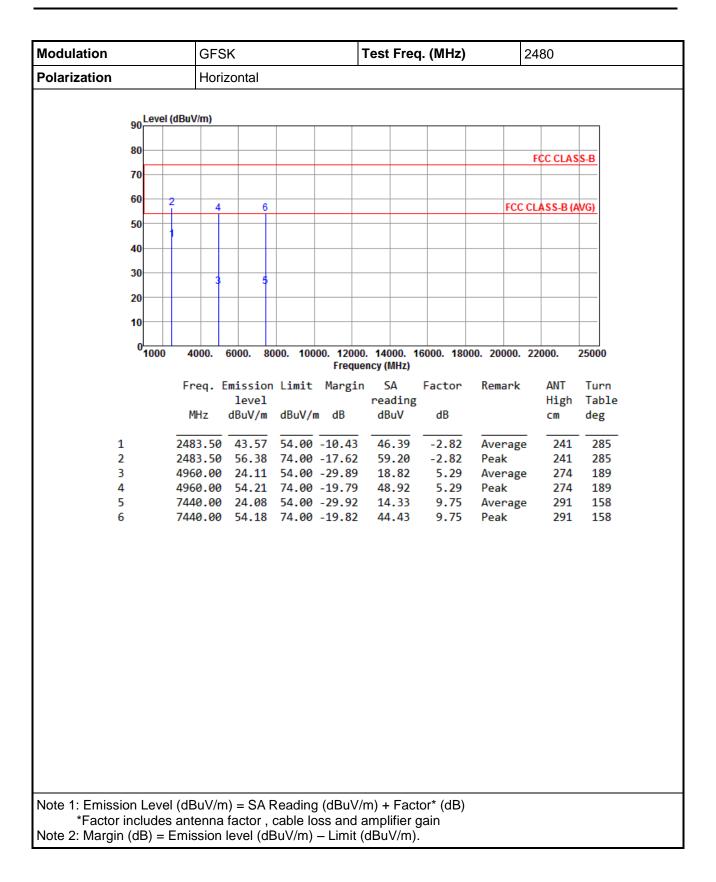
3.2.4 Transmitter Radiated Unwanted Emissions (Below 1GHz)

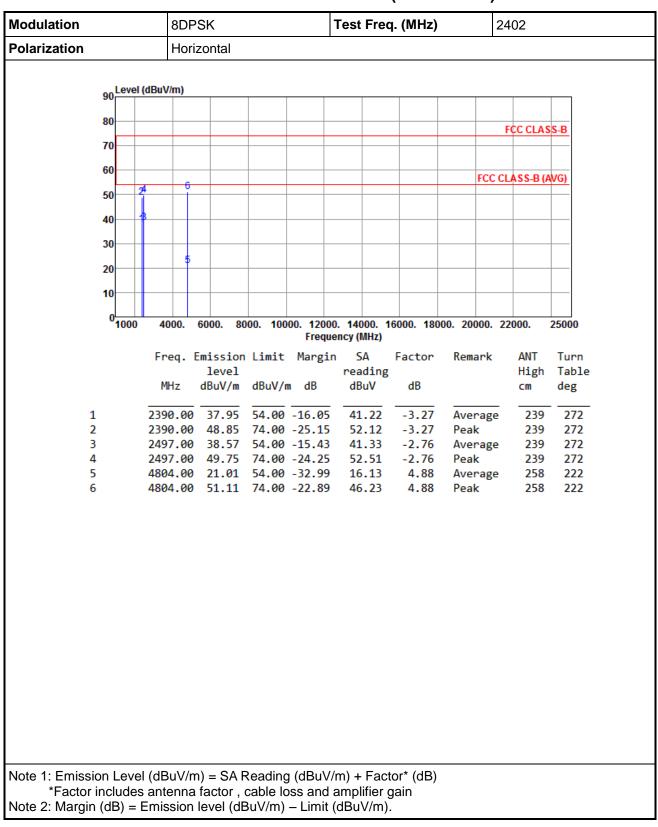


3.2.5 Transmitter Radiated Unwanted Emissions (Above 1GHz) for GFSK

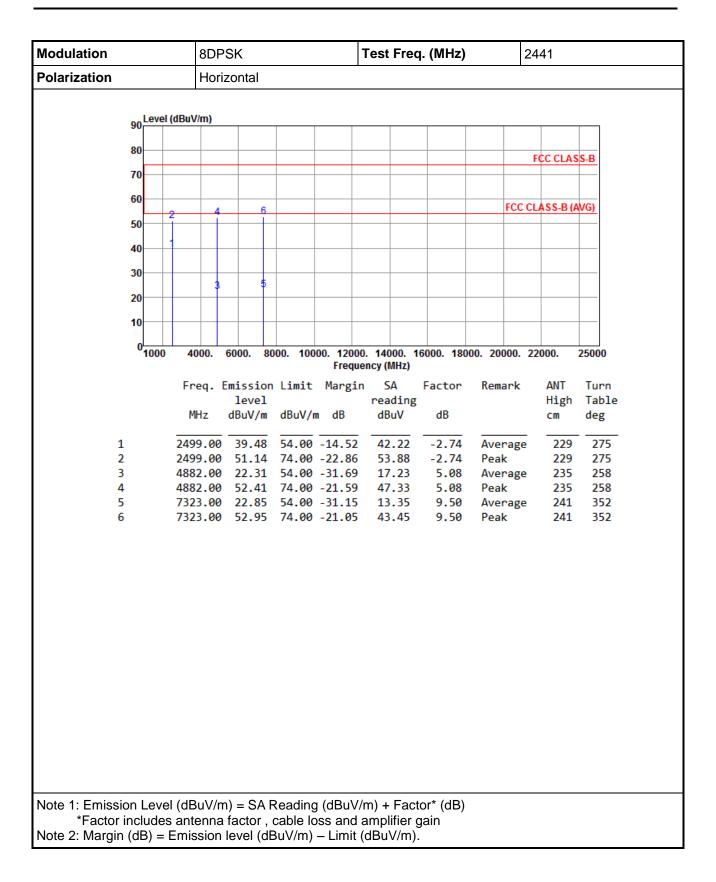


Modulation	GFS	SK		-	Test Fred	ι. (MHz)		2402	
Polarization	Vert	ical							
Level	(dBuV/m)								
90									
80								FCC CLAS	S-B
70									
60									
	6						FCC	CLASS-B (A	WG)
50 2									
40	5								
30									
20	5								
20									
10									
0 <mark>0</mark> 0	4000.	6000. 80	00. 100	00. 12000	. 14000. 1	6000, 180	00. 20000.	22000.	25000
1000					ncy (MHz)		20000	22000	20000
	Freq.	Emission	Limit	Margin		Factor	Remark		Turn
	MHz	level dBuV/m	dD. 1/1	- dD	reading dBuV	dB		High	
	PINZ	ubuv/m	ubuv/i	ii ub	ubuv	ub		CM	deg
1		36.63			39.90	-3.27	Average		
2 3		47.15 40.10			50.42	-3.27	Peak	285	53 53
4		40.10			42.86 51.51	-2.76 -2.76	Averag Peak	e 285 285	
5	4804.00	23.73	54.00	-30.27	18.85	4.88			65
6	4804.00	53.83	74.00	-20.17	48.95	4.88	Peak	280	65
Note 1: Emission Leve *Factor includes									



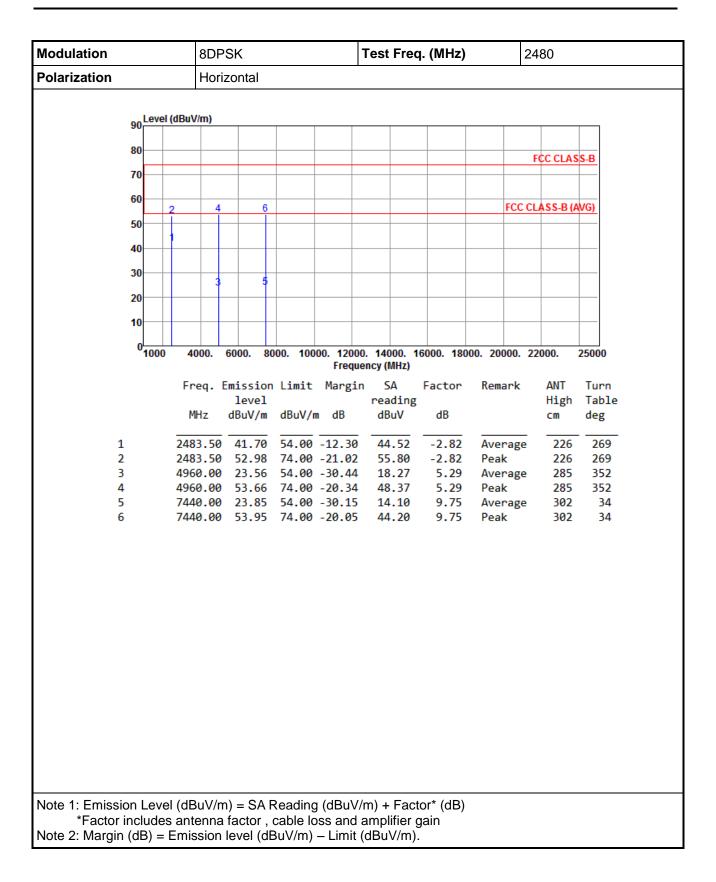


Modulation		GFS	K			Test Free	q. (MHz)		2480		
Polarization		Verti	cal								
0	Level (d	dBuV/m)									
80									FCC	CLAS	S-B
70)										
60		4									
			6					FC	C CLAS	S-B (A	VG)
50)										
40)										
30											
20											
10											
(1000	4000.	6000. 80	00. 100	00. 12000	. 14000. 1	6000. 180	00. 20000	. 2200).	25000
						ency (MHz)					
		Freq. E	mission	Limit	Margin		Factor	Remark		NT	Turn
		MHz	level dBuV/m	dD.M.	, dp	reading dBuV	dB			igh m	Table
		MAZ	ubuv/m	ubuv/i	li ub	ubuv	ub		Ľ	m	deg
1		2483.50				40.39	-2.82	Averag		281	178
2 3		2483.50 4960.00				52.30	-2.82 5.29	Peak		281 298	178 322
4		4960.00				20.60 50.70	5.29	Averag Peak		296	
5		7440.00					9.75		ge	301	32
6		7440.00	54.87	74.00	-19.13	45.12	9.75	Peak		301	32
Note 1: Emission *Factor inc											
Note 2: Margin (d											



3.2.6 Transmitter Radiated Unwanted Emissions (Above 1GHz) for 8DPSK

Modulation	8DF	SK		٦	Test Fred	ι. (MHz)		2402	
Polarization	Vert	ical							
onLeve	el (dBuV/m)								
90									
80								FCC CLAS	S-B
70									
60	6						FCC	CLASS-B (A	WG)
50	24								
40									
30	5								
20									
10									
0 ^L 100	0 4000.	6000. 80	00. 100			6000. 180	00. 20000.	22000.	25000
	F			-	ncy (MHz)	F	Demoste	ANT	T
	Freq.	Emission level	LIMIC	margin	SA reading	Factor	Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/r	n dB	dBuV	dB		Cm	deg
1		36.54			39.81	-3.27	Averag		
2 3		47.24 37.95			50.51 40.71	-3.27 -2.76	Peak Averag	275 e 275	49 49
4		48.37				-2.76	Peak	275	
5		23.44				4.88	Averag		258
6	4804.00	53.54	74.00	-20.46	48.66	4.88	Peak	302	258
Note 1: Emission Lev	el (dBuV/r	n) = SA F	Reading	g (dBuV/ı	n) + Fact	or* (dB)			
*Factor include = Note 2: Margin (dB)	es antenna		cable ic	55 anu a	anbinei ő	Jam			



Modulation			8DF	SK			Test Free	q. (MHz)		2441	
Polarization			Vert	ical							
	Le	vel (dB	uV/m)								
	90		Ţ,								
	80				_					FCC CLAS	SS-B
	70										
	60										
		2	4	6					FCC	CLASS-B (A	WG)
	50	Ĩ									
	40										
	30										
			3	5							
	20										
	10										
	0 <mark>10</mark>		4000.	6000. 8	000 100	00 1200	0. 14000. 1	6000 490	00 20000	22000	25000
	10	00	4000.	0000. 0			ency (MHz)	10000. 180	00. 20000.	22000.	23000
		F	req.	Emissio	n Limit	Margi	n SA	Factor	Remark	ANT	Turn
				level			reading			High	
			MHz	dBuV/m	dBuV/ı	n dB	dBuV	dB		CM	deg
1		24	199.00	38.14	54.00	-15.86	40.88	-2.74	Average	e 291	179
2					74.00			-2.74	Peak	291	179
3					54.00 74.00			5.08 5.08	Averag Peak	e 302 302	75 75
5					54.00			9.50			
6					74.00			9.50	Peak	289	276
Note 1: Emissi	on Le	vel (c	BuV/n	n) = SA	Reading	dBuV	/m) + Fac	tor* (dB)			
*Factor	incluc	les ai	ntenna	factor,	cable lo	oss and	amplifier	gain			
Note 2: Margin	(dB)	= Em	nission	level (d	BuV/m)	– Limit	(dBuV/m)				

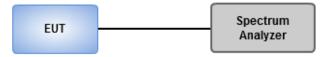
Modulation		8DP	8DPSK Test Freq. (MHz) 2480								
Polarization	Verti	Vertical									
	on Level	(dBuV/m)									
	80								FC	C CLAS	S-B
	70										
	60										
		2 4	6					FC		ASS-B (A	VG)
	50										
	40										
	30										
	20		3								
	10										
	0 <mark>1000</mark>	4000.	6000. 80	00. 100	00. 12000	. 14000. 1	6000. 180	00. 2000). 220	000.	25000
						ncy (MHz)					
		Freq. E		Limit	Margin		Factor	Remar	k	ANT	Turn
		MHz	level dBuV/m	dBuV/	, dB	reading dBuV	dB			High cm	Table deg
		PHTZ	ubuv/iii	ubuv/i	ii ub	ubuv	ub			CIII	ueg
1		2483.50				43.10	-2.82	Avera	ge	281	192
2		2483.50 4960.00				54.94 20.04	-2.82 5.29	Peak		281 302	192 346
4		4960.00					5.29	Avera Peak	Re	302	
5		7440.00	24.15	54.00	-29.85	14.40	9.75		ge	311	279
6		7440.00	54.25	74.00	-19.75	44.50	9.75	Peak		311	279
Note 1: Emissio	n Leve	el (dBuV/m	n) = SA F	Reading	dBuV/	m) + Fact	or* (dB)				
*Factor in	nclude	s antenna	factor,	cable lo	oss and a	amplifier g	gain				
Note 2: Margin	(dB) =	Emission	level (dE	3uV/m)	– Limit (dBuV/m)					

3.3 Unwanted Emissions into Non-Restricted Frequency Bands

3.3.1 Limit of Unwanted Emissions into Non-Restricted Frequency Bands

The peak output power measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz.

3.3.2 Test Procedures

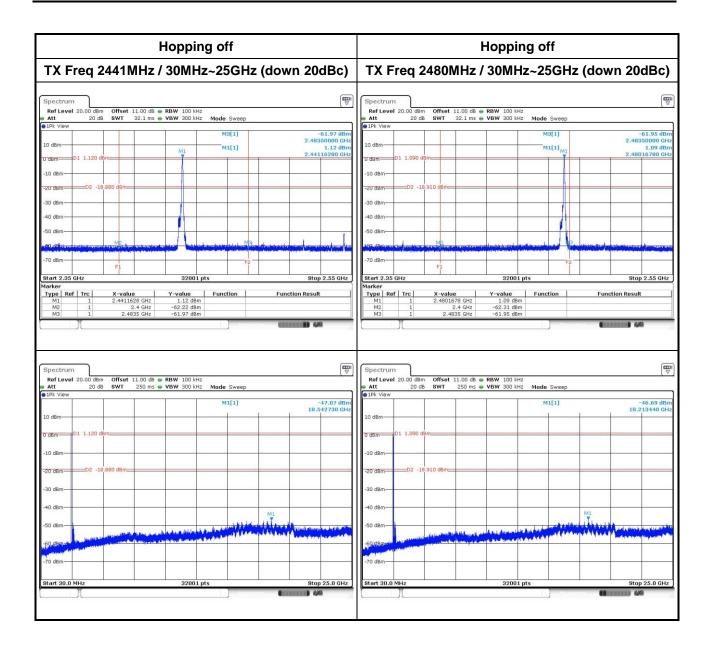

Reference Level Measurement

- 1. Set the RBW = 100 kHz, VBW = 300 kHz, Detector = peak.
- 2. Set Sweep time = auto couple, Trace mode = max hold.
- 3. Allow trace to fully stabilize.
- 4. Use the peak marker function to determine the maximum amplitude level.

Unwanted Emissions Level Measurement

- 1. Set RBW = 100 kHz, VBW = 300 kHz, Detector = peak.
- 2. Trace Mode = max hold, Sweep = auto couple.
- 3. Allow the trace to stabilize.
- 4. Use peak marker function to determine maximum amplitude of all unwanted emissions within any 100 kHz bandwidth.

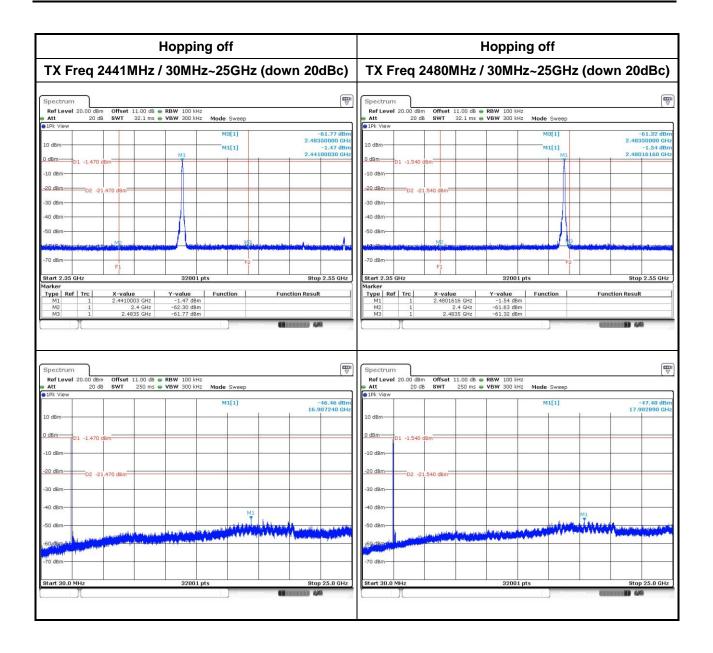
3.3.3 Test Setup



3.3.4 Unwanted Emissions into Non-Restricted Frequency Bands

GFSK

Hoppin		Hopping off						
30MHz~25GHz ((down 20dBc)	ТХ	TX Freq 2402MHz / 30MHz~25GHz (down 20dBc)					
Spectrum		Spectru	Sector in the sector in the sector is the se				(I	
Ref Level 20.00 dBm Offset 11.00 dB @ RBW 100 kHz Att 20 dB SWT 32.1 ms @ VBW 300 kHz	z Mode Sweep	👄 Att	20 dB SWT	t 11.00 dB	Hz Hz Mode Sweep	1		
1Pk View	M3[1] 2.48	-60.80 dBm 3350000 GHz	×		M3[1]		-61.75 dE 2.48350000 G	
10 dBm D1 1.880 dBm Inc. 1000 M1	M1[1] 2.43	1.88 dBm 10 dBm- 0100060 GHz 0 dBm-	D1 1.210 dBm		M1[1]		1.21 dE 2.40217020 G	
-10 dBm	nu (), un mul	-10 dBm-						
20 dBm D2 -18.120 dBm D2 -18.120 dBm	HIRIN (NY 1917) N	-20 dBm-	D2 -18,790 dBm					
40 dBm		-40 dBm-						
50 dBm	Citizen den manne hit hitle Willer	-50 dBm-				. 1	1	
		-70 dBm-		had a set of the set of the loss of a structure	a har an		and the state of the sector of	
F1 Start 2.35 GHz 32001 g	pts Sto	pp 2.55 GHz Start 2.3	F1	3200	1 pts		Stop 2.55 GH	
		Marker			Function	Eun	ction Result	
larker	Function Function Resul	It Type F						
arker		It Type I M M1 M2 M3	1 2.402	1702 GH2 1.21 dB 2.4 GH2 -53.01 dB 4835 GHz -61.75 dB	im im	Auring	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	
Iarker Y-value Y-value Type Ref Trc X-value Y-value M1 1 2.4310006 GHz 1.68 dBm M2 1 2.4 GHz -53.53 dBm M3 1 2.4835 GHz -60.80 dBm Spectrum Ref Level 20.00 dBm Offset 11.00 dB RBW 100 kHz		M1 M2 M3	1 2.402 1 2.402	1702 GHz 1.21 dB 2.4 GHz -53.01 dB 4835 GHz -61.75 dB 4835 GHz -61.75 dB	Hz		(1	
tarker Type Ref Trc X-value Y-value M2 1 2.431006 GHz 1.98 dbm M2 1 2.4 GHz -53.53 dbm M3 1 2.4635 GHz -60.80 dbm Spectrum RefLevel 20.00 dbm Offset 11.00 db ● RBW 100 kHz Att 20 db SWT 250 ms ● VBW 300 kHz	Mode Sweep	(TW) Spectru Ref Lev D IPK Ver	1 2.402 1 2.402 1 2.	1702 GHz 1.21 dB 2.4 GHz -53.01 dB 4835 GHz -61.75 dB	Im I		(11111) 444 (1	
Spectrum Spectrum Ref Level 20.00 dBm Offset 11.00 dB @ RBW 100 kHz	: : Mode Sweep M1[1]		1 2.402 1 2.402 1 2.	1702 GHz 1.21 dB 2.4 GHz -53.01 dB 4835 GHz -61.75 dB 4835 GHz -61.75 dB	Hz) 49	
Spectrum Offset 11.00 dB Offset 11.00 dB Offset 11.00 dB Offset 100 dB VBW 300 kHz 100 dB Offset 11.00 dB PBW 300 kHz 100 dB 01 1.880 dB 01 dB 01 1.880 dB 01 dB <td>: : Mode Sweep M1[1]</td> <td></td> <td>1 2.400 1 2.000 dBm Offse 20 dB SWT</td> <td>1702 GHz 1.21 dB 2.4 GHz -53.01 dB 4835 GHz -61.75 dB 4835 GHz -61.75 dB</td> <td>Im Im I</td> <td></td> <td>(10000) (440 (1 -47.46 db</td>	: : Mode Sweep M1[1]		1 2.400 1 2.000 dBm Offse 20 dB SWT	1702 GHz 1.21 dB 2.4 GHz -53.01 dB 4835 GHz -61.75 dB 4835 GHz -61.75 dB	Im I		(10000) (440 (1 -47.46 db	
Spectrum Offset 11.00 dB @ RBW Ref Trc X-value Y-value Y-value Y-value I.68 dBm M1 1 2.4310006 GHz 1.68 dBm 1.6	: : Mode Sweep M1[1]	-46.79 dBm -46.79 dBm 0 dBm 0 dBm	1 2.402 1 2.402 1 2.	1702 GHz 1.21 dB 2.4 GHz -53.01 dB 4835 GHz -61.75 dB 4835 GHz -61.75 dB	Im I		(10000) (440 (1 -47.46 db	
Spectrum Spectrum Ref Level 20.00 dBm Offset 11.00 dB RBW 100 kHz M3 1 2.4835 GHz -60.00 dBm	: : Mode Sweep M1[1]		1 2.400 1 2.000 dBm Offse 20 dB SWT	1702 GHz 1.21 dB 2.4 GHz -53.01 dB 4835 GHz -61.75 dB 4835 GHz -61.75 dB	Im I		(10000) (440 (1 -47.46 db	
Aarker Y-value Y-value Type Ref Trc X-value Y-value M1 1 2.430006 GHz 1.88 dBm M2 1.88 dBm M2 1 2.4 GHz -52.53 dBm M3 1.2.4835 GHz -560.80 dBm M3 1 2.4835 GHz -60.80 dBm M3 -60.80 dBm Spectrum Ref Level 20.00 dBm Offset 11.00 dB • RBW 100 kHz NW 300 kHz NW 300 kHz IV Nit 20 dB SWT 250 ms • VBW 300 kHz NW 300 kHz IV dBm 0.00 dBm 0.01 1.880 dBm 0.00 dBm 0.00 dBm 10 dBm 0.01 1.880 dBm 0.00 dBm 0.00 dBm 0.00 dBm -20 dBm 0.2 -18.120 dBm 0.00 dBm 0.00 dBm 0.00 dBm	: : Mode Sweep M1[1]	-46.79 dBm 804690 GHz 0 dBm -20 dBm	1 2.402 1 2.402 1 2.00 dBm Offse 20 dB SWT v	1702 GHz 1.21 dB 2.4 GHz -53.01 dB 4835 GHz -61.75 dB 4835 GHz -61.75 dB	Im I		(10000) (440 (1 -47.46 db	
Spectrum Offset 11.00 dB RBW 100 kHz 1 2.4 GHz -58.53 dBm M3 1 2.4 GHz -58.53 dBm M3 1 2.4 GHz -60.80 dBm M4 20 dB Offset 11.00 dB @ RBW 100 kHz Spectrum 20 dB SWT 250 ms @ VBW 300 kHz 10 dBm 01 1.880 dBm 0 10 dBm 01 1.880 dBm 0 30 dBm 02 -18.120 dBm 0 0	: : Mode Sweep M1[1]	-46.79 dBm 804690 GHz 10 dBm -20 dBm -30 dBm	1 2.402 1 2.402 1 2.00 dBm Offse 20 dB SWT v	1702 GHz 1.21 dB 2.4 GHz -53.01 dB 4835 GHz -61.75 dB 4835 GHz -61.75 dB	Im I		(10000) (440 (1 -47.46 db	
Jarker Y-value Y-value M1 1 2.4310006 GHz 1.68 dBm M2 1 2.4310006 GHz 1.88 dBm M3 1 2.4835 GHz -53.53 dBm M3 1 2.4835 GHz -60.00 dBm Spectrum Spectrum Ref Level 20.00 dBm Offset 11.00 dB ● RBW 100 kHz Att 20 dB SWT 250 ms ● VBW 300 kHz 10 dBm 01 1.880 dBm 0 0 10 dBm -02 -18.120 dBm 0 0 40 dBm -02 -18.120 dBm 0 0	2 2 Mode Sweep M1[1] 15. M1 M1 M1		1 2.402 1 2.402 1 2.00 dBm Offse 20 dB SWT v	1702 GHz 1.21 dB 2.4 GHz -53.01 dB 4835 GHz -61.75 dB 4835 GHz -61.75 dB	H2 H2 H2 M0de Sweep M1[1] M1 M1		(1 -+7:46 df 15:900670 G	
Jarker Y-value Y-value Type Ref Trc X-value Y-value M2 1 2.430006 GHz 1.98 dBm M3 1 2.4 GHz -59.59 dBm M3 1 2.44835 GHz -60.80 dBm M3 1 2.44835 GHz -60.80 dBm Spectrum Ref Level 20.00 dBm Offset 11.00 dB ● RBW 100 kHz Att 20 dB SWT 250 ms ● VBW 300 kHz 10 dBm D1 1.860 dBm 0 0 20 dB D2 -18.120 dBm 0 0 30 dBm 02 -18.120 dBm 0 0	M1[1] 15:		1 2.402 1 2.402 1 2.00 dBm Offse 20 dB SWT v	1702 CH2 1.21 db 4235 CH2 -53.01 db 4235 CH2 -61.75 db 11.00 db PBW 100 k 250 ms VBW 300 k	H2 H2 M0de Sweep M1[1]		(10000) (440 (1 -47.46 db	
Iarker Y-value Y-value Y 1 2.431006 GHz 1.68 dbm M2 1 2.4 GHz -53.53 dbm M3 1 2.4635 GHz -60.80 dbm M3 1 2.4635 GHz -60.80 dbm Spectrum Image: Spectrum Image: Spectrum Image: Spectrum Ref Level 20.00 dBm Offset 11.00 dB @ RBW 100 kHz Image: Spectrum Image: Spectrum Att 20 db SWT 250 ms @ VBW 300 kHz Image: Spectrum 10 dBm D1 1.880 dbm Image: Spectrum Image	2 2 Mode Sweep M1[1] 15. M1 M1 M1		1 2.402 1 2.402 1 2.00 dBm Offse 20 dB SWT v	1702 CH2 1.21 db 4235 CH2 -53.01 db 4235 CH2 -61.75 db 11.00 db PBW 100 k 250 ms VBW 300 k	HI HZ Mode Sweep M1[1]		(1 -+7:46 df 15:900670 G	
Spectrum Spectrum Ref Level 20.00 dBm Offset 11.00 dB @ RBW 100 kHz Na 1 2.4935 GHz -60.00 dBm	2 Mode Sweep M1[1] 15.		1 2.400 1 2.400 1 2.00 dBm Offse 20 dB SWT v 01 1.210 dBm 02 -18.790 dBm	1702 CH2 1.21 db 4235 CH2 -53.01 db 4235 CH2 -61.75 db 11.00 db PBW 100 k 250 ms VBW 300 k	H2 H2 H2 Mode Sweep M1[1]		(1 -+7:46 df 15:900670 G	



8DPSK

Норрі	Hopping off TX Freq 2402MHz / 30MHz~25GHz (down 20dBc)								
30MHz~25GHz									
Spectrum Ref Level 20.00 dBm Offset 11.00 dB @ RBW 100 F	kHz		Spectrum Ref Level 20.00 dB	am Offset 11.00 dB	RBW 100 kHz				Ę
Att 20 dB SWT 32.1 ms VBW 300 k			Att 20 IPk View	dB SWT 32.1 ms	VBW 300 kHz	Mode Sweep			
10 dBm	M1[1] M2[1]	-0.44 dBm 2.43199430 GHz -42.79 dBm 2.40000000 GHz	10 dBm	[41		M3[1] M1[1]		2.483	61.30 dB 50000 G -1.44 dB 00150 G
10 dBm			0 dBm D1 -1.44() dBm					
D2 -20.440 dBm			-30 dBm	21.440 dBm					
40 dBm	13		-40 dBm			M3			
70 dBm	F2		-70 dBm	F1		F2			y housings
Start 2.35 GHz 3200)1 pts	Stop 2.55 GHz	Start 2.35 GHz Marker		32001 pts	s		Stop	2.55 GH
arker	Bm	Function Result	Type Ref Trc M1 1 M2 1 M3 1	X-value 2.4020015 GHz 2.4 GHz 2.4835 GHz	Y-value -1.44 dBm -42.35 dBm -61.30 dBm	Function	Fun	ction Result	2
arkar Type Ref Trc X-value Y-value M1 1 2.4319943 GHz -0.44 df M2 1 2.431943 GHz -0.44 df M3 1 2.4935 GHz -42.79 df M3 1 2.4935 GHz -59.57 df Spectrum Ref Level 20.00 dBm Offset 11.00 dB @ RBW 100 b	kHz	Function Result	M1 1 M2 1 M3 1 Spectrum Ref Level 20.00 db	2.4020015 GHz 2.4 GHz 2.4835 GHz 3.4835 GHz	-1.44 dBm -42.35 dBm -61.30 dBm		Fun		ä
arkar Type Ref Trc X-value Y-value M2 1 2.4319943 GHz0.4 dt M2 1 2.4319943 GHz0.4 dt M3 1 2.4 GHz0.4 dt M3 1 2.4 GHz0.4 dt Spectrum Ref Level 20.00 dBm Offset 11.00 dB ● RBW 100 h Att 20 dB SWT 250 ms ● VBW 300 h	kHz KHz Mode Sweep	(maaa) (44 (17)	M1 1 M2 1 M3 1	2.4020015 GHz 2.4 GHz 2.4835 GHz 3.4835 GHz	-1.44 dBm -42.35 dBm -61.30 dBm	Mode Sweep) [[
arkar Type Ref Trc X-value Y-value M1 1 1 2.431942 GHz0.44 dH M2 1 2.4 GHz0.44 dH M3 1 2.4 GHz0.47 df M3 1 2.4 GHz0.47 df M3 1 2.4 GHz0.47 df M3 1 2.4 GHz0.44 df M3 1 2.4 G	kHz	((((((((((((((((((((((((((((((((((((((M1 1 M2 1 M3 1 Spectrum Ref Level 20.00 df Att 20	2.4020015 GHz 2.4 GHz 2.4835 GHz 3.4835 GHz	-1.44 dBm -42.35 dBm -61.30 dBm				46.36 dB
arker Type Ref Trc X-value Y-value M2 1 2.4330943 GHz0.4 dt M3 1 2.4310943 GHz0.4 dt M3 1 2.4 GHz2.42 76 dt M3 1 2.4835 GHz -59.57 dt Spectrum Ref Level 20.00 dBm Offset 11.00 dB @ RBW 100 h Att 20 dB SWT 250 ms @ VBW 300 h 1Pk View 0 dBm 0 dBm	kHz KHz Mode Sweep	-47.09 dBm	M1 1 M2 1 M3 1 Spectrum Ref Level 20.00 df eAtt 20 • 1Pk View 1	2.4020015 GHz 2.4 GHz 2.4935 GHz 2.4935 GHz bm Offset 11.00 dB 38WT 250 ms	-1.44 dBm -42.35 dBm -61.30 dBm	Mode Sweep			46.36 dB
arkar Type Ref Trc X-value Y-value M1 1 1 2.431940 GHz0.4 4d M2 1 2.4 GHz0.4 4d M3 1 2.4 GHz0.4 4d M40.4 4d M5 1 2.4 GHz0.4 4d M50.4 GHz0.4 4d M60.4 GHz0.4 4d M60.4 GHz0.4 4d M70.4 GHz0.4 4d M80.4 GHz0.4 GHz0.4 GHZ0.4 4d M80.4 GHZ0.4 GHZ0.4 4d M80.4 GHZ0.4 GHZ0.4 4d M80.4 GHZ0.4 GHZ0.4 4d M80.4 GHZ0.4 4d M80.4 GHZ0.4 4d M80.4 GHZ0.4 4d M80.4	kHz KHz Mode Sweep	-47.09 dBm	M1 1 M2 1 M3 1 Spectrum Ref Level 20.00 df Att 20.0 9 1Pk View 10 dBm 0 dBm 0 1 -1.440 -10 dBm	2.4020015 GHz 2.4 GHz 2.4935 GHz 2.4935 GHz bm Offset 11.00 dB 38WT 250 ms	-1.44 dBm -42.35 dBm -61.30 dBm	Mode Sweep			46.36 dB 04080 Gł
arker Type Ref Trc X-value Y-value M2 1 2.4330943 GHz0.4 4d M3 1 2.4310943 GHz0.4 4d M3 1 2.435 GHz2.42 79 df M3 1 2.4835 GHz59.57 df Spectrum Ref Level 20.00 dBm Offset 11.00 dB @ RBW 100 l Att 20 dB SWT 250 ms @ VBW 300 k 1Pk View 0 dBm 01 -0.440 dBm D1 -0.440 dBm D2 -20.440 dBm	kHz KHz Mode Sweep	-47.09 dBm	M1 1 M2 1 M3 1 Spectrum Ref Level 20.00 df Att 20.0 ID dBm 0 dBm 0 dBm 0 1 -1.440 -10 dBm	2.4020015 GHz 2.4 GHz 2.4935 GHz 2.4935 GHz bm Offset 11.00 dB 38WT 250 ms	-1.44 dBm -42.35 dBm -61.30 dBm	Mode Sweep			46.36 dB
arker Type Ref Trc X-value Y-value M2 1 2:431943 GHz -0.440 M3 1 2:431943 GHz -0.440 M3 1 2:4 GHz -0.440 M3 1 2:4 GHz -42.79 df M3 1 2:4623 GHz -0.59.57 df Spectrum Ref Level 20.00 dBm Offset 11.00 dB @ RBW 100 l 20 dB SWT 250 ms @ VBW 300 l 1Pk View 0 dBm 01 -0.440 GBm 01 -0.440 GBm 02 -20 440 dBm 02 -20 440 dBm	kHz KHz Mode Sweep	-47.09 dBm	M1 1 M2 1 M3 1 M3 1 Spectrum Image: Comparison of the system of the syst	2.4020015 GHz 2.4 GHz 2.4935 GHz im Offset 11.00 dB SWT 250 ms	-1.44 dBm -42.35 dBm -61.30 dBm	Mode Sweep			46.36 dB
orker orket i	kHz KHz Mode Sweep	-47.09 dBm	M1 1 M2 1 M3 1 Spectrum Ref Lavel 20.00 df Att 20 DFk View 10 dBm 0 dBm 01 -1.440 -10 dBm -20 dBm 02 - -30 dBm	2.4020015 GHz 2.4 GHz 2.4935 GHz im Offset 11.00 dB SWT 250 ms	-1.44 dBm -42.35 dBm -61.30 dBm	Mode Sweep			46.36 dB
Jarker Y-value Y-value Trc X-value Y-value M2 1 2.431942 GHz -0.4 4d M2 1 2.4 GHz -0.4 27 9d M3 1 2.4 GHz -42.79 d M3 1 2.4635 GHz -59.57 d	kHz KHz Mode Sweep	-47.09 dBm 17.861410 GHz	M1 1 M2 1 M3 1 M3 1 Spectrum Ref Level 20.00 db Att 20.0 Att 20.0 IPk View 10 dbm 0 dbm 01 - 1.440 -10 dbm 0230 dbm -40 dbm 0230 dbm	2.4020015 GHz 2.4 GHz 2.4935 GHz im Offset 11.00 dB SWT 250 ms	-1.44 dBm -42.55 dBm -61.30 dBm -61.30 dBm	Mode Sweep			46.36 dB
Jarker Y-value Y-value Trc X-value Y-value M2 1 2.431943 GHz -0.4 4d M2 1 2.4 GHz -0.4 27 9d M3 1 2.4 GHz -4.2 79 d M3 1 2.4 GHz -4.2 79 d Spectrum Ref Level 20.00 dbm Offset 11.00 db @ RBW 100 l Att 20 db SWT 250 ms @ VBW 300 k 104 bm 01 -0.440 dbm 00 dbm 04 dbm 02 -20.440 dbm 04 dbm 00 dbm 02 -20.440 dbm 04 dbm	kHz KHz Mode Sweep	-47.09 dBm 17.861410 GHz	M1 1 M2 1 M3 1 Spectrum Ref Level 20.00 db Att 20 DFk View 10 dBm 0 dBm 0 -1.440 -10 dBm -20 dBm -20 dBm -50 dBm -60 dBm -6	2.4020015 GHz 2.4 GHz 2.4935 GHz im Offset 11.00 dB SWT 250 ms	-1.44 dBm -42.55 dBm -61.30 dBm -61.30 dBm	Mode Sweep M1[1]			46.36 dB

3.4 Conducted Output Power

3.4.1 Limit of Conducted Output Power

1 Watt

For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non overlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band.

🛛 0.125 Watt

For all other frequency hopping systems in the 2400–2483.5 MHz band.

0.125 Watt

For Frequency hopping systems operating in the 2400–2483.5 MHz band have hopping channel carrier frequencies that are separated by two-thirds of the 20 dB bandwidth of the hopping channel.

3.4.2 Test Procedures

- 1. A wideband power meter is used for power measurement. Bandwidth of power senor and meter is 50MHz
- 2 If duty cycle of test signal is not 100 %, trigger and gating function of power meter will be enabled to capture transmission burst for measuring output power

3.4.3 Test Setup

Modulation Mode	Freq. (MHz)	Output Power (mW)	Output Power (dBm)	Limit (mW)
GFSK	2402	1.86	2.70	125
GFSK	2441	1.85	2.67	125
GFSK	2480	1.79	2.53	125
л /4 DQPSK	2402	1.36	1.32	125
л /4 DQPSK	2441	1.35	1.30	125
л /4 DQPSK	2480	1.31	1.18	125
8DPSK	2402	1.50	1.77	125
8DPSK	2441	1.49	1.73	125
8DPSK	2480	1.45	1.62	125

3.4.4 Test Result of Conducted Output Power

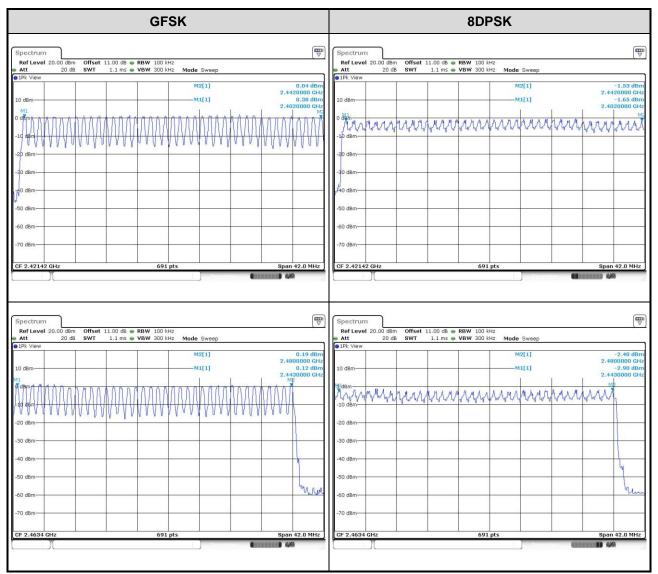
Modulation Mode	Freq. (MHz)	AV Output Power (mW)	AV Output Power (dBm)
GFSK	2402	1.70	2.3
GFSK	2441	1.69	2.29
GFSK	2480	1.64	2.16
л /4 DQPSK	2402	0.72	-1.40
л /4 DQPSK	2441	0.72	-1.41
л /4 DQPSK	2480	0.70	-1.54
8DPSK	2402	0.72	-1.40
8DPSK	2441	0.72	-1.41
8DPSK	2480	0.71	-1.51

Note: Average power is for reference only.

3.5 Number of Hopping Frequency


3.5.1 Limit of Number of Hopping Frequency

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.


3.5.2 Test Procedures

- 1. Set RBW = 100kHz, VBW = 300kHz, Sweep time = Auto, Detector = Peak Trace max hold.
- 2 Allow trace to stabilize.

3.5.3 Test Setup

3.5.4 Test Result of Number of Hopping Frequency

3.6 20dB and Occupied Bandwidth

3.6.1 Test Procedures

20dB Bandwidth

- 1. Set RBW=30kHz, VBW=100kHz, Sweep time = Auto, Detector=Peak, Trace max hold
- 2 Allow trace to stabilize
- 3 Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 20 dB relative to the maximum level measured in the fundamental emission.

Occupied Bandwidth

- 1. Set RBW=30kHz, VBW=100kHz, Sweep time = Auto, Detector=Sample, Trace max hold
- 2 Allow trace to stabilize
- 3. Use Occupied bandwidth function of spectrum analyzer to measuring 99% occupied bandwidth

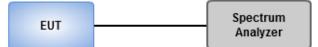
3.6.2 Test Setup

Modulation Mode	Freq. (MHz)	20dB Bandwidth (MHz)	Occupied Bandwidth (MHz)
GFSK	2402	0.961	0.886
GFSK	2441	0.965	0.881
GFSK	2480	0.957	0.881
8DPSK	2402	1.296	1.168
8DPSK	2441	1.291	1.168
8DPSK	2480	1.291	1.172

3.6.3 Test result of 20dB and Occupied Bandwidth

Worst Plot of 20dB Bandwidth					Worst Plot of Occupied Bandwidth							
	0 dB 🖷 RBW 30 kHz 1 ms 🖶 VBW 100 kHz	Mode Sweep			Spectrum Ref Level Att	free to be a second		8 e RBW 30 kHz 5 e VBW 100 kHz	Mode Sweep			Ţ
10 dBm		M1[1] ——Occ Bw D1[1]		-23.54 dBm 2.47934783 GHz 167872648 MHz -0.55 dB 1.29130 MHz	10 dBm			M	M1[1] Occ Bw	-	2.479	-4.38 dB 98260 GF 14182 MF
0 dBm 01 -4.385 dBm	march	A M	1		-10 dBm		T	mart	-homy	12 12		
D2 -24.385 dBm 30 dBm 40 dBm					-40 dBm	\mathcal{N}				h	m	~~~·
-60 dBm			~m	on	-60 dBm							
-70 dBm		F	2		Marker Type Ref M1 T1		X-value 2.4799826 GHz 2.47940087 GHz	691 pt Y-value -4.38 dBm -20.76 dBm	S Function	Fund	ction Result	n 3.0 MHz
CF 2.48 GHz	691 pts	Mexaprin	CHARLES	Span 3.0 MHz	T2)(2.48057308 GHz	-19.04 dBm)			

3.7 Channel Separation


3.7.1 Limit of Channel Separation

- Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.
- Frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

3.7.2 Test Procedures

- 1. Set RBW=100kHz, VBW=300kHz, Sweep time = Auto, Detector=Peak Trace max hold
- 2 Allow trace to stabilize
- 3 Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The EUT shall show compliance with the appropriate regulatory limit

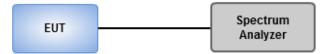
3.7.3 Test Setup

Modulation Mode	Freq. (MHz)	Channel Separation (MHz)	20dB Bandwidth (MHz)	Minimum Limit (MHz)
GFSK	2402	1.003	0.961	0.641
GFSK	2441	1.003	0.965	0.643
GFSK	2480	1.003	0.957	0.638
8DPSK	2402	1.003	1.296	0.864
8DPSK	2441	1.003	1.291	0.861
8DPSK	2480	1.003	1.291	0.861

3.7.4 Test result of Channel Separation

Spectrum
Ref Level 20.00 dBm Offset 11.00 dB 🖷 RBW 100 kHz
🖷 Att 20 dB SWT 1 ms 🖷 VBW 300 kHz Mode Sweep
●1Pk View●2Pk View
D2[2] -0.02
1.00290 M 10 dBmM1[1]1.57 dB
2.40200070 G
0 dBm
-10 dBm
-20 dBm
-50° à 8 m ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
-60 dBm
-70 dBm
CF 2.4025 GHz 691 pts Span 3.0 MH
Measuring

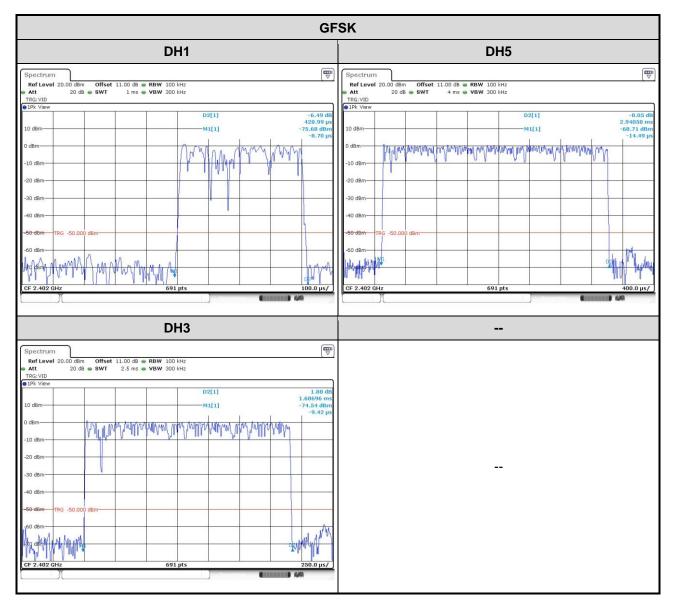
3.8 Number of Dwell Time

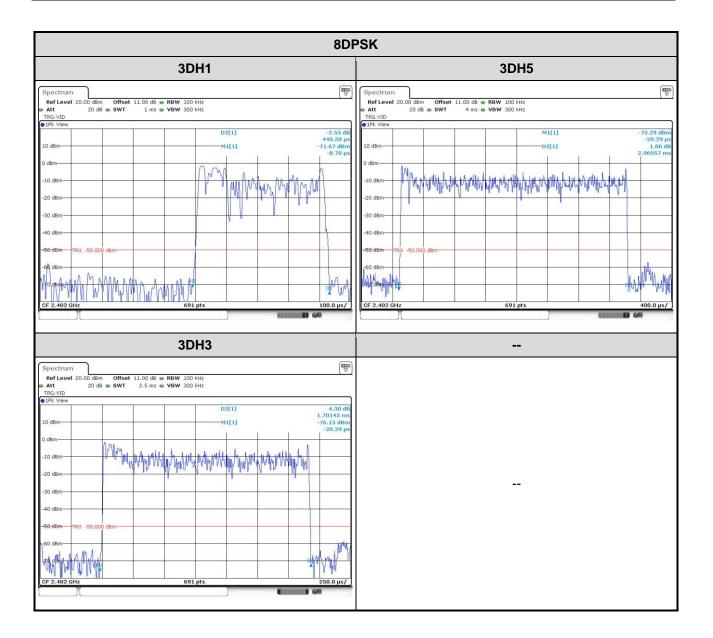

3.8.1 Limit of Dwell time

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

3.8.2 Test Procedures

- 1. Set RBW=100kHz,VBW=300kHz,Sweep time = 500us(DH1),2ms(DH3),4ms(DH5), Detector=Peak, Span=0Hz,Trace max hold
- 2 Enable gating and trigger function of spectrum analyzer to measure burst on time.
- 3. The DH1 packet can cover a single time slot. A maximum length packet has duration of 1 time slots. The hopping rate is 1600 hops/second so the maximum dwell time is 1/1600 seconds, or 0.625ms. DH1 Packet permit maximum 1600 / 79 /2 = 10.12 hops per second in each channel (1 time slot TX, 1 time slot RX). So, the dwell time is the time duration of the pulse times 10.12 x 31.6 = 320 within 31.6 seconds.
- 4. The DH3 packet can cover up to 3 time slots. A maximum length packet has duration of 3 time slots. The hopping rate is 1600 hops/second so the maximum dwell time is 3/1600 seconds, or 1.875ms. DH3 Packet permit maximum 1600 / 79 / 4 = 5.06 hops per second in each channel (3 time slots TX, 1 time slot RX). So, the dwell time is the time duration of the pulse times 5.06 x 31.6 = 160 within 31.6 seconds.
- 5 The DH5 packet can cover up to 5 time slots. Operate DH5 at maximum dwell time and maximum duty cycle. A maximum length packet has duration of 5 time slots. The hopping rate is 1600 hops/second so the maximum dwell time is 5/1600 seconds, or 3.125ms. DH5 Packet permit maximum 1600/ 79 / 6 = 3.37 hops per second in each channel (5 time slots TX, 1 time slot RX). So, the dwell time is the time duration of the pulse times 3.37 x 31.6 = 106.6 within 31.6 seconds


3.8.3 Test Setup



3.8.4 Test Result of Dwell Time

Modulation Mode	Freq. (MHz)	Length of Transmission Time (msec)	Number of Transmission in a 31.6 (79 Hopping*0.4)	Result (s)	Limit (s)
GFSK-DH1	2402	0.42899	320	0.137	0.4
GFSK-DH3	2402	1.68696	160	0.270	0.4
GFSK-DH5	2402	2.94058	106.6	0.313	0.4
8DPSK-DH1	2402	0.44058	320	0.141	0.4
8DPSK-DH3	2402	1.70145	160	0.272	0.4
8DPSK-DH5	2402	2.96957	106.6	0.317	0.4

4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corp, it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan Hsiang. Location map can be found on our website <u>http://www.icertifi.com.tw</u>.

Linkou

Tel: 886-2-2601-1640 No. 30-2, Ding Fwu Tsuen, Lin Kou District, New Taipei City, Taiwan, R.O.C.

Kwei Shan

Tel: 886-3-271-8666 No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

Kwei Shan Site II

Tel: 886-3-271-8640 No. 14-1, Lane 19, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

If you have any suggestion, please feel free to contact us as below information

Tel: 886-3-271-8666 Fax: 886-3-318-0155 Email: ICC_Service@icertifi.com.tw

—END—